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1 Introdution

Symboli dynamis is a �eld whih was born with the work in topology of

Marston Morse at the beginning of the twenties [44℄. It is, aording to

Morse, an \algebra and geometry of reurrene". The idea is the following.

Divide a surfae into regions named by ertain symbols. We then study

the sequenes of symbols obtained by sanning the suessive regions while

following a trajetory starting from a given point. A further paper by Morse

and Hedlund [45℄ gave the basi results of this theory. Later, the theory was

developed by many authors as a branh of ergodi theory (see for example

the olleted works in [59℄ or [12℄). One of the main diretions of researh

has been the problem of the isomorphism of shifts of �nite type (see below

the de�nition of these terms). This problem is not yet ompletely solved

although the latest results of Kim and Roush [35℄ indiate a ounterexample

to a long-standing onjeture formulated by F. Williams [61℄.

There are many links between symboli dynamis and the theory of

automata, as pointed out by R. Adler and B. Weiss [60℄. Atually a very

early referene on this onnetion an be found in a paper of A. Gleason

published many years later [30℄ after a series of letures given at the Institute

for Defense Analysis in 1960. In this paper, based on notes by R. Beals and

M. Spivak, methods of �nite semigroups were introdued to obtain some of

the results of G. Hedlund.
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The idea of onsidering in�nite words also appears, of ourse, in the

framework of automaton theory, independently of symboli dynamis. This

theory was developed initially by R. B�uhi and R. MNaughton. Sine the

beginning it has, however, taken a di�erent diretion and is onneted with

problems of logi rather than with the topologial ones raised in symboli

dynamis.

In this hapter, we present some interonnetions between automata

and symboli systems and disuss some of the new results that have been

obtained in this diretion together with some interesting open problems.

The material presented here does not over all existing onnetions of this

kind. There are, in partiular, interesting links between symboli dynamis

and representation of numbers that are not presented here (see [28℄). There

are also important onnetions with ellular automata (see e.g. [16℄). The

appliations of symboli dynamis to oding are not treated (see [2℄ or the

book of D. Lind and B. Marus [38℄).

The hapter is organized as follows. The �rst setions (Setions 2, 3,

4) onstitute an introdution to symboli dynamis. It is essentially self-

ontained although some proofs are only skethed. The onepts introdued

inlude shift spaes, symboli systems, minimal systems, so� systems and

systems of �nite type.

In the next setion (Setion 5), we show how the notion of a minimal

deterministi automaton translates in the framework of symboli dynamis

to the notion of a Fisher over. Both notions essentially oinide but for

the hoie of an initial state.

The following setion (Setion 6) desribes the relation between unam-

biguous automata and odes with a lass of maps alled �nite-to-one. We

show that some results on the ompletion of odes an be translated into

ones on shifts of �nite type.

Setion 7 is an introdution to the tehnique of state splitting. We show

in partiular how this operation is related to automata minimization.

The next setion (Setion 8) deals with the notion of the isomorphism of

shifts of �nite type. We de�ne shift equivalene and strong shift equivalene.

We show that two shifts of �nite type are isomorphi i� their matries are

strong shift equivalent (William's theorem).

Setion 9 ontains the de�nition of entropy. We show how this notion

is related to well-known onepts in automata and oding theory suh as

the Kraft inequality. We also state without proof a reent result of D.

Handelman that haraterizes the entropies of systems generated by �nite

odes.

The following setions present various topis relating symboli dynamis
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and �nite automata, overing in partiular zeta funtions and irular odes.

This hapter is a survey of many results and onepts, not all of them

presented with the same degree of detail. As far as the de�nitions are

onerned, it is self-ontained for a reader familiar with basi notions of

automata theory. Conerning the proofs of the results, the situation is more

variable: some of them are given ompletely, even if sometimes ondensed.

Some others are only skethed or not even given here, as not being in the

sope of this survey.

The material presented is an extended version of a survey by the seond

author at the onferene MFCS in September 1995 in Prague [51℄.

We would like to thank many people for their help during the preparation

of this work and, in partiular, Fr�ed�erique Bassino, V�eronique Bruy�ere, Aldo

De Lua, and Paul Shupp.

2 Symboli dynamial systems

We present in this Setion a short introdution to the onepts of symboli

dynamis. For a muh more detailed and omplete exposition, we refer to the

new book of Doug Lind and Brian Marus [38℄ whih is the �rst exposition

in book form of this theory. Our presentation aims espeially at a publi of

omputer sientists already familiar with suh onepts as �nite automata

and transdutions.

Let A be a �nite alphabet. We denote by A

�

the set of �nite words on

A. The empty word is denoted � and the set of nonempty words is thus

A

+

= A

�

� �. We onsider the set A

Z

of two-sided in�nite words as a

topologial spae with respet to the usual produt topology. An element

of A

Z

is a sequene

x = (x

n

)

n2Z

= : : : x

�1

x

0

x

1

: : :

The topology is de�ned by the distane for whih words are lose if they

oinide on a long interval entered at 0. Formally, we may de�ne the

distane of x; y as

d(x; y) = 2

�e(x;y)

where

e(x; y) = maxfn � 0 j x

i

= y

i

; �n � i � ng
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using the onvention e(x; y) =1 if x = y, and e(x; y) = �1 if x

0

6= y

0

.

The shift transformation � ats on A

Z

bijetively. It assoiates to x 2 A

Z

the element y = �(x) 2 A

Z

de�ned for n 2 Z by

y

n

= x

n+1

and obtained by shifting all symbols one plae left.

A symboli dynamial system or subshift is a subset S of A

Z

whih is both

1. topologially losed and,

2. shift-invariant, i.e. suh that �(S) = S.

Thus, and in more intuitive terms, a subshift is a set of bi-in�nite words

whose de�nition does not make referene to the origin and allows one passing

to the limit.

The system is denoted S or (S; �) to emphasize the role of the shift �.

For example, (A

Z

; �) itself is a symboli dynamial system, often alled

the full shift in ontrast with the subshifts whose name refer to the embed-

ding in the full shift A

Z

.

As a less trivial example, the set of sequenes on A = fa; bg suh that

a symbol b is always followed by a symbol a is a subshift often alled the

golden mean system. We shall use this example several times in the rest of

the hapter.

Let G be a direted graph with E as its set of edges. We atually use

multigraphs instead of ordinary graphs in order to be able to have several

distint edges with the same origin and end. Formally, a direted multigraph

is given by two sets E (the edges) and V (the verties) and two funtions

�; � : E ! V . The vertex �(e) is the origin of the edge e and �(e) is its

end. We shall always say \graph" for \direted multigraph".

Let S

G

be the subset of E

Z

formed by all bi-in�nite paths in G. It is

lear that S

G

is a subshift alled the edge shift on G. Indeed S

G

is losed

and shift invariant by de�nition.

Figure 1 presents an example of a graph with three edges whih de�nes

an edge shift on three symbols.

Let A = (Q;E) be a �nite automaton on an alphabet A given by a �nite

set Q of states and a set E � Q�A�Q of edges but without initial or �nal

states. The set of all labels � � � a

�1

a

0

a

1

� � � of the bi-in�nite paths

� � � p

�1

a

�1

�! p

0

a

0

�! p

1

� � �

is a subshift S. We say that S is the subshift reognized by the automaton

A.
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Figure 1: An edge shift

An automaton an be onsidered as a graph in whih the set of edges

is ontained in Q � A � Q. Thus we may onsider the subshift formed by

all bi-in�nite paths in A, whih is really the edge shift S

A

. The subshift

reognized by A is the image of the edge shift S

A

under the map assigning

to a path its label. This map is ontinuous. Sine the automaton is �nite,

the set S

G

is ompat and so is S whih is thus losed. A subshift obtained

in this way is alled a so� shift or a so� system.

We will use in the sequel �nite automata, either in the lassial sense as

a tuple (Q;E; I; T ) with I � Q as set of initial states and T � Q as set of

�nal states, to reognize a set of �nite words, or, as above, without initial

and �nal states, to reognize a subshift.

For a subset X of A

�

, we say that X is reognizable if it an be reognized

by a �nite automaton.

A �nite word v is said to be a fator (or also a blok) of a �nite or in�nite

word z if its symbols appear onseutively in z.

We may assoiate with a subshift S � A

Z

the set

F

S

= fx

i

� � � x

j

j x 2 S; i � jg [ �

of fators of its elements.

We may also onsider the omplement I

S

= A

�

� F

S

of this set, whih

is the set of forbidden bloks.

The set F = F

S

� A

�

satis�es the onditions of being

1. fatorial: uvw 2 F ) v 2 F .

2. extendible: 8v 2 F; 9 a; b 2 A : avb 2 F .

Conversely, suh a set of �nite words is the set of fators of a subshift as

shown by the following proposition.

Proposition 1 Let F � A

�

be a fatorial and extendible set. The set

S

F

= fx 2 A

Z

j x

i

� � � x

j

2 F (i � j)g

is a subshift and F

S

F

= F . Conversely, if S is a subshift, then S

F

S

= S.
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Proof. Let S = S

F

. It is lear that S is a subshift and that F

S

� F . To

show that F � F

S

, onsider v 2 F . Sine F is extendible, we an onstrut

a two-sided in�nite word x of the form � � � a

n

� � � a

1

vb

1

� � � b

n

� � � suh that

a

n

� � � a

1

vb

1

� � � b

n

2 F for all n. Then all fators of x are in F and thus

x 2 S, whene v 2 F

S

. Thus F

S

= F .

For the seond formula, let F = F

S

. The inlusion S � S

F

is lear. The

onverse follows by ompatness.

One may also de�ne a subshift by a set of forbidden bloks. Indeed, for

any set I � A

+

the set

S = fx 2 A

Z

j x

i

� � � x

j

62 I (i � j)g

is always a subshift whatever be the set I, but we only have the inlusion

I

S

� I instead of an equality.

For instane, if S is the golden mean system, the set I

S

of forbidden

bloks is formed by all words ontaining bb.

The simple relation between a subshift and its set of fators shows that

subshifts are losely related to ordinary sets of �nite words, in ontrast with

more general sets of in�nite words de�ned by B�uhi automata. The latter are

indeed not topologially losed in general and thus have a larger topologial

omplexity in the Borel hierarhy (on B�uhi automata, see [24℄, [58℄, or the

hapter by W. Thomas in this Handbook).

We say that an automaton A = (Q;E) is trim if any state is on a

bi-in�nite path. We shall onsider only here trim automata sine we are

interested in bi-in�nite paths. For an automaton A = (Q;E; I; T ) with

initial and �nal states, we say that A is trim if any state is aessible from

I and an aess T .

Proposition 2 Let A = (Q;E) be a �nite trim automaton. The set F

S

of fators of the subshift S reognized by A is reognized by the automaton

(Q;E;Q;Q) in whih all states are both initial and �nal. Conversely, if F

S

is

reognized by a trim �nite automaton A = (Q;E; i; T ), then S is reognized

by the automaton (Q;E).

In partiular, S is so� i� F

S

is reognizable.

Proof. The �rst assertion is lear. For the seond one, let S

0

be the subshift

reognized by A. Sine A is trim, we have F

0

S

� F

S

. The onverse inlusion

is also true by ompatness of the set of paths in A. Sine F

S

= F

S

0

we have

S = S

0

and thus the onlusion. The third statement is a diret onsequene

of the �rst ones.
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The notions introdued above an also be formulated in the ontext of

one-sided in�nite words. Indeed the set A

N

of one-sided in�nite words is

also a topologial spae and the shift transformation is also de�ned upon

it although it is no longer one-to-one. A one-sided symboli system, or

one-sided subshift, is a set S � A

N

whih is both losed and invariant.

Equivalently, it is the set of right in�nite sequenes that appear in a shift.

We shall usually work with two-sided subshifts beause two-sided shifts take

into aount both the past and the future. An exeption will be made in

Setion 3 onerning the notion of reurrene.

A subshift S is said to be irreduible if for any x; y 2 F

S

there is a word

u suh that xuy 2 F

S

.

For example, the golden mean system is irreduible. In fat, if x and y

avoid bb, then xay also does. On the ontrary, the set of in�nite words on

fa; bg avoiding ba is reduible sine for all u, the word bua ontains a fator

ba.

Let S be the edge graph of a graph G. If G is strongly onneted, then S

is irreduible. The onverse is true provided the graph satis�es the ondition

that eah vertex has positive in- and out-degree.

An automaton with a strongly onneted graph is said to be transitive.

In general, the de�nition of an irreduible system an be formulated in

topologial terms and it is related to the possibility of a deomposition into

simpler elements.

A subshift S is said to be primitive if there is an integer n > 0 suh that

for all x; y 2 F

S

there exists a word u of length n suh that xuy 2 F

S

.

For example, the golden mean system is primitive. On the ontrary, the

system S formed by all words on fa; bg avoiding aa and bb is not primitive.

Indeed, for x = a, y = b the only adequate u has to be in (ba)

�

and thus of

even length, whereas for x = a, y = a it has to be in b(ab)

�

and thus of odd

length.

When S is the edge graph of a strongly onneted graph G, then S is

primitive if and only if the gd of the yle lengths is one.

A morphism between two subshifts (S; �) and (T; �) is a map f : S ! T

whih is ontinuous and ommutes with the shifts, i.e. suh that f� = �f .

S

-

f

T

�

?

�

?

S

-

f

T
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Figure 2: The sliding window

When f is a morphism from S onto T , it is said that T is a fator of S.

Let S � A

Z

and T � B

Z

be two subshifts and let k � 1 be an integer.

A funtion f : S ! T is said to be k-loal or loal if there exists a funtion

f : A

k

! B and an integer m 2 Z suh that for all x 2 S the word y = f(x)

is de�ned for n 2 Z by

y

n+m

= f(x

n�(k�1)

� � � x

n�1

x

n

) (1)

Thus the value of a symbol in the image is a funtion of the symbols on-

tained in a window of length k above it, alled a sliding window (represented

on Figure 2 in the ase m = 0). A loal funtion de�ned by a formula like

Formula (1) withm = 0 is alled sequential. Thus a sequential loal funtion

is one that writes below the right end of the window.

A loal funtion is also alled a sliding blok ode and a k-loal funtion

is also alled a k-blok map. A 1-loal funtion or one-blok map is nothing

else than an alphabeti substitution (or very �ne morphism in [24℄).

The following result is well-known. In Hedlund's artile [33℄, it is redited

to M.L. Curtis, G. Hedlund and R.C. Lyndon

1

.

Theorem 1 Let S � A

Z

; T � B

Z

be two symboli systems de�ned over

�nite alphabets A and B. A funtion f : S � A

Z

! T � B

Z

is a morphism

if it is k-loal for some k � 0.

Proof. It is lear that a loal funtion is a morphism sine it is ontinuous

and ommutes with the shift by de�nition. Conversely, let f : S ! T

be a ontinuous map. Sine A is �nite, A

Z

is ompat and so is S whih

is losed in A

Z

. Thus f is uniformly ontinuous. This implies that there

is an integer k suh that the symbol f(x)

0

is determined by the window

x

�k

� � � x

0

� � � x

k

. Sine f ommutes with the shift the other symbols of f(x)

are also determined by the orresponding window of length 2k + 1.

1

Suh an ativity was supposedly related to ryptography and supported as suh by

the Institute for Defense Analysis. It was one of Roger Lyndon's favorite subjets of jokes

on the notion of appliations in mathematis.
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An isomorphism (also alled a onjugay) is a bijetive morphism. If f

is an isomorphism from S onto T , then S and T are said to be onjugate.

Sine the alphabet A is �nite, the spae S is ompat. The inverse of a

ontinuous funtion f : S ! T is also ontinuous when S is ompat.Thus

the inverse of a onjugay is a onjugay.

As a general rule, the onepts studied in symboli dynamis are in-

variant under onjugay and a lot of the attention is given to the searh

of omplete invariants, i.e. invariants that haraterize a subshift up to

onjugay.

3 Reurrene and minimality

In this setion, we onentrate on a speial kind of symboli dynamial

systems: the smallest system ontaining a given in�nite word. It is more

appropriate to present it in the one-sided ase. For a one-sided in�nite

word x 2 A

N

, we de�ne F (x) to be the set of fators of x. We also de�ne

S(x) = fy 2 A

N

j F (y) � F (x)g. The set S(x) is obviously the smallest

subshift ontaining x.

A one-sided in�nite word x 2 A

N

is said to be reurrent if any blok

ourring in x has an in�nite number of ourrenes. It is obviously enough

for x to be reurrent that any pre�x of x has a seond ourrene.

It is easy to verify that x is reurrent if and only if the subshift S(x) is

irreduible. Indeed, if S(x) is irreduible, then for any pre�x u of x there is

a v suh that uvu 2 F (x) and thus u has a seond ourrene. Conversely,

if x is reurrent then for any u; v 2 F (x), v has an ourrene following any

ourrene of u and thus there is a word w suh that uwv 2 F (x).

The notion of a reurrent word is linked to the onept of a sesquipower

(or (1 +

1

2

)-power). A word w is alled a sesquipower of order n if it an be

written w = uvu with u a sesquipower of order n � 1 and v any word. A

sesquipower of order 0 is any nonempty word.

A reurrent word is one that an be written as an in�nite sesquipower,

i.e. as

x = u

0

: : :

= u

0

u

1

u

0

: : :

= u

0

u

1

u

0

u

2

u

0

u

1

u

0

: : : (2)

Indeed, we an hoose u

0

to be the �rst symbol of x. Then, sine u

0

has a

9



seond ourrene in x, we an �nd u

1

suh that u

0

u

1

u

0

is a pre�x of x and

so on.

A word x 2 A

N

is said to be uniformly reurrent if every blok of x

appears in�nitely often at bounded distane.

A periodi word is obviously uniformly reurrent. A simple way to on-

strut a uniformly reurrent non periodi word is to use words u

i

of bounded

length in Eq. (2). We shall see examples in more detail below.

These notions are strongly related to that of a minimal subshift, i.e. a

subshift S � A

Z

suh that T � S implies T = ; or T = S.

The following result is one of the earliest in symboli dynamis ([15℄,[45℄).

It links a dynamial property of the orbit of a point with a property of the

words representing the orbit.

Theorem 2 Let x 2 A

N

be a one-sided in�nite word. The following ondi-

tions are equivalent.

1. x is uniformly reurrent.

2. S(x) is minimal.

Proof. 1) 2 Let S � S(x) be a subshift and let y 2 S. Then S(y) � S. Sine

y 2 S(x), we have F (y) � F (x) by the de�nition of S(x). Let w 2 F (x).

Sine x is uniformly reurrent, w appears in every long enough blok of x.

Hene w appears in the long enough bloks of y. Whene w 2 F (y). This

shows that F (x) = F (y) and this implies that S(y) = S = S(x).

2 ) 1 Any blok w of x appears in all y 2 S(x) sine S(x) is minimal.

For a given blok w of x, we de�ne i

w

(y) to be the funtion assigning to

y 2 S(x) the least integer i suh that y = uwz with juj = i. Sine i

w

is ontinuous and S(x) is ompat, i

w

is bounded. Let w be a blok of

x = uwy. Sine y 2 S(x), w 2 F (y) and thus w has a seond ourrene in

x at a distane bounded by i

w

(y).

Example 1 The word of Thue-Morse is the in�nite word obtained by iterat-

ing the substitution f de�ned by f(a) = ab, f(b) = ba. The wordm = f

!

(a)

is uniformly reurrent. Indeed, aaa or bbb are not in F (m). Thus suessive

ourrenes of a or b are separated by at most two symbols. It follows that

any blok of m appears at bounded distane sine it has to appear in some

f

k

(a) or f

k

(b). The system S(m) is known as the Morse minimal set.
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It is possible to generalize the example of the Morse minimal set as

follows. Let f : A! A

�

be a substitution suh that for any symbols a; b 2 A

there is at least an ourrene of b in f(a). Then any in�nite word x suh

that f(x) = x is uniformly reurrent [43℄.

We used in the proof of Theorem 2 a possible variant of the de�nition

of a uniformly reurrent word: for all n > 0 there is an m > n suh that

any fator of length n appears in any fator of length m. This ondition an

be used as a de�nition for a uniformly reurrent two-sided in�nite word. It

also leads to the de�nition of a funtion r

x

(n) alled the reurrene index

of x. We let r

x

(n) = m if m is the smallest possible integer suh that any

fator of length n appears in any fator of length m. It is well de�ned for

all integers n i� x is uniformly reurrent.

It is worth mentioning yet another equivalent de�nition of uniformly

reurrent words. It uses the notion of a well-quasi-order. Reall (see [39℄,[37℄

or [23℄) that a partial order on a set X is alled a well-quasi-order if

1. there are no in�nite desending hains

2. Any set of pairwise inomparable elements is �nite

Well-quasi-orders are a generalization of well orders whih are total orders

satisfying ondition (1) , or equivalently suh that any nonempty subset has

a smallest element.

We onsider the fator ordering on sets of words. It is the partial order

de�ned by u < v if u is a fator of v. The �rst ondition in the above

de�nition is then automatially satis�ed sine the length of words annot

derease inde�nitely.

We have the following result.

Proposition 3 A reurrent one-sided in�nite word x is uniformly reurrent

if and only if the fator ordering on the set F (x) is a well-quasi-order.

Proof. The ondition is obviously neessary sine the order onsidered on

the set F (x) of fators of a uniformly reurrent word x satis�es the stronger

property that the set of elements inomparable with a given u 2 F (x) is

�nite. Conversely, if x is not uniformly reurrent, we an �nd a sequene

vu

n

v 2 F (x) of words of inreasing length suh that the only ourrenes of

v in vu

n

v are the two ones as a pre�x and a suÆx. Then the words vu

n

v

are inomparable and thus the order is not a well partial order.

Note that the fator order on the set A

�

itself is not a well-quasi-order (and

in fat quite the opposite sine it is a maximal set of fators instead of a

11



a

b

b

1 2

Figure 3: The even system

minimal one). By a lassial theorem of Higman (see [39℄), it is well-quasi-

ordered by a di�erent order, namely the subword ordering de�ned by u < v

if u = u

1

u

2

: : : u

n

and v = x

0

u

1

x

1

� � � x

n�1

u

n

x

n

.

In this setion, we have only touhed the subjet of minimal subshifts.

There are many other interesting developments in this diretion, suh as

the one of Sturmian words (see the Chapter by Aldo De Lua and Stefano

Varrihio in this Handbook). Minimal subshifts are in a sense at the op-

posite of the subshifts that we are going to study now. To be more preise,

minimal subshifts ontain no periodi point unless they are �nite, whereas

in the so� subshifts introdued below, the set of periodi points is dense.

4 So� systems and shifts of �nite type

Reall from Setion 2 that a so� system is a subshift S reognized by a �nite

automaton. For instane the system given on Figure 3 is a so� system. It

onsists of all binary sequenes suh that the length of the bloks of b's

between two a's are of even length. This system is sometimes alled the

even system.

A shift of �nite type is a subshift whih is made of all in�nite words

avoiding a given �nite set of bloks. For example, the golden mean system

de�ned in Setion 2 as formed by all words on fa; bg avoiding bb is a shift of

�nite type.

Shifts of �nite type are losely related to a partiular and well-known

lass of �nite automata alled loal automata. We �rst give their de�nition.

Proposition 4 Let A be a �nite automaton. The following onditions are

equivalent.

1. The urrent state on a path is determined by a bounded number of

labels in the past and in the future.

2. There is at most one in�nite path with a given label.

12



Moreover, if A is transitive, the previous onditions are equivalent to:

3. There is at most one periodi in�nite path with a given label.

Proof. 1) 2. If

� � � p

n�1

a

n�1

�! p

n

a

n

�! p

n+1

� � �

is an in�nite path, the urrent state p

n

is determined by (a bounded number

of) the symbols � � � a

n�1

a

n

� � � and thus the label determines the path.

2 ) 1. If ondition 1 is not true, there exist by K�onig's lemma two

distint in�nite paths � � � p

n�1

a

n�1

�! p

n

� � � and � � � q

n�1

a

n�1

�! q

n

� � � with the

same label.

2) 3 is lear.

3 ) 1. If ondition 1 is not true, there exist two distint in�nite paths

� � � p

n�1

a

n�1

�! p

n

� � � and � � � q

n�1

a

n�1

�! q

n

� � � with the same label. As the paths

are distint, there is an index n suh that p

n

6= q

n

. Sine the automaton

is �nite, both paths use the same pair of states (p; q) in�nitely often before

time n, and the same pair of states (r; s) in�nitely often after time n. If

p 6= q or r 6= s, this de�nes two distint periodi paths with the same label.

If not, we have p = q and r = s. As the automaton is transitive, there exists

a path from r to q and this again de�nes two distint periodi paths with

the same label.

A �nite automaton is said to be loal if it satis�es ondition 1 above

(equivalent to 2 and also to 3 when the automaton is transitive). The

bound on the window size orresponding to ondition 1 above an atually

be shown to be quadrati as a funtion of the number of states (see for

instane [7℄ p.45).

We reall that an automaton is alled deterministi if it admits at most

one edge leaving a given state and with a given label.

Proposition 5 Let A be a �nite deterministi automaton. The following

onditions are equivalent.

1. The urrent state on a path is determined by a bounded number of

labels in the past.

2. The automaton is loal.

Proof. 1) 2 is lear.

13



2) 1. By de�nition there exist n and m suh that the urrent state on

a path is determined by n symbols in the past and m symbols in the future.

Any blok of n+m symbols determines the �nal state. Indeed, on a path

p

0

a

1

�! � � �

a

n

�! p

n

a

n+1

�! � � �

a

n+m

�! p

n+m

the state p

n

is determined. But then p

n+1

; : : : ; p

n+m

are also determined

beause the automaton is deterministi. Thus n +m symbols in the past

determine the urrent state.

The basi example of a deterministi loal automaton is the standard

k-loal automaton or De Bruijn graph. Its set of states is the set A

k

of

words of length k and its edges are the triples (au; b; ub) for u 2 A

k�1

and

a; b 2 A.

The following result shows that shifts of �nite type orrespond to loal

automata.

Proposition 6 A shift of �nite type is a so� system. More preisely, a

subshift is of �nite type if and only if it is reognized by a loal automaton.

Proof. Let S be a shift of �nite type de�ned by a set of forbidden bloks of

maximal length k. We use the standard (k� 1)-loal automaton, erasing all

edges (au; b; ub) suh that aub ontains a forbidden blok. In this way, we

obtain a �nite automaton reognizing S as a so� system.

Conversely, let A be a loal automaton. By de�nition, the urrent state

on a path is determined by a bounded number n of symbols in the past and

a bounded number m of symbols in the future. Let I be the set of words

of length n +m + 1 whih are not labels of paths of A. The so� system

reognized by A is then equal to the set of bi-in�nite words whose bloks of

length n+m+ 1 avoid I. As a onsequene, it is of �nite type.

We shall see in the next setion how this result an be used to hek

e�etively whether a so� system is of �nite type or not.

As an illustration of the above proposition, we may onsider again the

golden mean system. The set of allowed bloks of length 2 is faa; ab; bag

thus giving the automaton of Figure 4.

As a partiular lass of shifts of �nite type, one may de�ne a Markov

shift as a shift of �nite type de�ned by a set of forbidden bloks of length

2. It is lear that the edge shift S

G

on a graph G is a Markov shift. The

previous example is also a Markov shift sine it an be de�ned by the set of

words on fa; bg avoiding bb.

14



ba

b

a

a

Figure 4: The golden mean system

Any shift of �nite type S an be obtained, up to onjugay, as the edge

shift of some �nite graph. Indeed, in a loal automaton the map from edges

to labels is a 1-blok onjugay from the edge shift onto S.

We will prove that both the notion of a shift of �nite type as well as

that of a so� system, are invariant under onjugay. Before proeeding to

prove further properties of shifts of �nite type and so� systems, we de�ne

a useful way to realize a morphism between subshifts.

A (synhronous) transduer on A�B is a �nite automaton (Q;E) with

edges labeled by A�B. If (p; a; b; q) is an edge, we say that a is the input label

and b the output label. We will only onsider here synhronous transduers

instead of the more general notion of a transduer in whih the edges are

labeled by pairs of words on A;B. We shall also only use transduers suh

that if two distint edges (p; a; b; q) and (p; a

0

; b

0

; q) have the same origin p

and end q then a 6= a

0

and b 6= b

0

.

The hypothesis made on transduers implies that, by removing the input

labels or the output labels, we get an automaton. The automaton we get by

removing the input labels is alled the output automaton of the transduer

and the automaton we get by removing the output labels is alled the input

automaton of the transduer.

Let f : S ! T be a morphism from a subshift S into a subshift T . A

transduer T is said to realize f if for all x 2 S, there is a path with input

label x and all of them have output label y = f(x) (we admit the possibility

of several paths with input label x).

A morphism f : S ! T between two subshifts S � A

Z

and T � B

Z

an

be realized by a transduer T = (Q;E) suh that the input automaton is

loal. Let in fat k be suh that f is k-loal. Up to some omposition with

a power of the shift, we may assume for simpliity that f is sequential. The

set Q of states of T is the set of fators of S of length (k � 1), and there is

an edge between au and ub labeled (b; f(aub)).

If S is moreover of �nite type, we may hoose k large enough to ensure

that S is reognized by the input automaton of T .

15



a | x

b | y

a | z

b | t1 2

Figure 5: A 2-blok map

For example, the transduer of Figure 5 realizes the morphism oding

the overlapping bloks of length 2 over the binary alphabet A = fa; bg by a

symbol from the alphabet B = fx; y; z; tg.

The transduer that we have assoiated with a morphism is suh that the

input automaton is loal sine it is part of a De Bruijn graph. The following

proposition gives a pratial method to hek whether a morphism between

shifts of �nite type is a onjugay.

Proposition 7 Let S be a shift of �nite type and let f : S ! T be a

morphism from S onto a subshift T . Let T be a transduer realizing f and

suh that its input automaton is a loal automaton reognizing S. Then f is

a onjugay i� the output automaton of T is loal.

Proof. If both the input and the output automaton are loal, then f is one-

to-one and therefore a onjugay. Conversely, if the output automaton is

not loal, there exist two distint paths with the same output label and thus

f is not one-to-one.

We now prove that the notion of a shift of �nite type is invariant under

onjugay.

Proposition 8 Any onjugate of a shift of �nite type is of �nite type.

Proof. Let S � A

Z

be a shift of �nite type onjugate by f to T � B

Z

. By

Proposition 7, f is realized by a transduer whose output automaton is loal

and reognizes T . By Proposition 6, T is a shift of �nite type.

The following proposition is analogous to the well-known result that the

lass of rational languages is the losure of loal languages under substitu-

tions (Medvedev's theorem, see [24℄ p.27 for instane).

Proposition 9 The fators of shifts of �nite type are the so� systems.
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Proof. A so� system is by de�nition reognized by a �nite automaton. As

suh, it is a fator of the edge graph assoiated with the automaton.

Conversely, let f : S ! T be a morphism from a shift of �nite type S

onto a subshift T . Up to some omposition of f with a power of the shift,

we may realize f by a transduer T whih may also be hosen suh that its

input automaton reognizes S. Then the output automaton of T reognizes

T whih is therefore so�.

We �nally obtain the desired result on the invariane under onjugay

of the lass of so� systems as a orollary of the above statement.

Proposition 10 Any onjugate of a so� system is so�.

Proof. Let S be a so� system onjugate to T by f . The so� system S is a

fator of some system of �nite type U by an onto morphism g. Then T is

the image of U by the morphism f Æ g whih proves that it is so�.

5 Minimal automaton of a subshift

The lose onnetion between a subshift S and the set F

S

of its �nite bloks

leads to a possibility of studying the same objets from both the points of

view of symboli dynamis and of �nite automata. As a �rst example of a

result with equivalent formulations in terms of symboli dynamis and in

terms of �nite automata, the existene of a unique minimal deterministi

automaton takes the following form for so� systems.

We reall that an automaton is said to be transitive if its graph is strongly

onneted. If A = (Q;E) is a deterministi automaton, we often denote by

p � a the unique state q suh that (p; a; q) 2 E if it exists. The notation is

extended to words. Thus a deterministi automaton is transitive i� for any

states p; q there exists a word x suh that p � x = q.

Proposition 11 Any so� system an be reognized by a deterministi au-

tomaton. The system is irreduible i� the automaton an be hosen transi-

tive.

Proof. By Proposition 2 a so� system S an be reognized by any automa-

ton reognizing the set F

S

. It follows that this automaton an be hosen to

be deterministi. If the automaton is transitive, the system is learly irre-

duible. Conversely, we onsider a deterministi automaton A = (Q;E; i;Q)

17



reognizing the set F

S

of fators of an irreduible so� system S. Let C be

a maximal onneted omponent aessible from i of the automaton (here

maximal means that any edge starting in C also ends in C). Then C is a

deterministi transitive automaton reognizing S. Indeed, any label of a

�nite path of C is in F

S

. Conversely, let w be a word of F

S

and u be the

label of a path from i to a state of C. As S is irreduible, there exists a

word v suh that uvw belongs to F

S

. Sine the automaton C is transitive

and A is deterministi, we get that w is the label of a path of C. The set of

labels of �nite paths in C is F

S

and thus the automaton C reognizes S.

A redution from an automaton A = (Q;E) onto an automaton B =

(R;F ) is a surjetive mapping � : Q ! R suh that (p; a; q) 2 E i�

(�(p); a; �(q)) 2 F . We will show that an irreduible so� system S has

a unique minimal deterministi automaton A

S

, in the sense that for any

transitive deterministi automaton B reognizing S, there is a redution

from B onto the minimal automaton A

S

. In partiular, the automaton A

S

has the minimum possible number of states. This result is due to Fisher

[25℄ and the minimal automaton is also alled the Fisher over. It was also

obtained independently by D. Beauquier [11℄.

Proposition 12 Any irreduible so� system has a unique minimal deter-

ministi automaton.

The proof of this result does not follow immediately from the orresponding

well-known statement for ordinary �nite automata beause of the absene of

an initial state. It relies on the notion of a synhronizing word whih allows

one to �x an initial state. Let S be a non empty irreduible so� system and

let F

S

be its set of �nite fators. A word x of F

S

is a synhronizing word

of S i� for all words u; v

ux; xv 2 F

S

) uxv 2 F

S

:

Let A = (Q;E) be a deterministi automaton. For a �nite word x 2 A

�

, we

de�ne the rank of x as the ardinality of the set Q � x = fq � x j q 2 Qg.

Proposition 13 Any non-empty irreduible so� system admits a synhro-

nizing word. In fat any word of minimal nonzero rank is synhronizing.

Proof. Let x be a word of F

S

of minimal nonzero rank. If u is a word suh

that ux 2 F

S

, then ; 6= Q � ux � Q � x. By minimality of the rank of x, this

18



implies that Q � ux = Q � x. Let ux; xv 2 F

S

. Let p

x

�! q

v

�! r be a path

of label xv. Sine Q � x = Q � ux, there is a path s

ux

�! q and thus a path

s

ux

�! q

v

�! r

We onlude that uxv 2 F

S

and thus x is synhronizing.

Proof of Proposition 12. We hoose a synhronizing word x of S. Let A

0

be the minimal automaton of the set of �nite words x

�1

F

S

= fy j xy 2 F

S

g.

We denote by A the automaton obtained from A

0

by allowing all states

to be both initial and terminal. The automaton A reognizes S. Indeed

any label of a path in A is learly in F

S

. Conversely, let y 2 F

S

. Sine S

is irreduible, there exists a word u suh that xuy 2 F

S

. Thus uy 2 x

�1

F

S

showing that y is the label of some path in A.

Let now B be any transitive deterministi automaton reognizing S. The

automaton B

0

obtained from B by hoosing as initial state a state i in Q � x

and all states as terminal states, reognizes the set x

�1

F

S

. Indeed, it is lear

that the language L reognized by B

0

is inluded in x

�1

F

S

.

Conversely, let y be a word of x

�1

F

S

. Let z be a word whih has nonzero

minimal rank in B. As B

0

is a transitive automaton, there exists a word u

suh that zux is a label of a path of B

0

leading to state i. Sine x is a

synhronizing word,

zux 2 F

S

; xy 2 F

S

) zuxy 2 F

S

:

Then the ranks of zuxy, zux, and z are the same. Thus y is the label of a

path of B

0

beginning at i, sine otherwise zuxy would have a nonzero rank

stritly smaller than the rank of zux.

We now use the known result that a reognizable set of �nite words has

a unique minimal automaton. Let A

0

be the minimal automaton of the set

x

�1

F

S

. Sine B

0

reognizes x

�1

F

S

, there is a redution from B

0

onto A

0

.

Thus there is a redution from B onto A.

The minimal automaton is used to haraterize di�erent lasses of so�

systems like aperiodi systems [7℄, almost-of-�nite-type shifts [42℄, or shifts

of �nite type. We give the result for shifts of �nite type.

Proposition 14 A so� system is of �nite type if and only if its minimal

automaton is loal.
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Figure 6: A right-resolving map

Proof. By Proposition 6, if the so� system admits a loal minimal automa-

ton, it is of �nite type. Conversely, by the same proposition, a shift of �nite

type is reognized by a deterministi loal automaton A. The minimal au-

tomaton A

S

itself is obtained by a redution from the loal automaton A. A

redution transforms a loal automaton into a loal one sine a �xed number

of symbols determine the urrent state in A and thus in A

S

.

There is a de�nition of deterministi automaton whih is more abstrat

and whih we introdue now.

Let S and T be two subshifts with S of �nite type. Let f : S ! T be a

sequential loal funtion and let T be a transduer realizing f with a loal

input automaton reognizing S. The morphism f is said to be right-resolving

if the output automaton is deterministi.

The following statement, whose proof is straightforward, shows that one

an de�ne a right-resolving funtion diretly, without referene to the trans-

duer.

Proposition 15 A sequential k-loal funtion f is right-resolving i� for y =

f(x), the values of the blok x

�k+1

� � � x

�1

and of the symbol y

0

determine

the value of the symbol x

0

.

Right-resolving morphisms belong to a broader family of almost one-to-

one morphisms alled �nite-to-one and introdued in Setion 6.

A right-resolving over of a so� system S is a right-resolving morphism

f : T ! S from a shift of �nite type T onto S. The minimal automaton

of a so� system S de�nes a right-resolving over f : T ! S of S whih is

minimal in the sense that for any other right-resolving over g : U ! S the

subshift T is a fator of U .
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6 Codes and �nite-to-one maps

In this setion, we are going to study the relationship between two notions:

�nite-to-one maps on the one hand and odes on the other hand (on odes,

see also the hapter by Helmut J�urgensen in this Handbook). We will show

that the lose onnetion between both notions allows one to prove new

results and also to give new and simpler proofs of old ones. We begin with

the de�nition of a �nite-to-one map.

A morphism f : S ! T between two subshifts S and T is said to be

�nite-to-one if, for all y 2 T , the set f

�1

(y) is �nite.

We shall see below that when S is an irreduible shift of �nite type,

a �nite-to-one map is atually bounded-to-one in the sense that there is a

onstant n suh that eah point of T has at most n pre-images.

We now ome to the onepts of odes and unambiguous automata,

whih are related to the notion of �nite-to-one maps.

For a set X of �nite words, we denote by X

�

the set of all onatenations

x

1

x

2

: : : x

n

with n � 0 and x

i

2 X.

A set X of �nite words is alled a ode if no non-trivial equality holds

between the words of X

�

. In more preise terms, X is a ode i�

u

1

u

2

: : : u

n

= v

1

v

2

: : : v

m

;

where u

i

; v

j

2 X, implies n = m and u

i

= v

i

for eah index i.

As an example of a ode, a pre�x ode is a set X suh that no element

of X is a pre�x of another element of X.

An automaton is said to be unambiguous if two paths with the same

origin state, the label, and the same �nal state, are equal. A deterministi

automaton is unambiguous sine the origin state and the label are suÆient

to determine the path. As another partiular ase, a transitive loal au-

tomaton is also unambiguous. Indeed, if two distint paths have the same

origin and end, and the same label, we an build two distint yles with

the same label. This ontradits the hypothesis that the automaton is loal.

Let A = (Q;E) be a transitive automaton and let i 2 Q be a partiular

state. A path from i to i is alled simple if it does not use i between its

endpoints. The set of labels of simple paths from i to i is alled the set of

�rst returns to i.

The following result establishes the onnetion between these onepts.

It an be stated more generally for arbitrary morphisms between shifts of

�nite type. We state it, however, in the ase of one-blok maps for simpliity.
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Proposition 16 Let A = (Q;E) be a transitive automaton, i 2 Q and let

X be the set of �rst returns to i. The following onditions are equivalent.

1. The automaton A is unambiguous.

2. X is a ode and distint simple paths from i to i are labeled by distint

elements of X.

3. The map going from bi-in�nite paths in the automaton to their labels

is �nite-to-one.

Proof. It is lear that 1 and 2 are equivalent.

Further, if the automaton is ambiguous, the map f going from paths in

the automaton to their labels is not �nite-to-one. Thus 3) 1.

Finally, if the map f is not �nite-to-one, there exists an in�nite number

of in�nite paths having the same image by f . As there is only a �nite

number of states, an in�nity of these paths go through a same state p after

the edge of index 0. We an assume that an in�nity of them are distint

after the index 0. Let us take n + 1 of them, where n is the number of

states of the automaton. Let us assume that they an all be two by two

distinguished before the edge of index m, where m is a positive integer. At

least two of them go then through the same state q after this edge and we

get two equally labeled paths going from p to q. Thus 1) 3.

An easy onsequene of this result is that a �nite-to-one map f from an

irreduible shift of �nite type S to T is really bounded-to-one.

Proposition 17 Let f : S ! T be a �nite-to-one map realized by a trans-

duer with n states. The number of pre-images of an element of T is bounded

by n

2

.

Proof. Let x be an element of T . For eah m � 1 there are at most n

2

paths

p

m

w

m

�! q

m

labeled by w

m

= x

�m

� � � x

m

sine suh a path is determined by

the pair (p

m

; q

m

). Thus x has at most n

2

pre-images.

The onnetion between odes and subshifts an be onsidered indepen-

dently of automata. Let indeedX be a ode and let S be the subshift S

F (X

�

)

formed by all bi-in�nite words having all its fators in the set F (X

�

). One

then has the following statement.

Proposition 18 Let A be an unambiguous automaton suh that X is the

ode of �rst returns to some state of A. Then S is the subshift reognized
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by A. If X is �nite, then S is the set of bi-in�nite words having at least one

fatorization in words of X.

It is of ourse still true that the set of bi-in�nite words having a fatorization

in words of X is a subshift, even if X is a set of words whih is not a ode,

provided it is �nite. Suh a system is sometimes alled the renewal system

generated by X.

Example 2 If X = fa; bag, then S is the golden mean system of Figure 4

A ode X � A

+

is said to be maximal if it is maximal for set-inlusion,

that is if X � Y for a ode Y implies X = Y . It is known that a rational

ode X � A

�

is maximal i� it is omplete, i.e. if the set F (X

�

) of fators

of words of X

�

is equal to A

�

(see [13℄ p. 68). A result, due to Ehrenfeuht

and Rozenberg, says that any rational ode is inluded in a maximal one

(see [13℄ p. 62).

An analogous proof an be used to obtain the following result [4℄.

Theorem 3 If S; T are irreduible shifts of �nite type, and f : S ! T is

a �nite-to-one morphism, then there is an irreduible shift of �nite type U

ontaining S and a �nite-to-one morphism from U onto T extending f .

We make two omments about this statement before indiating its proof.

First, the fat that the larger subshift U is required to be irreduible

is essential in the statement whih would be otherwise trivial: it would be

enough to take U to be a disjoint union of S and a opy of T , and to de�ne

f on U as being the identity on T .

Seond, the link with the theorem of Ehrenfeuht and Rozenberg is the

following. Consider the partiular ase of the map f : paths 7! labels in a

transitive unambiguous automaton A. Thus f is a �nite-to-one morphism

from the edge shift S on A into the full shift T = A

Z

. Let X be the ode

de�ned by the �rst returns to some state q of A. An embedding X � Y of

X into a maximal rational ode Y an always be obtained by adding states

and edges to A in suh a way that Y is the set of �rst returns to q in the

new automaton B.

The set of labels in B is thus equal to A

�

sine it is the set of fators of

the omplete ode Y . Thus embedding X into a rational maximal ode Y

orresponds to an extension of the �nite-to-one map f to a larger subshift

in suh a way that it beomes surjetive.

We now give an indiation of the proof of Theorem 3.
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Figure 7: The resulting transduer

Proof of Theorem 3. We �rst make the hypothesis that S � A

Z

and

T � B

Z

are Markov shifts. This is true up to onjugay and thus we may

make this hypothesis. We also suppose that f is a one-blok map. This is

true again up to a onjugay. Under these assumptions, we may realize f as

the map paths 7! labels in an automaton A whose set of states is Q = A.

Also, T is reognized by an automaton B with set of states equal to B.

Let q 2 Q be a partiular state of A. Let X be the image under f of the

set of �rst returns to q in A. Let b = f(q) and Y be the set of �rst returns

to b in B. Thus X � Y

�

. Moreover Y

�

and X

�

are rational subsets of B

�

.

If T = f(S), there is nothing to prove. Otherwise, there is a word y 2 Y

�

suh that

1. y is unbordered, i.e. y has no non-trivial pre�x whih is also a suÆx.

2. y 62 F

f(S)

= f(F

S

)

The onstrution of suh a word y follows the same lines as the analogous

onstrution in [13℄ p. 64.

Let Z � B

�

be the set

Z = Y

�

�X

�

�B

�

yB

�

We build an irreduible shift of �nite type U ontaining S and an extension g

of f by onsidering the automaton C of Figure 7 where the omponent alled

Z is atually a �nite automaton reognizing the set Z (with i as initial state

and t as �nal state). The subshift U is the set of in�nite paths in G and the

funtion g is the map paths 7! labels in C.

Then the extension g of f to U satis�es the following properties.

1. g maps U into T .

2. g is �nite-to-one.

3. g is onto.
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x

y

Figure 8: Two left-asymptoti words x and y

Thus g is a �nite-to-one morphism from U onto T extending f . This om-

pletes the sketh of the proof of Theorem 3.

The theorem of Ehrenfeuht and Rozenberg orresponds to the ase

where T is the full shift. The more general ase where a ode X is on-

strained to be inluded in a �xed fatorial set F has been studied by A.

Restivo who has shown that the results known previously extend to this

ase [53℄.

The paper [4℄ ontains other results of the same kind. One of them deals

with right-losing morphisms, a notion intermediate between �nite-to-one

and right-resolving whih is de�ned preisely as follows.

A funtion f : S ! T is right-losing if whenever x; y 2 S have a

ommon left-in�nite tail and f(x) = f(y) then x = y (see Figure 8).

Right-losing morphisms orrespond to automata with bounded delay

in the same way as right-resolving morphisms orrespond to deterministi

automata. The result on right-losing morphisms proved in [4℄ orresponds

to the result on odes with bounded deiphering delay proved by V. Bruy�ere,

L. Wang and L. Zhang in [21℄: any rational ode with �nite deiphering delay

an be embedded into a rational maximal one (see also [20℄).

Finally, the paper [4℄ ontains an analogous result on extending mor-

phisms belonging this time to the lass of bilosingmorphisms i.e. morphisms

that are both left and right losing. This is related to a result proved reent-

ly by L. Zhang: any rational bipre�x ode an be embedded into a rational

maximal one [62℄.

7 State splitting and merging

We have seen that one may assoiate with every irreduible so� system a

minimal automaton that reognizes it. The omputation of suh a minimal

automaton may be performed using one of the standard algorithms for au-

tomaton minimization, suh as Moore's algorithm or Hoproft's algorithm
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(see [3℄ for example). All minimization algorithms onsist in some kind of

state identi�ation sine the states of the resulting minimal automaton are

equivalene lasses of states (equivalent states are those with the same fu-

ture). In this setion, we introdue an operation on symboli systems, alled

state merging whih allows one to identify states of the automaton reogniz-

ing a so� system S in suh a way that the resulting system is onjugate to

S. The inverse operation is alled state splitting. These onepts are due to

F. Williams [61℄. We �rst de�ne the operation on the edge shift of a graph.

Let G = (Q;E) be a graph. Let q 2 Q and let I (resp. O) be the set of

edges entering q (resp. going out of q). Let O = O

0

+ O

00

be a partition of

O. The operation of (output) state splitting relative to (O

0

; O

00

) transforms

G into the automaton G

0

= (Q

0

; E

0

) where Q

0

= Q [ q

0

is obtained from Q

by adding a new state q

0

and E

0

is de�ned as follows.

E

0

= E �O

0

+ I

0

+ U

with I

0

= f(p; q

0

) j (p; q) 2 Ig and U = f(q

0

; q

00

) j (q; q

00

) 2 O

0

g.

Thus G

0

is obtained from G by

1. leaving unhanged all edges not adjaent to q.

2. giving q

0

opies of the input edges of q (this is the set I

0

).

3. distributing the output edges of q between q

0

and q aording to the

partition of O into O

0

and O

00

.

The operation of input state splitting is analogous. It uses a partition I =

I

0

+ I

00

of the edges entering q instead of a partition of the edges going out

of q.

Example 3 Let us onsider the edge shift of the graph represented on Fig-

ure 9 on the left side. The graph on the right side is obtained by state

splitting on vertex 1 with the e�et that a vertex 1 before a 2 is transformed

into a 3 . The edges going out of 1 are split into two parts: the loop on 1

on the �rst hand remains unhanged. The edge going from 1 to 2 beomes

an edge from 3 to 2. The edges inoming at 1 and 3 are idential.

The operation of (output) state merging is the inverse of that of (output)

state splitting. Formally, let G = (Q;E) be a graph and let q; q

0

2 Q be two

states suh that the edges oming into q and q

0

are the same (exept for the

end). We merge q and q

0

in a single state q having the same input edges as

the former state q (with loops (q; q) for the edges of the form (q

0

; q)). The

output edges are obtained as the union of those of q and q

0

.
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1 2

1 2

3

Figure 9: An output split of state 1

Finally, the operation of input state merging is the inverse of input state

splitting. It is the operation linked with the minimization of automata, as

we shall see shortly.

The following statement is easy to prove.

Proposition 19 Let G

0

be obtained from G by state splitting. Then the

edge graphs S

G

and S

G

0

are onjugate. More preisely, a state splitting is a

2-blok map whose inverse (the merge) is a 1-blok map.

Proof. It is lear that the merge is a 1-blok map. Consider now an output

split at q aording to a partition O = O

0

+ O

00

of the set O of edges going

out of q. The image of an edge is itself unless it is in I or O

0

. In the �rst

ase it is transformed into an edge of I

0

if it is followed by an edge of O

0

. In

the seond ase, it is transformed into an edge of U . Thus a sliding window

of length 2 is enough to perform the transformation.

Let S be a so� system and let A = (Q;E) be an automaton reognizing

S. The operations of state splitting and merging on the graph transfer to

operations on the automaton. In an output split, the labels of the edges

oming into and going out of q are transferred to the edges inident to the

new state q

0

. More preisely, we have

I

0

= f(p; a; q

0

) j (p; a; q) 2 Ig and U = f(q

0

; a; q

00

) j (q; a; q

00

) 2 O

0

g:

Example 4 Let A be the automaton with two states represented on the

left of Figure 10. There are two edges going out of state 1: (1; a; 1) and

(1; b; 2). We transfer the seond one to a new state alled 3 whih reeives

the same input edges as state 1. The result is represented on the right side

of Figure 10.
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Figure 10: An output split

a

b

 b

a1 2

Figure 11: A non minimal automaton

Let A be a deterministi automaton. A sequene of input state mergings

produes a deterministi automaton B with fewer states than A and still

equivalent, i.e. reognizing the same subshift. However, it is not true in

general that the minimal automaton C an be reahed in this way. This is

illustrated by the following example.

Example 5 Let us onsider the automaton A of Figure 11. The two states

annot be merged sine they have distint output edges (taking the labels

into aount). Atually, the map from paths to labels is 2-to-1 and the

subshift reognized is the full shift. If it were possible to reah the minimal

automaton with splits and merges, the result would be a onjugay between

paths and labels.

There is however one interesting ase where the minimization an be

obtained by merges.

Proposition 20 Let A be a transitive and deterministi automaton. If A

is loal, there is a sequene of state merges that transforms A into a minimal

equivalent automaton.

28



Proof. We reall from Setion 5 that the minimal automaton an be om-

puted by an identi�ation of states having the same future i.e. the same set

F

q

= fw 2 A

�

j q �w is well-de�nedg.We suppose that A is not minimal and

thus that there are distint states q; q

0

with the same future. Let x be a

word of maximal length suh that q � x 6= q

0

� x. Then for all a 2 A, we have

(q � x) � a = (q

0

� x) � a and thus q � x; q

0

� x an be merged.

The following result is due to F. Williams [61℄.

Theorem 4 Any onjugay between shifts of �nite type an be obtained, up

to a renaming of the symbols, as a omposition of splits and merges.

Proof. We �rst onsider the partiular onjugay whih is the oding by

overlapping bloks of �xed length, say k. This partiular map an ertainly

be obtained by a series of splits. This allows us to obtain the shift map itself

sine it an be obtained through a oding in bloks of length 2.

It is therefore enough to prove that we an obtain a 1-blok map whose

inverse is sequential as a omposition of splits and merges. Suh a map is

the map from paths to labels in a deterministi loal automaton A. Let k

be suh that k symbols in the past determine the urrent state. We an, up

to a oding by bloks of length k+1, make the labels all distint. The result

is a 1-blok map whose inverse is also 1-blok. Suh a map is a renaming of

the symbols.

Theorem 4 shows in partiular that the group of automorphisms of a shift

of �nite type is generated by splits and merges, but through possibly larger

shifts. For a primitive shift of �nite type, the automorphism group ontains

every �nite group [33℄. It is not known whether, on a �nite alphabet, it

is generated by the shift and its elements of �nite order, although this has

been onjetured (on automorphisms see [19℄ or [46℄).

The operation of state splitting plays an important role in the applia-

tions of symboli dynamis to oding (see [41℄,[2℄). In the next setion, we

shall see how it is related to the isomorphism of shifts of �nite type.

8 Shift equivalene

In this setion, we disuss the problem of the onjugay of shifts of �nite

type. In partiular, we shall give an algebrai formulation of the equivalene

in terms of matries. In fat, R. F. Williams [61℄ introdued two equivalene
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relations on matries allowing one to formulate the relation of onjugay on

the subshifts in algebrai terms.

Two square matries M;N with nonnegative oeÆients are said to be

elementary shift equivalent if there exist two nonnegative integral matries

U; V suh that

M = UV; N = V U (3)

Note that M and N may have di�erent dimensions.

Then M and N are alled strong shift equivalent if there is a hain of

elementary shift equivalenes between M and N .

Let S = S

G

; T = T

H

be two edge shifts given by the adjaeny matries

M;N of the graphs G;H. We then have the following result.

Theorem 5 (Williams [61℄) Two shifts of �nite type S and T given by the

matries M;N as above are onjugate i� the matries M;N are strong shift

equivalent.

Proof. Let �rst S and T be onjugate. By Theorem 4, there exists a sequene

of splits and merges transforming S into T . It is therefore enough to prove

that splits and merges orrespond to shift equivalenes on matries. We

onsider an output split of a state q. We suppose that q orresponds to the

last index of M . Then

M =

�

M

0

x+ y

�

; N =

�

N

0

z z

�

where x; y are row vetors, z is a olumn vetor and the deomposition of

the last row of M orresponds to the partition of the edges going out of q.

We have M = UV and N = V U where

U =

2

6

6

6

6

6

6

4

1 0 0

0

.

.

.

0

1 0

.

.

.

0 0

0 1 1

3

7

7

7

7

7

7

5

; V =

2

4

M

0

x

y

3

5

=

�

N

0

z

�

Thus onjugate subshifts have strong shift equivalent matries. We prove

the onverse in the ase where the matries M and N have oeÆients 0 or

1 or, equivalently when G and H are ordinary graphs. The general ase is

not substantially more diÆult but the notation is more umbersome.
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Sine neither G or H has multiple edges, we may onsider S and T as

formed by sequenes of verties instead of sequenes of edges. Let f : S ! T

be the funtion de�ned as follows. For x 2 S and n 2 Z, if x

n

= i; x

n+1

= j

then (i; j) is an edge of the graph G. Sine M = UV there is exatly

one vertex k of H suh that U

ik

= V

kj

= 1. We de�ne a 2-blok map by

f(i; j) = k. The inverse is obtained in the same way and S; T are thus

onjugate.

Example 6 For instane, in Example 3, the adjaeny matries M and N

of the graphs are elementary shift equivalent sine

M =

�

1 1

1 1

�

=

�

1 0 1

0 1 0

�

2

4

1 0

1 1

0 1

3

5

;

N =

2

4

1 0 1

1 1 1

0 1 0

3

5

=

2

4

1 0

1 1

0 1

3

5

�

1 0 1

0 1 0

�

The relation of strong shift equivalene is not easy to ompute beause

in a hain (M

1

;M

2

; : : : ;M

n

) of elementary equivalenes, the dimensions of

the matries M

i

are not a priori bounded. It is not known whether it is

reursively omputable or not.

We now ome to the seond equivalene relation on square matries. Two

square matries M and N are alled shift equivalent, denoted M �

k

N , if

there exist two nonnegative integral matries U; V and an integer k suh

that

MU = UN; NV = VM

M

k

= UV; N

k

= V U

(4)

The relation �

k

is transitive. Let indeed M �

k

N and N �

l

P , let MU =

UN;NV = VM;M

k

= UV;N

k

= V U and NR = RP;PS = SN;N

l

=

RS;P

l

= SR. Then

MUR = URP; PSV = SVM;

M

k+l

= (UR)(SV ); P

k+l

= (SV )(UR)

The integer k is alled the lag of the equivalene. It is lear that k = 1

orresponds to an elementary shift equivalene and thus that strong shift

equivalene implies shift equivalene.
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Figure 12: Shift equivalene (lag 2)

The onverse was posed by Williams as a problem: does shift equivalene

imply strong shift equivalene? It was shown by Kim and Roush in [35℄ that

the answer is negative in general. However the subshifts of their ounterex-

ample are reduible and the onjeture is still pending for irreduible shifts

of �nite type.

The de�nition of shift equivalene given above asks for the existene of

nonnegative integral matries U; V suh that Equations 4 are satis�ed. If

we only require that U; V have integer oeÆients (possibly negative), we

get the a priori weaker notion of shift equivalene over Z.

Both notions oinide however for primitive matries, i.e. matries suh

that the assoiated shifts are primitive (Parry and Williams [48℄).

Proposition 21 Two primitive integral matries are shift equivalent i� they

are shift equivalent over Z.

It should be noted that the index k in Eq. (4) an be larger over N than

over Z as shown in the following example.

Example 7 Let

M =

�

1 3

2 1

�

; N =

�

1 6

1 1

�

Then M and N are similar over Z sine if

P =

�

2 3

1 1

�

; P

�1

=

�

�1 3

1 �2

�

then M = P

�1

NP . Thus M;N are shift equivalent over Z. They are thus

shift equivalent. We may indeed hoose k = 3 and U = P

�1

N

3

; V = P .

It has been shown by Kirby Baker that the matriesM and N are indeed

strong shift equivalent (see [38℄ page 238). However the least number of pairs

of elementary shift equivalent matries used to go from M to N is 7.
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The matries M and N are partiular ases of the more general ase:

M =

�

1 k

k � 1 1

�

; N =

�

1 k(k � 1)

1 1

�

It is easy to see that these matries are shift equivalent over Z and thus over

N. However, it is not known whether they are strong shift equivalent.

It is interesting to note that shift equivalene has been proved deidable

by Kim and Roush [34℄. Also, the problem of omparing, inside a given

semigroup, the various relations generalizing the group onjugay has been

studied by several authors (see [22℄). It is however a di�erent problem here

sine the relation is de�ned among square matries of di�erent dimensions

and not inside a semigroup.

9 Entropy

The notion of entropy in information theory has its root in the work of

Shannon. It is de�ned as a measure of unertainty and depends on the use

of probabilities. Its use in symboli dynamis, under the name of topologial

entropy, is independent of probabilities. It is an invariant under onjugay

as we shall now see.

The entropy of a nonempty subshift S is the limit

h(S) = lim

n!1

1

n

log s

n

where s

n

is the number of bloks of length n appearing in the elements of

S.

This limit is well de�ned. In fat, if S is a subshift, we have s

n+m

� s

n

s

m

.

Then log(s

n+m

) � log(s

n

)+ log(s

m

). We get that the sequene (log(s

n

))

n>0

is a subadditive sequene of stritly positive integers and, as a onsequene

of this fat, that the sequene (log(s

n

)=n)

n>0

onverges.

The entropy of a set of �nite words X is the superior limit

h(X) = lim sup

n!1

1

n

log�

n

where �

n

is the number of words of length n belonging to X.

The following statement gives a method to ompute the entropy of a

irreduible so� system provided we an ompute the entropy of a set of the

form X

�

where X is a ode.
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Proposition 22 Let S be an irreduible so� system reognized by a tran-

sitive unambiguous automaton A. Let X be the ode of �rst returns to some

state of A. The entropy of S is equal to the entropy of X

�

.

Proof. Let us denote by l

n

the number of words of X

�

of length n and let

s

n

be the number of bloks of length n in S. For any positive integer n, we

have l

n

� s

n

sine any word of X

�

is a blok of an element of S. This proves

that h(X

�

) � h(S).

Let k be the number of states of A. Let w

n

be a blok of length n of an

element of S. As the graph of A is strongly onneted, there exist two words

u and v, of lengths juj; jvj satisfying juj + jvj � k, suh that uw

n

v belongs

to X

�

. This allows us to assoiate to eah blok of length n of a sequene of

S, a word of length at most (n+k) of X

�

, whih admits the blok as fator.

As the number of positions of the blok in the word is at most k+1, we get

s

n

� (k+1)(l

n

+ l

n+1

+ � � �+ l

n+k

). It follows from this that h(S) � h(X

�

).

Let L be a set of �nite words over an alphabet A and let f

n

= ard(L \

A

n

) be the number of words of length n in L. Then

f

L

(z) =

X

n�0

f

n

z

n

is the generating series of the sequene f

n

. One an show (see [13℄ p. 42)

that a set X is a ode i� the following equality holds.

f

X

�

=

1

1� f

X

The following result allows one to ompute the entropy of a set of the form

X

�

where X is a ode.

Theorem 6 Let S be an irreduible so� system. Let A be a transitive

unambiguous automaton reognizing S and let X be the ode of �rst returns

to some state of A. The entropy of S is log(1=r

X

) where r

X

is the unique

positive root of f

X

(r) = 1.

Proof. By Proposition 22 we have h(S) = h(X

�

). The entropy of X

�

is equal

to log(1=r) where r is the onvergene radius of f

X

�

. Sine X is a ode, we

have f

X

�

= (1� f

X

)

�1

. As any R

+

-rational series whih is not a polynomial

has its onvergene radius as a pole, we get that r

X

is the unique positive

root of f

X

(z) = 1.
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Theorem 6 gives a method to ompute the entropy of an irreduible so�

system. One may ompute the number r by solving the equation f

X

(z) = 1.

This is e�etive when X is a rational ode or equivalently when S is a so�

system.

An alternative method to ompute r is to use the fat that 1=r is the

maximal eigenvalue of the matrix assoiated to any unambiguous automaton

reognizing S. In fat, letM be a matrix with real oeÆients. The spetral

radius � of M is the maximal modulus of its eigenvalues. One has (see [29℄

for example)

� = lim sup

n

p

kM

n

k

where kM k is any norm of the matrixM . If we hoose the partiular norm

equal to the sum of modulus of all oeÆients, then the number of bloks of

length n in the edge shift of the automaton is kM

n

k. Thus the entropy of

S is log �.

This is true also when the automaton is not transitive. Thus, the entropy

of S is the maximum of the entropies of the irreduible omponents of S.

Example 8 Let S be the even system represented on Figure 3. We have

X = fa; bbg and f

X

(z) = z+ z

2

. Thus r = 1=' where ' is the golden mean.

Aordingly, the maximal eigenvalue of the matrix

M =

�

1 1

1 0

�

is '.

We prove the following result whih implies in partiular that the entropy

is invariant under onjugay (a fat that ould also be proved diretly).

Proposition 23 Let S and T be two irreduible shifts of �nite type and let

f : S ! T be a morphism. The following onditions are equivalent.

1. f is �nite-to-one.

2. h(S) = h(T )

Proof. 1) 2. Let A be a transduer realizing f with a loal input automa-

ton. By Proposition 16, the output automaton is unambiguous. Let q be

a state of A, let X be set of �rst returns to q in the input automaton and

let Y be the set of �rst returns to q in the output automaton. Then X and
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Y have the same number of words of eah length and thus h(X

�

) = h(Y

�

).

Hene h(S) = h(T ) by Proposition 22.

2 ) 1. Let A be a transduer realizing f . We suppose that the output

automaton of A is ambiguous. If there exist two edges in A whih only di�er

by the input, then we an remove one of these edges without hanging the

map realized. This removal dereases the entropy of the set of returns X

�

in the input automaton sine it inreases stritly r

X

.

To handle the general ase, we onsider two paths u; v of length k with

the same label x. We shall onsider the automaton A

k

whih has the same

set of states as A but the set of words of length k as alphabet with the

transitions indued by those of A. Obviously, the entropies of the systems

S

k

; T

k

reognized by the input and output automata of A

k

satisfy h(S

k

) =

kh(S); h(T

k

) = kh(T ). We may hoose k to be prime to the gd of the yle

lengths of the automaton. In this way the automaton A

k

is still transitive.

We are thus in the situation onsidered at the beginning.

If the alphabet A has k elements, then r � 1=k or equivalently

f

X

(1=k) � 1 (5)

whih is Kraft's inequality.

It is well-known that one has equality in (5) i� the ode X is maximal

(see [13℄). This an be seen as equivalent to the fat that the so� system

S assoiated to X is equal to the full shift on k symbols.

There are atually several results for whih one may indi�erently use

either the voabulary of subshifts or that of odes and automata.

As an example, we have the following result, due to Hedlund [33℄.

Proposition 24 Let S and T be irreduible so� systems and let f : S ! T

be a morphism. Any two of the following onditions imply the third.

1. f is �nite-to-one.

2. f is onto.

3. h(S) = h(T )

This statement is the diret ounterpart of the following one for odes

(see [13℄ p. 69).

Proposition 25 Let X be a reognizable subset of A

�

and let k = Card(A).

Any two of the three following statements imply the third.
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1. X is a ode.

2. f

X

(1=k) = 1.

3. X is omplete.

For any series f with positive oeÆients satisfying (5), it is well-known

that there exists a pre�x ode X on a k-symbol alphabet suh that f = f

X

.

Reall that a series f =

P

k�0

f

k

z

k

is said to be N-rational if there exists

a nonnegative integral n� n matrix M , and two vetors i 2 N

1�n

; t 2 N

n�1

suh that identially f

k

= iM

k

t.

If X is a rational ode, then f

X

satis�es (5) and is additionally an N-

rational series. What an be said onversely? It is tempting to onjeture

that for any N-rational series f =

P

n�0

�

n

z

n

, suh that f(1=k) � 1, there

exists a rational pre�x ode X over a k-letter alphabet suh that f = f

X

.

A partiular ase of this is proved in [49℄.

We reall that an algebrai number is a root r of a moni polynomial

whose oeÆients are rational numbers. Among these polynomials there is

a unique one p(z) of minimal degree, alled the minimal polynomial of r.

The algebrai onjugates of r are the roots of p(z).

When X is a reognizable ode, f

X

(z) is a rational series and thus r

X

is an algebrai number. It is indeed the largest root of the numerator of

1� f

X

(z). In the ase of a �nite ode, one has additional properties of this

algebrai number.

Proposition 26 If X is a �nite ode, then r

X

has no other real positive

algebrai onjugate.

Proof. Sine f

X

(z) has positive oeÆients, the funtion z 7! f

X

(z) � 1 is

stritly inreasing from �1 to +1 for z 2 [0;+1[. Thus there an be only

one positive real number r suh that f

X

(r) = 1. Hene, the algebrai integer

r

X

has the property that it has no other positive real algebrai onjugate.

Thus r

X

is the only real positive root of its minimal polynomial. It is

also its root of minimal modulus sine for any other root � of 1�f

X

(z), one

has f

X

(r) = 1 � f

X

(j�j) whene r � j�j.

The above property an be used to prove that some systems annot be

obtained as a renewal system generated by a �nite ode, as shown in the

following example.
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3 1 2

ab

a

b

c

c

Figure 13: The renewal system S

3 1 2

cb, c

a

b

c

a

Figure 14: The minimal automaton of S

Example 9 LetX = fa; b; ab; g. The setX is not a ode sine ab has two

fatorizations. Let S be the renewal system generated by X. An automaton

reognizing S is represented on Figure 13.

The determinization and further minimization of the automaton of Fig-

ure 13 gives the automaton of Figure 14. The minimal automaton of S is

loal and therefore S is a shift of �nite type (although the automaton of

Figure 13 is not loal). Let M be the adjaeny matrix of A. We have

M =

2

4

1 1 1

1 0 0

2 0 1

3

5

The harateristi polynomial of M is p(z) = z

3

� 2z

2

� 2z + 1 = (1 +

z)(1 � 3z + z

2

). The roots of p(z) are �1; '

2

; '̂

2

where ' is the golden

mean and '̂ its onjugate. The entropy of S is log'

2

. Sine '

2

has a

positive real onjugate whih is '̂

2

, the system S annot be generated by

a �nite ode. This example is due to J. Ashley (unpublished). It answers

negatively a onjeture formulated by A. Restivo asserting that a �nitely

generated renewal system whih is at the same time a shift of �nite type an

be generated by a �nite ode.

The following result, due to D. Handelman gives a onverse to Proposition

26.

Theorem 7 (Handelman [32℄) Let r be an algebrai integer stritly less in

modulus than any of its onjugates. The number r is a root of a polynomial
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of the form 1 � zp(z) with p a polynomial with non-negative oeÆients i�

it has no other real positive algebrai onjugate.

The theorem does not over the ase where r has onjugates of the same

modulus. In this ase, the set of roots of modulus r is of the form r� where

� is any of the p-th roots of 1. The generalization of Handelman's theorem

to this ase has been obtained by F. Bassino ([6℄,[5℄).

The polynomials of the form 1�zp(z) with p non-negative are a partiular

ase of polynomials with one sign hange, i.e. suh that, after deleting the

zero oeÆients, the sequene (a

0

; a

1

; : : : ) of oeÆients has exatly one sign

hange. The result of D. Handelman is atually stated in this more general

ase.

The proof of Theorem 7 uses properties of log onave polynomials, also

alled unimodal, whih are polynomials suh that the sequene (a

0

; a

1

; � � � )

of oeÆients satis�es a

i

2

> a

i+1

a

i�1

. It is also related to a result of Poinar�e

aording to whih, if a polynomial p with real oeÆients has exatly one

positive real root, then there exists a polynomial P suh that the produt

pP has one sign hange.

Theorem 7 has been extended to study the star-height of one-variable

rational series. It is known that the star-height of a one-variable N-rational

series is at most two (see [56℄). F. Bassino has used Theorem 7 to obtain a

haraterization of the series of star-height one under the assumption that

they have a unique pole of minimal modulus ([6℄, [5℄).

Muh of the study of shifts of �nite type is linked to that of positive

matries. Indeed, a shift of �nite type is given by a �nite graph whih in turn

is given by its adjaeny matrix. The shift of �nite type itself orresponds to

a lass of equivalent matries. The study of this equivalene has motivated

a lot of researh (see [18℄ for a survey).

One aspet of this researh is the study of the one of positive matries

inside the algebra of all integer matries. The basi properties of positive

matries were obtained long ago by Perron and Frobenius. The theorem

says essentially that a nonnegative real matrix has an eigenvalue of maxi-

mal modulus whih is a positive real number. If it is irreduible, it has a

orresponding eigenvetor with positive oeÆients. And if it is primitive,

there is only one eigenvalue of maximal modulus.

In a more reent work, Handelman [31℄ has proved a kind of onverse of

the Perron Frobenius theorem. A matrix is said to be eventually positive if

some power has only stritly positive oeÆients. A dominant eigenvalue is

an eigenvalue � suh that � > j�j for any other eigenvalue.

Theorem 8 (Handelman [31℄) A matrix with integer oeÆients is onju-
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gate to an eventually positive matrix i� it has a dominant eigenvalue of

multipliity one.

This result is very lose to one due to M. Soittola (see [56℄) haraterizing

N-rational series in one variable among Z-rational series. We quote it for

series having a minimal pole i.e. a unique pole with minimal modulus.

Theorem 9 (Soittola) A Z-rational series with nonnegative integer oeÆ-

ients

f =

X

n�0

�

n

z

n

having a minimal pole is N-rational.

In [50℄ it is shown that both theorems an be dedued from the onstrution

of a basis in whih the matries have the appropriate properties. It also

gives at the same time a proof that a one-variable N-rational series has at

most star-height 2.

10 The road oloring problem

A lassial notion in automata theory is that of a synhronizing word. We

reall that, given a deterministi and omplete automaton A on a state set

Q, a word w is said to be synhronizing if the state reahed from any state

q 2 Q after reading w is independent of q. The automaton itself is alled

synhronizing if there exists a synhronizing word.

A maximal pre�x ode X is alled synhronizing if it is the set of �rst

returns to the initial state in a synhronizing automaton.

It is lear that a neessary (but not suÆient) ondition for an automaton

to be synhronizing is that the underlying graph is primitive (i.e. strongly

onneted and the gd of the yle lengths is 1). The same holds for a pre�x

ode (whih is alled aperiodi if it is maximal and the gd of the word

lengths is 1).

The following problem was raised in [1℄. Let G be a �nite direted graph

with the following properties:

1. All the verties of G have the same outdegree.

2. G is primitive.
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The problem is to �nd, for any graph G satisfying these hypotheses, a label-

ing turning G into a synhronizing deterministi automaton. The problem

is alled the road-oloring problem beause of the following interpretation: a

labeling (or oloring) making the automaton synhronizing allows a traveler

lost on the graph G to follow a path whih is a suession of olors leading

bak home regardless of where he atually started.

In terms of symboli dynamis, suh a labeling de�nes a right-resolving

map f : S

G

! A

Z

from the shift of �nite type S

G

onto a full shift whih is

1-to-1 almost everywhere. In this ontext, a synhronizing word is alled a

resolving blok and we say that f has a resolving blok if there exists suh a

synhronizing word.

The road-oloring problem itself remains still open but some results have

been obtained that we desribe now.

The following result is proved in [1℄. It shows that if the road oloring

problem an perhaps not be solved on a given graph G, it an be solved on

a subshift onjugate to S

G

.

Theorem 10 If G is a primitive graph with all verties of the same outde-

gree, there exists a onjugate T of S

G

and a right-resolving map f : T ! A

Z

from T onto the full shift on k symbols having a resolving blok.

. The proof onsists in onsidering the subshift S

G

(n)

, for large enough n,

where G

(n)

is the graph having as edges the paths of length n in G.

Atually, Theorem 10 an also be obtained using a result on odes that

we now desribe.

A set X � A

�

is alled thin if there exists a word w 2 A

�

suh that

A

�

wA

�

\ X = ;, that is to say that w does not appear as a blok in the

words of X. It is known that every rational ode is thin (see [13℄ p. 69).

The following result is due to Sh�utzenberger [57℄ (see also [52℄).

Theorem 11 (Sh�utzenberger) Let k � 2 be an integer and let � = (�

n

)

n�1

be a sequene of integers. Let f =

P

n

�

n

z

n

and let �

�

denote the radius of

onvergene of the series f .

There exists a thin maximal and synhronizing pre�x ode X on a k-letter

alphabet suh that f

X

= f i� the following onditions are satis�ed.

1.

P

n�1

�

n

k

�n

= 1,

2. �

�

> 1=k,

3. the integers n suh that �

n

6= 0 are relatively prime,
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Atually, onditions (1) and (2) are equivalent to the existene of a thin

maximal pre�x ode suh that f

X

= f and ondition (3) holds then i� X

is aperiodi. It is shown in [57℄ that, under the hypotheses of the theorem,

one may hoose an integer n and two symbols a; b 2 A suh a

n

2 X and

that the set

Y = a

n

[ (X \ a

�

ba

�

) (6)

ontains a synhronizing word for X.

Theorem 11 an be used to prove Theorem 10. Indeed, let us onsider a

partiular vertex i of the graph G and let �

n

be the number of simple paths

from i to i in G. Then the sequene � = (�

n

)

n�1

satis�es the onditions of

Theorem 11. We an use a state splitting to be able to label n+ 1 paths of

the resulting graph by the words of the set Y of Eq (6).

The following result is proved in [52℄, providing a partial answer to the

problem. For a pre�x ode X, we denote by T

X

the usual (unlabeled) tree

whose leaves orrespond to the elements of X. Several pre�x odes may

thus orrespond to the same tree aording to the hoie of a labeling of the

sons of eah node.

Theorem 12 Given a �nite aperiodi pre�x ode X, there is a synhroniz-

ing pre�x ode Y suh that T

X

= T

Y

.

The proof uses heavily the theorem of C. Reutenauer ([54℄) on the nonom-

mutative polynomial of a ode.

In terms of symboli dynamis, Theorem 12 solves positively the road-

oloring problem for those graphs G satisfying the following additional as-

sumption:

(3) All verties exept one have indegree 1.

Other results on the road oloring problem have been obtained and in par-

tiular, by G. O'Brien [47℄ and by J. Friedman [27℄.

11 The zeta funtion of a subshift

Besides the entropy, there is an invariant of symboli dynamial systems

whih takes into aount the number of elements of a given period.

Let (S; �) be a subshift and let

P

n

= fx 2 S j �

n

(x) = xg
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be the set of points of period dividing n.

The zeta funtion of a subshift S is the series

�

S

(z) = exp

X

n>0

p

n

n

z

n

with p

n

= ard(P

n

).

Two subshifts have the same zeta funtion i� they have the same number

of elements of eah period. Sine a onjugay preserves the period of the

points, the zeta funtion is an invariant under onjugay. This information

is useful for separating non equivalent systems. It is atually stronger than

entropy for so� systems.

In fat, let S be an irreduible so� subshift reognized by an unambigu-

ous automaton A. Let X be the ode of �rst returns to some state of A.

Let t

n

be the number of words of length n in X

�

. Then

t

n

� p

n

� s

n

By de�nition, we have h(S) = lim

1

n

log s

n

and h(X

�

) = lim

1

n

log t

n

. By

Proposition 22 we have h(X

�

) = h(S) and thus

lim

1

n

log t

n

= lim

1

n

log p

n

= lim

1

n

log s

n

Hene h(S) is determined by �(S).

Another invariant related to the number of minimal forbidden bloks of

eah length is studied in [10℄.

It was proved by R. Bowen and O. Lanford in [17℄ that the zeta funtion

of a shift of �nite type S is a rational series. They proved atually the

following proposition.

Proposition 27 Let S be the edge shift of a graph G. If M is the adjaeny

matrix G,

�

S

(z) = det(I �Mz)

�1

Proof. As we an assoiate bijetively to eah sequene x of S suh that

�

n

(x) = x, a yle of the graph of length n, we get that s

n

= trae(M

n

).

The omputation of the zeta funtion of S an now be done as follows, where
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I is the identity matrix of the same size as M .

�

S

(z) = exp

X

n>0

1

n

trae(M

n

)z

n

= exp trae(

X

n>0

1

n

(Mz)

n

)

= det exp(

X

n>0

1

n

(Mz)

n

) = det exp log(I �Mz)

�1

= det(I �Mz)

�1

It was proved later by A. Manning [40℄ and also by R. Bowen [17℄ that the

zeta funtion of a so� system is also rational.

This has motivated further investigations in several diretions. On one

hand, J. Berstel and C. Reutenauer have extended the result of Manning

to the ase of a generalization of the zeta funtion to some formal series

[14℄ and proved the rationality of the generalized zeta funtion for yli

languages.

On the other hand, M. P. B�eal has introdued an operation on �nite

automata, the external power, allowing one to obtain the generalized zeta

funtion of a so� system as a ombination of the values obtained on the

di�erent external powers, (see [7℄ and [8℄). This gives a proof of the formula

of Bowen [17℄ and this proof an be extended to the ase of yli languages

[9℄.

More reently, C. Reutenauer [55℄ has obtained new results showing that

the zeta funtion of a so� system is not only rational but even N-rational.

He has also extended his results to more general symboli systems, intro-

dued by D. Fried under the name of �nitely presented systems [26℄.

12 Cirular odes, shifts of �nite type and Krieger

embedding theorem

There is a lose onnetion between shifts of �nite type and a partiular

lass of odes alled irular odes (see [13℄ for a more omprehensive intro-

dution).

A set X � A

+

is alled a irular ode if any irular word over A has at

most one deomposition as a produt of words fromX. More preisely,X is a

irular ode if for any x

1

; x

2

; : : : ; x

n

; y

1

; y

2

; : : : ; y

m

2 X and p 2 A

�

; s 2 A

+
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xn

x1

x2y1

ym

p

s

Figure 15: Two irular fatorizations

the equalities

sx

2

x

3

: : : x

n

p = y

1

y

2

: : : y

m

; (7)

x

1

= ps (8)

imply n = m, p = � and x

1

= y

1

; : : : ; x

n

= y

n

. Indeed, Equalities 7,8 orre-

sponds to two deompositions of a word written on a irle as represented

on Figure 15.

The following statement relates irular odes and loal automata (see

[7℄ p. 65).

Proposition 28 Let X be a �nite ode and let A be an unambiguous strong-

ly onneted automaton suh that X is the set of �rst returns to some state

of A. The following onditions are equivalent.

1. X is a irular ode.

2. The automaton A is loal.

Proof. Two yles inA with equal labels de�ne two fatorizations of a irular

word and onversely. Thus the result follows from Proposition 4.

The next result relates irular odes and shifts of �nite type.

Proposition 29 The renewal system generated by a �nite irular ode is

a shift of �nite type.
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Proof. Let S be the renewal system generated by the irular ode X. By

the previous proposition, there exists a loal automaton reognizing S. By

Proposition 6, S is a shift of �nite type.

Let, as in Setion 9, �

n

= Card(X \ A

n

) and f

X

(z) =

P

n�0

�

n

z

n

. Let

S be the system generated by X, whih is the set of all bi-in�nite words

having a fatorization in words of X. The following statement shows that

the zeta funtion of S an be easily omputed.

Proposition 30 Let X be a �nite irular ode. The zeta funtion of S is

given by

�

S

= (1� f

X

)

�1

(9)

Proof. Sine X is irular, S is a shift of �nite type (Proposition 28). Let

M be the adjaeny matrix of the graph of the ower automaton of X. By

Proposition 27, we have

�

S

(z) = det(I �Mz)

�1

It is well-known for any graph made of n yles of lengths (�

1

; : : : ; �

n

) with

one ommon vertex that

det(I �Mz) = 1� f

X

The result follows from the two above equations.

The number p

n

of points of S of period dividing n an be omputed from

Formula (9). Indeed, we have

X

n

p

n

n

z

n

= log(�

S

)

and thus, by Formula (9)

X

n

p

n

n

z

n

= � log(1� f

X

)

= � log(1�

X

n

�

n

z

n

)

=

X

n

s

n

z

n
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with

s

n

=

n

X

k=1

1

k

�

(k)

n

; �

(k)

n

=

X

i

1

+:::+i

k

=n

�

i

1

� � ��

i

n

Thus we have

p

n

=

n

X

i=1

n

i

�

(i)

n

(10)

The number of points having period exatly n is denoted by q

n

(S) or sim-

ply q

n

. Obviously p

n

and q

n

are related by p

n

=

P

djn

q

d

. The following

inequalities are then satis�ed for all n � 1.

q

n

� l

n

(k) (11)

where l

n

(k) is the number of points of period exatly n in the full shift over k

symbols. Indeed, the number of points in S having period exatly n annot

exeed the total number of points of period n in the full shift on k symbols.

The numbers l

n

(k), sometimes alledWitt numbers, satisfy

P

djn

dl

d

(k) =

k

n

or equivalently, by M�obius inversion formula,

l

n

(k) =

1

n

X

djn

�(d)k

n=d

The length distribution (�

n

)

n�1

of a irular ode satis�es inequalities

stronger than (5) whih are obtained after expressing in (11) the integers p

n

in terms of the �

n

using Formula (10).

The �rst inequalities are, in expliit form:

�

1

� k

�

2

+

1

2

(�

2

1

� �

1

) �

1

2

(k

2

� k)

: : : � : : :

It was shown by Sh�utzenberger (see [13℄ p. 343) that these inequalities

haraterize the length distributions of irular odes.

Theorem 13 (Sh�utzenberger) A sequene �

n

of integers is the length dis-

tribution of a irular ode over a k-letter alphabet i� it satis�es the above

inequalities.
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Figure 16: A renewal graph

This is linked in a very interesting way with a theorem of Krieger whih

gives a neessary and suÆient ondition for the existene of a strit em-

bedding of a shift of �nite type into another one.

Theorem 14 (Krieger [36℄) Let S and T be two shifts of �nite type. Then

there exists an isomorphism f from S into T with f(S) 6= T i�

1. h(S) < h(T ).

2. for eah n � 1, q

n

(S) � q

n

(T )

A proof of Krieger's theorem an be found in the book of D. Lind and B.

Marus [38℄.

We explain here the onnetion between Krieger's theorem and the the-

orem of Sh�utzenberger on irular odes.

Given a �nite sequene � = (�

i

)

1�i�n

, let G be the renewal graph made

of n simple yles of lengths �

1

; : : : ; �

n

with exatly one ommon point (see

Figure 16). Any irular ode on the alphabet A with length distribution

� de�nes an isomorphism from the edge shift S

G

into A

Z

. Indeed, there is

a labeling of G whih de�nes a ower automaton A for X. By Proposition

28, the subshift reognized by A is of �nite type. The map from paths to

labels is therefore an embedding of S

G

into the full shift A

Z

.

Thus Theorem 13 gives a proof of Theorem 14 in the partiular ase

where S is a the edge shift de�ned by a renewal graph and T is a full shift.
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