
Symbolic Dynamics and Nonlinear Semiflows (*)(**). 

JACK K.  HALE - XIAO-~BIAO LIN 

S u m m a r y .  - _For a transverse homoelinic orbit ? of a mapping (not necessarily invertible) on a 

Banaeh space, it  is shown that the mapping restricted to orbits near ~ is equivalent to the 

shift automo~Thism on doubly infinite sequences on finitely many symbols. Implications el 

this result for the Poincar6 map of seml]lows are given. 

1 .  - I n t r o d u c t i o n .  

I f  0 is an  hyperbol ic  fixed point  of a diffeomorphism /~ e C*(R~), k > l ,  n > 2 ,  

and  W 8, W ~ are the  stable and  uns table  manifolds of 0, then  q E W 8 (~ W ~, q V: 0, 

is said to be t ransverse  homoclinic to 0 if W ~ is t ransversa l  to  W ~ a t  q, W " ~ W ~. 

The orbi t  y(q) = {F n q, n ~ 2~; set of integers} th rough  q is called a t ransverse  homo- 

clinic orbit  a sympto t i c  to 0. 

Poincar6 was well aware of the  fact  t h a t  the  existence of t ransverse  homo- 

clinic orbits  implied t h a t  the  flow defined b y  /~ would be v e r y  complicated in a 

neighborhood of q. Birkhoff p roved  t h a t  there  mus t  be infinitely m a n y  periodic 

points  near  q. S~ALE [15, 16] showed t h a t  there  was an integer  k and  an invar ian t  

set I near  q of ~ such t h a t  xw restr ic ted to q was equivalent  to the  shift  m a p  a 

on the  set of doubly infinite sequences on two symbols  (see, also, )/s [11], 

PAL~E~ [13]). S ~ I K O V  [14] discussed the  set of all orbi ts  of ~ t h a t  remain  in a 

small  neighborhood of y(q). t i e  then  showed t h a t  f f  on certain subsets of these 

solutions was equivalent  to  the  shift  m a p  a on the  set  of doubly  infinite sequences 

on infinitely m a n y  symbols .  

Our object ive in this pape r  is to generalize these resul ts  to the  case o f /~  c C~(X), 

where X is a Banach  space ~nd F is not  necessari ly a diffeomorphism. For  a 

hyperbol ic  fixed point  0 of F ,  the  locM stable set  W~o ~ and  local uns table  set W~o o 

of 0 are C k manifolds  (a proof is given below for completeness),  t towever ,  ~he 

behav io r  of the  globM stable set  W ~ and unstable  set W ~ m a y  not  have  a nice maul-  
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fold structm~e. Even  in the  case where W" is finite dimensional the  local dimension 

may  va ry  with the point  on W ". This necessitates hypotheses  on W ~ eve~ to define 

a t ransverse homoclinie orbit. Under  an appropriate  hypothesis  on W ~ (there is 

an immersion f rom W~o ~ •  into W~ which covers ~,(q)), a t ransverse homoclinic 

orbit is defined and it is shown tha t  the  results of Sil 'nikov [1~] and Smale [15, 16] 

are valid. The m~in theorem is s ta ted and proved in Section 5. The proof is a 

revised version of the  horseshoe argument  (see [2], [12). t to~yms  and ~ S D E ~  [6] 

have  also use4 the propert ies of horseshoes in the  equations of u forced beam. Chaotic 

motion is discussed in Section 7. The implications for the Poincar6 map f o r  flows 

are given in Section 8. Applications to  re ta rded  ftmctional differential equations 

will appear  elsewhere. 

2. - Nota t ions  and pre l iminar ies .  

Let  X, I:  and Z denote Banach spaces. I f  /7 is an open set in X, then  Ck(U, Y) 

is the usual space of functions mapping U into :Y which are continuous and bounded 

together  with derivatives up through order k. The norm in this space is the  supre- 

mum of all these derivatives.  We also let Ck(X) -~ C~(X, X). The symbol (N-)(N+)N 

will denote  the  (~onpositive integers) (nonnegative integers) integers. By  a sub- 

manifold of a Banaeh  space Z, we mean u regular submanifold (locally expressed 

as the graph of a C 1 map f rom X into I7 where Z = X O Y is a splitt ing of Banach 

spaces). 

I f  S is a topological space, we let  I I ; S  be the infinite p roduc t  space with the  

product  topology. An element  v eTI~vS is a map ~: _hr -~ S. Define r II~vS -->II~vS 

as the shift map, ~1 ~ r ~l(n) --~ r(n + 1), n e _h r. I f  F e C~ S), a trajectory el P 

is a map r ~IlzcS such t h a t  HE(~)  = a(~)l where H F :  I I~S - > I l l s  is defined as 

rl  = / / /~ (T) ,  rl(n) = Y(r(n)) ,  n ~ N. Obviously H F  is continuous and the  set 

of all the  trajectories of ~ form ~ dosed  subset of ll~vS, which is a topological 

subspace with the  topology i~duce4 f rom TIerS. In  a similar way, one defines 

respectively a positive (negative) t ra jec tory  b y  a map z+(T-). A (positive orbit) 

(negative orbit) (orbit) will be the range of (~+)(~-)(r) and will be 4enoted  by  

(0~+)(0~_)(0~). For  ~ e / / ~ S ,  let  s~ = ~(n), and write ~-~ (...I s-~1 s_~][So, s~, .. ) to 

indicate t ha t  ~(0) = so. Thus r~ = ar  is denoted b y  T~ = (..., s21 s_~, so][s~, s21 ...). 

And, in this notat ion,  / /E(~)  --~ (...I Fs_~1/Ts_~][Eso,/~sl I ...). We shall use ~[i, j], 

i ~ j integers, to denote the  restrict ion of T to an interval  If, j]. 

Le t  ~ be an equivalence relat ion defined in the topological space S. For  any 

s e S, Is] = (s~: s~ ~ s} is said to  be the  equivalence crass of s. The quotient sl~ace 

S/:-, ~-{[s]: s e S} is define4 with the quotient  topology. For  a subset Q c S, 

define [Q] -~ {[s]: s e Q} as the  equivalence class of Q. 

Suppose 0 is a fixed point  of F e C~(X), k > l .  The fixed point  0 is hyperbolic  

if a(D_~(0)) ~ {I)tl ~- 1} = fl, where a(A) denotes the spectrum of a linear opera- 
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for  A. The unstable set W~(O) and the stable set W~(0) of a fixed point  0 of ~ are 

defined by  

W~(0) = U {negative orbits 0,_ of /~: ~-(n) -> 0 as n -~ - -  c~}, 

W'(0) ---- U {positive orbits 0,+ of ~v: z+(n) --> 0 as n --> -~ ~}  . 

The local unstable and stable sets are defined respectively by  

W'(0, U) = U {negative orbits 0~_ of F :  0~_ c W"(0) (~ U}, 

W~(O, U) ---- U {positive orbits 0~+ of F :  0~§ c W'(0) n U}, 

where U is an open set containing 0. We use the  nota t ion W~o(0), W~oo(0), for 

W~(O, U), W~(0, U) if U is not  re levant  to the problem. 

If  /~ is a diffeomorphism, one can always consider complete orbits in the  defi- 

ni t ion of W~(0). l~urthermore, W~(O), W~(O) are C k immersed submanifolds of X [5]. 

In  part icular ,  if the  dimension is finite, then  the dimension must  be the same at  

every  point.  The following examples il lustrate the differences t h a t  can occur with 

maps. 

:EXAMPLE 2.1. -- ~'eCk(R~), k>l ,  _F(x, y ) =  (0, 2y). For  this case, the only 

fixed point  is the origin 0 and Wd(O) = {y = 0}, W~(O) = {x = 0}. The map zv-1 

is only defined on W~(O) and is single valued only if the range is restr icted to W'(O). 

EXAMPLe, 2.2. - We construct  a delay differential equat ion with a hyperbolic 

equilibrium point  having a two-dimensional  local unstable manifold. The unstable 

manifold collapses into a smooth one-dimensional manifold along one of the  tra- 

jectories, u phenomenon tha t  could not  happen  in ordinary differential equations. 

The t ime one map for this example will have the  p roper ty  tha t  the dimension of the  

nnstable manifold is not  the  same at  every  point. 

Consider the delay equat ion 

= st(x(t)) x(t) + #(x(t)) x ( t -  1),  

where x e R, st(x) and fl(x) are defined as 

( s t ( x ) ,  = 

e - l '  e f ' l x l< l ;  

o), 1 I>2 ; 

Also, st(x) and fl(x) e C~176 . 
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The origin 0 is ~n equilibrium point of (2.1). Equat ion (2.1) is linear in a neigh- 

borhood of 0 and has ~ = 1 and 2~ = 2 as the positive characteristic values. All 

the other characteristic values have negative real parts. Thus (see [3]), there is 

a neighborhood U of 0 such tha t  dim W~(0, U ) ~  2. Let  x( t )=  se ~ be a solution 

issuing from W~(0, U). For  some large t > 0 we have_i~0f<o]X](0)] > 2, and in 

neighborhood of X; ,  (2.1) becomes ~(t)----x(t). Let  F ~  C[--1, 0] be in a amull 

neighborhood of X~ and suppose tha t  there is a solution passing through F in the 

negative direction. I t  is easy to see tha t  F(0) --~ ~e ~+~ with-near e. Therefore, the 

unstable set in this neighborhood of X~ is a smooth manifold but  of dimension 1. 

Take the t ime one map F = T(1) of the solution map T(t) of (2.1). We have 

an example with the property tha t  the hyperbolic fixed point 0 of 2 ~ has a local two 

dimensional unstable manifold which collapses into a one dimensional manifold. 

Suppose ~eC~(X) ,  k~>l and 0 is an hyperbolic fixed point of l~. We shall 

prove tha t  W~oo(0 ) and W~or ) are submanifolds in w 3 .  An orbit  0~ is an homo- 

cJinic orbit asymptotic to a ]ixed point 0 el _~ if 0~ c W~(0) (~ W~(0) and 0~ ~ (0}. 

An-homoclinic orbit 0~ asymptotic to a fixed point 0 of ~ is said to be ~ transverse 

homoclinie orbit if 

1) 0 is an hyperbolic fixed point;  

2) for any sufficiently large pair of integers i, ~ > 0, such tha t  3(-- i) ~ W~oc(0 ) 

and v(~)e W~o~(0), ~+~ sends a disc in W~oo(0 ) containing 3(--i)  diffeomorphically 

onto its image which is transverse to W~or ) a t  ~(~). 

I~otice tha t  W~(0), W~(0) may  not have a manifold structure even in a small 

neighborhood of 0~. Howcver~ condition 2) implies tha t  we can a t tach to each 

~(k) ~0~,  ]r small pieces of submanifolds W~oo(w(k))c W~(0) and W~oc(3(~))c 

c W~(0) diffeomorphic to W~or ) and W~oc(0)~ respectively, and such tha t  

(2.2) + at 3(k) e 

Furthermore,  _FW~oc(3(k- 1)) o W~oo(3(k)) and FW~o~(3(k)) c W~oo(3(k q- 1)). This 

can be done us follows. If  i, j are given as in condition 2), then  W~loz(3(k)) = W~oo(0), 

k < - i  and W oc(3(k))= W oo(0), k>j .  k>j  is defined as a disc in 

Fk+~W~oo(3( - i)), diffeomorphic to W~oo(0 ) by  2). For  - -  i < k < j, F~+~W~oo(3( - i)) 

still contains a disc covering T(k), and shall be defined as W~o~(~:(k)), since 

(_Fi+~)-l/~ ~-k is the inverse of _F k+~ by 2). W~oo(~:(k))~ j ~ k, can be obtained by cou- 

sidering the transversullty of F~'-~ to W~oo(3(j) ) and (2.2) follows similarly. There- 

fore, there is an immersion from W~oo(0 ) •  into W~(0) and an immersion from 

W~or •  r into Ws(0). Both cover 0~ but  are not necessarily injeetive. Briefly~ 

we say tha t  W~(0) is transverse to W~(0) along 0~ if no ambiguity can arise. 

]~XA~mLE 2.3. -- Let  us consider the interval map ~ :  [0, 1 ] -+  [0, 1], ~ ( x ) :  

#x(1--x),O ~ # ~ .  The map ~ is not invertible and has a fixed point xo : 1 - -  
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0 

Figure 2.1 

- - 1 / # ,  # > 1, which is hyperbolic if # r 3. When /~ = 4, an homoclinic orbit  is 

p lo t ted  in fig. 2.1, which hits Xo af ter  a finite number  of i terates of /~ ,  an observa- 

t ion previously made by  BT.OCK [1]. I t  is easy to check tha t  the  homoclinie orbit  

is transverse.  

Example  2.3 is a special ease of snap-back repellers defined by  MAROTTO [10] 

which will be discussed later. 

3. - Stable and unstable  mani fo lds .  

In  this section, we state  and prove the existence of local stable and unstable 

manifolds W~or ) and W~o~(0 ) of a hyperbolic fixed point  of a map. The existence 

of the locM stable manifold follows ~rom [7] with ve ry  lit t le change needed. For  

a diffeomorphism Y, the existence of the local unstable manifold follows from the 

existence of the local stable manifold of/7-1. However,  i f / v  is noninvertible,  a direct 

proof for the existence of the locM unstable manifold is needed (see [5]). In  spite 

o~ the fact  t ha t  the result  m a y  be known to some people, we give the proof for com- 

pleteness. 

THEO]~E~ 3.1. -- Zet X ,  Y and Z = X • Y be Banaeh spaces and A,  B be linear 

continuous maps in  X and Y respectively, with a(A) < 1 and a(B) > 1. Suppose that 

]]A H , iIB-1]] <Z  ]or some constant 0 < ~ < 1. Suppose U is an open neighborhood 

o / 0  in Z and I1: U - ~ X ,  12: U --> Y are C ~ ( k > l )  maps with/i(O) = O, D]~(O) = O, 

i -~1 ,  2. Consider ~ :  U --> Z, 

(3.1) [ x~ = Axe § IdXo, y0), 
F:  

l (3.2) Yl = Bye § Yo). 

Then there exist open balls C1, 1)1 centered at 0 in X ,  Y respectively, and a unique 

C ~ map hi: C1 --~ 1), with h~(O) = O, Dhl(O) = 0 such that 

F(graph  h~) c graph h~. 
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The restriction oj F to graph h~ is a contraction. Moreover, iJ ~ '(z)  E C~ • Jor n>O, 

z e graph  hi. 

There also exist open balls Q ,  JO~ centered at 0 in X ,  X respeetively~ and a unique 

C k map h2: D~ --> C2 with h~(O) = O, Dh.2(O) = 0 such that the restriction o] ~-~ /tom 

graph h, into itselJ a well-de]ined single valued C k contraction; thus, a di]feomorphism 

onto F-~(graph h2) with the inverse F as an expansion. Moreover, iJ z ~ C~ • and 

the negatively inJinite trajectory F-~(Z) ~ C~• n>~O exists, z ~ graph  h~. 

For  the  proof of the  las% pa r t  of the  Cheorem, we consider the  Banach  space l 

of Che bounded,  negat ively  infinite sequences in Z;  ~hu~ is, l = {z_~, i~>0}i with 

the no rm ]{z~}I~ = sup lz_~]~ Suppose g e G~(Z) with all the  derivat ives being 
i~0 

bounded in any  bounded set of Z. The m a p  Hg: 1 --> 1 is defined as Hg(z)(--i)  = 

= g(z(-- i)) ,  i>~0 for {z_~} e I. Unfor tunate ly ,  since cont inui ty  does not  imply  

uni form cont inui ty  in infinite dimensional  Banach  spaces, Hg is not  C ~ even for 

r = 0. The r e m e d y  is to consider a subspace l0 c l, {z~.} e l0 if and  only if z_~ --~ 0 

as i -+ oo. The following l e m m a  is ve ry  e l emen ta ry  and  can be easily p roved  by  

induction, bu t  works as well as the  l emmas  in [7], [8] for composit ion maps.  

I m ~  3.2. - Zet g: Z - > Z ,  g e C  ~ and g(O)=O. Then Hg: lo-~to is C ~ and 

(Hg) (~) = Hg (~), k <. r. 

P~oo~ o~" T~E0~E~ 3.1. - For  any  e > 0 and  any  Banach  space E,  let  

Bf = {x e [xl < 

For  e > 0 sufficiently smM1 and any  y ~ B~, y e B z~ , define 

o o  

(3.3) 7 ) ( - n ) =  2 
i = n + l  i = l  

B~ • B~ I t  is not  difficult to show t h a t  G(y, y)(--  n) -+0  as n -+ oo. Thus, G: ~ ~~ --*lo: 

5 e m m a  3.2 implies t ha t  G e C ~. I t  is clear t ha t  G(0, 0) = 0. Applying the  Impl ic i t  

Funct ion  Theorem to ~he equat ion 

(3.4) G(y, y)  = 0 

in a neighborhood of y =  0, ?----0,  we have  a unique C ~ map  r  Bv61--->B~6:, 

~(0) = 0, for some el, e~>  0 which solves (3.4) as y =  r in BY61• Let  

P :  l 0 - > Z  be the  project ion taking y to  y(0), h2: B ~ - > X  defined as 
61 

c o  

= ( Z  y) = (he(y), y) 

is C * with h2(0) ---- 0. The Impl ic i t  Func t ion  Theorem also enables us to corn- 
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pure De(0) by computing DG(O, 0) an4 thus, conclude that  Dh~(O) = 0. I t  is easy 

to check, from (3.3), that 

qS(y)(--n) --- F ( ~ ( y ) ( - - n - - l ) )  , n > 0 .  

We have obtained that for Yo ~ B~ , xo = h~(yo), Zo -= (xo, Yo), there exists z_i 

~.F-izo,  i>O defined as z_ i -~  qS(yo)(--i) and lz_iI< ea. Since q~ is continuous~ 

there exists s~< s~ such that yo~B~, implies Iz_il < s~, especially ]y_~]<sl. We shall 

see very soon (see (i), (if) below) that  

G(y_1, {= ~_~, i>  o}) = o. 

Thus, y_~eB~, and x_~----h2(y_~). From 

Yo = B y _ ~  -k ]a(ha(y_~), y_~) , 

using the Implicit Function Theorem, one concludes that, if sl is sufficiently small, 

lY-~[ <~lYo[, 0 < ~ < 1, and, ~hus, y_~ ~B~.  This completes 'Lthe proof that F -~ is 

a contraction on graph h2, [y] < e3. 

Let Q ,  1)2 be open balls in X ,  Y suoh that C2 •  DacB~. and ha(Da) c Q.  

Then the restriction of ha on Da satisfies all the assertions except that  we have to 

verify that 

if {z_i, i>0} is a negatively infinite trajectory in B ~ then 

(i) {z_i ' i>O} elo; 

(ii) G(yo, (z 1}) ----- O. 

For any 0 > 0, there exists ~a> 0 such that ]]D/1JJ, ]]P/~H < 0  if I~]<~a- Let 

(z_i, i > 0} be ~ negatively infinite trajectory in B ~ By induction 

x _ ~  = A~x_i_~ + Ak- '  f~(z-i_~) + ... + fi(z_i_~) , 

Y-~ = B - i y o - -  B- i  fa(z-1) . . . .  - -  B -~ fa(z_i) . 

Let k -~ 0% 

(3.5) 

Then, 

c o  

=_i = ~ .AJ/~(z_i_;_~) , 
J=O 

Y-i -= B-iyo - ~, B-i+~-lf~(z-J) , 

j = l  

j=l 5=0  
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Suppose 8 ~ l im Iz~] > 0. Then  for any ~ ) 1, there  exists io ) 0 such tha t  [z_~ l <~8 
~--> r 

for i ) i o ,  and 

(3.6) Iz-,]<~ ~ iyol + 0~  ~ ~-~§ Iz-~l + ~ . ~ .8 .  
5 = 1  

I f  2 0 / ( 1 -  ~ ) <  1, we can choose ~ > 1 such tha t  2 0 / ( 1 -  ~).~ < 1. 

(3.6), 

20 
lira Iz , l< .~.8 

Let i -~ c~ in 

The contradict ion shows tha t  8 ~-0 .  Therefore,  (z_~, i>~O} e lo, together  with (3.5) 

imply (ii). 

4.  - S o m e  bas i c  l e m m a s .  

Consider ~ :  Z - + Z  defined as (3.1) and (3.2). Assume all the hypotheses  of 

Theorem 3.1. By  a C ~ change of variable, we assume th a t  the local stable and 

unstable manifolds are ~at, i.e., W~oo(0)= {y = 0} and W~oo(0)= {x = 0}. ~hus, 

in addit ion to  the  hypotheses  in Theorem 3.1, we assume th a t  ]~(0~ y ) ~  0 and 

]~(x~ 0) ~- 0. Consequen$1y, 

(4.1) ]~,(0, y) = 0 ,  

(4.2) f~(x, 0) = o .  

A closed e-ball in a Banach space E with center zero is denoted  by  B ~ For  any 8"  

0 > 0, we choose e > 0 so small such tha t  ID]II, ]D]21 <~0 in B~. We assume tha t  

W~oc(0), W~oo(0) is contained in B~ and 

(4.3) ~t § 0 < 1 .  

DEFINITION 4.1 .  - A C ~ submanifol4 ~ is said to be an s-slice o] size (e~, 8, K), 

or an s-slice modeled on B �9 intersecting W~oo(0 ) t ransversal ly at  (0, y*) with 

ly*[~.<8 and having the  inclination <~K, if 

v8 = {(x, y): y = g(x), 1xI <et,  ly*i = Ig(o)l <8 ,  g e  c~ and Ill)gl] < ~ } .  

A C 1 submanifol4 F ,  is said to b e n  u-slice o] size (sl, 8, tg) or a u-slice modeled 

on B ~j intersecting W~oo(0) t ransversal ly a t  (x*, 0) with x*~< 8 and having the  inclina- 

t ion <~ K, if 

~ - ~  {(X, Y): x-~ h(y), [y]~<e~, Ix*[ --~ lh(0)]•8, h e  C x and IIDh[[ < K } .  

Iu  all of the above,  el, 8, K are positive constants.  
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Lemma  4~2, 4.4, 4.5, 4.6 are called the  Incl inat ion Lemmas  and ~or diffeomor- 

phisms in R~ see [2] and [12]. They  play the  same roles as Lem m a  3.3, est imates 

(3.5) in [14]. However,  those est imates ~re not  valid in our case. 

L v . ~ A  4.2. - Given K ~ 0, there exist ~ ,  ~ ~ 0 and c ~ 1 such that 

(i) /or any u-slice q~ o] size (co/c, (~, K),  So<S~ t z sends %, di]feomorphically 

onto its image and B~o ~ F(q~) is a u-slice o] size (co, (~, K)  ; 

(ii) ]or any s-slice % of size (co~c, ~, K),  so-~<s~, B ~ (~ ~v-~(%) is an s-slice o~ 
~ o  

size (so, (~, ,K). 

PnooF.  - (i) Let  /7: (Xo, yo) -+ (xl, y~), (x0, Y0) e ~ .  Assume tha t  0 is small and 

satisfies 

(4A) l<d- - - -  
1 - ~0(K § :D 

For  this 0, choose e ~  0 so tha t  ID]~I, [D]~[<~O in B~. Let  ~, ~ satisfy 

, K s. (4.5) ~ ,<~ ~ §  ~ < ~  

Then ~ c B: and 

(4.6) 

(~.7) 

�9 ~ - -  A(g(y.)) + ]~(g(yo), yo), 

m = Byo + A(g(Y.) ,  Yo) �9 

Write  (4.7) as 

(4.s) B-'y~ = yo + B-~/~(g(yo), to) �9 

The Lipsehitz constant  for B-~]2(g(yo), Yo) as a function of Yo is bounded b y  

AO(K -~- 1). ]~y the  Implicit  l~unction Theorem, the  right hand  side of (4.8) defines 

a diffeomorphism from Yo e-B~oio to B-~y~, which covers a ball of radius ( 1 - -~0 .  

�9 (K ~ 1))~o/c. Therefore,  y~ covers a ball of radius 

1- -  ~O(K § l) so d 
- -  ~ - -  " C O  . 

2 c c 

Let  c, asserted in the lemma, be c ~ d. Subst i tut ing Yo as a funct ion of Yl into (4.6), 

we have a u-slice xl -~ gl(Yl), modeled oa B-; and transverse to W~oc(0) a t  _F(g(0), 0) ~o 

= (gl(0), 0). Since FIW~oc(0 ) is a colltraction, gl(0)~<g(0)~& I t  remains to show 

that 119gllj < K .  
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Let  (~,~) be a tangent  vector to ~,  a t  (xo, Yo), ~1~0  an4 ]~]/[fl]KK. Let  

(~', V') : DF(xo, Yo)(G V), 

[~'--/= I /~- t -  (B§  < (z-~-o)[~l-OI~l < a 

I f  0 is small erough, then 

(;t + O)K q- 0 
K K ~  d 

and (i) is proved if s~, 3 are small so that (4.5) is valid. 

(it) Let  

8 
(4.10) s ~ < ~ ,  K e ~ -  3 < ~ .  

Let  x~, y~) e ~o,, an s-slice of size (s~, 3, K). We look for (xo, yo) such tha t  /~(Xo, Yo) : 

: ( X l ,  YI )  

Byo + MXo, yo) = h(Axo + ]dxo, yo)) 

o r  

(4.11) Yo -~ --B-~/~(Xo, Yo) q- B-~ h(Axo q- ]dXo, Yo)) �9 

We use the contraction mapping principle to solve (4.11). Let  H be the set of 

all the continuous functions form B �9 into B~/~ with the distance of any  two func- 
80 

tions in H given by the supremum norm. Let  e > 1 be such tha t  

(4.12) ,~eo q- Oso < so/e . 

The existence of such e is from (4.3). A continuous function ~q ( .  ) is defined on B ~ 
80 

for any  ? e l l  as 

(4.13) ~ ( ~ )  = -B-1M~,  v(~)) + B-lh(.dx + 1~(~, V(~))), 

since /dO, y) : 0, lax + fl(x, ~(x))[<~eo + 0eo<eo/C by (4.12) and h is defined on 

B~0/o. F ~ t h e r m o r e ,  ~ e H if 

8 
(4.14) ;tO . ]  + 2(Ks1 + ~) • ] .  

The verification of (4.14) uses ]2(x, 0 ) =  0, (4.10) and (4.3). We observe tha t  

~ :  H ~ H is a contraction if 0 is small. Therelore, there is a unique fixed point 
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1 x of ~-, denoted by  ho: We can show tha t  hoe C ( B J  by  using the Implicit .  ~unc t ion  

Theorem locally ~o solve (4.11) i~ the  neighborhood of (Xo, ho(xo)). We also see ~hat 

ho(0)~<h(0)~<($ since FI W~ is au expansion. I~ remains ~o check tha~ IIDholl <~K. 

Suppose ($, ~) is a nonzero tangen% vector  $o F-~% at (xo, Yo). Then  

I~1(1-,~o- ~:o) < ( z ~  + ZOK + ;~111~=11)I~l. 

1~] = 0 would imply tha~ [~l = 0; thus [~[ ~= 0 and 

I~1 ~ g  @ 2KO @ 2][]2xll (o @ 2 ) K  @ ~lIf~xli 
(~.15) I~-J ~< 1 - ~O(K @ 1) --  d 

I f  0 is small (e smM1), ((0 + 2 ) K + O ) / d < ~ K  and (ii) is proved.  This completes 

the proof of Lemma  4.2. 

-(~) -(2) be two u-slices of size (el, ~, K) and let ~ ) ,  % DEFINITION 4.3. - Le t  ~% , % __(2) 

be two s-slices of size (e~, d, K). Define the distances with respect to the uniform 

norm as 

d .  (1) i% , ~0~ )) = sup [g,(y) -- g2(Y)], 

d(~(: ), ~o~ )) = sup ]h , (x ) -  h~(x)l  , 
Izl~<~l 

where ~ (̂~) -~(~) ~v,  ~ ~re graphs of g~, h~, i ~ 1 , 2 .  

LEN2CIA 4.4. -- Given K > 0, the constants s~, (~ can be chosen so that the results oJ 

Lemma 1 are true. Moreover, there is a constant 0 < ~ < 1 such that 

a(F%()), ~ . ~ ( m ~  (1)-a(~(.,  (m 
~OU l , 

d( f - -nv~ l ) ,  .~--nV~2)) < ( 1 ) , d ( v ~ i )  ~(2), 

where ~ ,  _F-" are abbreviations ]or (B~I n F)  ~ and (B~ n ~-~)~ which are de]ined 

inductively as ]ollows: while applying on a set V c Z, 

(Bye, n r ) l  V----By . . . . .  n F ( V ) ,  (B~ln ~ ) - l V  = B~ n ~- l (V)  , 

B y /~)-+~ V = By ~ n ~ ) ~  V] ( ~ n ~ n r [ ( B ~  , 

(B~ n ~-1)-+~ V =B~ln_F-~[(B~n.~-~) ,~V] ,  n > l .  

16 - . 4~na l i  d l  M a t ~ m a t l v a  
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P ~ o o ~ .  - S u p p o s e  .E~, E~ are Banach spates and ~ e C~(E~, E~). 
ev: r E~) • ~ E~ as ev(% e) = ~(e). Let 

We first consider 

o r  

(~.~6) 

(~.17) 

We define 

gt = ( t - - 1 )g ~+  (2--t)g~,  

ht = ( t--1)h~ -{- (2- - t )h~,  1<~t<~2. 

x~ = Agt(yo) + ~(gt(Yo), Yo) , 

~ = Byo + h(g~(uo), ~o) , 

x~ -~ A ev(gt, Yo) +/~(ev(gt, Yo), Yo) , 

y~ -~ Byo + ]:(ev(gt, Yo), Yo) �9 

For  y~ fixed, Yo cad be solved as a ~unction ot' t in (4.17), and subst i tuted into (4.16) 

to obtain xl as a function o~ t. We shall est imate ~xl/~t by  more symmetr ic  ~ormulas. 

Assume tha t  (~Yo, ~xl, (~y~, ~t are tangent  vectors in the corresponding spaces, and 

Dgt is the derivat ive o~ gt(" ). Then, 

8xl = A[ev((g2--gl) (~t, Yo) + Dgt'(~Yo] + 

+ h~. [ev((g~- gl) ~t, yo) + Dye. ~yo] + h~. ~y~ 

0 = ~y~ -~ B ~Yo ~-/~[ev((g~--g~) ~t, Yo) + Dgt" 5Yo] § f~" 5yo. 

~^(ml~t + 

It follows that 

~0 ~, (1) (~),< 0~, (1)?~)) 

~1 v~ ~,) o). ~t <(~  § 0 ) d ( ~ ' ,  + ((~ + 0 ) K +  . 

Using the est imate for ]~yo/Stl, we find tha t ,  when 0 is small, there  exists 0 < ~ < 1 

such tha t  

" (1) ~ ) )  
~t ~< 2 d ( ~  , . 
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Therefore 
2 

~t 
1 

d t < -  a) ~f~)). 2d(~% , 

The firs~ inequali ty in the lemma is proved. 

~ e x t  consider 

Byo -t- /~(Xo, Yo) = h~(Axo +/~(Xo, Yo)) 

or 

Byo 4-/~(Xo, Yo) = ev(ht, Axo -f-/l(xo, Yo)) �9 

Let  Xo be fixed and Yo be a funct ion of t, 

B.  (~Yo 4- ]2~" ~Yo = ev( (h2--h~) 6t, Axo 4-/~(xo, Yo)) -[- Dht . /~ .  (Syo , 

]~yol(1 - -  40 - -  ~OK) < 2 d ( ~ ( f ,  -(~)) ~t 
~/2 s " , 

Therefore 

and 
2 

[yo(Xo, h ~ ) -  yo(Xo, h~)[< dt< ~a(% , . 

1 

I f  ~ = l /d, the  second inequal i ty  is proved.  This completes the proof of *he lemma. 

LE~v[A 4.5. - Assume /urther that D/~ and D]~ are uni/ormly continuous in B ~ 
8"  

Then, /or any K > O, el, 6 can be chosen such that /or any u-slice q~ (s-slice 9~) of 

size (e~, (~,K), F~q~ is a u-slice (E-~9~ is an s-slice) o/ size (e~, (~, K~), with (~<~(~  

and K~--~ 0 as n - +  ~ ,  where 0 < ~ < i and F ~, F -~ are abbreviations as be/ore. 

P~ooF. - Only K . - ~  0 has to be proved.  Since 11~(0, y)----0, by  the uniform 

cont inui ty  of D/I, for any  $ > 0 there  is a ~ > 0 such tha t  ]l/~(x, Y)[I <~ if ]x]<~ 

and ]y[<s~. F r o m  Lemma  4.4, there  is an no > 0 such tha t  E " q ~ c B ~  • for 

n>no .  By (4.9), we obtain tha t  Kn+~<((~ +O)Kn-~-~)/d,  n>no .  Thus, 

K.o+~ < K~0 + d --  (,% + 0 ) '  

lim K~< d - - ( l + O ) "  
~-+ oo 

Since ~ is arbi t rary,  this implies K .  --> 0 as n -~ c~. 
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A similar proof is applied to F - n % ,  if we consider ]2~(x, O) ---- O, uniform con- 

~inuity of D)~ in a neighborhood of 0, Lem m a  ~.4 for z v - ~ ,  and (4.15). This fin- 

ishes the proof of the lemma. 

The proof  of Lemma 4.6 below is similar to ~hat of I~emmas 4.2, 4.4 and ~.5 

and shall be omitted. However,  due to the lack of uniform cont inui ty  of the  deriva- 

tives, the results concerning C 1 closeness must  be formulated very  carefully. Le t  

M~ and M 2 be C 1 submanifolds in Z. By  M~ is C ~ -  ~ near M~, ~ a positive 

number,  we mean tha t  there  are Banach spaces E~, E~ such tha t  Z = E ~  E~ and 

a constant  ~ >  0 such tha t  M~ is the graph of h~: B~ ~ ~ E 2 ,  i = 1, 2, and 

+ 

Conversely, we shall use M1 ~ M~ ---- q to denote tha t  M~ (~ M~ = {q} and T~ M~ Q 

L E ~ s  4.6. - Let M~, M~, ~Y be C ~ submanifolds in Z, and M ~  ~ Y : q .  Sup- 

pose ~:  Z -~ Z is C ~ and the restriction ~:  M~ --~ M2 is a diffeomorphism. J~et p e M~ 

and ~ ( p ) - ~  q. Then the ]ollowing hold. 

(i) There exist constants ~, ~, _L > 0 and discs U~ ~ p in M~ and U~ ~ q in M 2 

such that any C ~ submani]olds ~ and U~, C ~ -  ~ near U~, are sent di]feomorphically 

onto .E~f~ and _EU~ which contain discs ~o and U~, C~--N near U~, d(U~, U~ 

<Ld(U~, U2) where d is the distance between discs measured by the C O norm. ~urther- 

more, ]or any ~ > O, there exists a disc U~ c U~ such that F(f~ contains a disc C ~ --  

close to U~ i] ~]~ is su]]iciently near UI in the C ~ norm. 

(ii) Consider F -~ ]rom a neighborhood o] q into a neighborhood of 1). There 
+ 

exist constants ~, ~, L > 0 and C ~ discs V2 ~ q in N and V1 c F-~ V~ with M~ ~ V1 -~ p. 

~or any C ~ submani]olds ~ and V2, C ~ -  ~ near V~ t z - ~ l  and _E-1V2 contain discs 

~o and ~o C~ ~7 near VI, d( V~ V~) <Ld(V~, V2) where d is measured by the Co 

norm. _Furthermore, for any ~ > O, there exists a disc V~ c V~ such that .E-~V2 con- 

tains a disc C ! -  ~ close to V~ i] ~2 is su]]iciently near V~ in the C ~ norm. 

5. - Symbolic  dynamics.  

We now suppose tha t  U~, 0 < i < m  are pairwise disjoint open sets in a Banach  

space Z. Let  T Z  be the subsp~ee of all the  trajectories of F e Ck(Z), k > 0 ,  whose 

orbits are included in U U~. Le t  S - - { U o ,  ..., U~} be armed with the discrete 
0~<i~<m 

topology. For  each T~eTZ ,  an element  v , e / / ~ S  is defined as T,(n)----Uj if 

~(n)  e Uj. Thus Jl: T Z - ~ I I ~ S  is defined as J l :  z~--~ T~. Obviously, J1 is con- 

tinuous. Some interesting questions arise. Wha t  is the range of J~? Is J1 injective? 

If  J ,  is injective, is J~-~ continuous? The a ~ r m a t i v e  ~nswer to these questions 
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would ensure tha t  TZ is homeomorphic to the subspace of sequences of symbols 

(U~'s) and HE,  acting on TZ, is equivalent to the shift operator a defined on the 

space of ~:~'s via J~. 

DEFINITION 5.1. - -  For S ~  {Uo, ..., U~} and ~ >  0 an integer, a subset T U c  

c H ~  S is defined as ~ e TU if and only if 

1) ~u(i)---- Ur implies tha t  ~ ( i  + 1)----- U~+I for l < j  < m, 

2) ~ ( i ) :  U~ implies tha t  ~ ( i  § U0 lor l < j < ~ ,  

3) ~ . ( i ) - -  U~ implies tha t  ~.(i--  j) ---- Uo lor l < j < k .  

TU is ~ topological space with the topology induced from II~S. 

To understand the meaning of this definition, suppose ~J U~ is a neighborhood 
O ~ i ~ m  

of a homoclinic t rajectory asymptotic  to a fixed point 0 of iv. Suppose 0 ~ Uo. 

Then to say J ~  e TU is equivalent to saying that ,  if ~(j) ~ Uo ~or some j, then  

it stays in Uo ~or at  least k iterates o~ E a n d  one can leave Uo only by  going to U1 

and then march back to Uo staying again for at  least k iterates o~ iv. The same 

remark applies to E -~. The main theorem stated below is saying essentially tha t  

J1 is a homeomorphism between TZ and TU if [J U~ is some neighborhood of a 

transverse homoclinic orbit, o<~<~ 

We are re~dy to state our main theorem. 

TH_E0~E~ 5.2. -- Let X,  Y and Z - - - - X x Y  be Banach spaces, E: Z-->Z defined 

as in Theorem 3.1 with DE uniformly continuous in a neighborhood of the hyperbolic 

fixed point of E. Assume that the local stable and unstable manifolds are X~oo(9) ~- 

: {y -- 0), W~or ) : {x ---- 0}, that (4.1), (4.2) are satisfied and W~oc(O ) ~ {0), Sup- 

pose ~ is a homoclinic trajectory and T~(i) -~ 0 as i ~ • ~ .  Zet N ~ 0 be an integer 

with -c~(--N)~ W~(O) and T~(N)e W~or where W~oc(O) and W~or ) are contained 

in B~ and (4.3) is valid in B~. Assume that the following conditions are satisfied. 

1) F 2~ sends a disc 01 n W~oo(0 ) centered at ~ ( - - N )  diffeomorphically onto 

02 = E 2~ 01, containing ~f~(N). 
+ 

2) + W oo(O) = 

r is a transverse homoelinic trajectory. _Furthermore, there exist pairwise Then T~ 

disjoint open subsets Uo, ..., U~, m~2 ,  in Z, and an integer ~ ~ 0 such that 0 ~ Uo, 

0~ c U U~ and such that J1 is an homeomorphism between TZ and TU defined in 
O ~ i ~ m  

Definition 5.1. / / E  acting on TZ is equivalent to a acting on TU via J1. 

The open set [J U~ is called the extended neighborhood of 0~  with Uo the 
O ~ i ~ m  

(( body ~) and [J U i the (~ handle ~). 
l ~ i ~ m  
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Before proving Theorem 5.2, we give a symbolization consisting of infinitely 

many  symbols for a subset of TU. 

DEFIMTION 5.3. - Let  

TZo : {~%: z%eTZ, 7&(O) e Uo and 7:~(--1) e Urn} , 

TUo={'G~: 7: .eTU,  v~(O)= Uo and " ~ ( - - 1 ) =  U,~}. 

The set TZo (TUo) is bo th  open and closed in TZ  (TU). We observe tha t  

U ~*(mZo) = mz\((..., o][0, . . . )}.  

U,;~(ivvo) = i , ' v x { ( . . . ,  vo][Vo, . . .1}. 

and J~(TZo) c TUo, TZo o J~(TUo). Therefore,  

J~: mz~{(..., o][o, ...)} -~ ~{(..., Go]Wo, ...)} 

is a homeomorphism if and only if J l :  TZo-+ TUo is a homeomorphism, since 

J1 ~ = v~ if an4 only if J~(~T~)= a~.  and a is a homeomorphism on both  TZ  

and TU. 

Let  [k, ~- co] be the space of a]l the integers > k > 0 furnished with the  discrete 

topology and compactifie4 by  + co. Le t  II~v[k, + col be the  product  space. For  

any  T# = (..., k_~, ..., k_l][k0, ..., k~-, ...) e / / ; [ k ,  + oo], a corresponding element 

"~, e T Uo is defined as: 

1) T~(1)= U~ if and only if 

(A) l = --  ~ k_~-- ] m - - 1 ,  ] = O, 1, ..., provided 1 r  co; 
5 i = 1  

(t7) l = ~ , k ~ §  ] = 0 , 1 , . . . ,  provided l r  + oo. 

2) T ~ ( t - - i ) =  U=_~, 0 < i < m ,  for all l defined by  (A) or (B). 

3) z ~ ( i ) =  17o if not  defined by  1) and 2). 

Accordingly, J~: //~[k, + co] -+ TUo is defined, continuous and onto. 

DEFINITION 5.4. -- A quot ient  space T ~  = II~[Tc, + co] /~  is defined if 

= ( ' ' ' Y  - - i '  " ' ' '  " ' - - I JL- -O ' ' ' ' '  ] ' ' ' ' )  t ' ~ T ~  = ( . . . .  ' i '  . . . . . .  Y " ' - - I J L : O  ' ' "~] ' " ' ' )  

means tha t  there  exist - -  co < nl < -  1 and 0 < n~ < + pc such tha t  k (~) - -  k (s) -[- co, 

j = l ,  2, and k ( ~ ) = k  (~) for n l < i < n ~ .  
i i 
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Thus, the map J~: T ~  -+ TUo~ J~[~9] = J ~  is well defined, continuous, injec- 

t i re  and onto. I t  is easy to check that a basis ~B for the topology in T ~  is 

: {[B] :  B = {T~: T#[-- i - -  1, i -~ 1] ~ (i> ~, ~--i, . . . ,  k-1][ko, . . . ,  ki ,  ) ]~)}} . 

where k_~, ..., k_~, ko, ..., k~ are integers, and k~>k is an integer, ~>k stands for 

[k, + oo] c [~, + oo]. 

THEOREM 5.5. -- :TUo and T~ are both compact and Hausdorff. J2 is a homeo- 

morphism /tom T S  onto T Uo. 

The proof of Theorem 5.5 is elementary and is omitted. 

PROOF OF THEOREM 5.2.  -- We first show that when 0~ is small, F sends 0z dif- 

feomorphically onto ~ disc ~ W~oo(0) at C ( N  + 1). Let 0~ = ((Xo, Y0): xo = g(Yo)) 

with the inclination K0. Consider 

yl -= Byo +/2(g(Yo), Yo) �9 

Since /2~(~(hr))= 0, for any 0 > 0 ,  we may let 0~ be sufficiently small so t h a t  

I1/~( x, Y)]I 4 0  in 0~. Thus, IldHdyolI <K00 + 0, and Yo can be solved us a C ~ func- 

tion of y~ if 2(K00 ~ - 0 ) <  1. Substituting into (4.6), x~ is a C ~ function of y~. 

Therefore, by induction, E~0~ contains a C ~ disc ~ W~oc(0) at ~ ( N  -~ 1), i~>0, with 

the inclination K~, and is 4iffeomorphic to a disc of 0~. We give estimates on K2s. 

Let (~, ~),  IU~[ =~ 0 be a tangent vector to a small disc contained in F~0~, on which 

we assume that Hf~(x, y)l[ <0i.  

IU,+xl- []2x~, § (B § < (2-~-0)1~7il- << d, 

where d~ = (1--I(K~0~ + 0))/4. There exists a constant d~ such that d~>dr 

for all i >  0 provided that the disc contained in /m0, is sufficiently small, and 0~ is 

sufficiently small, since we have 2 + 0 < 1. Therefore, 

and 

(2 § O)K~ § 0 
Ki+l < doo ' 

K i <  Ko § 0 ~ Koo, i>~O . 
d~--  (4 § O) 

This completes the proof of the transversality of the homocline trajectory ~ .  

We next consider ~-2~W~or ) in a neighborhood of ~ ( - -  N). From Lemma 4.6, 

it contains a C 1 disc ~ W~oc(0 ) at ~ ( - -  N) and is denoted by R1. Analoguous to what 
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�9 , , , ,  

has been done in Lemma 1.2, we obtain that  E-~R~ contains a disc ~ W~oc(0 ) at 

~ ( - - N - - i ) ~  i>0 ,  with the inclination < K ~  for come constant K ~  ~ 0. The key 

to the prooi is (4.1) and ]]~v(x~ y)] being arbitrarily small in some sufficiently small 
neighborhood of each r 

We now construct Uo~ ..., U~ and k as asserted in the theorem. Suppose that  

sl~ e~ are positive constants such that for u-slices of size (e~, e~, K~) and s-slices of 

size (el~ e2~ K~}, Lemma 4.2-4.6 are valid. Assume that only a finite number of 

points of 0~, denoted by q~, ..., q~_~, m>2, are outside ~ ~- B �9 •  There exist 
un open neighborhood V~ for each ff~ such that 

V ~  ~ = 0 ,  l < i < m - - 1 ,  

EV~c V~+I, l < i < m - - 2 ,  

Let To, P~ e O~f ~ O, Epl ~ ql ~ Eqm_1 -~ Po, and E~p~ : Po. 

o 
BZo 

- ) _ . - . _  

r 

, l ] / / / - -  
,1 i : / ~  

~ o  

JJ 
BLt 

Y~n ~1 

Figure 5.1 

We have shown that it is legitimate to assume that m W~o~(0) contains a C 1 

disc ~o ~ W~oo(0) at po with F0 being a u-slice of size (s3, ~1--~, K ~ - - ~ )  and that 

E W~o~(0) contains a C 1 disc ~1 ~ W ~ at Pl with ~01 being an  s-slice of size (s~, 

~2--U, KI~--~)  with some constants ~ 0 ,  0 < s 3 < ~ ,  0 < s d < s l .  By  Lem- 
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ma 4.6, if 0 < U1 < U, s~, sa are small enough, the ~ image of any  u-slice C ~ near 

W~or ) contains a u-slice C1--U~ near ~o, and hence, a u-slice of size (lea, e~-- 

--U ~ - ~ ,  K~), and the l~ -'~ image of any  s-slice C ~ near W~or contains an s-slice 

C 1 - - ~  near ~1, and hence, an s-slice of size (e~, s~--U + U~, K ~ ) .  We'denote  the 

family of all u-slices of size (s~, s l - -U  -~ U~, K~) by ~ and the family of all s-slices 

of size (s~, s~-- U -~ U~, KI . )  by  8. We may  assume tha t  2L c U and 8 c ~ in the 

point set sense. We use W o r  CtW to denote the closure of a set W. 

Consider BL~(k)-= U (B~, ~ F)~cUo for ~ positive integer ~. When ~ is large, 
~>~ 

BL~([r is C ~ near B ~ and .F~(BL~(~)) is C ~ --U~ near ~o. Similarly, consider 

BLo(#) = m (B~ ~ F-~)~ 8. When ~ is large, BLo(#) is C 1 near B ~ and F-'~(BZo(~)) 

is C ~ --  U~ near F~. If  U~ is small and ~ is large, F~(BZ~(~)) ~ BZo(~). The intersec- 

tion is denoted by Do. Also ~-~(BLo(~)) ~ BL~(~) and the intersection is denoted 

by D~. We m a y  assume tha t  D0, D1 c U and ~v~ c V~. I t  is clear t ha t /m . / ) l  ~ Do 

and ~-~Do ---- D1 if restricted to a neighborhood of p l .  

I t  also follows from Lemma 4.6 and 4.2 tha t  if ~ is large enough, Fm+~ (F-.-~), 

k > ~ are Lipschitz contractions in the C O norm, on u-slices in ~/s into u-slices near ~o 

(BLo(/C) into BLo(#)), with the Lipschitz constant <~,  0 < ~ <  1. 

Let  [7----U(hF-~U. Then [7 is open and p ~ [ 7  since q ~ U .  If  ~ is large, 

the distance between / ~  and [7 is positive. I t  is also clear tha t  

By  induction, we have ([7(hF-~)~-117= ( ~ n F - ~ ) ~ U .  Clearly, D o c ( ~ n F - 1 ) ~ [ 7 .  

We claim tha t  /)oC (U ~ F - 1 ) ~ ,  since ~ and 8 c  ~. Therefore, DoC ([7 (~ F-1)~--117 

and D~cF-~(D0)c~-~([Tn~-~)~-x[7.  The last set is open so there is an open 

neighborhood U1 of D~ such tha t  Ul(h [ 7 : 0 ,  U~c/~, _FU~cV~ an4 U ~ c F  -~. 

�9 ([TnF-~)~-~[7. We claim tha t  Uo : [7, U1, U,-~ Vi_~, 2 < i < m ,  associated with 

(U~ depends on ~) fuffill all the requirenents of the theorem. 

We first show tha t  JI(TZ)c TU. For this, only condition 2) in Definition 5.1 

has to be checked. Suppose ~ e T Z  with z~(--1) E U~, Tz(0)~ Uo, then T~(--m) 

e U~ c F-~([7 ~ F-~) ~-~ [7. This implies tha t  ~(0) e ([7 ~ F-l)  ~-1 [7. Hence, for 

1 < ] < ~ - - 1 ,  ~(])e([7~F-~)~-~-~[Tc [7 = Uo. Therefore, 

o][o ,  . . .)} c . . .)} �9 

This, together with Jl( . . . ,  0][0, ...) = (..., Uo][Uo, ...), implies JI(TZ) c TU. 
I t  remains to show tha t  JI(TZ)~ TU and J~-~ is single valued and continuous. 

I t  suffices to prove the following assertions: 

(i) j [1  is well defined, single valued and continuous on TU~{(. . . ,  Uo][Uo, ...)}; 

(if) J~(... ,  Uo][Uo, ...) -~ (..., 0][0, ...) and J~-~ is continuous at  (..., Uo][Uo, ...). 
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For  (if), by  Theorem 3.1, J~-~(..., Uo][U0, ...) must  lie on W~oo(0 ) and W~oo(0); 

hence, identically equal to zero. I~ follows from Lemma 4.4 tha t  if ~, ~ T Z  such 

tha t  ~,[- - i ,  i] = (Uo, ..., Uo][Uo, ..., Uo), ~hen ~(0) lies on s-slices C(~) ~ near W ~ 
i iq-1 

and u-slices C(~) * near W~(0 < ~ < 1) in the C ~ norm. Therefore,  ~(0) is in a ball 

of radius 2C(f) ~ centered at  0. ~,(0)--~ 0 as i --~ c~. Therefore,  J~-~ is continuous 

at (..., ~;o][~o, ...). 
For  (i), i t  suffices to show tha t  J3 ~ J ~ J ~  is well defined, single valued and 

continuous on T ~ ,  since by  Theorem 5.5, J~: T N - - ~ T U o  is a homeomorl~hism. 

Also, see the commen% after  Definition 5.3. I t  is now clear t ha t  we have to show 

tha t  J~-~J~ is well defined, single valued and continuous on //~[k, ~- ~o]. 

I I  [~, + ~] 
2~ 

J" ~ TZo 

Let  ~ = (..., k_~, ..., k_~][ko, . . . , /~ ,  . . . )eHN[k, + c~]. Assume tha t  k~ r + c~ 

for all n. The other  cases can be proved similarly. I f  T~ ~ Ji-~J2 ~r it  is necessary 

tha t  T,(O)eDo. Let  Z(k_~, ..., k_~][ko, ..., kj), denote the subset of Do such tha t  

for each z ~ Z(k_~ , ..., k_~][ko, ..., kj), there  exists a finite t ra jec tory  ~~ with J1 ~~ = 
0 

= ( k , ,  ..., k_~][ko, ..., kj) and ~(0) = z. Evident ly ,  

~ k - l ~ : Z ( ~ i ,  .. . ,  ]~_2][~_1 , . . . ,  ~ j )  ---- Z(~_i ,  ..., k 1][]~0, . . . ,  k j ) .  

We claim tha t  z(k_~, ..., k_l][ko, ..., k~_~) is contained in a set of s-slices r  

(a set of u-slices c P.(BL~(Tc))) in which the distance between any two of t hem is 

< C(~) r.  This is clearly t rue  for N ---- 1. For  N = 2, the assertion follows from 

F~~ k_l][ko, k~) = Z(~=~, ~ ,  k0][k~), 

and the contractiveness of F k-l+~ on u-slices and ~-~~ on s-slices considered. 

I t  follows by  induction tha t  the  assertion is valid for general N. We have shown 
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that 

(5.1) C1Z(k_~, ..., k_~][ko, ..., k~_~) c a closed ball  of radius <C~(~) ~ . 

I t  is easy to see t ha t  v,(0)  e ~ C 1 Z ( k  ,, . . . ,  k_z][/r . . . ,  k~). Similarly,  
i,~>0 

(5.2) -v~(--1) e ~ C1Z(k_~, ..., k_._~][k_~, ..., k~), 
i,~>0 

l = k_~ + n m ,  
cr 

n = O, 1~ . . . .  

The r ight  hand  side of (5.2) is a singleton set since it is the  intersect ion of descending 

closed sets with es t imates  (5.1). Therefore  T, is unique if i t  exists, 

Conversely, define z, lo rmal ly  b y  (5.2) on a sequence of infinitely m a n y  ~ Ps 

and  choose the  values  of ~, be tween each of t h e - - l ' s  and  af ter  ~(0) b y  the map  ~ .  

We  can ver i fy  t ha t  ~ is a t r a jec to ry  in T Z  and J2(..., k_z, ...,k_~][ko, ..., k~, . . . ) =  

J ~ .  We s ta r t  with 

/w+~- .  3~ l) = i~ ~+'-~ [-1 C1 z (k_~ ,  . . . ,  k_ ,_Q[k_~ ,  . . . ,  kj) c 
i , j >  n 

c ~ F ~+k-" C1Z(/~_i, ...~ k_n_~][k_~, ..., /~)C 

c ~ CI_F ~+~-" Z(k_~, ..., k_~_~][k_~, ..., I~ )=  
i , j >  n 

= {-1 C 1 Z ( k i - i ,  " " ,  ]r "" ,  ~ ) "  
i , j > n  

Since the  last  is a singleton set, all the  inclusions are equalities. This proves  

the  consistency of the  definition of ~ on the  - - / ' s .  The only th ing unpleasant  is 

that 

not  

But ,  

T o ( - 0  e C l Z ( k _ , ,  . . . ,  ~_ ._~][k_ . ,  . . . ,  k~),  

~ o ( - -  z) ~ z ( k _ ~ ,  . . . ,  k_,_1][7r ~,  . . . , / ~ ) .  

C1 Z(k_~,.. . ,  k_,_l][k_,,  ..., k~) c C1 Z[k_,,, ..., k~) c Z[k_. ,  ..., kj_l) 

due to the  cont inui ty  of the  forward  i tera tes  of F .  Therefore,  the  i terates  of ~ on 

~ ( - -  l) mus t  s tay  in the  (( body  )> for k_~, ..., kj_l t imes  before leaving the  (( body  ~> 

for the  (~ handle  ~>. Since j can  be arb i t rar i ly  large, v~ ~ T Z  and J2(...,/~_~, ..., k_i]" 

�9 [ko,  . . . ,  kj ,  ...) = J i b e .  

The cont inui ty  of Jl-~J2 follows f rom (5.1). This completes the proof of the  

theorem.  
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COrOllArY 5.6 (S~L'~KOV [14]). - T ~  is homeomorphie to TZo via the map 

#~ = J ~ J ~ .  

COrOLLArY 5.7. - Suppose the distance between U~,U~, O<i  < ] < m  is positive. 

.Let j~:~m _~ v~), fl : 1, 2. Then, ~)( i )  --> ~)( i )  as i ---> ~- ~ (-- c~) if and only i] 

~(f(i) : ~(f(i) /or i > n  (<n) ,  where n is some eonstant. 

PROOF. - Necessity is trivial. Sufficiency follows from estimate (5.1). 

6.  - F u r t h e r  c o n s e q u e n c e s .  

Throughout this section, we assume the hypotheses of Corollary 5.7 are satis- 

fied. The above results are generalizations of the work of Sil'nieov [14] on diffeo- 

morphisms in R ~. We generalized it to C ~ maps in Banach spaces, and refined the 

argument  by showing tha t  the extended neighborhood and ~ can be associated in 

such a way tha t  all the trajectories in the neighborhood can be symbolized pre- 

cisely by TU,  depending on ~. Note that ,  in the notat ion of Sfl 'nikov's original 

work, trajectories in N +, h T-, h r~, and ST, i.e., asymptotic to 0 in the positive direc- 

tion, negative direction, both directions, and not asymptotic  to 0 at  all, are sym- 

bolized distinctly. However, our work shows tha t  trajectories in any  of the four 

subsets arc dense, a phenomenon concealed by his original symbolization. To illus- 

trate,  we show tha t  the trajectories tha t  are asymptot ic  to 0 in both directions are 

dense in TZ.  Given ~ e T Z ,  J ~  = ~ ---- (..., U~_,, ..., U~_J[U~., ..., U~, ...). Let  

T(n) : ( ' " ,  ~0, U0, U~_n, "", ~z-1][Uao, ~ ~ n ,  Uo, Uo, ...), n > l  and  lz-(n) d~-l_(~) 

By Corollary 5.7, ~ )  is asymptot ic  to 0 in both directions for each n > l .  Further-  

more, ~ )  -* T~ since z(~) -* T~. 

All the significance of the symbolizations for 4iffeomorphisms discussed by 

Sil'nikov and Smale hold true in our case. For  example, there are countably many  

trajectories tha t  are periodic or homoclinie to 0 in TZ.  T Z  is topologically transi- 

tive, i.e., there is a t ra jectory ~ , e T Z  such tha t  ~ v ~ ,  n----0, ~1 ,  ..., is dense 

in TZ.  We infer tha t  each t rajectory in T Z  is unstable from the instabili ty of TU, 

(0 such that ~) ( - -  0% l] ---- v~(-- co, l ]  since given any  v~ e T U, we can construct ~ 

and ~ ) ( i ) r  ~( i )  for infinitely many  i > 5. From Corollary 5.7, 

!ira sup I~*)(i) - -  ~,(i)[ >e  > 0 ,  $--> c~ 

where v~ ~) -- -1"r-1~(~ and ~ = J~ - l ~ ,  e is a constant  independent of I. But  ~~ -> 

--> T~(0) as 1 -> c~. This proves the instabili ty of each trajectory. 

The following is a counterpart  to Smale's invariant~ Cantor like set near a 

homoclinic point [16]. 
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COI%OLLAI%Y 6.1. - There exis~ an integer 

o/ E k in a neighborhood o/ 0~  such tha~ ~ 

valent to the shi]t map on the doubly infinite 

k > 0 and a s~bset of trajectories TZ(k) 

acting on TZ(k) is invariant and eqcd- 

sequence o/two symbols. 

Pl~ooF. - B y  Theorem 5.2, it suffices to 

any  fixed integer.  If ,  b y  the  symbol  So, we 

{Uo, ..., Uo, U~, ..., U~}, a subset  of TU is 
/c-fold 

Comparing our results wi th  other  papers ,  

examine  a~ on TU. Let  /c~>k + m be 

mean  {Uo, ..., Uo} and the  symbol  s~, 
/:-told 

defined and is invar ian t  uI~der a~. 

one finds that the invariant set of tra- 

jectories under  H E  are discussed instead of the  iuvar ian t  set of points  under  F .  

For  V being diffeomorphic, define P as the  project ion P: TZ-->Z,  PT~ = ~(0). 

Then P is a homeomorphis ln  f rom TZ onto TZ(O)a~fP(TZ). HE: TZ--> TZ  is 

equivalent  to /~: TZ(O)-+ TZ(O), via P.  

/ / P  
T Z  > T Z  

TZ(O) > TZ(O). 

Therefore,  the symbolizat ions for the  point  set TZ(0), invar ian t  under  F is induced 

f rom tha t  of TZ, or E :  TZ(O) --> TZ(O) is equivalent  to a shift  homeomorph i sm 

a: TU -+ TU. 

Another interesting case is the appearance of a snap-back repeller named after 

1V[AI%0TTO [ 1 0 ] .  An expanding fixed point  0 of a C 1 map  E :  Z - +  Z is said to be  

a snap-back  repeller if there  is a point  Zo e W~'or wi th  z0~: 0, and an integer  n~>l 

such t h a t  F~(zo)~-0  and  DF~(Zo) is an isomorphism onto Z, for l < i < n .  I t  is 

r passing through zo easy  to see t h a t  there  is a t ransverse  homoclinic t r a jec to ry  z, 

and  hi t t ing  0 af ter  finite i terates  of /~. And it  can be t r ea t ed  as a special case of 

Theorem 5.2 wi th  W~oc(0) ---- {0}. However ,  the  results are nicer if we consider posi- 

t ive  t ra jector ies  z + and  z +. Le t  Uo, ..., U~ be open sets containing 0 ~  and  

0 c U e .  Le t  S - - - -{Uo , . . . ,  U~} and k > 0  an integer.  A subset  T U +cH~+S is 

defined on z+ e T U  + if and  only if 1) and 2) bu t  3) of Definition 5.1 hold. T U  + is 

a topological space with  the  topology induced f rom/7~+ S. The semishif t  opera tor  

a+ is defined on T U  + as a + z + ( i ) =  r+(i + 1), i e ~  +. a + is continuous, surjective 

bu t  not  injective.  Le t  TZ+cII2v+Z be the set of all the  posit ive t rajectories  whose 

orbits  arc contained in U Ui. TZ  + is a topological space with  the  topology induced 
O<~i<~m 

f rom H,v+Z. Let  P be the  project ion f rom TZ + to TZ+(O)a~fP(TZ+)cZ,  defined 

as P v  + ~- 3+(0) e Z for any  ~+ e TZ +. I t  is obvious t h a t  P is a homeomorph i sm.  

Let  J~: T Z  +-+ T U  + be defined as T+(i) = (J~T+)(i) = Uj if z+(i) e Uj, 0 < ] < m ,  

i > 0 .  



252 JACK K. HAZE - XIAO-BIAO LI~: Symbolic dynamics and nonlinear semiflows 

T~EO~t~Y! 6.2. - Suppose F:  Z--> Z is C 1 with 0 as a snap-back repeller. Then 

there exist open sets Uo, ..., U~ and an integer ~ ~ 0 such that [J U~ contains the 

homoclinic orbit and 0 ~ Uo. ~urthermore , J~: TZ+--> T U  + is a homeomorphism 

and the ]ollowing diagram commutes. 

TZ+(O) > TZ+(O) 

T Z  + > T Z  + 

J~I (F I J~ 
T U  + > T U + .  

The proof of Theorem 6.2 is similar to tha t  of Theorem 5.2. One only has to 

observe tha t  the  s-slices are points in Z and the u-slices coincide with W~oo(0 ). We 

don ' t  ask tha t  D F  be uniformly continuous in the neighborhood of 0 since the  

Inclination Lemmas  are tr ivial ly t rue  in this case. *We obtain that ,  when a snap- 

back repeller appears, the above symbolic dynamics can be used to discuss tra- 

jectories, positive trajectories and invariant  point  sets in a neighborhood of the 

homoclinic orbit. 

7 .  - C h a o t i c  b e h a v i o r .  

We have shown tha t  t rajectories in T Z  have very  complicated behav io r - - the  

mot ion of / ~ ( 0 )  is quite unpredictable except  t ha t  it  must  s tay in /70 for at  

least ~ i terates of F before leaving /7o for the  <, handle ~). We shall show tha t  this 

kind of mot ion implies chaos described by  LI and YO~KE [9], [10], [17]; tha t  is, 

if T Z  is homeomorphic  to T U via J1, t hen  there  exists chaos in the following 

sense: 

1) There exists k > O such tha t  for each integer p > k ,  F has a t ra jec tory  

of period p. 

2) There exists a subset of uncountably  many  trajectories CHAOS c T Z  such 

that, 

(7.1) 

_(1) :fi _(2) a) for every  _(1) _(2) e CHAOS with % % ,  b z  ~ ( 'z  

n m s u p  ]~(_1)(i) - r  > o ; 
i -~  =l= co 

_(2) being periodic in TZ,  (7.1) is valid, b) for %-(1) ~ CHAOS and -% 
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c) z(~) -(~) e CHAOS implies tha t  z ' t z  

l iminf  I v ~ ) ( i ) -  ri~)(i)[ = O. 
i -+ :t: co 

3) H/~'(CHAOS) = CHAOS. 

The ideas of the proof presented here are essentially from [9], [10]. 

P~oo~. - i) Let k = k @ m. Let 

T~ = (..., repeat,  Uo, ..., Uo, U~, ..., U~, repeat,  ...) 
~-fold 

then  T~ = J~-~ T~ e T Z  is a t ra jec tory  of i~ with the perio4 = p. 

2) Let  

vl, . . . ,v.} ,  
k-fold /c-fold 

For  each w e (0, 1), choose an element  T: e T U ,  composed by  so and sl such tha t  

Tu~ . . ,  ; s~_,; .. .; s~_~][s~; s~i; ...; S~; ...): 
/2 } e ~ = l  only if i =  •  2, n = 1 , 2 , . . . ;  and lira ( % ' n 2 ) - - w  , 

n---~ cr n 

where • R (Tu, n2) is the number  of ~ ' s  which equals 1 for ( l < i < n 2 ) (  - n ~ < i < - - l )  

respectively. 

Le t  C H S  = {a~ T . ~. w E (0, 1), i e 2~}. Evident ly ,  a(CHS)  = CHS.  Therefore,  if 

CHAOS = J ~ ( C H S ) ,  / / F ( C H A O S ) =  CHAOS. The ~ssertion 3) is proved.  In  

proving 2), we only consider the c~se i -~ + oo. We first show tha t  a) is t rue for 
z(~) j - ~ ,  w, _(2) j - 1  ~J_w~ 

---- ~ ~T~) and ~ = ~ (o %), ~ve 0. Since w:/= 0, there exist infinitely many  

integers n such tha t  T~(kn ~ -  1) = Urn, a~W(kn 2 -  1) = -~'lv 2 %[ n - ~ ] - - 1 ) .  I f  n is 

sufficiently large, kn ~ § ] -  1 is not  of the form kl 2 -  1 for ~ny integer l; thus 

aJ~:(kn 2) va U~. This shows (7.1) is v~lid in this case. Obviously a) is also t rue 
f o r  _(i) - i  { ,w _(2) w _(~) % : J ~  ( a ~ ) ,  -% =J~-~(~JT),  i v e ] .  V V e n e x t  s h o w t h ~ t  a) is t rue  for .% ---- 

- -  % = ~ (a ~), w l=/=w~. Le t ]~+(T~,kn  ~) be the  number  of T~(I) 

which equals U~ for l < l < k n  ~. We observe tha t  

(7.2) l im R (a T~, kn  ~) _ w .  
n---> co n 

For  any  given K > 0, there  exists an l >  K such tha t  a~T~l(l)=/: aJw~(1). Other- 

wise, f rom (7.2), one would have wl = w~, contradict ing the fact  tha t  w l r  w2. 
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The proof  of a) is completed,  b ) C a n  be proved  similarly. To p rove  c)~ notice t h a t  

for a n y  z~ ~ CHS, the  length of the  successive i ' s  such t h a t  T~(~) ~ Up approaches  

+ co as i -+ + co. Therefore,  for -(~) -(~) ~ CHS, the  length of successive i ' s  such t" u , b u 

t ha t  -")  (~) " -----~ (~) Up approaches  -f-co as i - +  + c~. c) is t rue  b y  (5.1). This 

completes  the  proof  of the  existence of chaos. 

The work of Li and  Yorke  indicated t h a t  Per iod 3 implies chaos in R. ~ a r o t t o  

pointed  out  this  is not  the  case iu R ~. H e  p roved  t h a t  Snap-back  l~epeller implies 

chaos in R ~. Oar  work shows t h a t  the  t ransverse  homoclinic t r a j ec to ry  implies 

chaos in Banach  spaces. 

8 .  - F l o w s .  

~oninver t ib le  maps  also arise fo rm the  Poincar6 mapp ing  of noninver t ib le  flows. 

The Poincar6 map  can ei ther  be the  re tu rn  m a p  a round  a periodic t r a j ec to ry  for 

an au tonomous  flow or the  period m a p  of a periodic flow. Bo th  eases are discussed 

in this section. 

Let  X be a Banach  space and  T(t, s), t>~s in R be a semigroup of nonlinear 

maps  in X. We assume t h a t  

1) T(t, s) is s t rongly continuous in t, s; 

2) T(s, s) = I ;  

3) T(t,  u ) T ( u ,  s) = T(t, s), ~>u>s;  

4) There  are constants  ~ > 0 ,  k > l  such t h a t  T(t , s)x is C ~ joint ly  in t and  x 

for t > s  +o~. 

Examples  of abs t r ac t  evolution equat ions wi th  g = 0 m a y  be found in [4]. For  

delay equat ions under  some general  conditions, ~ = / W ,  where y > 0 is the  delay [3]. 

We say t h a t  T(t, s) is periodic of per iod o ) >  0 if T(t, s ) =  T(t + co, s-[-co). 

I f  we do not  assume t h a t  co is the  ]east period, then  we m a y  assume co > ~. The 

period m a p  2~ = T @ ,  0) is then  C ~ on X.  I f  ~(t) is a periodic t r a jec to ry  of T(t, s) 

with  the  per iod co; t ha t  is, T(t, s)~(s) = ~(t), t>s in R, ~(t + co) ---- ~(t), t hen  ~(0) is 

a fixed point  of ~ .  Conversely,  any  fixed point  of ~ can be used to define a periodic 

t ra jec tory .  One can define homoclinie t ra jector ies  of T(t, s) a sympto t i c  to ~(t) in 

the  obvious way  and re la te  t h e m  to homoclinic t ra jector ies  of 2~ asympto t i c  to ~(0). 

We nex t  assume tha t  the  semigroup is au tonomous ;  i.e., T(t, s ) ~  T( t - -s) ,  

t~>s in _R. Le t  ~(t) be a periodic t r a j ec to ry  of least  period co > 0 of T(t), t > 0 ;  t ha t  

is, T(t)~(s)= ~(t + s) for all ~>0,  s e R ,  ~(t + ~ o ) =  ~(~) for all ~ and  ~ ( t ) #  ~(0), 

0 < t < co. Replacing co b y  no), we m a y  assume eo > g. Le t  X1 r X be a codimen- 

sion one hyperp lane  t ransversM to  the  periodic t r a j ec to ry  a t  x = ~(0). There exists 

a neighborhood U of ~(0) in X1 such tha t  for every  x ~ U, there  is a unique t = t(x) 

near  co such t ha t  T(t(x))x e x t .  The m a p  F :  U -~X1 is derided as F(x)  = T(*(x))x  
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and is C k. I t  is clear t h a t  ~(0) is a fixed point  of F .  Suppose x --~ p(t) is a homo- 

clinic t r a j ec to ry  of T(t) asympto t i c  to x ---- ~(t). There  is a constant  w > s~/2 such 

t h a t  for It I > ~, x -  p(t) is near  the  orbi t  of x----~(t) and  intersects U c X~ suc- 

cessively as t - + - 4 -  oo. Le t  q~ =P( t~)  and  q~ =p(t2), q~, q2~ U, with t ~ < - - w  and  

t 2 >  T. /;-~q~ and  F~q~, n~>0, are defined as the  intersections of p(t) wi th  X~ and 

agree wi th  the  definition of F given before. Obviously,  / ~ q ~ - +  ~(0) and ~-~q~--> 

-~$(0) as n - +  oo. Assume t h a t  there  are open sets U~ and U~c U such t h a t  

t ) U ~  g ~ = 0 ,  q ~ U ~  and i~ ~q~ (3 q~ c U ~ .  We redefine iWin U~as  
= 0  

Fq~ = q~ and F x  = y for x e  U1 and y e U~ such t h a t  u -~ T(t(x))x with a unique 

t = t(x) near  t ~ -  t~ > ~. This could be done if Ux is sufficiently small  so t h a t  the  

flow issuing f rom U~ meets  Uz t ransverse ly  in a uniquely  de te rmined  t ime  ~ = t(x) 

near  t~-- t~.  Thus, /v: U~(~ U~ -+X~ is C ~ with a fixed point  ~(0) and a homo- 

clinic t r a j ec to ry  {~-~q~, F~qs, n > 0 } .  

Figure 8.1 

DErI~ITI0~ 8.1. - Suppose T(t, s) satisfies hyper theses  1)4)  and is e i ther  periodic 

or autonomous .  Suppose t h a t  x = ~(t) is a periodic t r a j ec to ry  with the  Poincar4 

m a p  F defined previously.  I t  is said to be  a hyperbolic period trajectory if 

n {1 1 = 1} = O.  

Note  t h a t  the  m a p  ~ can be different if we t ake  other  hyperp lanes  t ransversa l  

to the  periodic t ra jec tory ,  e.g., in the  periodic flow case, the  section can be ( t*)x 

x X c R x T  and  the  m a p  is T(t* d- o~, t*). Thus, we shall just i fy t ha t  Definition 8.1 

is independent  of the  Poincar6 section chosen. Also, if ~ < ~, there  is no unique 

way  to  choose n o  > ~ with  integers n > 0. We shall p rove  Definition 8.1 is inde- 

penden t  of n. 

The stable set W~(~(.)) and  unstable set W~(~(.)) of x----~(t) is defined in the 

usual  way.  The existence of the  Deal stable mani]old W~oc(~(.))c W~(~(.)) and  

local uns table  manifold  W~oc(~(" ) ) c  W~(~(.)) in a neighborhood of the  orbit  of a 

hyperbol ic  per iod t ra jec to ry  x = ~(t) shall be p roved  in Theorem 8.3. 

1 7  - Annal i  dt Ma~ematica 
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I)EFIlgITION 8.2. - A homoclinic t ra jec tory  x = p(t) of T(t,  s) in a Banach 

space X, asymptot ic  to a periodic t ra jec tory  x = ~(t) of T(t,  s) is said to be a trans- 

verse homoclinic trajectory if 

1) the periodic t ra jec tory  x ---- ~(t) is hyperbolic;  

2) for any sufficiently large pair s, t > 0 such tha t  p ( - - s ) e  W~1or and 

p(t)EW~oo(~(.)), T ( t , - - s )  sends a d i sc  containing p ( s )  in W~oo($(.)) diffeomor- 

phically onto its image which is transversal  to W~or at p(t).  

Note that  in the  forgoing definitions W~oc(~ (.)) =- (~(.)} as well as x = p(t) h i t s  

the orbit 0~(.) at  some finite t is allowed. I t  is also clear tha t  W~'o~(~(0)) and 

W~oo(~(0)) of the fixed point ~(0) of F are precisely the intersections of W~oo(~ (.)) 

and W~oo(~(.)) with the Poincar6 section. Another  observation is tha t  x----p( t )  is 

a t~ansverse homoclinic t ra jec tory  if and only if it induces a transverse homoclinic 

t ra jec tory  on the Poincar6 section for the fixed point ~(0) of the map F.  There is 

a geometric explanation for Definition 8.2, tha t  is, there are two narrow strips 

locally diffeomorphic to W~r )) and W~o~ (.)) Irespectively (Immersed image of 

W~or x R  and W~or not  necessarily injective), a t tached to x----p(t) 

and intersect t ransversely along x----p(t). See fig. 8.2 for the illustration of the 

unstable strip. 

x = p q )  

Wu 

Figure 8.2 

Tn-EO~n~ 8.3. - Let x -= ~(t) be a periodic trajectory with the period o )>  O, /or 

T(t~ s) satis]ying conditions 1)-4). Then in  both the ]ollowing cases~ T(t~ s) - -  T ( t -  s) 

or T(t~ s) ~-- T( t  -~ ~,  s ~- (9)~ the de/init ion o/ the hyperbolicity o] x ---- ~(t) is inde- 

pendent  o / t h e  integer n ,  ne) > ~ or the Poincard section chosen. Moreover i l  T(t~ s )x  

is C ~ jointly in  t, s and x ]or t > s - ~  ~.~ the loca~ stable and unstable mani]olds 

W~or and W~oc(~(.)) exist and are C k submani]olds in  X ]or the autonomous 

case and in  ~ • X /or the periodic case. 
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P~ooF. - Only the  proof for the periodic flow shall be given. Le t  E~ = T(n~co, 0), 

Fs = T(n~co, 0) where n~ and n~ are integers with n l c o > ~  n2co>~.  

~(0) is a hyperbolic  fixed point  of E ~ if and only if it is a hyperbolic fixed point of 

E~ and E2. This shows tha t  the definition of the hyperbol ic i ty  is independent  of the 

way the  period is multiplied. 

,~, = $(t)/ . 

/ W,oo(OS) 

'r 
I 

> 
! 

W~oo(t*) ) 

i~ ?/W~oo(t*) 
Wi'oo(0) 

/ 

Figure 8.3 

Assume tha t  T(~, 0) has ~(0) ---- ~(co) as a hyperbolic fixed point. The existence 

of the  local C k stable and unstable manifolds W~oo(0 ) und W~oo(0 ) of T(co, 0) on the 

section {0} •  R •  follow from Theorem 3.1. Periodici ty implies tha t  W~oo(co ) = 

= W~oo(0) and W~o~(co ) = W~oo(0). Take a section { t*}•  and, wi thout  loss of 

generality,  assume tha t  ~ < t* and ~ < ~- t*. I~et the  stable and unstable sets 

for x = ~(t), W~(~(.)) and W"(~(.)), intersect { t*}xX in We(t *) and W~(t*). Obvi- 

ously, W"(t*)= T(t*, 0)Wu(0) and W~(t *) = [Y(co, t*)]-lW~(co). I t  is easy to show 

tha t  T(t*, 0) is a C k embedding from W~oc(() ) into W"(t*) with [T(co, 0)]-IT(w, t*) 

as the inverse. Therefore W~oo(t* ) ae_j T(t*, 0)W~oo(0 ) is a C k submanifold in {t*} •  

and W~o(co ) = T(co, t*) W~o~(t* ). Also TW~or ) = Dr(co, t*) TW~or ). Now let Y c X  

be such tha t  DT(co, t*). Y c TW~oo(e~). Y is  a linear closed, subset since TWice(co ) 

is. I t  is easy to see tha t  Y @  TWice(t* ) = X .  We wl"ite x a X ~s x = (x~, y~) where 
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x~ e :TWice(t*) and  y, ~ Y,  and use the  Impl ic i t  Func t ion  Theorem to solve :/'(co, t*). 

�9 W~oo(t* ) r W~co(co ). We obtain  t h a t  

W~o~(t*) = (~(t*) Jr (x~, y~): x~ - -  g(y~), g e C~(B~), g(O) -~ O, Dg(O) =- O} 

for some s > 0. Thus, W~oo(t*) is a C k submanifold  in ( t * ) •  and  TWeed(t* ) = Y. 

The proof of the  invar iance of W~oo(t* ) and  W~o~(t*) under  T ( t * - k  co, t*) is easy 

and is omit ted.  Es t imates  for the  spectra  of D T ( t * - k  co, t*) on TWice(t* ) ~nd 

[DT(t* -[- co, t*)] -~ on TWice(t*) can be obta ined b y  considering 

[ / ' ( t* + ~ ,  t*)] ~ = Y(t*, o ) .  [/~(co, o)] ~-~. T ( ~ ,  t*) 

~nd 

[r(t* + co, t*)lW?oo(t*)]-~ = [~ (~ ,  t*)[ W~oo(t*)]-~[2(~, o)lW~oo(O)]-'+~.[T(t *, o)l~oo(O)] -~ 

and using [a(Z)[<limoo(]ls ~/~ for a l inear bounded  operator  Z. Consequently,  

~(t*) is a hyperbol ic  fixed point  under  :T(t* § ~,  t*) and  W~oo(t*), W~oo(t* ) are pre- 

cisely the  local unstable  and  stable manifolds under  T(t* -k ~, t*), due to the  uni- 

queness. Thus, the  definition of the  hyperbol ic ty  for the  periodic t r a jec to ry  of 

flows is independent  of the  cross-sections chosen. 

The local unstable  set of ~ ---- ~(t) is a neighborhood of t ~ t* is de te rmined  b y  

w;~o(r = {( , ,  T(,,  0)~):  t e ( t * -  ~, t* + ~), x e W~oo(0)} c ~ • x ,  

for some s > 0. I t  is clearly a C ~ submani fo l4  modeled on /~ • TWice(0). The local 

stable set of x = $(t) in a neighborhood of t ~- t* is de te rmined  b y  

W~oc(~(" )) : {(t, y): T(co, t)y c W~o~(co), t e (t* - -  e, t* + e)} c R • X ,  

for some s ~ 0. Using the  local coordinates  R •215 Y, and the  Impl ic i t  

Func t ion  Theorem,  one shows t h a t  W~oc(~(.) ) is ~ C k submanifold  modeled on 

R •  Y = R • TWice(t*). The prool  of Theorem 8.3 is completed�9 
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