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S Y M B O L I C  D Y N A M I C S  O F  N O I S Y  C H A O S  

J.P. C R U T C H F I E L D  and N.H.  P A C K A R D  
Physics Board of Studies, University of California, Santa Cruz, California, USA 

One model of randomness observed in physical systems is that low-dimensional deterministic chaotic attractors underly 

the observations. A phenomenological theory of chaotic dynamics requires an accounting of the information flow from the 

observed system to the observer, the amount of information available in observations, and just how this information affects 

predictions of the system's future behavior. In an effort to develop such a description, we discuss the information theory of 

highly discretized observations of random behavior. Metric entropy and topological entropy are well-defined invariant 

measures of such an attractor's "level of chaos", and are computable using symbolic dynamics. Real physical systems that 

display low dimensional dynamics are, however, inevitably coupled to high-dimensional randomness, e.g. thermal noise. We 

investigate the effects of such fluctuations coupled to deterministic chaotic systems, in particular, the metric entropy's response 

to the fluctuations. We find that the entropy increases with a power law in the noise level, and that the convergence of the 

entropy and the effect of fluctuations can be cast as a scaling theory. We also argue that in addition to the metric entropy, 

there is a second scaling invariant quantity that characterizes a deterministic system with added fluctuations: I0, the maximum 

average information obtainable about the initial condition that produces a particular sequence of measurements (or symbols). 

1. The role of fluctuations in dynamical systems 

modeling 

The work of  Lorenz [1] and Ruelle and Takens 

[2] has led to the idea that randomness  observed 

in physical systems may  in some cases be modeled 

by low-dimensional chaotic attractors.  A growing 

body of  experimental evidence now supports  this 

view [3]. This data  also demonstrates  that  any 

purely deterministic model is incomplete, since the 

dynamics o f  physical systems is inevitably coupled 

to some source o f  fluctuations. We shall refer to 

these fluctuations as external fluctuations*. An- 

* We can give an unambiguous definition of this in terms of 
the ideas presented in this paper: External fluctuations may be 
regarded as a second dynamical system (coupled to the system 
of interest) with sufficiently high entropy hu so that all the 
information I from a measurement is lost after the typical time 
r used for sampling the first system. In other words, I/r ~ hu, 
where I/~ is the information acquisition rate. This allows for an 
operational definition of a non-deterministic source of random 
behavior as a deterministic system whose entropy is sufficiently 
large to preclude an observer's geometric reconstruction of the 
source's dynamics. All of our information quantities will be 
measured in bits and so, in particular, all logarithms will be 
taken to the base 2. 

t We will assume fluctuations to be drawn from a stationary 
ensemble at each time. 

other attribute that must  be incorporated into an 

accurate model for observed randomness  is 

fluctuations o f  the measuring instrument,  these 

we will call observational noise. Observational  noise 

differs markedly f rom heat bath fluctuations in 

that it does not  affect the temporal  evolution o f  the 

system being observed (assuming a classical mea- 

surement process); rather, it directly limits what  

may  be inferred about  the system under  study. We 

will be concerned only with the effects o f  external 

fluctuations here; for further discussion of  this 

classification o f  noise types see ref. 4. 

Incorpora t ion  o f  any kind o f  fluctuation into a 

dynamical  description implies that observables be- 

come average quantities, the average being taken 

over all possible fluctuationst.  For  the case o f  a 

chaotic deterministic dynamical  system, we are led 

to the idea that observables are average quantities, 

where the average is taken with respect to the 

asymptot ic  probabil i ty distribution. When 

fluctuations are added to such a system, they 

produce a new asymptot ic  probabil i ty distribution. 

A formal expression o f  how this distribution arises 

will be presented below. In referring to a proba-  

bility distribution P(x)  we will find it convenient to 
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also speak of the associated measure # defined by 

l~(A) = f P ( x )  dx, 

A 

where A is some set. 

We will be concerned with the effect of 

fluctuations on measurements of randomness, in 

particular, their effect on the metric entropy. As we 

shall see from numerical computations, the metric 

entropy is relatively insensitive to observational 

noise, but is strongly dependent on external 

fluctuations coupled to the dynamics; and so we 

will concentrate mostly on this latter case. The 

prototypical chaotic systems we shall use are iter- 

ated maps of the unit interval I onto itself: 

Xn+ 1 =f (x , ) ,  where f is some nonlinear function. 

These will also be referred to as one-dimensional 

maps. We will model the effects of  external 

fluctuations with a stochastic difference equation 

of the form 

xn +1 = f ( x . )  + ~,  (1) 

fluctuations approximates the zero noise invariant 

measure with arbitrary accuracy (strong con- 

vergence), and that all initial conditions have time 

averages that correspond to averages with respect 

to the invariant measure. 

We begin by reviewing entropy measurement 

techniques for deterministic systems. We will then 

investigate the effects of  external noise on the 

symbolic dynamics, and discover that the amount  

of  information I(n) about the initial condition that 

produces a symbol sequence of length n reaches a 

limit I0 at some particular length n,. that is de- 

pendent on and scales with the noise level. Further- 

more, the added noise produces entropy con- 

vergence features that also obey scaling laws. After 

describing the scaling features of the entropy, we 

will discuss numerical experiments in which we 

compute the scaling exponents for many different 

systems. We then describe an alternate entropy-like 

quantity similar in spirit to the Lyapunov charac- 

teristic exponent, conjecturing equality with the 

symbolic dynamics metric entropy. We conclude 

with an overview and a brief discussion of some 

experimental applications. 

where ~n is a delta-correlated random variable. 

Numerical experiments [5] indicate that the re- 

sponse of the metric entropy to the added 

fluctuations ~ is insensitive to the details of  their 

probability distribution. We will assume ~ to have 

zero mean, and to be evenly distributed over some 

finite interval, with a standard deviation, or noise 

level, a. 
For dynamical systems with added fluctuations 

there are not many rigorous results. Kifer [6] has 

proven that for hyperbolic attractors* the invari- 

ant measure converges weakly to the correct zero 

noise limit. Boyarsky [7] proved that for one- 

dimensional maps that have slope everywhere 

greater than one, there exists some noise level for 

which the invariant measure of the system with 

* In the context of one-dimensional maps, this means that 
the absolute value of the slope of the map must be greater 
than one everywhere on the attractor. 

2. Symbolic dynamics and entropy for deterministic 

systems 

We must first review the case of observing a 

deterministic dynamical system. We will consider 

time to be discrete, and the dynamical system to be 

a map f from a space of states M into itself, 

f :  M---~ M. We a s s u m e f h a s  some ergodic invariant 

measure/~. If  f has an attractor, we will restrict our 

attention to the attractor, and assume that almost 

all (with respect to Lebesque measure m) initial 

conditions approach the attractor and have tra- 

jectories that are asymptotically described by the 

measure/ i  on the attractor; i.e. that for almost all 

points the measure 

r l = l  
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converges weakly to ~. Oono and Osikawa [8] refer 

to this assumption as the "condition for observable 

chaos". 

This may seem like an amazing assumption from 

a mathematical viewpoint, but it is proven rig- 

orously for axiom-A systems, where ~ is the 

Bowen-Ruelle measure. For maps of the unit 

interval this assumption will hold for all maps that 

have an invariant measure that is absolutely con- 

tinuous with respect to Lebesque measure. Con- 

sideration of noise added to the dynamics also 

makes this assumption plausible for most physical 

contexts, as will be discussed in following section. 

The behavior of  a dynamical system f :  M - - , M  

can have many symbolic representations, each 

obtained by using a measurement partition, 

P = {P~ , . . . ,  Pq}, to divide the state space M into 

a finite number of  sets each of which is labeled with 

a symbol sg~{1 . . . . .  q}--= S. The time evolution 

(x0, xl, x2 . . . .  ) of  the dynamical system f :  M ~ M  is 

then translated into a sequence of  symbols labeling 

the partition elements visited by an orbit 

s = {So, s , ,  s 2 , . . . }  

and f itself is replaced by a shift operator a which 

re-indexes a symbol sequence; that is, 

= s ' ,  

where for each symbol in the sequence s ' ,  

S ;  = ( O ' ( S ) ) i  = S i + l .  

Thus the shift operator ~r merely moves the time 

origin of  a symbol sequence one place to the right. 

In the space of  all possible symbol sequences 

{s = (So, s, . . . .  )}, 

the observed or admissable sequences are those 

which satisfy 

x, = f '(xo) ePs,. 

The set of  admissable sequences 2; s along with the 

shift a is called a subshift. (S,y, a) is the symbolic 

dynamical system induced by f using the mea- 

surement partition P. 

The symbol sequences of  Xy are a coding for the 

orbits o f f :  M o M .  A finite sequence of symbols 

S n (sg . . . . . . .  1) defines an n-cylinder s n = {s : si sT, 

i = 0 . . . . .  n - 1 } which is a subset of  Z'f consisting 

of all sequences whose first n elements match with 

those of sT. An n-cylinder s" corresponds to a set 

of  orbits that are "close" to one another in that 

their initial conditions and first n - 1 iterates fall 

in the same respective partition elements. Since 

these orbits must follow each other for at least 

n - 1 iterations, they must all have initial condi- 

tions that are close, belonging to some set U c M. 

We thus have a map A from n-cylinders to subsets 

of  M: 

,a(s . )  = { x l f ' ( x ) ~ P ~  ,, for i = 0 , . . . ,  n - 1}. 

To a different n-cylinder will correspond a different 

set of  orbits whose initial conditions are contained 

in some other set U ' c  M. M will become par- 

titioned into as many subsets as there are n- 

cylinders. As n is increased, this n-cylinder partition 

will become increasingly refined. The refinement 

caused by taking an increasing number of  symbols 

is illustrated in fig. 1, where M is the unit interval 

o I 

I!! 
Ill 

x I 

Fig. 1. Construction of the partition induced by taking n 
symbols (i.e. specifying an n-cylinder) with the measurement 
partition {[0, 0.5], (0.5, 0]}. The l-cylinder, 2-cylinder, 
3-cylinder, and 4-cylinder partitions are shown with successively 
shorter tic marks below the x-axis. 
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[0, I], and f is the quadratic logistic equation, 

f ( x ) = r x ( 1 - x ) ,  with r = 3 . 7 .  We have used 

the measurement partit ion formed by cutting 

the interval in half  at d = 0.5, the critical point of  

f where the slope vanishes. We will label the left 

subinterval "0"  and the right "1".  We see from the 

figure that the dividing points for the n-cylinder 

induced partit ion are simply the collection 

Id, f ' ( d ) , f  2(d) . . . . . .  / (n-l)(d)...} 

whenever the specified inverse images exist. If  the 

map is not everywhere two onto  one (i.e. r < 4), 

some of  the inverse images will not  exist, corre- 

sponding to the fact that some n-cylinders are 

non-admissable. Changing the measurement  par- 

tition clearly generates a different set of  admissable 

sequences, just as it generates different n-cylinder 

partitions. 

The usefulness o f  symbolic dynamics as a repre- 

sentation for the orbits o f  f can be captured in the 

following commutat ive  diagram: 

cr 

lt[ 

M ~'~/ 
f 

the at tractor  will have at least one symbol sequence 

representation. There are a few ambiguities in the 

labeling of  orbits by symbol sequences that  prevent 

n f rom being invertible, but  our  discussion of  the 

entropy will prove to be insensitive to the 

ambiguities*. 

The space o f  one-sided symbol sequences can 

easily be metrized by mapping  each symbol se- 

quence to a power series 

Sq~x ) 

where s(x) is the symbol labeling the measurement  

partit ion element containing x (the denomina tor  is 

2' only if the partit ion has two elements). For  the 

case of  a binary partition, this map identifies every 

sequence with a binary fraction whose value lies in 

[0, 1]. We will conveniently confuse s" with its 

binary fraction representation unless the dis- 

tinction is necessaryt.  

A Cantor  set structure in the symbol sequences 

of  the chaotic logistic equation is revealed in fig. 2 

by a sequence o f  probabili ty distributions for 

n-cylinder binary fractions: with the increase in 

length o f  the n-cylinder the distributions show 

successively more, a l though narrower,  peaks. An- 

other demonstra t ion o f  the Cantor  set structure of  

with the projection operator  

n(s,,, s, . . . .  ) = ~ , f - ' (P ,O"  
i = 0  

One can then study the simpler, albeit abstract, 

symbolic dynamical  system in order to answer 

various questions about  the original dynamical  

system. Within this construction,  every point  on 

* An example of one such ambituity is that there can be two 
symbol sequences that are nowhere the same, but label the same 
point on the interval: e.g. 100000.., and 011111 ,.. both label 
the same point x = 0.5 in the limit of infinite length. 

t Milnor and Thurston [9] show how to form a slightly more 
sophisticated "invariant coordinate" which is monotonic. Our 
entropy calculations do not require this feature, so we use the 
computationally simpler binary fraction. 

' • 3 1  

1 

I I i _j  " '  

4T 5 6 

09 , 

[]- 

- I0  s 

Fig. 2. The Cantor set structure of the subshift (Xj, a) is shown 
in this sequence of probability distributions for n-cylinders: 
n = 1, 2, 3, 4, 5, and 6. Each n-cylinder has been mapped onto 
the unit interval by using its binary fraction. In this example J 
is the quadratic logistic equation with r = 3.7. 
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2~r is the graph Of the distribution of symbols s 

(truncated to a finite n-cylinder with n = 12 and 

mapped onto the unit interval using its binary 

fraction) versus position x, illustrated in fig. 3. 

We will now embark on the task of character- 

izing the chaotic behavior in a dynamical system 

using topological and metric entropies, in that 

order. After giving their definitions, we will show 

how these quantities may be computed numerically 

using the symbol sequence representation of  orbits. 

Our analysis follows Shannon [10]. 

Heuristically, the topological entropy of  a dy- 

namical system measures the asymptotic growth 

rat~ of the number of resolvable orbits (using a 

given measurement partition) whose initial condi- 

tions are all close. Equivalently, the topological 

entropy quantifies the average time-rate h of 

spreading a subset over nearby subsets. This pro- 

cess is most easily illustrated by considering a 

collection of  subsets which form a "cover" of the 

state space M. The dynamic f spreads a single 

cover element over other elements after some time 

v 

0 

0 

L I I l 

Fig. 3. 2000 iterations of  the 'logistic equation'  with r = 3.7, 

showing the Cantor  set structure o f  the distribution o f  se- 

quences in 2; I. Graphed is q~(s ~) against position x, where s 12 

is the sequence obtained from the initial condition x. The 

density o f  points on the x-axis is the asymptotic distribution of  

f o n  the unit interval; the density of  points on the y-axis is the 

Cantor distribution illustrated in the previous figure. 

t. The number of new cover elements N(t) visited 

by points in the original cover element can be 

written, 

N(t) ~ e h', 

where h > 0 for chaotic dynamical systems. With 

this geometric motivation, we will now consider a 

more formal definition of the topological entropy 

h [1 l]. 

For a compact topological space M, with an 

open cover U, let N(U) be the number of  sets in 

a subcover of  minimal cardinality. Two covers U 

and V may be "combined" to form a refinement W 

by 

W = U v V  

={AfqBIAeU and BeV} 

Now if f :  M ~ M  is a continuous map, the topo- 

logical entropy of f with respect to the cover U is 

defined as 

h(f,  U)  = lim log N(U"), 
n ~ o o  n 

where 

U"= U v f - I U v  .. .  v f - " U .  

The topological entropy h(f) of  the map itself is 

then the supremum of h(f, U) over all open covers 

U. 

The supremum is obtained only if the mea- 

surement partition is "good"  in that there is an 

unambiguous correspondence between orbits of J 

and symbol sequences. Only with such a good 

partition is the topological entropy of  _r/ obtained 

using partition P exactly hOe), the topological 

entropy of f. There is no general procedure for 

finding such a good partition, but we will give 

numerical evidence that such partitions are easily 

found for simple piecewise monotone maps of the 

unit interval. Given such a partition, however, we 

have a readily computable algorithm for h0r): 
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simply counting the number of n-cylinders. Note 

that in the space of symbol sequences S i, each 

n-cylinder s" is an open set, and the class of all 

n-cylinders is an open cover. Thus the topological 

entropy of the system (Z/, at) is given by 

lim log N(n) >h(of), 
n ~ ' x :  n 

where N(n) is the number of admissable n- 

cylinders*. N(n) is readily obtainable numerically, 

so this formula presents us with a computable 

algorithm for the topological entropyt. 

In presenting the topological entropy before the 

metric entropy we have purposely reversed their 

historical order because there is a sense in which 

the metric entropy is a generalization of the topo- 

logical entropy: the metric entropy also measures 

the asymptotic growth rate of the number of 

resolvable orbits (using a given measurement par- 

tition) having close initial conditions, but weights 

each orbit with its probability of occurrence. 

The definition of metric entropy for the dynam- 

ical system (M,f)  requires an invariant measure/7 

and a sigma-algebra of measurable subsets of M: 

more structure than needed for the definition of 

topological entropy. 

If P = {Pi} is a finite measurable partition of M 

with p elements, we define the entropy of P as 

P 

H~(P) = - ~ fi(Pi) log(fi(P~)). 
i ~ l  

Given two partitions P and Q, their refinement is 

PvQ={PinQj[PieP  and Q#~Q}. 

The metric entropy of f with respect to the par- 

tition P is defined by 

h~(f, P) = limlH~ (P"), 

where 

P " = P v f - i p v  . . .  v f  1-"P. 

Finally, the metric entropy o f f  itself is 

hi, = sup h (f, P), 
P 

where the supremum is taken over all partitions P. 

As for the topological entropy, the supremum is 

obtained only for special partitions; Kolmogorov++ 

proved that the desired requirement is that the 

partition be generating. This is the case if the 

smallest sigma-algebra containing A(s °) for all 

n > 0 coincides with the sigma-algebra of mea- 

surable subsets in M. In simpler terms, a partition 

is generating if, as the length of all sequences 

becomes large, the sequences label individual 

points. Thus, only if P is a generating partition we 

have 

h~(f) = hz (f, P). 

* For the case of symbolic dynamics, this formula for the 

topological entropy was first introduced by Parry [12], but is 

essentially the same as the "channel capacity" introduced by 

Shannon [10]. 

t Crutchfield and Shaw [13] have developed other algorithms 

to compute the topological entropy of a map f based on 

representing the dynamics as a branching process with a 

deterministic transition matrix. For certain cases, these tech- 

niques allow one to analytically calculate the topological en- 

tropy and so to study, for example, the convergence of the 

topological entropy directly (c.f. ref. 14). These techniques are 

related to the kneading calculus of Milnor and Thurston [9]. 

:~ This theorem as well as the original definition of metric 

entropy are presented in Kolmogorov [15]. 

Again, if we label the elements of the partition P 

with symbols, the entropy of h~(aj) is exactly 

h~ 0 c, P), with 

I~(s") = f dfi = fi(A(s")). 

A(s'~) 

Note that the entropy h. of (Zs-, a) is equal to h~ (f) 

only if the measurement partition is generating. 

For arbitrary measurement partitions, 

h.(o~h ~< h , ~ .  
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Assuming a generating measurement partition, 

the identification between n-cylinders and elements 

of the refinement P" allows us to estimate the 

measure of  each element of P" by accumulating a 

frequency histogram for the observed n-cylinders. 

(Note that P" is exactly the n-cylinder partition 

illustrated in fig. 1 for n = 4.) We may then obtain 

an n-symbol estimate for the topological entropy 

from either 

log N ( n )  
h(n)  - 

n 

o r  

h(n)  = log N ( n )  - log N(n  - 1), 

and estimates for the metric entropy from 

t 

.4 
0 

4 4 

\ I i ;  t I / ;  / k " ',. 

\ l[ l l l l ,  l l t l  t l  \ l \ l  

11! 7 v < 
Lf 

r 

24 
n 

Fig. 4. Entropy convergence for the logistic equation 

f (x)  = r x ( l -  x), with r = 3.7; the solid line represents hu(n) 

and the oscillating dashed line represents h(n). 2 × 108 iter- 

ations were used. The horizontal dashed line is the Lyapunov 

characteristic exponent. 

,65 

h, - / / , ( n )  

n 

o r  

h,(n) - H , ( n  - 1). 

It is easily shown that the latter estimate for h~ 

converges more quickly than the former [10], so all 

of  our numerical computations of  h,(n) will use 

this expression. Fig. 4 illustrates an example com- 

putation o fh(n)  and h~(n) for the logistic equation, 

f ( x ) = r x ( l - x )  at a typical parameter value, 

r = 3.7. 

In order to illustrate the dependence of the 

entropy on the measurement partition used, we 

have computed h(13) and h~(13) for a range of 

binary (two-element) measurement partitions; the 

results are illustrated in fig. 5. We call the location 

x = d at which we decide whether a point x on an 

orbit is either a "0" or a "1" the decision point. For 

two values of  the decision point, d = 0.5 and 

d = 0 .839 . . . ( a n  inverse image of the critical 

point), h~(13) is maximized, giving evidence that 

these values of  d yield a generating partition. Note 

that h,(13) is greater than the Lyapunov character- 

0.2 d 1.0 

Fig. 5. h(13) (upper curve) and h,(13) for the logistic equation 

with r = 3.7, using different measurement partitions obtained 

by varying the decision point d. h(13) is actually an average of  

h(6) . . . . .  h(13) to eliminate the oscillitory effects. The upper 

horizontal line is the topological entropy calculated to one part 

in 106 with the kneading determinant [13, 14]. The lower 

horizontal line is the Lyapunov characteristic exponent calcu- 
lated to within 0.1%. 

istic exponent (to be discussed in more detail 

shortly) because the metric entropy has not con- 

verged by thirteen symbols (cf. fig. 4). 

From the above definition of  the metric entropy, 
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it is easy to see that h >~h~,, since h(f ,P")  is 

maximized when each element of pn is equally 

probable (i.e. ~(PT)= 1IN(n) for all i). In this 

case, the formula for the metric entropy reduces to 

that for the topological entropy. This is also evi- 

dent from a theorem due to Goodwyn [16] and 

Dinaburg [17], which states that 

Or equivalently, if a continuous ergodic invariant 

measure/~ exists, then the characteristic exponent 

is given by 

1 

2 = f l o g f ( x ) l  d/L 

0 

h = sup h~,, 
# 

where the supremum is taken over all invariant 

measures #. 

One of the primary roles of entropy in dynam- 

ical systems theory is that it is an invariant [15], 

which is to say that any two dynamical systems 

( M , f , # )  and (M',f',#') have the same metric 

entropy if they are related by a isomorphism that 

preserves measure. We will not use this fact at all 

in our entropy calculations for deterministic sys- 

tems, but when noise is added to the dynamics, we 

will address the question of how the invariance of 

the entropy is affected. 

We now introduce Lyapunov characteristic ex- 

ponents as another measure of chaos, and discuss 

their relationship to the entropies described above. 

The Lyapunov characteristic exponents measure 

the average asymptotic divergence rate of nearby 

trajectories in different directions of a system's 

state space [l 8, 19]. For our one dimensional exam- 

pies, f :  I~L there is only one characteristic ex- 

ponent 2. It can be easily calculated since the 

divergence of nearby trajectories is simply propor- 

tional to the derivative o f f  [19]: 

• 1 N 

* In the general case, the exponents are a'function of initial 

condition, so the sum must be integrated over the attractor, but 

we will consider only the case of an ergodic attractor where the 

exponents are constant almost everywhere with respect to the 

asymptotic invariant measure• 

t Curry's underestimate of the entropy is probably due to the 

fact that the partition he chose was not generating• 

If M is an axiom-A attractor, there is a pre- 

scription for constructing a partition which is 

generating, and the equality of the metric entropy 

hu and the sum of the positive Lyapunov character- 

istic exponents can be proven [20]. In fact, when- 

ever an absolutely continuous invariant measure 

exists, a theorem due to Piesin [21] shows that the 

metric entropy of a diffeomorphism is equal to the 

sum of  the positive exponents*. Ruelle [22] proved 

that for any C 2 map that has an absolutely con- 

tinuous invariant measure 

4 +  
h~,~<~ i ,  

i 

where the 2i + are all the positive Lyapunov charac- 

teristic exponents, and he has conjectured that 

equality holds. For a wide class of maps of the unit 

interval, Ledrappier [23] has shown that an ergodic 

measure having positive metric entropy is abso- 

lutely continuous with respect to Lebesque mea- 

sure if and only if the metric entropy is equal to the 

Lyapunov exponent. Shimada [24] obtained good 

numerical agreement between the characteristic 

exponent and the metric entropy for the Lorenz 

attractor and its induced symbolic dynamics using 

only 9 symbols, and Curry [25] has computed a 

metric entropy slightly lower than the positive 

characteristic exponent for a two-dimensional 

diffeomorphism (H6non's map)t .  Our numerical 

results for several maps of the unit interval (includ- 

ing the logistic equation) indicate that the metric 

entropy is indeed equal to the Lyapunov exponent, 

supporting Ruelle's conjecture and indicating the 

existence of an absolutely continuous invariant 

measure whose probability distribution is well 

approximated by a frequency histogram. 
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3. Symbolic dynamics and entropy in the presence of 

noise 

One of the reasons that there are so few results 

on the response of the metric entropy to added 

fluctuations is that there are problems with the 

definition of  metric entropy (as well as its com- 

putation) in the presence of  fluctuations. There are 

also problems with the definition and computation 

of Lyapunov characteristic exponents for systems 

with added fluctuations. Some of the problems 

associated with the metric entropy are: 

(1) There is no clear definition of  a generating 

partition for a deterministic system with added 

noise. Increasingly long sequences of  mea- 

surements can no longer isolate the system into an 

arbitrarily fine partition element (where for 

fineness we mean 1~o use Lebesque measure on the 

unit interval). 

(2) A related problem is that the entropy with 

respect to a particular partition diverges as the 

partition is made increasingly fine [26], rendering 

problematic the definition of a " t rue" entropy that 

is independent of partition. 

(3) Even using a coarse (e.g. binary) partition, a 

fixed point with added noise will have nonzero 

entropy if a partition divider is placed on the fixed 

point*. (This entropy would then give an estimate 

of the external noise in the system.) 

(4) The effect of adding noise will depend on 

what coordinate system the noise is added to. One 

* This example is due to Doyne Farmer. 

"~ The fact that the observed asymptotic probability distribu- 

tions will depend on the coordinate system used suggests that 

if one has some a priori reason for believing the noise to have 

a particular distribution (e.g. Gaussian), one should, in prin- 

ciple, be able to adjust the coordinate system used to observe 

the system until the noise displays the correct distribution. An 

experimentalist 's model would thus include the specification of  

a physically preferred coordinate system in which the noise was 

added. Most  systems may be too complicated to give any clue 

about the "correct" noise distribution, however. For example, 

in fluid systems with some underlying low-dimensional chaotic 

attractor, even if we assume that the fluid is being driven by 

thermal noise, it is not a priori clear what form will be taken 

by the noise terms added to the equations of  motion on the 

attractor, since the thermal noise will undoubtedly be filtered by 

many dynamical effects. 

might hope that the response of the metric entropy 

to noise should be independent in the limit of  small 

noise, but this point is "not yet clear from the 

theoryt.  

In spite of these problems, we may take a 

well-defined operational approach to the mea- 

surement of  metric entropy in the presence of 

noise: the algorithm embodied in the definitions 

and estimates yields an unambiguous value of the 

metric entropy with respect to a particular mea- 

surement partition. Any sequence of  measurements 

on a physical system will produce a string of 

observed symbols; our operational approach will 

give a measure of the predictability of this string. 

The measurement partition we will use will be of 

the same form as that used for the deterministic 

one-dimensional maps, namely a binary partition 

of  the form {[0, d), [d, 1]} where 0 < d < 1. Given 

this kind of binary partition, one may again ask if 

there is a value of d that maximizes the entropy, 

and we find empirically in fig. 6 that d = 0.5 gives 

a maximum value just as it does for the deter- 

ministic case illustrated in fig. 5. This is partial 

.65 

/ 
0 1 i i i 

,2 d 1.0 

Fig. 6. Entropy hu with respect to a binary measurement  

partition {10, d), [d, 1]} as a function of  the decision point d, for 

the logistic equation with r = 3.7 and added noise of  width 

= 2 7. Compare fig. 5. 
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justification for our use of this particular mea- 

surement partition, but because we are considering 

only binary partitions, we have not escaped points 

(1) and (2) above. We must again stress that the 

metric entropy of a noisy process like eq. (1) 

depends on the measurement partition used, but 

we will take the liberty of referring to the "metric 

entropy" of such a system as that computed using 

the measurement partition {[0, 0.5), [0.5, 1]} unless 

otherwise noted. Though the entropy h~ diverges as 

the measurement partition becomes fine [26], we 

may still conjecture that for measurement par- 

titions with coarser resolution than the noise 

level*, our computations give an invariant, well- 

defined value for hut. To begin the discussion of 

our numerical computations of the entropy in the 

presence of noise we will first examine a few 

properties of the asymptotic probability distribu- 

tions both of the noisy map on the interval and of 

the shift on the space of observed sequences 2;/. 

Before considering entropy computation, we will 

first remark on a few features of the invariant 

measure, which will in turn have certain impli- 

cations for entropy measurements. In the deter- 

ministic case f :  M ~ M ,  the asymptotic invariant 

distribution function/~(x) is the fixed point of the 

Frobenius-Perron operator L/given by 

_ e ( y )  
( c / e  )( x ) = =  ,,xff I 

This operator may be written as a Fredholm 

equation 

(Lye)(x) = f r( f(y)  - x ) e ( y  ) dy, (2) 
3 

where the equivalence is established by integrating 

* We mean here that the size of  the smallest partition 

element must  be larger than the induced noise level. The 

induced noise level is obtained from the width of the 

distribution of the added noise by multiplying this width by 

the map ' s  max imum slope. 

t The well-defined value must  still be obtained using a 

supremum over partitions of  a given resolution similar to the 

supremum illustrated in fig. 6. 

the right-hand side using a change of variables 

y '  -~ f(y).  
If noise ~ (with a distribution P~(~) having zero 

mean and width (r) is added to the deterministic 

map, forming the noisy map 

x. +1 =f~(x.) =f(xo) + ~., 

an additional average must take place with respect 

to the noise: 

(Lj~e)(x) = frOC(y) + ~ - x )P, (~)P(y)dy  

= f e . ( [ ( y )  - x )P(y)  dy. (3) 

Thus we see that the deterministic Frobenius- 

Perron operator is generalized to include the effects 

of fluctuations by simply replacing the delta func- 

tion in eq. (2) by the noise distribution function. 

This formalism has been used by Schraiman, 

Wayne, and Martin [27], as well as Haken and 

Meyer-Kress [28], Takahashi [29], and Fe- 

igenbaum and Hasslacher [30]. The asymptetic 

probability distribution for the noisy map is in 

principle numerically computable using eq. (3). We 

have not used this expression to compute the 

distribution (our entropy computations are based 

on frequency histograms instead), but we may use 

eq. (3) to infer at least one qualitative property of 

the asymptotic distribution/~(x) on the unit inter- 

val: Since the distribution must be invariant under 

the noisy Frobenius-Perron operator, which in- 

cludes a convolution of the noise distribution, the 

asymptotic distribution/~(x) will have no structure 

on length scales less than the noise level a. 

The primary difference between the symbolic 

dynamics of a purely deterministic system and that 

of a deterministic system with added noise is the 

nature of the identification between a particular 

symbol sequence and the set of initial conditions 

that might have produced that sequence. For the 

deterministic case there is a direct correspondence 

between symbol sequences and sub-intervals of the 
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unit interval, with the sub-intervals becoming in- 

creasingly small as the symbol sequences get longer 

(cf. the construction of the n-cylinder partition 

illustrated in fig. 1). When noise is added, instead 

of there being a sub-interval, every point of which 

produces a particular sequence, there is a set of 

points which have some probability of producing 

a particular sequence. We will label the probability 

distribution of finding the sequence s" for an initial 

condition x as P~(x). 

For the deterministic case, we have 

/'s.(X) = X~s.~, 

where Xt,,b I is the characteristic function over the 

interval [a, b]: 

X~,)(x) = {101 forx~A(s"),  
for xCA (s"), 

and where d (s") is the set of initial conditions that 

can produce s" for the deterministic case. We may 

then use the Frobenius-Perron equation to find 

Ps, +,(x) from Ps,(x). First, for the deterministic 

case, this gives 

Xj~.+~)(x): f 6(f(y)-x)ff(y)dy. 

When noise is added, P~,(x)=X4~,) becomes 

smeared because we must use the noisy 

Frobenius-Perron operator, which includes a con- 

* Actually, the width decreases only when the slope evaluated 

at the appropriate inverse image of  the deterministic divider is 

greater than one. It appears, however (as illustrated in the 

following figure) that even when there are occasional con- 

tributions of  slopes less than one, as for the logistic equation, 

the fact that the "average asymptotic slope" is greater than one 

causes the width of  the distributions P~,(x) to approach a limit. 

If the "average asymptotic slope" (this quantity is really well 

defined only for purely deterministic systems) is less than one 

(i.e. when the attractor is a periodic orbit) P~,(x) diverges to 

cover the entire interval, since in this case all initial conditions 

end up giving the same periodic symbol sequence. 

t We are also using the fact that /~(x)  does not change much 

over the width of  Ps,(x). 

volution of the noise distribution Po: 

P~, + ,(x) = fP~ff(y)  - x)Ps,(y) dy. (4) 

The smearing of the partition boundaries, or di- 

viders, that takes place with each application of 

this operator decreases with successive 

applications*. The effective width of a partition 

element increases by a/ f (y i ) l  i, where the yi are the 

appropriate inverse images of the deterministic 

divider. Another way of phrasing this observation 

is that averaging over fluctuations of width a at 

each of n iterations is equivalent, for the purposes 

of constructing P~.(x), to averaging over n sets of 

fluctuations of the initial condition each having a 

magnitude a ~ [f'(yi)l -i. The convergence of the 

P~.(x) to a distribution of a fixed width is illus- 

trated for the logistic equation (r = 3.7) in fig. 7a. 

Note that log Ps,(X) appears parabolic for large n 

in the semi-log plots of fig. 7, indicating that Ps.(x) 

is Gaussian, as might be expected from the re- 

peated convolution of eq. (4). 

We see, then, that the picture of bins (elements 

of an n-cylinder partition) being split into sub-bins 

(elements of an (n + 1)-cylinder partition) for the 

purely deterministic map (cf. fig. 1) is replaced by 

probability distributions splitting into daughter 

probability distributions for a deterministic map 

with added noise. Consider the situation when the 

width of the distribution P~.(x) is large compared 

to the size of the deterministic bin (i.e. the length 

of A(s")): Because Ps,(x) converges to a distribu- 

tion of fixed width for large enough n, daughter 

distributions have nearly the same width (and in 

fact nearly coincide), as illustrated in fig. 8. Since 

the probability of s" is given by 

u(s") = fl"s.(x)P(x) dx, 

we see that for large enough n t 

~ ( s " l )  ~ ~(s"0). (5) 
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Fig. 7. (a) For a fixed noise level, shown is P~,(x) for n = 8, 9, 11, 13, 15, 16, and 18 (the values of  n corresponding to splitting of 

this particular series of  bins in the deterministic case). (b) Fixing n = 14, shown is P~,,(x) for the deterministic case and for two noise 

levels ~r = 2  -~° and cr = 2  -7. The sequence used was s~S=(010101110111111010) (the shorter sequences are truncations: 
s ~ = (01010111), etc.). 

% 
o_ 
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Fig. 8. Splitting of P,,7(x) into two daughter  distributions P~,7~ 

and P,,70. The top distribution is Ps,7(x), the second distribution 

is P,,~, and the third is P~,~0. s~7 is the same as used in the 

previous figure. 

This condition has some interesting implications 

that we will now discuss. 

p~,(x) is the distribution of initial conditions 

that produce the sequence s". We may then ask 

how much information about the initial condition 

is obtained by observing the sequence s", given the 

asymptotic distribution on the unit interval P(x). 

The appropriate informational measure turns out 

to be [31, 32] 

I(s") = f Ps,(x) log~rtx~ dx. (6) 

Then the average information obtained by speci- 

fying n symbols is 

I(n)=~p(s")I(s"). (7) 
s n 

For n large enough so that the width of Ps,(x) has 

reached its noisy asymptotic value we may use the 

conditions #(s"l) ~ #(s"0) and P~,o(X) ~ P~,~(x) to 

deduce that I(n) ~ I(n + 1), which means that for 

large enough n, observation of additional symbols 
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gives no additional information about the initial 

condition. Stated another way, in the presence of 

noise, the attainable information about the initial 

condition reaches some maximum value I0, which 

clearly depends on the noise level. The situation is 

illustrated schematically in fig. 9. For any given 

noise level, we may augment our conjecture that a 

well-defined metric entropy exists, and conjecture 

the existence of two well-defined invariant quan- 

tities that characterize a deterministic system with 

noise: h~, and I0*. 

fying 

Var P~,(x) > Var Xd(.~,)(x). 

The finite state Markov property insures that the 

entropy reaches its converged value for n ~> m; we 

will call this phenomenon the noise floor, and say 

that the convergence knee occurs at n = m. Fig. 10 

shows that as the noise level is increased, the 

convergence knee occurs for smaller values of m. 

The following section shows how these effects may 

be described in terms of a scaling theory. 

"2 
v 
H 

I o 

n 

Fig. 9. Schematic illustration of the effect of noise on the 

attainable information, given by eq. (7), from a sequence of n 

measurements, or symbols. The straight line corresponds to the 

deterministic case. 

We may also use the condition # ( s ' 0 ) g  p ( s ' l )  

for n large enough to deduce entropy convergence 

properties. Convergence of  the entropy for finite 

length n symbol sequences is exactly the condition 

that the symbolic dynamics be equivalent to an 

m-state Markov process, where m is the least 

integer that produces a distribution Ps,(x) satis- 

* Of course we must still include the proviso that the mea- 

surement partition has coarser resolution than the noise level as 

long as we use our algorithm to compute h u. Rob Shaw 

[3J makes a similar conjecture for an entropy-like quantity 

computed using a measurement partition with resolution finer 

than the noise. We will discuss the relationship between these 

ideas in section 6. 

1 This can be considered as the topologicalpressure for finite 

symbol sequences in the presence of noise because we may 

assume that h~(oo,0)= 2 (cf. discussion above), and in our 

numerical computations we actually use 2 for the value of 

h,,(oo, 0). 

.59 

.49 
0 24 

t)  

Fig. 10. Entropy convergence of the logistic equation at the 

parameter value where two bands join to one, 

r = 3.67857 . . . .  for increasing noise levels a = 2-18 . . . . .  2 -  7. 

The Lyapunov characteristic exponent is shown by the dashed 

line. 

4. Scaling properties of entropy measurement 

Considering the entropy as a function of  both 

N -- 2" and a, we may define the normalized excess 

entropy t as 

flu(N, 6) - hu(N' cr) - hu(oo , O) 

h A ~ ,  O) 

We then find that the data illustrated in fig. 10 

displays power law behavior in N: 

flu(N, O) ~ N -~, 

and power law behavior in a: 

h-.(~, ~) ~ ~ ,  
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(where ~ has been approximated by N = 224) [5]. 

The least squares fits used to estimate the con- 

vergence exponent ~ and the noise exponent fl are 

quite good (cf. table I). The scaling in N is visible 

in the zero noise curve of fig. 10, and the power law 

increase with noise is illustrated in fig. 11. 

Our observation that the metric entropy in- 

creases with a power law in response to added 

fluctuations is reminiscent of some results concern- 

ing the response of the Lyapunov characteristic 

exponent to added fluctuations. It has been shown 

for maps with a quadratic maximum that at the 

asymptotic limit of a band merging cascade (i.e. at 

the onset of chaos) noise added to the dynamics 

cause a power law increase in the Lyapunov char- 

acteristic exponent [4, 27, 33]. The cause of this 

power law must, however, be fundamentally 

different from the cause of the power law reported 

here. Their derivation of power law behavior of the 

Lyapunov characteristic exponent at band merging 

cascades (as well as similar results near tangent 

bifurcations) relies on the change in the attractor's 

geometry (i.e. the structure of the attractor on the 

unit interval) as noise is added. Furthermore, only 

the nearness to crucial bifurcation parameter val- 

ues allows the change in the attractor's geometry 

.004 

Fig. 11. Power  law increase of  h',(r. = 24, or) for the logist ic m a p  

at r = 3.67857 . . .  where two bands  jo in  to one. 

to be systematically described using renor- 

malization group techniques. The power law be- 

havior we describe here appears to hold more 

generally, including parameter values away from 

bifurcation cascades, where the geometry of the 

attractor changes very little with added noise. 

Table  I 

Numer ica l  ca lcula t ions  of  scal ing exponents  

System 7 fl 

Logis t ic  r = 3.9 0.48 + 0.2 0.56 -L- 0.05 (1.0) 0.86 

Logist ic r = 3.7 0.4 + 0.2 0.53 + 0.05 (1.3) 0.76 

Logist ic  2--.1 bands  0.38 + 0.02 0.52 + 0.01 (0,9) 0.73 

Logist ic  4--*2 bands  - -  0.51 + 0.02 (1.5) - -  

Logist ic  r c - -  0.345 + 0.01 (1.0) - -  

Logis t ic  2--* 1 bands  

(funct ion space per tu rba t ion)  0.38 + 0.02 0,53 + 0.01 (1.0) 0.72 

Collet  and  E c k m a n n  m a p  

(2- ,1  band)  0.41 +__0.1 (0.80) 0.62 + 0 . 1  0.66 

Tent,  s = 1.43 0.55 ___ 0.1 (0.86) 1.01 + 0.01 (0.95) 0.55 

Tent,  2--* 1 bands  0.50 + 0.02 (0.82) 1.06 + 0.08 (35) 0.47 

Tent,  2--* 1 bands  

(funct ion space pe r tu rba t ion)  0.51 +_ 0.1 1.05 + 0.08 0.49 

Cusp m a p  - -  1.04 ___ 0.05 (4.3) - -  

R a n d o m  walk  - -  0.92 + 0.05 (0.05) - -  

Tora l  a u t o m o r p h i s m  - -  0.9 + 0.02 (0.5) - -  

Note:  numbers  in parentheses  are cons tan t s  of  p ropor t iona l i ty .  
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The two numerically observed power laws in N 

and a lead us to posit the scaling hypothesis that 

h-~(N, 0) is a homogeneous function of N and 0, 

namely, that 

17,(2~'N, 2 -~a) = 2/7~(N, a), 

where 2 is an arbitrary change in scale. This sort 

of scaling hypothesis has beefi studied extensively 

in critical phenomena [34], and it is easily shown 

that the homogeneity of  ~(N,  0) in both variables 

implies that ,tT,(N, 0) may be written as a function 

of a single scaling variable multiplied by a power 

law. This reduction may be accomplished in two 

different ways: 

~,(N, a) = aaH(Na¢/0 

or 

flu(N, a) = U -  ~H'(aU-'~/¢). 

(8) 
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Fig. 12. All the data shown in fig. 10 are replotted here using 

the homogeneous function representation of  eq. (8). The fact 

that all the data points lie on a well-defined function is 

verification of  the scaling hypothesis. 

Since we are interested primarily in the response of 

h-u(N, a)  to noise, we will concentrate on the first 

scaling representation of/7,(N, 0). 

The scaling hypothesis may be tested empirically 

(i.e. using data from a numerical simulation) by 

graphing a -~5~(N, 0) as a function of the scaling 

variable Na p/s , and observing whether or not the 

data lie on a well-defined function H(Na~/'O. The 

results of  this procedure applied to the data shown 

in fig. l0 are displayed in fig. 12, where we see a 

convincing numerical verification of the scaling 

hypothesis. It is interesting to note that while in 

critical phenomena, scaling often occurs only 

asymptotically ("asymptotically" means a ~ 0  or 

N ~  in this context) for this dynamical system 

we see scaling for all a and N. 

We see in fig. 12 that all of  the convergence 

knees are mapped to a single knee of H(Naa/O. 

This signals another scaling relation describing the 

convergence knee, since this implies that the set of  

(N, a)  for which a convergence knee occurs must 

satisfy 

Na - ~/p = constant. 

Either N or a may be regarded as dependent 

variables, N~(a) or ac(N), in this relation that 

defines the condition for the occurrence of a con- 

vergence knee. And at the convergence knee we 

may write either 

Nc(a) ~ a ~ or a~(N) ... N1/% 

where we find the convergence knee exponent is 

given by 

co =7/f t .  (9) 

The same result may be obtained from an eigen- 

value equation 

a~(N) N¢(2a) 

ac(2U)) Uc(a ) ~c, 

where m = log ~c. 

We have, then, two equivalent interpretations of 

the eigenvalue x: First, it is the factor by which the 

converence knee noise level a¢ must decrease if we 

are to observe convergence using symbol sequences 
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of  length n + 1 = log(2N) rather  than of  length 

n = log(N). Second, if we decrease the noise level 

by a factor  of  2, then x gives the relative increase 

in the length of  symbol  sequence at which we will 

find convergence, x will p robab ly  be easier to 

directly measure  than the exponents  and,  at least, 

it provides a simple way to summarize  the net effect 

o f  noise on en t ropy  convergence.  Values of  o~ 

derived f rom fl and ? are tabulated in table I. 

The type o f  relationship between different scal- 

ing exponents  exemplified by eq. (9) is quite com- 

m o n  in the study of  critical phenomena .  The 

scaling exponents  may  be viewed as parameters  

that  describe a surface £,(N, a )  over  the (N, a )  

plane. This surface is shown in fig. 13, which 

illustrates the geometrical  significance of  the scal- 

ing exponents  7, fl, and ~o. 

We study four different one-dimensional  maps  

of  the unit interval: 

(i) the logistic equat ion,  f ( x )  = r x ( l  - x )  for 

five pa ramete r  values, r = 3.9, r = 3.7 (i.e. two 

" typica l"  chaotic pa ramete r  values), r = 

3 .67857 , . .  (where two bands merge into one), 

r = 3 .59257 . . .  (where four bands merge into two), 

and r = 3.5699456 . . .  (the onset o f  chaos); 

(ii) the tent map:  

sx, for 0 < x  ~<0.5, 

f ( x )  = s(1 - x),  for 0.5 < x < 1, 

with s = 1.43 (a " typica l"  chaotic  pa rame te r  value 

with topological  en t ropy approx imate ly  equal to 

that  o f  the logistic equat ion at r = 3.7) and s = x f 2  

(the pa ramete r  value where two bands  join to one); 

(iii) Collet and Eckmann ' s  map:  

5. Further numerical experiments 

We will now discuss the results obta ined f rom 

simulating several different systems. For  each sys- 

tem we have computed  the convergence and noise 

exponents;  the results are tabulated in table I. We 

will first describe each of  the systems studied, then 

discuss the numerical  results. 

T 
z" 

- 6  

- I 0  9(cr) 

0 log(N) = n 2 4  

f(x) 

2X, 

(x - 0.5) 2 
1 

5 ' 

2(1 - x ) ,  

for 0 < x  < 0 . 5 - 6 ,  

for 0 . 5 - 6  ~<x 

~ < 0 . 5 + 6  

for 0 . 5 + 6 < x < 1 ,  

with 6 = 1/6 (the pa ramete r  value where two bands  

join to one); and 

(iv) the cusp map:  

f ( x )  = a ( l  - [2x - l I' +{), 

with ~ = - 0.05 and a = 0 .66445776. . .  (one of  the 

pa ramete r  values where two bands join to one for 

this E). 

We include one two-dimensional  system, the 

linear toral au tomorph i sm whose matr ix  is 

,] 
Fig. 13. All the data shown in fig. 10 are replotted as a three 

dimensional surface. The slope of the line along the front face 

is - ?, and the slope of the line along the right face is /L The 

intersection of  these two surfaces defines a line of  slope ~o in the 

proper projection onto the scaling variable Na';. 

There is a general procedure  for construct ing a 

M a r k o v  part i t ion (that is generating) for such a 

map  [35], and we use this as the measurement  

parti t ion.  
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Another system we study has one of  the simplest 

possible deterministic parts; a random walk on the 

circle (we have identified the ends of the unit 

interval to prevent escape of  the orbit): 

~ (x)  = x + ~ [mod 1], 

where the circle is coordinatized by the unit inter- 

val (with 0 and I identified, and the usual measure- 

ment partition {[0, 0.5), [0.5, 1)} is used to produce 

the symbol seqquences. The deterministic part  of  

this map is simply the identity, f (x) = x, which has 

no attractor, and which clearly has zero entropy 

(the symbol sequence is periodic). As noise is 

added, however, every sequence becomes possible, 

through for small noise levels, long sequences of  0's 

and l 's will be most probable. As we have done for 

maps of the unit interval, we may, for this system, 

numerically accumulate probability histograms for 

n-cylinders and compute h, as before*. We find 

that hu(n) converges almost immediately to h u, i.e. 

hu(2) ~ h~(~)t .  

Before discussing the other numerical results 

contained in table I, we will consider a question 

concerning the nature of  the fluctuations, and how 

they are coupled to the deterministic system. Eq. 

(1) represents a very specific model for external 

fluctuations, namely additive noise. There are, 

however, many alternatives to perturbing the de- 

terministic function by simply adding noise; one 

example is multiplicative noise (for the logistic 

equation this is equivalent to adding noise to the 

parameter:]:). A natural question then arises: which 

method of  adding noise correctly models external 

fluctuations in a physical system? 

* The probabilities of the n-cylinders (and hence h u itself) are 
analytically computable using techniques from the theory of 
random walks; this calculation will be presented in a future 
paper. 

t This result is similar to the entropy convergence of the toral 
automorphism. 

J; Crutchfield, Farmer, and Huberman [4] have shown for the 
logistic equation that for any ensemble of additive fluctuations 
{¢} there is an equivalent ensemble {~'} of parametric 
fluctuations (with a different distribution than that for ¢, in 
general) that will yield the same time averages over trajectories. 

Perturbations of  a physical system may best be 

thought of  as a perturbation of  the dynamics, and 

not simply a perturbation of  the trajectory. A 

"correct" model for perturbations of  a deter- 

ministic function f e F ( M ) =  {f: M ~ M }  would 

choose a function at each time step from an 

ensemble of  functions, with the ensemble centered 

about the deterministic zero noise limitf.  Additive 

noise simply represents a choice from an ensemble 

that extends along a one-parameter family of  

functions q---*fq: M--*M: x--~f(x)+ q. We have 

modeled the more general case by expanding the 

function f in a Taylor series (for convenience we 

will now consider a map on the unit interval: 

M = [0, 1]), and perturb each coefficient sepa- 

rately: 

f¢(x) = (ao + ~o) + (a, + COx + (a2 + ¢2)x 2 . . . .  (10)  

where each ¢~ is an independent random variable 

with zero mean, and where {a~} represent the 

Taylor coefficients of  the deterministic function. 

For example, when we take the deterministic func- 

tion to be the logistic map, f ( x ) =  rx(1 - x ) ,  the 

deterministic coefficients are {a0 = 0, a~ = r, 

a 2 = - r ,  a i = 0  for all i :>2}. 

The entries in table I labeled "function space 

perturbation" represent noise added as in eq. (10) 

up to sixth order. Comparing the noise exponents 

for these systems with the noise exponents ob- 

tained from simple additive fluctuations, we see 

agreement to within numerical error. This result 

gives some confidence that models using additive 

fluctuations may reflect behavior of  physical sys- 

tems with external fluctuations quite well. 

We will now summarize a few interesting aspects 

of  the results listed in table I. Some of  the results 

may be coincidentally similar and lead to er- 

roneous extrapolations. Conjectures based on 

these results must be verified with further numer- 

ical work as well as theoretical progress. The 

largest error in most of  these computations is due 

to inaccuracy in the estimation of  h~ in the absence 

of noise; we have assumed the conjecture h~ = 2 

(supported by our numerical evidence) and so 
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estimate h~ by the Lyapunov characteristic ex- 

ponent 2 computed using 107 iterations (giving an 

accuracy of ~ 0.1~o). 

The convergence exponents show no discernable 

features. For the logistic equation, the convergence 

exponent decreases from 7 = 0.48 at r = 3.9 as the 

parameter is lowered; at rc there is no power law 

convergence. In fact, it is easy to show that at rc 

log n 
h ~ ( n  ) ~ - -  

17 

The fact that all of  the maps at 2--+ 1 band joining 

parameter values do not agree in their convergence 

exponents reveals that the convergence exponent is 

not constant under topological conjugacy (for all 

such maps h = 0.5). There is no known general 

technique to compute the convergence exponents, 

but for special cases (e.g. tent maps at band 

joinings) 7 can be computed exactly to be 7 = 0.5 

for 2--,1 band merging [26]. This value agrees 

extremely well with the numerical value quoted in 

table I. 

Both the random walk and the toral auto- 

morphism have/3 ~ 0.9 (we see no particular the- 

oretical reason for such a close match). For the 

logistic map,/3 decreases from ~ 0.56 at r = 3.9 to 

0.34 at the onset of chaos*, r~ = 3.5699456 . . . .  

For Collet and Eckmann's  map at band joinings, 

we find/3 ~ 0.6, indicating that the noise exponent 

is neither a topological invariant nor universal for 

quadratic maps. 

For all the tent maps simulated, we have/3 ~ 1.0, 

the same value of/3 as obtained for the cusp map. 

This leads us to the conjecture: everywhere expan- 

ding maps t  have a noise exponent/3 = 1. There are 

other reasons for such a conjecture besides the 

numerical results listed in table I, for instance, the 

structure of  the asymptotic probability distribution 

on the unit interval. Maps with a critical point 

* This value for fl agrees with the power law increase of the 

Lyapunov characteristic exponent at r c for the logistic equation 

[4, 27, 33]. 
tA map f: 1--*1 is everywhere expanding if if' 1 > 1 for all 

points on the attractor. 

(where the slope vanishes) have distributions with 

infinite singularities, expanding maps do not. 

For maps with critical points, these singularities 

lead to a very non-uniform probability distribution 

of symbol sequences. In this case, the highly proba- 

ble sequences are less affected by noise, and do not 

readily yield new observable sequences. Con- 

sequently, the entropy increases more slowly with 

noise level for maps with critical points. The first 

class of seven examples in table I with low noise 

exponehts consists of  maps with critical points; 

whereas the maps in the second class of six exam- 

ples listed in the table have relatively high noise 

exponents, but no critical points. 

6. Lyapunov characteristic exponents and other 

measures of  chaos in the presence of fluctuations 

In the context of deterministic systems, we have 

seen that for an attractor on the unit interval with 

one positive Lyapunov characteristic exponent 2 

and an absolutely continuous invariant measure/~ 

[22], 

h~ <~ )~, 

and we have presented numerical evidence for 

equality, The purpose of this section is to see how 

this kind of result may be generalized to include 

systems with added fluctuations. 

Just as the definition of metric entropy is prob- 

lematic for systems with added fluctuations, so is 

the definition of Lyapunov characteristic ex- 

ponents. For one-dimensional maps, the Ly- 

apunov characteristic exponent can no longer be 

defined as the average slope of the map because the 

derivative of the noisy map is not defined. Two 

approaches to this problem have appeared in the 

literature. The first technique is to compute Ly- 

apunov characteristic exponents numerically by 

using the deterministic slope of the map along a 

noisy trajectory [4, 33, 36]. These computations 

give quite good results at the asymptotic limit of 

band merging cascades, where the numerical re- 
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suits can be checked against theoretical predictions 

[27, 33]. This may seem surprising, but the numer- 

ical results are probably good for the same reason 

that the theoretical predictions can be made: at 

band merging cascades, the response of the Ly- 

apunov characteristic exponent is dominated by 

the change in the geometrical structure of the 

attractor* when noise is added. 

The second definition of Lyapunov character- 

istic exponents in the presence of noise is due to 

Schraiman, Wayne, and Martin [27]: 

2 = l i m  1 .lo_l(fT(x) ) -  (f"~(x +E)) 
n~c~,~On ~ (~ ' 

where iteration of the noisy map is given by eq. (1), 

and where ( . . . )  denotes an average over the 

ensemble of noise fluctuations. The noise ampli- 

tude must be small enough, and the limits taken 

carefully for this definition to make sense. When 

thought of as a measure of the initial spreading 

rate of two noise distributions whose means are 

separated by E, this expression for 2 is close to a 

third formulation o; Lyapunov characteristic ex- 

ponents in the presence of noise which we will now 

discuss (equivalence may eventually be proven). 

We have defined h~ in terms of symbolic dynam- 

ics (with a generating measurement partition), but 

there is another important alternate measure of a 

system's information generation in terms of the 

average initial spreading rate of narrow probability 

distributionst. This formulation has been dis- 

cussed by Shaw [38]; Farmer, Crutchfield, Froe- 

hling, Packard, and Shaw [39]; and Farmer [32]. 

The spreading rate of sharp distributions is close in 

spirit to the definition of Lyapunov characteristic 

* By "geometrical structure," we mean the band like struc- 

ture of  the attractor near r c [37]. 

5" Here we are identifying a narrow probability distribution 

with the ensemble of  states the system may be in after a (precise 

but finite) measurement.  The time evolution of  a sharp distribu- 

tion is obtained by application of  the Frobenius-Perron oper- 

ator as in eq. (2) (see eq. (3) for the case o f  added noise). The 

evolution of  a sharp probability distribution is illustrated quite 

graphically in the movie "Mixing Properties of  Strange Attrac- 

tors," made by Doyne Farmer. 

exponents (since the spreading of very sharp distri- 

butions is governed by the slope of the map) and 

the correspondence can be made exact for 

sufficiently simple maps (e.g. piecewise expanding 

maps). The main reason for discussing this spread- 

ing rate here is that it generalizes quite naturally to 

systems with added fluctuations, and such a mea- 

sure may in fact be the most appropriate gener- 

alization of Lyapunov characteristic exponents for 

such systems. We will now define the spreading 

rate and discuss a few qualitative features for 

different examples, then outline some conjectures 

relating this picture to the symbolic dynamics 

quantities already discussed. 

As we have noted previously, a one-dimensional 

map f :  I~I  has an associated Frobenius-Perron 

operator on the space of probability distributions 

on I given by 

(L/P)(x) = f 6(f(y) - x)p(y) dy. 

If f has an asymptotic ergodic invariant measure fi, 

then its distribution function/~(x) must be a fixed 

point of the operator L I. Non-equilibrium distribu- 

tion functions P(x) approach/~(x) under succes- 

sive iterations of Lj: The essential idea is to formu- 

late an informational measure of the rate that P(x) 
approaches/~(x). 

To begin, the measure of the amount of informa- 

tion contained in P(x) relative to /~(x) is 

fP(x) l o g ~  dx. 

Now consider how much information is obtained 

by making a measurement using a measurement 

partition A = {Ai}. If  the system is found in the ith 

partition element, the amount of information ob- 

tained is 

= -- log/~(Ai). 

dx 

(ll) 
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As time passes, if the system is chaotic, the infor- 

mation obtained by the measurement is lost be- 

cause the distribution XA, spreads: 

f lo L}X~,(x) d l , ( t )=  L:XA(X), g- -~ (x )  x. 

Note that for t = 0, this equation reduces to eq. 

(11). We may now ask for the average information 

loss after a measurement, where the average is to 

be taken over all possible initial measurements* 

f(t) = ~(A31~(t) .  
i 

Farmer [32] has given an alternate (equivalent) 

expression for this quantity: 

] ( t )  = " - "  . . . . .  A "C~A" 1o /i(f(Ai)nAj) 
~lXlJt 3 /~ g-~OC(Ai))fi(Aj). 

For a deterministic system we then have the 

situation illustrated in fig. 14a. A sharp distribu- 

tion containing a significant amount of informa- 

tion I(0) gradually relaxes to the asymptotic distri- 

bution, at which point I(t)  = 0 for large enough t t .  

The slope of I(t)  well before it goes to zero is then 

a measure of the loss rate of initial information, 

which we shall call k~. k, has been conjectured to 

be equal to h, (Shaw [38]; Farmer, Crutchfield, 

Froehling,.Packard, Shaw [39]; Farmer [32]) for 

deterministic systems:~. 

For contrast, consider the case when the mea- 

surement partition is used simply to sample a white 

noise process. In this case, the probability of any 

measurement outcome is independent of all pre- 

vious outcomes, so I(t) goes to zero after the first 

time step, as illustrated in fig. 14b. 

When noise is added to a deterministic system, 

and a measurement partition finer than the noise 

level is used, we expect l ( t )  to behave something 

like fig. 14c. Much of the information obtained 

from an initial measurement using a measurement 

partition with a typical partition element size 

smaller than the noise level a is immediately lost as 

the sharp probability distribution XA, spreads out 

on the first time step into a distribution of width 

~a .  ~ ~ I(I)  then represents the true amount of 

information that can be obtained from a measure- 

ment; using any finer measurement partition can 

give no more information about the future behav- 

ior of the system. 

We are now in a position to phrase the conjec- 

tures relating this picture to the measurements of 

chaos using symbolic dynamics: (i) k, = h, and (ii) 

= I0. The noise level must, of course be small 

enough so that there is some time interval for 

which l(t)  displays a well defined constant slope. 

Numerical experiments are underway to check 

these conjectures. 

7. Concluding comments 

* Note that / ( t)  must  be distinguished from l(n) defined in 

eq. (7); l(n) is the rate that information (with respect to the 

previous n - I symbols) is acquired with the observation of new 

symbols, and l(t) is the average rate that information contained 

in an initial condition (using a particular measurement  par- 

tition) is lost. 

t This is actually a crude picture with details which may 

change for different systems; e.g.: (i) Phase coherent attractors 

have l ( t ) > 0  as t ~ o o  (cf. Farmer  et al, [39]); (ii) Rob Shaw 

[3] has pointed out that for maps with a critical point the initial 

slope of l(t) will be larger than h,, and then decrease to h,. 
Goldstein and Penrose [40] have introduced a similar 

information loss rate which, for certain systems, Goldstein [41] 

proved to be equal to the metric entropy. 

The effects of fluctuations added to chaotic 

deterministic dynamical systems reveal the concept 

of "infinitely precise points" as invalid in many 

contexts. A new mathematical foundation of  clas- 

sical mechanics is needed; one that uses primitives 

derived from noise processes. Ruelle [42] has made 

significant progress in this direction. Though the 

inclusion of fluctuations in a dynamical model 

adds many analytical complications to a subject 

already incompletely understood, there is hope, 

based on physical observations and numerical 

computations, that there may be several rewarding 
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(a) 

! 

(b) 

i o - -  

(c) 

Fig. 14. (a) Schematic representation of [(t) for a deterministic system. For certain systems (e.g. one dimensional maps with a critical 
point) the slope of l(t) will be greater than k~ at t = 1. (b) Schematic representation ofT(t) for measurements of a white noise process. 
(c) Schematic representation of l(t) for a deterministic system with added noise, where a measurement partition finer than the noise 
level has been assumed. 

simplifications lurking in the theory. Assuming 

such a theory may be formulated, most of  the 

numerical results presented here should be con- 

sequences of  the theory, so they will hopefully 

point the direction for some future theoretical 

developments. We will now review our results in 

this light. 

For a chaotic deterministic system, successive 

measurements (using a "good"  measurement par- 

tition) pinpoint the initial condition whose orbit 

produced the observations with arbitrary accuracy 

(i.e. an arbitrarily large amount  of  information 

about the initial condition may be obtained from 

an arbitrarily long sequence of measurements). 

When noise is added to the deterministic dynamics, 

we have observed that the initial condition may be 

specified only to within some uncertainty, even 

with an arbitrarily long sequence of measurements. 

This has led to the proposal that a chaotic system 

with added fluctuations is characterized by two 

invariant quantities: (i) I0" the maximum average 

information (about the initial condition) obtain- 

able from a sequence of  measurements; and (ii) h~: 

the average information generation rate (simply 

the metric entropy in the case of  a deterministic 

system)*. 

* We have also conjectured these two quantities to be equal 
to T 0 and ku, the maximum amount of information that can be 
stored in an initial condition, and the average loss rate of 
information after a measurement, respectively. 

I0 has not been computed numerically yet, but 

the information production rate h, (with respect to 

a given measurement partition) is easily computed 

using the same algorithms used to compute h, for 

deterministic systems. Upon pursuing the question 

of how h~ depends on the fluctuations added to the 

deterministic dynamics, we find that h, increases 

with a power law in the noise level a: h u ~ a ~. We 

have found that this power law increases seems to 

happen very generally (for all systems studied 

here). The exact value of  the noise exponent fl 

varies with the system under study, though our 

numerical experiments have led to the conjecture 

that a wide class of  systems (those reducible to a 

one-dimensional map f :  I ~ I  with Lf'l > 1) has a 

noise exponent fl = 1. We have combined the 

power law response of  h, with the power law 

convergence of the entropy as a function of the 

number of  symbols observed, to form a homoge- 

neous function description of  entropy mea- 

surement. In this context, a scaling hypothesis has 

been verified numerically. 

The power law increase in the metric entropy 

may be regarded as the discovery of a new phe- 

nomenon, an observable feature of  the information 

production properties of  any physical system that 

can successfully be modeled by a low dimensional 

chaotic dynamical system coupled to external 

fluctuations. There is a growing body of  very good 

experimental evidence that supports such a model; 

convincing one-dimensional return maps have 
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been obtained for fluid systems and for chemical 

systems*. 

The noise exponent should be measurable, given 

reasonable experimental accuracy, though we have 

no prediction for its value if the one-dimensional 

map that underlies the observed behavior has a 

critical point. So far, all the return maps construc- 

ted from experimental data appear to have a 

critical point (or several critical points). There are, 

however, many physical systems that should be 

describable by a one-dimensional return map 

whose slope (absolute value) is always greater than 

one. One example would be a Benard convection 

fluid system constrained to excite only those modes 

described by the Lorenz equations, which have a 

cusp-like one-dimensional return map. For these 

systems, we might expect a noise exponent of 

/3--1.  

Fluctuations are now generally recognized as the 

source of much of the diverse complexity we see in 

the world around us (especially in the biosphere). 

It has been hypothesized (by R. Shaw [46], for 

example) that what we call "diverse complexity" is 

a result of  intrinsic dynamical properties of some 

(complicated) dynamical system, in particular, of 

the system's information generating properties. 

The informational properties of most of the dy- 

namical systems underlying and producing this 

complexity are, however, poorly understood. One 

example of how the current picture of information 

generation in chaotic dynamical systems must be 

generalized, is that unlike the chaotic systems 

studied here, the information generated by the 

dynamics of complicated evolving systems like the 

biosphere is stored in physical structures, which 

then serve as the base for even more complicated 

evolution. There are many other similar problems 

* Cited here are "non-trivial" physical systems in which one 

might not naively expect to see low-dimensional chaos because 

of the many degrees of freedom that could potentially par- 

ticipate in the dynamics. Return maps have, of course, been 

successfully constructed for much simpler physical systems (e.g. 

electrical oscillator circuits) in which low-dimensional chaos is 

expected (cf. Crutchfield [43]; Packard, Crutchfield, Farmer, 

Shaw [44]; Gollub, Romer, and Socolar [45]) because of the few 

degrees of freedom involved. 

to be faced, but the results presented here will 

hopefully serve as a starting point for the study of 

the role fluctuations will play in the context of 

these more complicated systems. 
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