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In the study of nonlinear physical systems, one encounters apparently random or 
chaotic behavior, although the systems may be completely deterministic. Apply- 
ing techniques from symbolic dynamics to maps of the interval, we compute two 
measures of chaotic behavior commonly employed in dynamical systems theory: 
the topological and metric entropies. For the quadratic logistic equation, we find 
that the metric entropy converges very slowly in comparison to maps which are 
strictly hyperbolic. The effects of finite precision arithmetic and external noise 
on chaotic behavior are characterized with the symbolic dynamics entropies. 
Finally, we discuss the relationship of these measures of chaos to algorithmic 
complexity, and use algorithmic information theory as a framework to discuss 
the construction of models for chaotic dynamics. 

1. I N T R O D U C T I O N  

We will consider the role of  computa t ion  in modeling the tempora l  

behavior of  (classical) physical systems from the vantage point  of dynamica l  

systems theory. The object of  any such modeling at tempt is to ma tch  the 

behavior of  some physical system with the behavior of  a model comprised of  

some other representative system. This model may be another, simpler 

physical system, an abstract mathematical  system, or an algorithm executed 

on a digital computer.  It is this latter example of a model that we will focus 

upon. Our  discussion of this modeling process relies on ideas developed by  

Rob Shaw (1980), to whom we are indebted for the guidance of  his 

perspective. 

If  a physical system executes "regular" behavior, i.e., fixed poin t  or 

periodic mot ion  in its state space, a "good"  model may be constructed to 

give excellent correspondence between the physical behavior  and simulated 

model  behavior, so that the model can serve a predic t ive  role in unders tand-  

ing the physical phenomena.  If  one measures the physical system's state, a 
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model simulation can then be used to determine the future state of the 

physical system to within some acceptable error. 

A large class of systems are not so well behaved: they display " i r regu-  

lar" motion in their state space. We will define a turbulent physical sys t em 

as one which is inherently unpredictable in the sense that the in format ion  

obtained from making a measurement on the system is lost after some f ini te  

time [. That  is, an observer's knowledge of the system's state goes to ze ro  at 

t'. l This definition of a turbulent physical system is very general, and highly  

dependent on the measurement process used by the observer. Observed 

turbulent behavior may be due to one of a number of different causes:  

observational uncertainty, inability to resolve many degrees of f reedom (as 

in the case of observing Brownian motion), or deterministic chaos, the l a t t e r  

having been added to the list only recently (Lorenz, 1963). 

The case where deterministic chaos underlies the observed turbulent  

behavior is of special interest, and the one with which we concern ourselves 

here. The term strange attractor was coined by Ruelle and Takens (1971) to 

refer to the geometric structure in the state space responsible for the chaot ic  

behavior in dissipative dynamical systems, z A strange attractor is, f i rs t  of 

all, an attractor because a wide range of initial conditions (all those i n  its 

basin of attraction) approach it asymptoticaly, and, second of all, s t range 

because orbits on the attractor execute neither fixed point nor per iodic  

motion, but instead wander erratically and randomly over the at t ractor .  3 

Dynamical  systems theory provides several characterizations of chaos  in 

such systems, and so allows for the interpretation of deterministic models  of 

the unpredictable behavior. For these systems, the unpredictability c a n  be 

quantified and given an information theoretic interpretation: Nearby orb i t s  

on a strange attractor diverge exponentially in one or more directions. "This 

process rapidly amplifies uncertainties in determining the system's state.  

The positive Lyapunov characteristic exponents quantify the average  

asymptotic rate of divergence, and can be interpreted as the s t range 

attractor 's information production rate, or alternatively, the rate at which  

the information contained in a measurement is lost (Shaw, 1980). 

The modeling of turbulent physical systems with some underlying 

strange attractor presents special problems due to this inherent amplif ica-  

I Phase-coherent chaotic systems present a special case; see Farmer et .al. (1979). 
2We refer the reader to the many excellent reviews for the relevant technical definitions of 
dynamical systems and strange attractors: see, for example, Chillingsworth (1976), 
Guckenheimer et al. (1980), Collet and Eckmann (1980). 

3Technical definitions of a strange attractor may be found in Ruelle and Takens (1971); ill this 
paper we will use the physically motivated notion presented in the text, ignoring a few 
subtleties. 
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tion of measurement uncertainty. Since uncertainties are introduced because 
the physical system cannot be measured with infinite precision, there is no 
hope of using chaotic models to predict physical behavior for times longer 
than t ~. The criteria for a "good" model must now be generalized: instead of 
requiring exact correspondence between the physical system and the model, 
we must be content with a correspondence between geometric and statistical 
characterizations of the dynamics, giving up the idea that our deterministic 
model will provide us with any long-range predictive capability. 

A general procedure for constructing a model for a physical system 
from a series of observations has yet to be developed, but progress is being 
made (Packard et al., 1980; Froehling et al. 1981; Takens, 1980). In the 
present work we will not consider this problem, but instead address certain 
problems that occur once a model has been chosen. We will describe 
quantities which characterize the chaotic behavior of a strange attractor, 
with particular emphasis on how these quantities may be computed numeri- 
cally. We will then show how these quantities are affected by the fact that 
the simulation is implemented on a machine with a finite number of  states, 
and discuss the similarities and differences between roundoff errors and 
errors introduced by added noise fluctuations. ThougJa we will analyze 
specific models, many of the numerical techniques may be applicable to the 
problem of directly analyzing the turbulent behavior of a physical system. 

Interest in chaotic dynamical systems has prompted other work on the 
reliability and interpretation of numerical results obtained by simulating 
such systems (Benettin et al., 1978; Erber et al., 1979). We hope the present 
work will extend and complement this previous work. 

2. CONSTRUCTION OF SYMBOLIC DYNAMICS 

There are many motivations for using the techniques of symbolic 
dynamics in the study of chaotic dynamical systems. 4 The first, most 
physically compelling reason is that the (classical) measurement process can 
be viewed as producing an approximate representation of a physical system's 
evolution. This representation consists of a sequence of symbols, where each 
symbol corresponds to the output of a measuring instrument at discrete 
times. Any measuring instrument has finite resolution, hence the range of 
possible symbols is finite, with each symbol representing a different numeri- 
cal value of the quantity being observed. 

One of our original motivations for studying symbolic dynamics was to 
search for algorithms to compute an attractor's dimension and entropy from 

4For a review of symbolic dynamical techniques, see Alekseyev and Yakobson (1981). 
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a time series. Of course, some algorithms already exist (Packard et al., 1 980; 
Froehling et al., 1981; Takens, 1980; Farmer, 1981), but symbolic dynamics  
gives some hope of circumventing their severe precision and large data base 
requirements. 

Symbolic dynamics also forms the cornerstone of the only r igorous 
treatments that exist for chaotic dynamical systems. And so, there are 
significant theoretical motivations for its study. Bowen (1975), Bowen and 
Ruelle (1975), and Sinai (1972) use symbolic dynamics to develop a fa i r ly  
complete theoretical characterization of systems which satisfy Smale 's  
axiom-A (Smale, 1967). One important aspect of this theory is the develop- 
ment of a "thermodynamic formalism" using the symbolic dynamics associ- 
ated with an axiom-A system to prove the existence of an ergodic invariant  
measure which is an "equilibrium" or Gibb's state. It is not yet clear ]low 
the rigorous results concerning axiom-A systems will carry over to the m a n y  
dynamical systems whose attractors are not in this class. This provides yet 
another reason to look at numerical results of symbolic dynamics computa-  
tions of some simple non-axiom-A systems. 

A dynamical system f: M ~  M can have many symbolic representa- 
tions, each obtained by partitioning the state space M into a finite number  
of sets Sj, j = 1 . . . . .  p, and labeling each element of this partition S = (Sj} 
with a symbol s i. The time evolution of the dynamical system is translated 
into a sequence of symbols 

S : {  . . . .  S _ I , S o , S I , S 2 , . . .  } 

and f itself is replaced by a shift operator a, which reindexes a symbol  
sequence; that is, 

o ( s ) = s '  

where for each symbol in the sequence s, 

Sti = ( tT (S ) ) i  = Si_l 

Thus the shift o merely moves the time origin of a symbol sequence one 
place to the right. 

In the space of all possible symbol sequences 

Z =  {s = ( . . . s _ ~ , S o , S  l . . . .  )} 

admissable sequences are those which satisfy f i ( x o ) ~ S s i  We shall take 
x0~ M as a point on the attractor of the dynamical system. The set  of 
admissable sequences is a closed invariant set in Y~, just as are the points on 
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the original system's attractor. The set of admissable sequences Y~f, along 

with the shift of restricted to this set, is called a subshift. This space with the 

shift of is the symbolic dynamical system induced by f using the measure- 

ment partition S. We will be mostly concerned with the space of one-sided 

sequences 

y i = { s : ( s o , s ,  . . . .  )) 

obtained by observing which partition element is visited by the points of an 

f orbit {x 0' x l . . . .  }, where Xn+l = f ( x , ) .  The action o f f  on M then induces 
a one-sided shift on the space of admissable symbols Ey. 

The usefulness of the symbolic dynamics construction is that  if the 

dynamical system associated with f is ergodic, then the induced symbolic 
dynamical system is a faithful representation, that is, the following diagram 

commutes: 

a/ 
Y7 

i 
M , M  

f 

with the projection operator 

q'g( . . .S_I ,So,S I . . . .  ) =  N -i  fs,,  

One can then study the simpler, albeit abstract, symbolic dynamical system 

in order to answer various questions about the original dynamical system. 

Within this construction, every point on the attractor will have at least one 

symbol sequence representation. There are a few ambiguities in the labeling 
of orbits by symbol sequences that prevent ~r from being invertible, bu t  they 
will not affect our numerical calculations. 

Speaking now in the context on one-sided admissable sequences, a 

finite sequence of symbols (s~,.. .  ,s,~'_ z) defines an n-cylinder s" = {s: s i = s Z, 

i =  0 . . . . .  n -  1 ) which is a subset of Y~/consisting of all sequences whose 
first n elements match with those of s 7. With the identification between 

symbol sequences and orbits above, we see that an n-cylinder corresponds to 

a set of orbits that are "close" to one another in the sense that their initial 

conditions and first n -  1 iterates fall in the same respective parti t ion 
elements. Since these orbits must follow each other for a t  least 
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n - 1 iterations, they must all have initial conditions that are close, be long-  

ing to some set U C M. To a different n-cylinder will correspond a d i f ferent  

set of orbits whose initial conditions are contained in some other set 

U 'C  M. Continuing with the set of all n-cylinders, M will become par t i -  

tioned into as many elements as there are n-cylinders. As n is increased, the 

n-cylinder-inducedpartition of M will become increasingly refined. 

3. SYMBOLIC DYNAMICS FOR ONE-DIMENSIONAL MAPS 

In this paper, our numerical experiments will use very simple example  

systems, namely, maps of the unit interval onto itself (one-dimensional 

maps). Unless otherwise stated, we will consider the quadratic logistic 

equation x n + l = rxn(1 - x~) as our prototypical chaotic dynamical system. 
As an example of the asymptotic behavior of this system, Figure 1 shows the 
probability density constructed from a histogram of 107 iterations of the 
logistic equation at r = 3.7. 5 

We will partition the interval [0, 1] into two subintervals [0, d)  a n d  

[d, 1]. Although, we will consider only two-element partitions, others are 

clearly possible. The symbols we shall use will be 0 for [0, d), and 1 for 

[d, 1]. Changing the decision point d clearly generates a different set  of 

admissable sequences, just as it generates different n-cylinder-induced par t i -  

tions. Figure 2 illustrates the n-cylinder-induced partition with the decision 

point d =0.5, and shows how the dividing points for the n-cylinder-induced 
partition are simply the collection 

{d, f-'(d), f-2(d) ..... f-{"-')(d) .... } 

whenever the specified inverse images exist. Whenever the map is no t  
everywhere two onto one, some of the inverse images will not exist,  

corresponding to the fact that some n-cylinders are nonadmissable. 

The space of one-sided symbol sequences can easily be metrized by 

mapping each symbol sequence to a power series 

o(x)= s(:,x) 
i = 1 2i 

where S(x)  is 0 or 1 depending whether x < d or x t> d. This map identifies 

every sequence with a binary fraction whose value lies in [0, 1]. We will 

5All logarithms in this paper are computed to the base 2. 
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4 

log P(x) 

-I 
0 × 

Fig. 1. Binary logarithm of the asymptotic probability distribution for the logistic equation 
f ( x ) =  rx( l -  x) at r =3.7, using 2>< l07 iterations sorted into l03 bins. 

O 
0 

Fig. 2. Construction of the partition induced by taking n symbols (i.e., specifying an n cylinder) 
with a given decision point d. Illustrated is the case d =0.5, and the l-cylinder-, 2-cylinder-, 
and 3-cylinder-induced partitions are shown with successively longer tic marks on the x-axis. 

conveniently confuse s" with its binary fraction representation unless the 
distinction is necessary. 6 

The Cantor set structure of the symbol sequences of the chaotic logistic 
equation is revealed in Figure 3 by a sequence of probability distributions 
for n-cylinder binary fractions: with the increase in length of n-cylinder the 
distributions show successively more, although narrower, peaks. An even 
more graphic demonstration of the Cantor set structure is the graph of the 
distribution of symbols s (truncated to a finite n-cylinder with n -- 12) versus 
position x, illustrated in Figure 4. 

6Milnor and Thurston (1977) show how to form a slightly more sophisticated "'invariant 
coordinate" which is monotonic. Our entropy calculations do not require this feature, so we 
use the computationally simpler binary fraction. 
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6 

Fig. 3. The Cantor set structure of the subshift ~f ,  where f i s  the logistic equation with r ~ 3.7, 
is shown in this sequence of probability distributions for n cylinders where each n cyl inder  has 
been mapped onto the unit interval by using its binary fraction. 

S 12 . . . , ,  ,,7 "';';;.~'::.,"7:;: 

;." " . "  " ~ : - - , " 7 ~  

0 
0 × 

Fig. 4. Two-thousand iterations of the logistic equation with r =3.7, showing in more detail the 
Cantor set structure of the distribution of binary fractions s" (with n = 12) vs. the distr ibution 

of points x on the attractor. 

We will now embark on the task of characterizing the chaotic behavior 
in a dynamical system using topological and metric entropies in that order. 
After giving their definitions, we will show various illustrative computations 
that will lay the groundwork for our discussions of noise and finite precision 
effects. 

4. TOPOLOGICAL ENTROPY 

Heuristically, the topological entropy of a dynamical system measures 
the asymptotic growth rate of the number of resolvable orbits whose initial 
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N 

M 

Fig. 5. Under the action of a chaotic dynamical system, points in a small region spread apart 
from each other exponentially, overlapping other regions, and eventually covering an attractor. 
The grid in each picture represents the measurement partition. The size of each element 
illustrates the limit of determining the system's state. 

conditions are all close. Equivalently, the topological entropy quantifies the 

average time rate h of spreading a subset over nearby subsets (see Figure 5). 

This process is most easily illustrated by considering a collection of subsets 

which form a "cover" of the phase space, as shown schematically in Figure 

5. In the figure, the dynamicfhas  spread the single cover element over other 

elements after some time t. The number of new cover elements N(t) visited 

by points in the original cover element can be written 

N ( t ) ~ e  ht 

where h > 0  for chaotic dynamical systems. With this geometric motivation, 

we will now consider a more formal definition of the topological entropy h 

(Adler et al., 1965). 

For a compact topological space M, with an open cover U, let N(U) be 

the number of sets in a subcover of minimal cardinality. Two covers U and 

V may be "combined" to form a refinement W by 

W = U V V  

= (A n BIA~ Uand B ~  V} 

Now if f:  M ~ M is a continuous map, the topological entropy of f with 

respect to the cover U is defined as 

h ( f , U ) =  lim log N(UV f - l U v  "'" V f~-"U) 

The topological entropy h( f )  of the map itself is then simply the supremum 

of h(f, U) over all open covers U. 
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In  the space of  symbol sequences EI ,  each n cylinder s n is an open set 

(in the discrete topology, or in the topology generated by the m e t r i c  

ment ioned above), and the class of  all n cylinders is an open cover. A s  n 

increases, the open cover becomes more refined, and 

lim l o g [ N ( n ) ]  , h(af )  
n~oo n 

where N(n)  is the number  of  admissable n cylinders. 7 N(n)  is eas i ly  

obtained numerically, so this formula  presents us with an readily c o m p u t -  

able algorithm for the topological en t ropy)  Al though h is the a sympto t i c  

slope of log[N(n)],  it turns out, for reasons of  convergence that will be 

discussed shortly, that  the most practical way to compute  h(af)  f rom N ( n )  

is to fit a slope to log[N(n)] for n = 12 . . . . .  16, for example. 

We have numerically computed  the topological entropy of  the shi f t  

induced by the binary partit ion ([0,0.05),[0.5, 1]} for the logistic e q u a t i o n  

xn+ I = rxn(1 - x~). Figure 6 shows the increase of  log[N(n)]  with n for t w o  

parameter  values r = 3.7 and 4.0, and Figure 7 shows the slope of  this curve ,  

log[N(n + 1 ) ] - log[N(n) ] ,  for two parameter  values, r =3 .9  and 3.7. F igu re  

8 shows that this numerical estimate of  the topological entropy converges  

when a sufficient number  of iterations are used. In Figures 6 - 8  the  

quantities relating to the topological entropy are shown with dashed l ines;  

solid lines refer to the metric entropy, which will be discussed below. 

Figure 7 presents several questions about  the convergence and rate of 

convergence of  the above expression for the topological entropy. F igu re  7 

shows how the slope of  log[N(n)]  begins to oscillate as r is lowered t o w a r d  

the value where one chaotic band splits into two bands, r = 3.67857351 . . . .  9 

At  the band joinings, the " two-point  slope" log[N(n + 1 ) ] - log [N(n ) ]  oscil-  

lates indefinitely, causing log[N(n)] /n  to converge rather slowly. This  is 

illustrated in Figure 9. Convergence to h - -0  at the period-doubling a c c u m u -  

lation point also is especially problemat ic)  ° 

7For the case of symbolic dynamics, this formula for the topological entropy was first 
introduced by Parry (1964). 

8There are other algorithms to compute the topological entropy of a map f based on 
representing the dynamics as a branching process with a deterministic transition matrix. For 
certain cases, they allow one to analytically calculate the topological entropy and so to study 
the convergence of the topological entropy directly, These techniques are based on the 
kneading calculus of Milnor and Thurston (1977). 

9For a review of the phenomenology of the quadratic one-dimensional map, see Collet and 
Eckmann (1980) and Crutchfield et al. (1981). 

1°We will discuss the convergence at the period-doubling accumulation parameter value r~. in 
terms of the structure of the symbol sequence at r c in a future paper. 
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16 

H(n)2 "~Y 

2 n 16 
Fig. 6. Entropy convergence as a function of symbol length for the logistic equation. Top solid 
line is H(n)  and log[ N(n)] for r = 4.0 (2 × 106 iterations); the dashed line and lower solid line 

are log[ N( n)] and H(n) ,  respectively, for r = 3.7 (5 × 105 iterations). The topological entropy 
and metric entropy are the slopes of these two curves. 

AH(n) 

0 

~ . - - - - ~ _ _ L  
" ^  r \  

2 n 16 

Fig. 7. Entropy convergence as a function of symbol length. Dashed lines are l o g [ N ( n ) ] -  
l o g [ N ( n -  1)] solid lines are H(n)-H(n- 1) for r = 3 . 9  (upper set) and r = 3 . 7  (lower set). 
5 X 10 5 iterations. 

. 6 - -  
h 

hm 
k 

4 
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0 i 10 5 

Fig. 8. Entropy convergence as a function of number  of iterations i. Upper  dashed curve shows 
topological entropy approximated by log[ N(16)] - log[ N(15)], solid curve shows metric entropy 
H ( 1 6 ) -  H(15), and included for reference is the convergence of the Lyapunov exponent  2~. 
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AH(n) 

0 , , , , , , , 

2 n 16 

Fig. 9. Entropy convergence as a function of symbol length (as in Figure 7) at r = 3.6785735 | . . . .  
where two bands merge into one. 

As mentioned before, changing the decision point will alter the set of 
admissable symbol sequences, and so the topological entropy of the shift o/. 
For example, if the decision point is on the far edge of the attractor, there 
will be a vast majority of one of the symbols. A graph of the topological 
entropy as a function of decision point is shown as the upper curve in 
Figure 10. From this figure we see that the measurement partition 
([0,0.5),[0.5,1.0]} yields a maximum value of h(ol), indicating that the 
supremum over all partitions has been reached. In this case, we find that 
h(of) is identical to h( f )  computed using the kneading calculus of Miltaor 
and Thurston (1977). Indeed, by the argument at the end of Section 2, each 
n cylinder corresponds to a particular element Sj of the cover of [O, 1] 
comprised of the n-cylinder induced partition. Thus, for the proper parti- 

tion, h(of) = h(flattractor). In effect, the symbolic dynamics computation 

6 

X 

hm 

2 d 

Fig. 10. Topological entropy (upper curve) and metric entropy (lower curve) of the shift 
induced by choosing different decision points d. The upper horizontal line is the topological 

entropy calculated to one part in 10 6 with the kneading determinant. The lower horizontal line 

is the Lyapunov characteristic exponent calculated to within 0.1%. The parameter r is 3.7. 
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provides a labeling scheme for the elements of the induced partition on 
[0, 1]. 

5. METRIC ENTROPY 

In presenting the topological entropy before metric entropy we have 
purposely reversed their historical order because there is a sense in  which 
the metric entropy is a generalization of the topological entropy: the metric 
entropy also measures the asymptotic growth rate of the number o f  resolv- 
able orbits having close initial conditions, but weighting each orbit with its 
probability of occurrence. 

The definition of metric entropy for the dynamical system (M, f )  
requires an invariant measure ~ and a o algebra of measurable subsets of M: 
more structure than needed for the definition of topological entropy. For 
symbolic dynamical systems, this will not prove to be much of a problem, 
however, since the same n cylinders that formed elements of the open covers 
are also measurable subsets of E/. 

The structure of the attractors for the logistic equation can be quite 
complicated (Jonker and Rand, 1980), and the existence of many different 
asymptotic measures (i.e., measures whose averages of continuous functions 
coincide with time averages) raises serious questions concerning the validity 
of numerical calculations (Bennetin et al., 1978, 1979; Erber et al., 1980). 
Numerical evidence suggests, however, that a single asymptotic measure is 
selected by the simulated dynamics. The existence of such an "observable" 
asymptotic measure is also suggested by theoretical results that tell us when 
a small amount of noise is added to axiom-A systems a unique asymptotic 
measure is selected (Kifer, 1974). 

If P = {Pi } is a finite measurable partition of M with p elements, we 
define the entropy of P as 

P 

H (P) = 

i=1 

Given two partitions P and Q, their refinement is 

P V Q = {PiNQil for all Pi E P and Qi E Q} 

The metric entropy of f with respect to the partition P is defined by 

H~,( f ,  P ) = lirnoo H~,(P") 
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where 

p~= p v  f - ~ p v . . .  V f~-np 

Finally the metric entropy of f itself is 

h~(f) = sup H~(f ,  P )  
P 

where the supremum is taken over all partitions P. 

For the numerical computation of metric entropy, the latter is n o t  a 

very useful definition, but there is a theorem due to Kolmogorov ~ tha t  

helps: if P is a generator, i.e., the partition P~ becomes arbitrarily fine as 
n --, ~ ,  then we have 

h~(f)= H~,(f,P) 

Unfortunately, there is no way to determine in general whether any given 

partition is a generator for a dynamical system. This is not a problem for 

symbolic dynamical systems, however, because generating partitions abound:  

the simplest ones being the set of all 1-cylinders. We must emphasize here  

that even though an n-cylinder partition of Y7 may be a generator for the 

shift o/obtained using some measurement partition on ( f ,  M), this does not 
necessarily mean that the n-cylinder-induced partition on M (see Section 2 

above) is a generator for f.  The metric entropy computed for of will be the 
same as the metric entropy of f  only when this is so. In any case, the metr ic  

entropy of f is the supremum over all partitions, so it is at least as large as 

the entropy of the symbolic dynamical system induced by choosing some 
measurement partition. That is, 

h~(oy)<~h~,(f) 

where /~ and #' are the asymptotic invariant measures on Nf and M, 
respectively. 

We will now narrow the discussion to the special case of symbolic 

dynamical systems. Let S = S I =  {s ~} denote the partition of all 1-cylinders 
and S ~ the partition of all n cylinders. Then, if we let H~(n) = H~(trf, ,.~n), 

h~,(of) = l im  ,H~,(n) 
n ~ o o  n 

I Tiffs theorem as well as the original definition of metric entropy are presented in Kolmogorov 
(1958). 
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This formula allows the numerical computation of the metric en t ropy for 

the shift o/, where the invariant measure /~ used to compute tJ,(n) is 
accumulated empirically with a frequency histogram.12 Shimada (1979) was 

the first to compute the metric entropy using this formula, applying it to a 

shift induced by the Lorenz attractor. 
As in the case of topological entropy, the metric entropy is the 

asymptotic slope of H(n) as a function of n, but this asymptotic slope is 

obtained numerically most readily from the "local" slope H~,(n + 1) -- H~,(n) 
[or even a fit of the slope of H~,(n) for nl<n<n2] rather than H~,(n)/n. 
The quantity H~,(n + 1)-H~,(n) may also be written as a conditional ent- 

ropy (Shimada, 1979; Billingsley, 1965), and it has a compelling informa- 

tional interpretation: the metric entropy of the shift of is exactly the average 

gain in information for each new symbol, obtained by an observer using the 

measurement partition S, as the number of symbols gets large. 
From the above definition of the metric entropy, it is easy to see that 

h ~  > h~, since H,(f, P") is maximized when each element of P"  is equally 

probable [i.e., /~(Pi') is the same for all i]. In this case, the formula for 

metric entropy reduces to that for the topological entropy. This is also 

evident from Dinaburg's theorem, which states that 

h = sups h~ 

where the supremum is taken over all invariant measures /~ (Dinaburg, 

1970). 
We have numerically computed the metric entropy of the shift induced 

by the binary partition {[0,0.5),[0.5, 1]} for the logistic equation. Figure 6 
shows H~,(n) vs n, and Figure 7 is a graph of this curve's slope, which 

approaches the metric entropy as n gets large. Figure 8 shows that this 

expression converges after enough iterations. Figure 9 shows that there is no 

problem with the convergence at band joinings as for the topological 
entropy. Although the convergence of the metric entropy still presents a 

problem near the accumulation points r c of the period-doubling bifurcation 
sequences, away from re, convergence to within 5% is obtained using 13 

symbols and 2 × 105 iterations. Using more symbols requires more iterations 

to fill out the histograms sufficiently. 
As in the case of the topological entropy calculations, the choice of 

measurement partition used for the symbolic dynamics can make a large 

t2We assume that there exists an asymptotic invariant measure whose averages are equal to 
time averages for continuous functions as well as the characteristic functions on the bins of 
the frequency histogram. This latter feature implies that the frequency histogram should 
converge to a "coarse-grained" approximation of the invariant measure. 
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difference in the entropy of the induced shift. Figure 10 shows how the  

metric entropy of the shift varies with the binary partition {[0, d),[d, 1]} as 

d is varied. We see that the metric entropy is maximized when d =0.5 a n d  

d = 0.635... (one of the inverse images of 0.5). This numerical evidence, in 

turn, suggests that these two decision points form generating partitions. 

6. DIMENSION 

When E / i s  endowed with a metric (as described above) so that each  

one-sided symbol sequence is mapped to a binary fraction, the fractal  

dimension ~3 D c of the set of all admissable binary fractions is given by t h e  

same formula as the topological entropy. Since increasing the length of a n  n 

cylinder is equivalent to increasing the resolution with which one specifies 

an element in ~/ ,  the fractal dimension is given by 

De= lim log[N(n)]  
r t ~ o O  n 

So we see that the topological entropy of the subshift a/, and so of the m a p  

f ,  is equal to the fractal dimension of the binary fraction representation of 

the Cantor set Y,f. 

If, instead, we weight the count of n cylinders with their respective 
probabilities, we can define another dimensionlike quantity, the information 
dimension (R~nyi, 1959; Farmer, 1981; Kaplan and Yorke, 1981), 

D,= lim ~ I~(SF)log[I~(Sin)] 
n ~ o o  i = 1  

which we see is identical to the metric entropy of of. Fractal and informa-  

tion dimensions can also be defined for the attractors of the original 

dynamical system. To avoid confusion in this regard, we should emphasize 

that these are not the same quantities as the corresponding dimensional 
quantities computed for the associated symbolic dynamical system} 4 

13properly speaking the defined quantity is the capacity of the Cantor set E I. For a more 
detailed description of these notions of dimension, see Mandelbrot (1977). 

t4 For a more complete overview of the information dimension concept, see Farmer (1981). 
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7. ENTROPIES AND LYAPUNOV CHARACTERISTIC 
EXPONENTS 

We pause now to introduce Lyapunov characteristic exponents as 

another measure of chaos, and to discuss their relationship to the entropies 
described above. The Lyapunov characteristic exponents measure the aver- 

age asymptotic divergence rate of nearby trajectories in different directions 

of a system's state space (Benettin et al., 1980; Shimada and Nagashima, 

1979). For our one-dimensional examples, f:  I--,I ,  there is only one 

characteristic exponent ~. It can be easily calculated since the divergence of 

nearby trajectories is simply proportional to the derivative of f (Shaw, 
1980): 

1 U 

h =  lim ~ ]~ l o g l f ' ( x , )  I 
N ~ o o  n = l  

Or equivalently, if a continuous ergodic asymptotic invariant measure /~ 
exists, then the characteristic exponent is given by 

X = f0'log[ f'(x)[ at~ 

We shall assume that such a measure exists, and moreover that 

1 N 

~:(x)= ~ E 8:ox 
n=l 

converges to /~ as N ~  oo for almost every initial condition (Oono and 
Osikawa, 1980). 

If M is an axiom-A attractor, there is a prescription for constructing a 

partition which is generating, and the equality of the metric entropy h~ and 

the sum of the positive Lyapunov characteristic exponents can be proven 

(Bowen and Ruelle, 1975). In fact, whenever an absolutely continuous 

invariant measure exists, a theorem due to Piesin (1977) shows that the 

metric entropy of a diffeomorphism is equal to the sum of the positive 

exponents) 5 Ruelle (1978) has shown the same equality for any map that 

has an absolutely continuous invariant measure, and Ledrappier (1981) has 

~SIn the general case, the exponents are a function of initial condition, so the sum must be 
integrated over the attractor, but we will consider only the case of an ergodic attractor where 
the exponents are constant almost everywhere with respect to the asymptotic invariant 
measure. 



450 Crutchfield and Packard 

constructed a proof of this for the logistic equation. Shimada obtained good 
agreement between the characteristic exponent and the metric entropy for  
the Lorenz attractor and its induced symbolic dynamics using only nine 
symbols, and Curry (1981) has computed a metric entropy slightly lower 
than the positive Lyapunov characteristic exponent for a two dimensional 
diffeomorphism (Henon's map). 

The surprising result of our numerical experiments for the logistic 
equation is that for most parameter values, the metric entropy of the shift 
induced by certain measurement partitions converges extremely slowly 
(from above) to the Lyapunov exponent. Naturally, the metric entropy is 
always less than the topological entropy. This slow convergence is clearly 
illustrated in Figures 8 and 10, where we see an apparent discrepancy of 

5% for r = 3.7 and n = 16. This slow convergence does not appear in the 
symbolic dynamics calculation of the topological entropy. Using 16 symbols 
we find it rapidly converges (to within 0.1%) to the topological entropy 
computed using the kneading calculus of Milnor and Thurston (1977). 

The validity of the symbolic dynamics entropy calculations is sup- 
ported by the fact that we find excellent agreement (to within 0.1%) between 
the topological entropy of the shift and the topological entropy of the map, 
computed using the kneading calculus of Milnor and Thurston. 

We also note that, to within numerical accuracy ( <  0.1%), at r = 4.0, 
both entropies (computed using 16 symbols) and the Lyapunov characteris- 
tic exponent converge to 1.0. At r = 3.6785735... where two bands merge 
into one, Ruelle (1977) has shown that there exists an absolutely continuous 
invariant measure, so that the metric entropy must be equal to the Lyapun~v 
exponent (Ruelle, 1978). Our calculations using 16 symbols and 5)< 106 
iterations, yield a topological entropy of 0.5000--+0.0001, a metric entropy of 
0.497--- 0.001, and a Lyapunov characteristic exponent 0.491 --- 0.0005. Thus, 
after 16 symbols, the metric entropy has converged to within 1% of the 
Lyapunov exponent. Similar slow convergence was found at other parame- 
ter values (e.g. r = 3.7). These calculations are thus consistent with Ruelle's 
and Ledrappier's results mentioned above. The calculations also provide 
numerical evidence for the existence of an absolutely continuous invariant 
measure for a wide range of parameter values. 

8. OTHER ONE-DIMENSIONAL MAPS 

In light of the slow convergence of the metric entropy to the Lyapunov 
exponent, one natural question is how universal this result is. Shimada has 
already found good agreement between the symbolic dynamics entropy and 
the characteristic exponent for the cusp return map of the Lorenz attractor. 
To compare our results with Shimada's, we will now consider a map which 
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Fig. l I. Graph of f ( x ) =  a ( l - [  2 x - l[ I+z) for e < 0  (cusp), e = 0 ("tent," or piecewise linear), 
and e > 0  (hump) and a =3.7/4 .0 .  

changes under the continuous variation of a parameter from a map having a 

cusp, Lorenz-type maximum to one with a rounded, hump maximum. The 

map's functional form is 

f(x)=a(1-12x-ll l+`) 

This map has a differentiable maximum ( f '  = 0) for E > 0, a cusp maximum 

for e <  0, and is a piecewise linear tent map for e =  0; a E  [0, 1] determines 
the height of the map. Thus, e = l  corresponds to the logistic equation 

studied in the previous section. Figure 11 shows three typical maps of this 
family with different values of e. The results displayed in Figure 12 show 

that for sufficiently positive values of e ( -  > 0.8) there is the same dis- 

crepancy between the metric entropy and the characteristic exponent as seen 

in the logistic equation. Whereas for all e ~  < 0.4, we see good agreement 

O 

- . 5  I.O 

h 
hm 
X 

Fig. 12. Topological entropy (upper unevenly dashed line), metric entropy (dashed line), and 
Lyapunov exponent (solid line) for maps from cusps maps to smooth maximum maps,  e = - 0 . 5  
to 1.0. The entropies were calculated using the kneading calculus for the topological entropy 
and H(16) -  H(I 5) for the metric entropy, with 5 × 105 iterations. 
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between them. Shimada's results for the Lorenz attractor appear then to 

correspond to this latter regime, as one expects. As a reference, the upper  
curve in the figure is the topological entropy calculated from the kneading 
determinant of Milnor and Thurston (1977), to an accuracy of one part  in 
106. For e in the approximate regime [-0.3,0.25] there is good (always 
< 0.5%) agreement between all three quantities using 13 symbols. Below this 
regime, the topological entropy diverges from the other quantities which 
decrease rapidly to zero as e=0.4736. . ,  is approached. This particular 
parameter value corresponds to that at which the slope of a portion of the  
cusp map becomes less than one. Within this regime the origin is a stable 
attracting fixed point, although initial conditions may wander chaotically in 
portions of the map where the slope is greater than 1, before "decaying" 
into the attracting origin (Yorke and Yorke, 1979). 

The tent map (e=0)  displays the same band-merging bifurcation 
sequence as the logistic equation, but not period-doubling bifurcations. The  
symbolic dynamics entropy algorithm also has the same convergence prob- 
lems near the critical parameter value where the slope is everywhere 1. As 
the slope of the tent map increases, both the topological and metric 
entropies converge quite readily to the characteristic exponent. One can  
show that these quantities are given by the logarithm of the tent map's slope 
and when calculated using symbolic dynamics they agree to within 0. 1%. 

The tent map limit e-- 0 is a symmetric map, for which the topological 
and metric entropies are equal. We also examined asymmetric piecewise 
linear maps for which the entropies are not equal. In these cases we f ind 
that there is good agreement ( ~  0.1%) between the metric entropy and the 
Lyapunov exponent. Our numerical results indicate that any map that is 
strictly hyperbolic, i.e., one for which the absolute value of the first derivative 
is everywhere greater than I, displays rapid convergence of the metric 
entropy the Lyapunov exponent. This may be related to the fact that these 
maps have no infinite singularities in their asymptotic invariant probability 
distributions (Lasota and Yorke, 1977). 16 In contrast to these systems, the 
logistic equation has a quadratic maximum that produces square root  
singularities in its asymptotic invariant probability distribution, and also 
displays the slow convergence. 

From a practical perspective, these results indicate that a certain 
amount of caution must be used in the computation of the metric entropy 
from some experimental data set. If the underlying dynamics has singulari- 
ties in its asymptotic distribution, then one might expect an overestimation 
of the metric entropy, and its slow convergence to the Lyapunov character- 
istic exponent. 

~rThis fact may be seen from the Perron-Frobenius algorithm used to obtain the probability 
distribution; see, for example, Shaw (1980). 
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9. SYMBOLIC DYNAMICS IN THE PRESENCE OF 
FLUCTUATIONS 

With these various theoretical results outlined, we now turn to more 
practical concerns: the effects of fluctuations and of finite precision on the 
application of symbolic dynamics to physical systems and their models. We 
shall address the first concern in this section and the latter in the next. 

As discussed in the Introduction, symbolic dynamics appears to offer 
methods that circumvent the need for high-measurement resolution. Indeed, 
in the case of the one-dimensional maps discussed above, the measurement 
requirement was only 1 bit of resolution for the two-element partition 
([0, d),[d, 1]}. We should point out, in contrast to this encouraging pros- 
pect, that the data base requirements can be quite substantial. For the 
calculation of the n-cylinder probability distributions the required memory 
increases a s  2 hn, where h is the topological entropy. In comparison with 
other similar techniques, this is not an unusual requirement--in fact, it is 
typical. A second and more troubling feature of the application of symbolic 
dynamics to experimental systems is the requirement of a generating parti- 
tion if one is to measure the "true" entropies. Such a partition is not given a 
priori to an experimentalist and, therefore, this requirement presents a 
significant theoretical limitation of experimental symbolic dynamics. On the 
practical side, however, if one keeps in mind the effects of varying the 
partition on the calculated entropies as shown in Figure lO, one could alter 
the partition to look for a maximum in the entropies. Such a procedure 
would be computationally intractable if the partition elements were of high 
dimension, but for simple low-dimensional chaotic behavior, at least, it is 
straightforward and feasible. 

A further consideration is that the information acquisition rate must be 
greater than the metric entropy. That is, if the a priori information gain per 
measurement is I and the sample rate is R, then we must have 1R > h~ in 
order to resolve the deterministic chaotic dynamics. For example, using a 
binary partition at each iteration of a one-dimensional map, one cannot 
measure an entropy greater than one bit per iteration. We shall leave these 
problems, of data base, generating partition, and sample rate requirements, 
for future consideration and discuss the effect of fluctuations, or external 
noise, on the experimental application of symbolic dynamics. 

Every experimental system is immersed in a "heat bath"; in other 
words, there will always be couplings between the system of interest and 
external degrees of freedom that are beyond observation by an experi- 
mentalist. To model this situation, we introduce the stochastic logistic 
equations which contains an explicit noise term, 

xn+L =rxn(1-- xn)+'rn 
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where ~n is a uniform random variable with zero mean and s tandard  

deviation s. We shall call s the noise level of the fluctuations. The general 

effects of fluctuations on the logistic equation and the period-doubling 

bifurcation have been discussed elsewhere (Crutchfield and Huberman,  

1980; Crutchfield et al., 1981; Haken and Mayer-Kress, 1981). We shall 

only briefly allude to these results and, instead, concentrate on the effects of 

fluctuations on the symbolic dynamics at a few parameter values of interest. 

The values of the topological and metric entropies of the shift induced 

by the map in the presence of fluctuations depend on the manner in which 

the fluctuations alter the n-cylinder probability distributions. Changes in the  

characteristic exponent depend in similar way on the distribution P(x) of 

iterates on the interval (recall Figure I). Fluctuations smooth out the square 

root singularities in P(x) and, for r = 3.7, affect the characteristic exponent  
very little ( < 1%) over a wide range in noise level: s ~ [0.0, 10 - 3  ] (Crutch field 

et al., 1981). The sequence of n-cylinder probability distributions of Figure 

13 shows a similar mild change in Cantor set structure up to n = 6. This  

figure should be compared to Figure 3. We should point out that the  

fluctuations do not truncate the Cantor set structure, but only produce more  

admissable symbols. In order to see any alteration in this sequence, it was 
necessary to use the relatively large noise level of s = 10 -2. At n = 6, new 

admissable symbols appear, which in turn should result in increased entro-  

pies. Indeed, Figure 14 shows that the fluctuations increase H(n) and  
log[N(n)] monotonically at r = 3.7 over three noise levels: s = 0.0, 10 -3, 10 -2 .  

The metric and topological entropies, which are the slopes of these curves, 

clearly increase with increasing noise level, but converges to values less than 

o n e .  

HH 
O s 

5 6 

Fig. 13. n-Cylinder probability distribution (as in Figure 3) for the stochastic logistic equation 
with noise level s = 10 -2  at r =3.7. 
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2 n 16 
Fig. 14. Entropies H(n) (solid line) and log[N(n)] (dashed) as a function of symbol length at 

r = 3.7 for three noise levels: s = 10 -2 (upper pair of dashed and solid lines), 10 -3 (middle 

pair), and 0.0 (lowest pair). Note that log[N(n)] for s = 0.0 overlaps H(n) for s = 10 -3. 2>( 10 s 

iterations were used. 

Figures 15 and 16 compare the effect of increased noise level at the 

parameters where four bands merge into two and at a period-4 orbit, 
respectively. For low noise levels H(n), and so h and h~, differs substan- 

tially between these two parameters. At larger noise levels, however, the 

measured entropies are quite similar. In fact, at some noise level they would 

be completely indistinguishable: the period-4 orbit would appear as four 
bands (Crutchfield and Huberman, 1980). 

The effects of external noise on the period-doubling bifurcation se- 

quence can be described by a scaling theory and renormalization group 

approach (Crutchfield et al., 1981; Schraiman et al., 198 I). These effects are 

reminiscent of an external magnetic field acting on a ferromagnet: noise 

acts as a disordering field on the chaotic dynamics. The characteristic 

exponent and the topological and metric entropies are the disorder parame- 

ters of the chaotic system, which scale in a manner similar to the magnetiza- 

tion order parameter for magnetic systems. In particular, the entropies in 

t6 

H(n)2 

, , , , , , , 

2 n 16 
Fig. 15. Same details as Figure 14 except at the bifurcation from four bands to two, 

r = 3.59257218 .. . .  
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16 

H(n) 
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Fig. 16. Same details as Figure 14 except at period-4 orbit, r =3.52. 

the presence of fluctuations provide a stronger analogy to the magnetization 
in the presence of an external field than does the Lyapunov exponent. Just  
as the magnetization has a nonzero tail above T c at finite field, the entropies 
are nonzero in the periodic regime with noise added. The Lyapunov 
exponent, however, is negative in the periodic regime. 

Adding external noise also increases the rate of convergence of the 
entropies. As an example of this, recall that at the merging of two bands 
into one, the topological entropy h(of) oscillates indefinitely, when calcu- 
lated as the two-point slope Hj,(n)-H~,(n- 1). When noise is added, the 
oscillation is "damped" and the topological entropy readily converges, 
albeit to a larger value than found with no noise added. A comparison of 
the zero noise case and that with s = 10 .2 is shown in Figure 17. As the 
metric entropy decreases, the observer gains information about correlations 
between the observed symbols. When noise is added, these correlations 
decay, and so the metric entropy converges more rapidly. 

In summary, the effects of additive fluctuations on symbolic dynamics 
calculations can be consistently described and so taken into account in the 
application of symbolic dynamics to experiments whose dynamics may be 
described by one dimensional maps. The entropies calculated from the 
n-cylinder distributions follow the deterministic values up to some n, above 
which the external noise causes H(n) and log[N(n)] to increase at a rate 
greater than the zero noise case. Rather than considering this fact as 
compromising the usefulness of symbolic dynamics, one might suggest the 
use of symbolic dynamics entropies as measures of level of external fluctua- 
tions to which an experimental system is coupled. 

One might conclude that, insofar as the effects of fluctuations can be 
described, turbulent physical systems subject to external fluctuations can be 
modeled by chaotic dynamical systems with added noise. This modeling 
process often involves the use of computer simulations which require the 
discretization of the model dynamics. In contrast to the apparently tractable 
case of external fluctuations, the effects of discretizing chaotic dynamics are 
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AH(n) 

2 n 16 

Fig. 17. Topological entropy approximated by log[N(16)]-log[N(15)] (dashed line), and 
metric entropy approximated by H(16)- H(15) (solid line), as a function of symbol length. The 
lower pair of curves corresponds to the deterministic case (s =0) and the upper pair to 
s = 10 -z. 23< 105 iterations were used. 

not so well understood. We shall address questions related to finite-state 

simulations of chaotic dynamical systems and symbolic dynamics in the 

following section. 

10. EFFECTS OF FINITE PRECISION 

Simulations of chaotic systems are often carried out on finite-state 
machines. This raises questions about the relationship between the observa- 

tion of turbulent physical behavior and the chaotic behavior observed in a 
finite precision simulation used for a system's representation. In particular, 

the finite number of states available for the simulation implies that any 

simulated orbit will be ultimately periodic. We will now address the 

question of how chaotic behavior may be successfully quantified in spite of 

this periodicity. The simulated orbits, in fact, retain many of the statistical 

properties of the "ideal" continuous system (Erber et al., 1980). 

In most simulations of chaotic dynamical systems one assumes that the 

errors introduced by a finite-state computer's roundoff will play a role 

analogous to fluctuations (e.g., thermal fluctuations). When comparing 

model simulations to observed behavior, though, one must be careful to 

distinguish between the resolution of a measuring instrument, the noise level 

of external fluctuations, and the internal precision with which the simula- 
tions are carried out. We will be concerned in this section with the latter 

topic. We will investigate several deterministic rounding algorithms and 

present a model that allows a continuous transition between a deterministic 
algorithm and a totally random rounding algorithm which is equivalent to 

adding noise of a specified magnitude. With each of these models we will 

compute the entropies described above, examining the effects of  finite 
precision on their values. 
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We begin with the simplest version of a roundoff algorithm: truncation. 

For  these and all the calculations presented below we have reduced the un i t  

interval state space to 2 k points by using k bits of precision. The i terat ion of 

the one-dimensional map was done with much greater precision (floating 

point), but after every iteration the state was rounded to one of the 2 k 

discrete states. For the case of truncation, this is accomplished by always 

rounding down to the next lower state. 

Figure 18 displays log[N(n)] (dashed) and H(n) vs n for a range of 

different precisions: 10, 15, 20, 25, and 30 bits. We naively might expect the 

graph to level off when the number of symbols n reaches the precision being 

used, since the orbit then necessarily becomes periodic with a period less 
than 2", and this is indeed what we see in the figure. The case k = 10 might  

seem a bit puzzling since H(n) remains so low, while log[N(n)] increases, 

but this is due to the probability distribution being composed of two del ta  
functions with skirts which correspond to infrequently occurring symbols. 

The monotonicity of H(n) with increasing precision is due to a for-  

tuitous choice of precisions. Figure 19 shows H(12) and log[N(12)] a s  a 

function of precision, and we see quite a bit of nonmonotonicity wi th  

increasing precision, due to the existence of stable, relatively low per iod  

orbits. We also see that the topological entropy converges sooner, and is less 

affected by the finite precision. 

The second rounding procedure we try is deterministic round off: a f te r  
the map is iterated once, the result is rounded down if the fractional pa r t  of 

2kf(x) is less than 0.5, and rounded up otherwise. Figure 20 shows that this 
procedure yields the same nonmonotonic results as illustrated for t runcation 
in Figure 19, but with slightly different features. 

To study the relationship between the deterministic rounding algo- 

rithms described above and the effects of random fluctuations as described 

in the previous section, we will now look at a "hybr id"  rounding algorithm. 

21 

, , , , , , , 

:9 n 16 

Fig. 18. Entropies H(n) (solid) and log[N(n)] (broken) vs. n for truncation algorithm at 
various precisions, k = 10, 15, 20, 25, 30 bits; with the lowest line of each corresponding to 10 
bits. r -- 3.7. 105 iterations. 



Symbolic Dynamics of One-Dimensional Maps 459 

12 

H(12) / " / / / ~  " / :  . . . .  . . . . .  

0 }/~. " "  i 

I0 k 30 

Fig. 19. H(12) and log[N(12)] as a function of precision k, using truncation, r=3.7 ,  I0 s 
iterations. 

Now the result of an iterationf(x) will be rounded up or down exactly as in 
the deterministic round off algorithm unless the fractional part falls in a 
window about 0.5, in which case a random number is used to make the 
rounding decision. If the window width is zero, the result is equivalent to 
deterministic roundoff; if the window width is 1, the result is equivalent to 
adding a random fluctuation of magnitude 2 -k. The results of varying 
window width are illustrated in Figure 21, where we graph H ( n )  and 
log[N(n)] vs n for different window widths, using a constant 20 bits of 
precision. 

It is worth noting here that flipping the twentieth bit at random (i.e., 
using a window width of 1 at a precision of 20 bits) allows one to measure 
H(16) as well as is possible using much higher precision (e.g., double-preci- 
sion floating point). This point is further illustrated by Figure 22, where we 
see that H(12) and log[N(12)] quickly converge to a constant value as the 
precision is increased for the window width of 1. These entropy values agree 
to within 1% of the double-precision floating point results. 

12 ¸ 

H(12) 

0 
I0 I~ 30 

Fig. 20. Same as Figure 19 except for deterministic roundoff. 
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12- 

H(n)2 

2 n 16 
Fig. 21. H(n) (solid) and log[N(n)] (dashed) vs. n using random roundoff algorithm at various 
window widths: 10 -3, 10 -2, 10 -I, 1.0, using 20 bits of precision. For each width, the 
log[ N( n)] dashed curves remain close to each other, as do the H(n) curves for widths 10- l and 
1.0, at the top of the figure. The lowest curve corresponds to H(n) for a width of 10 -3, the next 
higher 10 -2, r = 3.7, 105 iterations. 

Our results lead us to the practical suggestion that s imulat ions  of  

dynamical  systems should include noise at the lowest bit of  p rec is ion  in 

order  to effectively increase the precision and yield the physically re levan t  

behavior. A simple example of  this will illustrate its utility. Consider  the 

tent map 

2 x . ,  x n < 0.5 

X " + l = [ z ( 1 - x . ) ,  x ~>0.5 

which is equivalent to a binary shift of the initial condit ion x 0. If  x o is 

specified to k bits, then after k iterations of  the tent map all of the ini t ia l  

condit ion has been removed and the truncation (or deterministic r o u n d o f f )  

algorithm has replaced the lost bits with O's. The net effect is that after o n l y  

k iterations the orbit  has trivially converged to O, making the s imula t ion  

remarkably unrepresentative. A numerically accumulated probabil i ty dis t r i -  

bution of  this map would be a delta function at the origin, al though the m a p  

2 I 
H(12)I ................. 

01 
I0 I< 30 

Fig. 22. Same as Figure 19 except for random roundoff algorithm with a window of 1.0. 
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is provably chaotic with positive entropies and characteristic exponent. 

Admittedly, this is an extreme example, but similar effects due to finite 

precision with deterministic roundoff should be expected in simulation of 

chaotic dynamical systems. To render such a finite-state simulation useful, 

we propose that the roundoff decision be made randomly. One would then 

observe the chaotic dynamics implicit in the mathematical specification of 

the map and also the behavior which most closely models real physical 

systems. The addition of this random degree of freedom to finite-state 

computers renders them effectively infinite-state machines. 17 

11. ENTROPY AND A L G O R I T H M I C  COMPLEXITY 

Both the topological and metric entropies described above characterize, 

in some sense, the "randomness"  of a chaotic dynamical system. We shall 

now discuss the relationship between these concepts of randomness and 

another developed in the early 1960s independently by Solomonoff (1964), 18 

Chaitin (1966), Kolmogorov (1965), and Martin-Lof (1966). Their essential 

idea is to define the algorithmic complexity A(s") of a string of symbols 

s n =  (s I . . . . .  s,,) as the minimum size of a computer program required to 

generate the string. Without going into the subtleties of how to make this 

definition precise, we will present a heuristic discussion of how this concept 

may be related to chaotic dynamical systems. A summary of the technical 

details involved is given by Alekseyev and Yacobson (1981). 

For a chaotic dynamical system f: M ~ M with a generating measure- 

ment partition S, we showed in Section 2 that to each orbit (x 0, x~, x 2 . . . .  ) 

there corresponds a symbol sequence (So, sl, s 2 . . . .  ), where 

OO 

n/-'(s,,) 
i = O  

The algorithmic complexity A(x0, f )  of this orbit may then be defined as 

A(xo, f )=-  lim A(sN) 
N ~ oe N 

We then have the results that the algorithmic complexity is bounded by the 

XTThe source of this random decision could be any of a number of chaotic electronic circuits 
and so be easily implemented in the current generation of LSI arithmetic processors. In such 
a dynamical systems processor one would, of course, want to switch between deterministic 
roundoff and random roundoff to aid in software error checking. 

I SFor the first presentation of Solomonoff's ideas see Minsky (1962). 
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topological entropy (Brudno, 1978; Zvonkin and Levin, 1970; Karnae,  

1973): 

a(xo , f )<~h( f )  

and that, for any invariant measure/~, it equals the metric entropy, 

A( xo, f ) --- h~( f ) 

for all x 0 (except some measure zero set). These results justify the use of 

algorithmic complexity as a measure of randomness for a chaotic dynamical  

system, and allows us to set A ( f ) =  h¢(f) if f is ergodic. 
There may seem to be a paradox: even if the map f is chaotic, a n  n 

cylinder s n may be obtained simply by iterating the map n times a n d  

observing the sequence of partition elements visited ... a very s imple 
algorithm indeed! This algorithm for generating the n cylinder s n is s imple  

in the sense that to generate a longer n cylinder, only the parameter which  

specifies the number of iterations need be changed. Thus, the algorithm's 

length A(s") grows like log(n) so that 

lim A( )__,s", __, O 
n ~ o ¢  n 

contradicting A ( f )  = h . ( f )>  0. We must realize, however, that the algo- 
rithm must also contain a specification of the initial condition, and if the 

map is chaotic, the amount of information contained in the observed 

symbol sequence is proportional to the amount of information conta ined in 
the specification of the initial condition. Thus, the size A(s n) must g row 

with n. 

We may now use algorithmic information theory to formalize the 

notions of modeling mentioned in the Introduction. Again, we will consider  

an observer who makes a sequence of measurements (So, S ~ . . . .  ) o n  a 

physical system with some instrument whose output is one of finitely m a n y  

symbols. In this context, we may define a predictive model as an algori thm A 

which would produce the string s" =(s0 , . . . , sn )  for any n. As a simple 

example, we see that if the system is executing periodic motion, the symbol  

sequence of successive measurements will also be periodic, so that a simple 

program could predict which symbol would be observed at any time in the 

future. The result that the algorithmic complexity A(s") of n observations of 

a chaotic dynamical system grows like n (i.e., A ( f ) >  0) is then a concise 

statement of the inability of the observer to construct such a predictive 

model, since there is always some n for which A(s") is larger than the size of 
any proposed predictive model A. 
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12. CONCLUDING REMARKS 

One of our primary concerns here has been an elucidation of the 
modeling process, by which we mean a comparison between the observed 
temporal behavior of some physical system and the temporal behavior of a 
model comprised of some other representation system. If the physical 
system behaves periodically, a model can be constructed, in principle, that 
serves a predictive function. 

In modeling turbulent physical systems with simple chaotic dynamical 
systems certain problems arise since one cannot, in principle, obtain exact 
correspondence between the observed physical behavior and the output of 
the model. Nevertheless, the chaos displayed by chaotic dynamical systems 
admits certain geometrical and statistical characterizations which must then 
be used in the modeling process as the new criteria for a model's validity. 

The construction of symbolic dynamics, for example, enables a com- 
parison between the statistical properties of a physical system and those of a 
model by providing measures of temporal complexity. At the same time, 
though, by projecting large portions of the state space onto a discrete set of 
symbols most, if not all, geometrical information is lost. The construction of 
symbolic dynamics reduces the dynamics of a physical system to a dynami- 
cal system comprised of a trivial dynamic (the shift) on a complicated state 
space. All the complexity of the temporal behavior of the physical system is 
contained in the structure of the symbol state space ~/. This complexity 
admits not only a dynamical quantification via the metric entropy 19 but also 
an algorithmic quantification. 

The algorithmic interpretation considers the physical system as a 
finite-state machine, with the original dynamics corresponding to an algo- 
rithm for a Turing machine, say. If the observed dynamics are chaotic, the 
minimal algorithm needed to specify any subsequence in yf  grows with the 
length of the subsequence. And the rate of this growth is equal to the metric 
entropy of the induced shift on Y.f. If the observed dynamics are not 
chaotic, however, Y.f reduces to a periodic lattice which cart be specified in 
its entirety with a finite algorithm. 

Turing machines were invented as conceptual tools to make precise the 
notion of computability. Mathematical propositions were then recast as 
Turing machine algorithms and a proposition's decidability could be shown 
to be equivalent to its algorithm's computability. Thus an equivalence was 
established between the notions of computability and decidability. Via 
algorithmic information theory, then, symbolic dynamics appears as a link 
between turbulent physical dynamics and the notions of decidability, often 

19With appropriate restrictions on the measurement partition, this will also be the metric 
entropy of the observed physical system. 
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associated with Godel's theorem. Shaw (1980) suggested a similar connec-  

tion between the unpredictability arising from chaotic dynamics and the 

undecidability of propositions about a chaotic system's state after the 

information obtained from a measurement has been lost. Here we h a v e  

attempted to point out that symbolic dynamics provides a common lan- 

guage for the discussion of these ideas. 
As mentioned in the Introduction, the existence of deterministic, unpre-  

dictable behavior obviates the hope of "closed-form" descriptions, a n d  so 

allows only for statistical and geometric characterizations. For chaot ic  

dynamical systems, the explicit prediction of behavior is no longer possible, 

and we are led to reconsider the criteria for the appropriateness o f  models  

of turbulent phenomena. Chaos, in this sense, necessitates a generalization 

of the modeling process. 
Underlying these conceptual motivations, there are many pract ical  

questions concerning the construction of symbolic dynamics. We addressed 

some of these by examining the conditions under which digital computa-  

tions can successfully approximate chaotic dynamics of a continuous system 

driven with " thermal"  fluctuations. We also discussed the applicabilit2¢ of 

symbolic dynamics techniques to experimental data analysis. Our research 

along these lines has also uncovered certain theoretical questions, such  as 

why we observe a slow convergence of the metric entropy to the Lyapunov  

characteristic exponent for the logistic equation. We have been ab le  to 

indicate, only in a preliminary way, the usefulness of dynamical systems and 

symbolic dynamics in describing observed unpredictable behavior. 

In the early literature on the topics we have discussed here, there  

appears to have been a general appreciation of the connection between 

information theory, algorithms, and dynamics. Such a broad perspective, 

which flourished during the days of the first computers, seems to have  

motivated much of Shannon's information theory, and subsequently 
Kolmogorov's ideas on dynamical systems. In the present work we have  

discussed chaotic dynamics within this context in an effort to rekindle the 

apparently diffused understanding of the intimate connection between the 

physics of dynamics and computation. 
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