
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Symbolic Execution with Abstraction

Saswat Anand1, Corina S. Păsăreanu2, Willem Visser3

1 College of Computing, Georgia Institute of Technology e-mail: saswat@gatech.edu
2 NASA Ames Research Center, Moffett Field, CA 94035 e-mail: pcorina@email.arc.nasa.gov
3 SEVEN Networks e-mail: willem@gmail.com

The date of receipt and acceptance will be inserted by the editor

Abstract. We address the problem of error detection
for programs that take recursive data structures and ar-
rays as input. Previously we proposed a combination of
symbolic execution and model checking for the analy-
sis of such programs: we put a bound on the size of the
program inputs and/or the search depth of the model
checker to limit the search state space. Here we look be-
yond bounded model checking and consider state match-
ing techniques to limit the state space. We describe a
method for examining whether a symbolic state that
arises during symbolic execution is subsumed by another
symbolic state. Since the number of symbolic states may
be infinite, subsumption is not enough to ensure ter-
mination. Therefore, we also consider abstraction tech-
niques for computing and storing abstract states during
symbolic execution. Subsumption checking determines
whether an abstract state is being revisited, in which
case the model checker backtracks – this enables analy-
sis of an under-approximation of the program behaviors.
We illustrate the technique with abstractions for lists
and arrays. We also discuss abstractions for more gen-
eral data structures. The abstractions encode both the
shape of the program heap and the constraints on nu-
meric data. We have implemented the techniques in the
Java PathFinder tool and we show their effectiveness on
Java programs. This paper is an extended version of [2].

1 Introduction

The problem of finding errors for programs that have
heap structures and arrays as inputs is difficult since
these programs typically have unbounded state spaces.
Among the program analysis techniques that have gained
prominence in the past few years are model checking
with abstraction, most notably predicate abstraction [6,

7,15], and static analysis [11,27]. Both these techniques
involve computing a property preserving abstraction that
over-approximates all feasible program behaviors. While
the techniques are usually used for proving properties of
software, they are not particularly well suited for error
detection – the reported errors may be spurious due to
over-approximation, in which case the abstraction needs
to be refined. Furthermore, predicate abstraction han-
dles control-dependent properties of a program well, but
it is less effective in handling dynamically allocated data
structures and arrays [22].

On the other hand, static program analyses, and in
particular shape analysis, use powerful shape abstrac-
tions that are especially designed to model properties of
unbounded recursive heap structures and arrays, often
ignoring the numeric program data. A drawback is that,
unlike model checking, static analyses typically don’t re-
port counter-examples exhibiting errors.

We propose an alternative approach that enables dis-
covery of errors in programs that manipulate recursive
data structures and arrays, as well as numeric data. The
approach uses symbolic execution to execute programs
on un-initialized inputs and it uses model checking to
systematically explore the program paths and to report
counter-examples that are guaranteed to be feasible. We
use abstractions to compute under-approximations of the
feasible program behaviors, hence counter-examples to
safety properties are preserved. Our abstractions encode
information about the shape of the program heap (as in
shape analysis) and the constraints on the numeric data.

We build upon our previous work where we proposed
a combination of symbolic execution and model checking
for analyzing programs with complex inputs [18, 23]. In
that work we put a bound on the input size and (or) the
search depth of the model checker. Here we look beyond
bounded model checking and we study state matching
techniques to limit the state space search. We propose
a technique for checking when a symbolic state is sub-

2 Saswat Anand et al.: Symbolic Execution with Abstraction

sumed by another symbolic state. The technique han-
dles un-initialized, or partially initialized, data struc-
tures (e.g. linked lists or trees) as well as arrays. Con-
straints on numeric program data are handled with the
help of an off-the-shelf decision procedure. Subsumption
is used to determine when a symbolic state is revisited,
in which case the model checker backtracks, thus prun-
ing the state space search.

Even with subsumption, the number of symbolic states
may still be unbounded. We therefore define abstraction
mappings to be used during state matching. More pre-
cisely, for each explored state, the model checker com-
putes and stores an abstract version of the state, as speci-
fied by the abstraction mappings. Subsumption checking
then determines if an abstract state is being revisited.
This effectively explores an under-approximation of the
(feasible) paths through the program. We illustrate sym-
bolic execution with abstract subsumption checking for
singly linked lists and arrays. Our abstractions are sim-
ilar to the ones used in shape analysis: they are based
on the idea of summarizing heap objects that have com-
mon properties, for example, summarizing list elements
on unshared list segments not pointed to by local vari-
ables [22].

To the best of our knowledge, this is the first time
shape abstractions are used in software model checking,
with the goal of error detection. We summarize our con-
tributions as follows:

– Method for comparing symbolic states, which takes
into account uninitialized data. The method handles
recursive structures, arrays and constraints on nu-
meric data. The method is incorporated in our frame-
work that performs symbolic execution during model
checking.

– Abstractions for lists and arrays that encode the shape
of the heap and the numeric constraints for the data
stored in the summarized objects.

– Implementation in the Java PathFinder tool and ex-
amples illustrating the application of the framework
on Java programs.

1.1 Related Work

Our work follows a recent trend in software model check-
ing, which proposes under-approximation based abstrac-
tions for the purpose of falsification [4, 5, 16, 25]. These
methods are complementary to the usual over-approximation
based abstraction techniques, which are geared towards
proving properties. There are some important differences
between our work and [4, 5, 16, 25]. The works pre-
sented in [16, 25] address analysis of closed programs,
not programs with inputs as we do here, and use ab-
straction mappings for state matching during concrete
execution, not symbolic execution. Moreover, the ap-
proaches presented in [16,25] do not address abstractions
for recursive data structures and arrays. The approach

presented in [4, 5] uses predicate abstraction to com-
pute under-approximations of programs. In contrast, we
use symbolic execution and shape abstractions with the
goal of error detection. And unlike [4, 5] and also over-
approximation based predicate abstraction techniques,
which require the a priori computation of the abstract
program transitions, regardless of the size of the reach-
able state space, our approach uses abstraction only dur-
ing state matching and it involves only the reachable
states under analysis.

In previous work [24] we developed a technique for
finding guaranteed feasible counter-examples in abstracted
Java programs. That work addresses simple numeric ab-
stractions (not shape abstractions as we do here) and it
did not use symbolic execution for program analysis.

Program analysis based on symbolic execution has
received a lot of attention recently, e.g. [12,19,28] - how-
ever all these approaches don’t address state matching.
Symstra [30] uses symbolic execution over numeric data
and subsumption checking for test generation; we gener-
alize that work with subsumption for un-initialized com-
plex data; in addition, we use abstraction to further re-
duce the explored symbolic state space.

The works in [22, 31] propose abstractions for singly
linked lists that are similar to the one described in this
paper; however, unlike ours, these abstractions don’t ac-
count for the numeric data stored in the summarized
list elements. Recent work for summarizing numeric do-
mains [13,14] addresses that in the context of arrays and
recursive data structures. The work presented in [8] pro-
poses to use predicate abstraction based model checking
to programs that manipulate heap structures. However,
these approaches use over-approximation based abstrac-
tions and it is not clear how to generate feasible counter-
examples that expose errors.

1.2 Paper Layout

The rest of the paper is organized as follows. In the next
section we give some background on the Java PathFinder
model checker and its symbolic execution capability. Sec-
tion 3 illustrates our approach on an example. Section 4
presents our algorithm for checking subsumption between
symbolic states and Section 5 describes a general model
checking procedure that uses symbolic execution with
(abstract) subsumption checking. Section 6 describes ab-
stractions for lists and arrays, Section 7 illustrates the
application of the presented technique to two non-trivial
examples containing lists and arrays and Section 8 con-
cludes the paper.

2 Background

Java PathFinder JPF [17,29] is an explicit-state model
checker for Java programs that is built on top of a custom-
made Java Virtual Machine (JVM). By default, JPF

Saswat Anand et al.: Symbolic Execution with Abstraction 3

counterexample(s)/test suite
[heap + path condition + thread scheduling]

path condition (data)

heap configuration

thread scheduling

 Model
checkingprogram

 source
instrumentation

Code
 program
instrumented state

procedures
Decision

specification
correctness

continue/backtrack

Fig. 1. Symbolic Execution in Java PathFinder.

stores all the explored states, and it backtracks when
it visits a previously explored state. Alternatively, the
user can customize the search (by forcing the search to
backtrack on user-specified conditions) and it can spec-
ify what part of the state (if any) to be stored and used
for matching. We used these features to implement (ab-
stract) subsumption checking.

2.1 Symbolic Execution in Java PathFinder

Symbolic execution [20] allows one to analyze programs
with unknown inputs. The main idea is to use symbolic
values, instead of actual (concrete) data, as input values
and to represent the values of program variables as sym-
bolic expressions. As a result, the outputs computed by
a program are expressed as a function of the symbolic
inputs.

The state of a symbolically executed program in-
cludes the (symbolic) values of program variables, a path
condition (PC) and a program counter. The path condi-
tion accumulates constraints which the inputs must sat-
isfy in order for an execution to follow the corresponding
path.

In previous work [18, 23], we extended JPF to per-
form symbolic execution for Java programs. The ap-
proach handles recursive data structures, arrays, numeric
data and concurrency. The approach is illustrated in Fig-
ure 1. Programs are transformed to enable JPF to per-
form symbolic execution – concrete types are replaced
with corresponding symbolic types and concrete oper-
ations, such as arithmetic and logical operations, are
replaced with calls to methods that implement corre-
sponding operations on symbolic expressions1. The path
condition is updated at every branch statement in the
program that compares symbolic values of program vari-
ables. Whenever the path condition is updated, it is
checked for satisfiability using an appropriate decision

1 The interested reader is referred to [1, 18] for a detailed de-
scription of the code transformation.

procedure. In this work, we used the Omega library [26]
for linear integer constraints, but other decision proce-
dures can also be used [3]. If the path condition is unsat-
isfiable, the model checker backtracks. Note that if the
satisfiability of the path condition cannot be determined
as the problem of checking satisfiability is undecidable
in general, the model checker still backtracks. Therefore,
the model checker explores only feasible program behav-
iors, and all counterexamples to safety properties are
preserved.

As described in [18], the approach is used for find-
ing counterexamples to safety properties and for test
input generation. For every counterexample, the model
checker reports the input heap configuration (encoding
constraints on reference fields and array elements), the
numeric path condition (and a satisfying solution), and
thread scheduling, which can be used to reproduce the
error.

2.2 Lazy Initialization

Symbolic execution for complex data uses lazy initial-
ization. The execution of a method that takes struc-
turally complex inputs starts with inputs that have un-
initialized fields of reference types. These fields are ini-
tialized lazily when they are first accessed during the
method’s symbolic execution. This allows symbolic exe-
cution of methods without requiring an a priori bound
on the size of the structure of input.

When the execution accesses an un-initialized refer-
ence field, the framework nondeterministically initializes
the field to

– null, or
– a reference to a new object with uninitialized fields

of reference types, or
– a reference of an object created during a prior field

initialization

This systematically accounts for all possible aliasing that
may exist in the input structure. If a new object is cre-

4 Saswat Anand et al.: Symbolic Execution with Abstraction

class Node {
int elem ;
Node next ; . . .

Node f i nd (int v){
1 : Node n = this ;
2 : while (n != null){
3 : i f (n . elem > v)

return n ;
4 : n = n . next ;

}
5 : return null ;

}}

Fig. 2. Example illustrating symbolic execution with abstract sub-
sumption checking

ated, and it has a field of primitive type then the field is
assigned an symbolic value of appropriate type.

Arrays are handled in a similar way. During symbolic
execution, an array is represented by a pair consisting
of a symbolic value representing array’s length and an
association list of array cells. Each cell in the list con-
sists of a symbolic integer representing the cell’s index
in the array and a symbolic value representing the value
stored in the corresponding index in the array. When an
array element is accessed (during read or write to the
array), the framework non-deterministically chooses an
array cell, which may be (1) a new cell that is created
and added to the list, or (2) an existing cell from the
list. The path condition is updated to encode the fact
that index of the chosen cell equals to the index that
was accessed. If the updated path condition becomes in-
feasible on any of the paths, that path is not explored. If
the array access involves reading an element, the value
of chosen cell is returned. Otherwise, if the access in-
volves updating an element, the value of the chosen cell
is updated appropriately. The fact that an array is rep-
resented as a list (linked list in particular) enables us
to apply state matching algorithms (with and without
abstractions) developed for linked lists to arrays with
minor modifications.

Method preconditions are used during lazy initializa-
tion to ensure that the method is executed only on valid
inputs – if the input structure violates the precondition,
the model checker backtracks.

3 Example

We illustrate symbolic execution with abstract subsump-
tion checking on the example from Figure 2. Class Node
implements singly-linked lists of integers; fields elem and
next represent, respectively, the node’s value and a ref-
erence to the next node in the list. Method find returns
the first node in the list whose elem field is greater than
v. Let us assume for simplicity that the method has as

precondition that the input list (pointed to by this) is
non-empty and acyclic. We check if null pointer excep-
tions can be thrown in this program.

Figure 3 illustrates the paths that are generated dur-
ing the symbolic execution of method find (we have
omitted some intermediate states). Each symbolic state
consists of a heap structure and the path condition (PC)
accumulated along the execution path. A “cloud” in the
figure indicates that the segment of the list pointed to by
the next field is not yet initialized. The heap structures
represent constraints on program variables and reference
fields, e.g. the structure in s1 represents all the lists that
have at least one (non-null) element such that n points
to the head of the list.

Branching corresponds to a nondeterministic choice
that is made at branch points in the program that com-
pare symbolic values, or to handle aliasing, during lazy
initialization. For example, when the numeric condition
at line 3 is executed symbolically execution splits into
two paths leading to states s2 and s3 corresponding to
each possible outcome of the condition’s evaluation. As
mentioned, branching is also introduced by lazy initial-
ization. For example, at line 4, the next field of the Node
object pointed to by n in state s2 is accessed for the
first time. So the field is initialized to take into account
all possible aliasing relationships in the input: on one
branch (leading to state s4), the “cloud” is replaced with
a new node, whose next field points to a “cloud”, while
on the other branch (leading to s5), the cloud is replaced
with null. Note that if we did not impose the precondi-
tion that the input list is acyclic, there would have been
a third branch corresponding to next pointing to the
object pointed to by n.

For this example, the (symbolic) state space is infi-
nite – the number of times the loop is executed is de-
termined the length of the input linked list. And, the
new states visited by the model checker in this example
cannot be matched with previously visited sates (we de-
fine state matching on symbolic states, or symbolic state
subsumption in section 4). So a model checker with sym-
bolic execution and state matching will not terminate.
However, if we use abstraction, the symbolic state space
becomes finite. The list abstraction summarizes contigu-
ous node segments that are not pointed to by local vari-
ables into a summary node. Since the number of local
variables is finite, the number of abstract heap configu-
rations is also finite. For the example, two nodes in state
s12 are mapped to a summary node. As a result, the ab-
stract state is subsumed by previously stored state s8, at
which point the model checker backtracks. The analysis
terminates reporting that there are no null pointer ex-
ceptions. Note that due to abstract matching, the model
checker might miss feasible behaviors. However, for this
example, the abstraction is in fact exact – there is no
loss of precision due to abstraction (all the successors of
s12 are abstracted to states that are subsumed by the
states depicted in Figure 3).

Saswat Anand et al.: Symbolic Execution with Abstraction 5

n

n

n

n

n

n

n

n

n

n

this nextnext

nextnext
this

this

this

PC: true

next

next
this

next

this next next next

this
next

nextnext next nextthis
null

n

next next nextthis

next next next

n

this next next nextthis

n

next null

next

nullnext next

this

this

Summary

}

}at line 3
Update PC

Initialize next
at line 4

Matched

v2v1

v1 v2

v1

v1

v1 v2 v3

v1

v4v2v1 v2
v1 v3

v1
v2 v3

v1 v2 v3

v1

v1

v2

v2v1

s6

PC: v1 ≤ v ∧ v2 ≤ v

s4 PC: v1 ≤ v

s1

PC: v1 ≤ v ∧ v2 > v

PC: v1 > v

v3

PC: v1 ≤ v ∧ v2 ≤ v ∧ v3 > v

s2 PC: v1 ≤ v

s7

s12

PC: v1 ≤ v ∧ v2 ≤ v

s10

s8

s11

PC: v1 ≤ v ∧ v2 ≤ v

s9

PC: v1 ≤ v

s3

s5

PC: v1 ≤ v ∧ v2 ≤ v ∧ v3 ≤ v PC: v1 ≤ v ∧ v2 ≤ v ∧ v3 ≤ v

s13

PC: v1 ≤ v ∧ v2 ≤ v ∧ v3 ≤ v

Fig. 3. State space generated during symbolic execution of find (excerpts)

4 Subsumption of Symbolic States

In this section we describe a method for comparing sym-
bolic states. This method is used in our framework for
state matching, during symbolic execution. The method
is also used for comparing abstracted symbolic states as
described in Section 6.

Symbolic states represent multiple concrete states,
therefore state matching involves checking subsumption
between states. Intuitively, a symbolic state s1 subsumes
another symbolic state s2, if the set of concrete states
represented by s1 is a superset of the set of concrete
states represented by s2.

4.1 Symbolic State Representation

A symbolic state s consists of a symbolic heap H, the
valuation of the primitive typed fields, the path condi-
tion PC and the program counter. The symbolic state
also contains the thread scheduling information, which
we ignore here for simplicity. Heaps may be partially ini-
tialized, and are assumed to be free of garbage objects.

Definition 1. A symbolic heap H is a graph repre-
sented by a tuple (N, E).

6 Saswat Anand et al.: Symbolic Execution with Abstraction

N is the set of nodes in the graph, where each node
corresponds to a heap object or to a reference variable
in the program. N = NO ∪R ∪ {null, uninit}2 where:

– null and uninit are distinguished nodes that represent
respectively, null and uninitialized objects.

– NO is the set of nodes representing non-null initial-
ized heap objects.

– R is the set of of nodes, each of which represent a
reference variable in the program, and is referred to
as root of the heap.

E is the set of edges in H such that E = EF ∪ ER

where:

– F denotes the set of fields of reference types in the
program. And, EF ⊆ (NO × F × (N \ R)) represent
field edges. An edge (n1, f, n2) ∈ EF denotes that
field f of the object represented by n1 points to the
object represented by n2.

– ER ⊆ (R× (NO ∪ {null})) represent points-to edges.
An edge (r, n1) ∈ ER represents the fact that refer-
ence variable r points to the object represented by
n1.

Note that there can be at most one outgoing edge
per field from a node. By symbolic heap, we mean a
heap that has uninit nodes. A symbolic heap represents
a potentially infinite number of concrete heaps through
the uninit node. We treat a concrete heap as a special
symbolic heap that does not contain uninit nodes. In
rest of the paper, symbolic heaps (e.g., H1, H2, etc.)
represent the heap of the analyzed program, and thus
have the same F and R sets that represent the set of
fields and reference variables in the program respectively.

Definition 2. We define a partial order ≤ over sym-
bolic heaps, such that H1 ≤ H2 iff there exists a injec-
tive (total) function µ : NH2

O → NH1
O such that for nodes

x, y ∈ NH2
O , f ∈ F , and v ∈ R, following conditions hold:

1. (x, f, y) ∈ EH2
F ⇔ (µ(x), f, µ(y)) ∈ EH1

F

2. (x, f, null) ∈ EH2
F ⇔ (µ(x), f, null) ∈ EH1

F

3. (v, x) ∈ EH2
R ⇔ (v, µ(x)) ∈ EH1

R

Intuitively, H2 ≤ H1 if there is a subgraph of H1 con-
taining all nodes pointed to by the nodes in R, which is
isomorphic to H2 modulo all uninit nodes and all edges
incident on them. We say a concrete heap Hc is repre-
sented by a symbolic heap Hs iff Hc ≤ Hs.

Definition 3. A symbolic heap H2 subsumes a sym-
bolic heap H1, denoted by H1 v H2, iff the set of con-
crete heaps represented by a H2 contains all concrete
heaps represented by H1. Formally, H1 v H2 ≡ ∀Hc. Hc ≤
H1 ⇒ Hc ≤ H2.

Corollary 1. H1 v H2 ≡ H1 ≤ H2.

2 without loss of generality, we assume that the sets N0, R, and
{null,uninit} are mutually disjoint.

As mentioned, a symbolic state also includes the val-
uation for the primitive typed fields, e.g, elem field in
Figure 2, (described later in this section) and the pro-
gram counter. We check subsumption only for states that
have the same program counter. Checking subsumption
involves checking (1) subsumption for heap shape and
(2) valid implication between the state constraints on the
the symbolic states. While checking for shape subsump-
tion, only the structure of the heap is considered (the
symbolic values of primitive type fields are ignored). The
symbolic values of the primitive typed fields are taken
into account while checking implication between state
constraints.

4.2 Subsumption of Heap Shapes

Data: Heaps H1 = (NH1 , EH1), H2 = (NH2 , EH2)
Result: true if H2 subsumes H1, false otherwise. Also

builds labeling l for matched nodes.
l : (NH1

O ∪NH2
O) → L ∪ {nolbl}, where L is a

set of labels {l1, l2, l3...}.
begin1

for n ∈ NH1
O ∪NH2

O do l(n) := nolbl;2

wl1 := mklist({n such that (r, n) ∈ EH1
R });3

wl2 := mklist({n such that (r, n) ∈ EH2
R });4

while wl2 is not empty do5

if wl1 is empty then return false;6

n1 := remove(wl1), n2 := remove(wl2);7

if n2 = uninit then continue;8

if n1 = uninit then return false;9

if n1 = null ∧ n2 = null then continue;10

if n1 = null ∨ n2 = null then return false;11

if (l(n2) 6= nolbl ∨ l(n1) 6= nolbl) then12

if l(n2) 6= l(n1) then return false;13

continue;14

end15

l(n2) := l(n1) := new unique label();16

add (wl1, succs (n1));17

add (wl2, succs (n2));18

end19

if wl1 is not empty then return false;20

return true;21

end22

Algorithm 1: Subsumption for Heap Shape

In order to check if a program state s2 subsumes
another program state s1, we first check if the heap shape
H2 of s2 subsumes the heap shape H1 of s1. Intuitively,
H2 subsumes H1 if H2 is “more general” (i.e., represents
more concrete heap shapes) than H1. Subsumption for
heap shape is checked by Algorithm 1.

The algorithm traverses the two heap graphs at the
same time, in the same order, starting from the roots
(nodes in R) and trying to match the nodes in the two
structures. For simplicity, we consider here a depth first

Saswat Anand et al.: Symbolic Execution with Abstraction 7

search traversal. We impose an ordering on the reference
variables and the heap graph is traversed from each of
the roots in that order. The algorithm maintains two
work lists wl1 and wl2 to record the visited nodes; The
lists are initialized (through call to mklist) to an or-
dered list of heap objects pointed to by the variables in
R. remove and add are list operations that remove the
first element and add an element to the end of the list,
respectively. We also impose an ordering on the fields of
reference type from F . So the successors of a node n,
n ∈ NO, can be ordered by the order on their respective
fields. succs in the algorithm returns the successors of
a node using this ordering.

The algorithm labels the heap nodes during traversal,
such that two matched nodes have the same unique label.
These labels are used for checking state subsumption (as
discussed below). If the algorithm finds two nodes that
cannot be matched, it returns false. Moreover, whenever
an uninitialized H2 node is visited during traversal, the
algorithm backtracks, i.e., successors of the node in H1

that matches this uninitialized node are not added to the
worklist (line 8); the intuition is that an uninitialized
node uninit in H2 can be matched with an arbitrary
subgraph in H1. However, an uninitialized node in H1

can only match an uninitialized node in H2 (line 9), and
a null node in one heap can only match a null node
in the other (lines 10,11). Lines 12-15 ensures that the
matching is one-to-one. In other words, if either of n1 or
n2 is already labeled because it is being revisited, then
both of them must have been visited before and have
same labels.

Note that, if the algorithm returns true, nodes in H1

that are not visited due to matching with uninitialized
nodes have nolbl labels; on the other hand, every node
n, n ∈ NH2

O is visited and thus has a label other than
nolbl.

As an example, Figure 4 illustrates the shapes of sev-
eral tree data structures. The double-headed dotted ar-
rows connect the matched nodes in the structures. In
the left example, the right tree subsumes the left tree.
Whereas, in the right example, there is no subsumption
relation between the two trees.

Theorem 1. If Algorithm 1 returns true and labeling l
for inputs H1 and H2 then H2 subsumes H1.

Proof. (Sketch) Let µ : NH2
O → NH1

O be such that
µ(n2) = n1 iff l(n2) = l(n1). We show that µ satisfies
the conditions in Definition 2, therefore H1 ≤ H2 and,
according to Corollary 1, H1 v H2.

Note that µ is injective because two nodes in NH2
O

can not have the same label (line 16 in Algorithm 1).
Moreover, µ is total: all nodes in NH2

O are labeled (since
Algorithm 1 performs a depth first search traversal of
H2 and it returns true only when wl2 is empty).

We consider two cases:

– Let (r, n2) ∈ EH2
R and (r, n1) ∈ EH1

R . The successors
of r are added in the same order to wl2 and wl1

respectively. Therefore n2 and n1 are removed at the
same time from wl2 and wl1 respectively at line 7.
Therefore, either n2 = n1 = null (line 10) or l(n2) =
l(n1) (line 14 or 16) or n2 = uninit (line 8) (in any
other case, Algorithm 1 returns false).

– Let (n2, f, n′2) ∈ EH2
F and (n1, f, n′1) ∈ EH1

F such that
l(n2) = l(n1). Since n1 and n2 have the same label,
it follows that their label was assigned in line 16 of
the algorithm, their successors are added in the same
order to wl1 and wl2, therefore n′2 and n′1 are removed
from wl2 and wl1 respectively at line 7. Therefore,
similar to the above, either n′2 = n′1 = null (line 10)
or l(n′2) = l(n′1) or n′2 = uninit (line 8).

If H2 subsumes H1 with a labeling l, we write H2 wl

H1. Note that Algorithm 1 works on shapes represented
as graphs that are deterministic, i.e. for each node, there
is at most one outgoing edge for each field f , f ∈ F .
Therefore, the algorithm applies to concrete heap shapes
as well as partially initialized symbolic heap shapes (rep-
resenting, linked lists, trees, etc.). The same algorithm
also works on the abstractions for singly linked lists and
arrays that we present in the Section 6 (since our ab-
stractions preserve the deterministic nature of the heap).

4.3 Checking Subsumption of Numeric Constraints

Shape subsumption is only a pre-requisite of state sub-
sumption: we also need to compare the numeric data
stored in the symbolic states. In symbolic execution, the
state contains symbolic values instead of concrete values
for numeric variables and fields. The path condition of
the state encodes constraints on these symbolic values.
Due to the symbolic values, each symbolic state may rep-
resent a potentially infinite number of concrete states.

Let primfld(n) denote all the fields of node n that
have primitive types. For the purpose of this paper, we
consider only integer types, but other primitive types
can be handled similarly, provided that we have appro-
priate decision procedures. And let vs(n, f) denote the
(symbolic) value stored in the integer field f of node n
in state s.

Definition 4. The valuation of a node n ∈ NO in state
s with respect to labeling l : NO → L is a constraint,
defined as:

vals(n, l) :=
∧

f∈primfld(n)

fn(l(n), f) = vs(n, f)

where, fn(label, field) returns a fresh name that is unique
to (label, field) pair.

Definition 5. The state constraint SCl
s of a state s

with heap shape H and path condition PC is defined
as:

SCl := ∃vs.
∧

n∈NH
O s.t.

l(n)6=nolbl

vals(n, l) ∧ PC

8 Saswat Anand et al.: Symbolic Execution with Abstraction

null null

left right

null null

rightleft

null null null nullnull

left right

rightleft

null

rightleft

left

left right

right rightleft

rightleft

unmatchedmatched

v 6v
6w

Fig. 4. Matched and unmatched heap shapes

where l is a labeling l : NH
O → L∪{nolbl} and vs denotes

all the symbolic names that are used in symbolic state
s; this includes both the values stored in the heap and
the values that appear in the path condition.

As an example, consider two symbolic states in Fig-
ure 5, where s1 is subsumed by s2. The matched nodes
from the two heaps have matching labels l1 and l2. The
valuations for the two nodes labeled l1 and l2 in the left-
hand side list are e1 = v1 and e2 = v3 respectively; e1

and e2 are the names computed by the function fn. Sim-
ilarly, valuations for the two nodes with labels l1 and l2
in the right-hand side list are e1 = v1 and e2 = v2 respec-
tively. The state constraint for s1 and s2 are respectively
∃v1, v3, v2 : e1 = v1 ∧ e2 = v3 ∧ v1 < v3 ∧ v3 < v2 and
∃v1, v2, v5 : e1 = v1 ∧ e2 = v2 ∧ v1 ≤ v5 ∧ v5 ≤ v2. Note
that the path conditions may contain symbolic values
that are not stored in the heap (e.g. v5 in s2) according
to the program path that led to the symbolic state.

Definition 6. Let Sol(SCl
s) denote the set of satisfying

solutions for the state constraint SCl
s of state s for a la-

beling l. SCl
s2

subsumes SCl
s1

iff Sol(SCl
s1

) ⊆ Sol(SCl
s2

)
for same labeling l : NH1

O ∪NH2
O → L ∪ {nolbl}.

Since in general, it may be computationally expen-
sive/impossible to enumerate all the solutions of SC1

and SC2 and check for set inclusion, we rather check
SC1 ⇒ SC2, which if valid ensures that Sol(SC1) ⊆
Sol(SC2).

Now we combine the definitions of heap shape sub-
sumption and state constraint subsumption to define
state subsumption as follows:

Definition 7. A state s1 is subsumed by another state
s2 (or s2 subsumes s1) iff H2 wl H1 and SCl

s1
⇒ SCl

s2
.

In the example from Figure 5, as described before,
Algorithm 1 returns true indicating that the heap shape
of s2 subsumes that of s1. Matching nodes from the two
states are labeled with l1 and l2. Notice that the third
node in s1 is not labeled due to the uninit node in s2.
To check for subsumption of state constraints we check

if the implication between the state constraint of s2 and
that of s1 is valid. State constraint of s1 and s2 simplifies
to e1 < e2 and e1 <= e2 respectively. Since e1 < e2 ⇒
e1 <= e2 is valid, s2 subsumes s1.

The complexity for one subsumption step includes
the complexity of heap traversal (O(n) where n is the
size of the heap) and the complexity for checking nu-
meric constraints. While the cost of checking numerical
constraints cannot be avoided, we believe that the cost
of heap traversal can be somewhat alleviated if it is per-
formed during garbage collection. However we need to
experiment further with this idea.

5 Symbolic Execution with (Abstract)
Subsumption Checking

Algorithm 2 illustrates the procedure for performing sym-
bolic execution with (abstract) subsumption checking.
The procedure checks if the input program P can reach
an error state φ from initial state s0. The procedure uses
a depth first search order state exploration and it main-
tains a set of VisitedStates for the states visited so far
and a Stack for storing the states to be explored. The
procedure is similar to “classical” model checking state
exploration, except that the explored states are sym-
bolic, rather than concrete. The path condition on nu-
meric data is checked for satisfiability to ensure explo-
ration of feasible paths.

As discussed, we use state subsumption to determine
if a state was visited before. Performing symbolic exe-
cution and subsumption checking during model check-
ing may yield an unbounded number of symbolic states
space. Therefore, we use abstractions to limit the model
checker’s search space. For each explored symbolic state
s′, the model checker computes an abstract state α(s′),
which is then stored for state comparison. Subsumption
checking is used to compare the abstracted states, to de-
termine if an abstract state is being re-visited. This ef-
fectively explores an under-approximation of the feasible
paths through the program. Therefore, all the reported

Saswat Anand et al.: Symbolic Execution with Abstraction 9

thisthis
next next next next nextv1 v3 v2

valuation : e1 = v1 ∧ e2 = v3

PC : v1 < v3 ∧ v3 < v2

s1 :

v1 v2

valuation : e1 = v1 ∧ e2 = v2

PC : v1 ≤ v5 ∧ v5 ≤ v2

s2 :

l2 :l1 : l1 : l2 :

Fig. 5. State Subsumption

Data: Program P and error state φ
Result: Counterexample if φ is reachable
begin1

add (α(s0), V isitedStates);2

push (s0, Stack);3

while Stack is not empty do4

s := pop (Stack);5

if s = φ then return counterexample;6

foreach transition t enabled in s do7

s′:= successor (s, t);8

if PathCondition(s′) is not satisfiable9

then continue;
if there exists s′′ ∈ V isitedStates s.t. α(s′)10

subsumed by s′′ then continue;
// s’ not subsumed by any of the visited11

states
add (α(s′), V isitedStates);12

push (s′, Stack);13

end14

end15

end16

Algorithm 2: Symbolic Execution with (Abstract)
Subsumption Checking

errors correspond to real errors in the analyzed program.
Note however that the analysis might miss some errors,
due to the imprecision of the abstraction.

6 Abstractions

6.1 Abstraction for Singly Linked Lists

The abstraction that we have implemented is inspired
by [22,31] and it is based on the idea of summarizing all
the nodes in a maximally uninterrupted list segment with
a summary node. The main difference between [22, 31]
and the abstraction presented here is that we also sum-
marize the numeric data stored in the summarized nodes
and we give special treatment to un-initialized nodes.
The numeric data stored in the abstracted list is sum-
marized by setting the valuation for the summary node
to be a disjunction of the valuations of the summarized
nodes. Intuitively, the numeric data stored in a summary
node can be equal to that of any of the summarized
nodes.

Shape subsumption between abstract states is done
by Algorithm 1 as before, which treats summary node
as any other node in the heap. For checking subsump-
tion between numeric constraints, we introduce a new
valuation function for the summary nodes as described
before.

Definition 8. A node n is defined as an interrupting
node, or simply an interruption if n satisfies at least one
of following conditions:

1. n = null
2. n = uninit
3. n ∈ {m such that (r,m) ∈ ER}, i.e., n is pointed to

by at least one reference variable.
4. ∃n1, n2 such that (n1, next, n), (n2, next, n) ∈ EF .

In other words, n is pointed-to by at least two nodes
(cyclic list).

An uninterrupted list segment is a segment of the list
that does not contain an interruption. An uninterrupted
list segment [u, v] is maximal if, (a, next, u) ∈ EF ⇒
a is an interruption and (v, next, b) ∈ EF ⇒ b is an
interruption.

The abstraction for linked list replaces all maximally
uninterrupted list segments in heap H with a summary
node in the abstract state. If [u, v] is a maximally un-
interrupted list segment in H, the following transforma-
tions on H produces its abstract mapping.

1. A new summary node nsum is added to the set of
nodes NH

O .
2. If there is an edge (a, next, u) ∈ EH

F , a new edge
(a, next, nsum) is added to EH

F .
3. If there is an edge (v, next, b) ∈ EH

F , a new edge
(nsum, next, b) is added to EH

F .
4. All nodes m in the list segment [u, v], and all edges

incident on or going out of each m are removed from
H.

Note that the edges between the nodes in the list
segment, which are summarized by a summary node,
are not represented in the abstraction state. With this
abstraction, Algorithm 1 is used to check subsumption
of shapes for abstracted heaps.

In order to check subsumption of numeric constraints,
we define a valuation function for the summary nodes as
follows. Let NS , NS ⊂ NO, denote the set of summary
nodes introduced in the heap during abstraction.

10 Saswat Anand et al.: Symbolic Execution with Abstraction

n
n

this this

Summary

next nextnextnextnext nextnext
v2 v4v2v1

v3v1 v3

l1 : l3 :l2 :

PC: v1 ≤ v ∧ v2 ≤ v

valuation: e1 = v1 ∧ e2 = v2 ∧ e3 = v3 valuation: e1 = v1 ∧ (e2 = v2 ∨ e2 = v3) ∧ e3 = v4PC: v1 ≤ v ∧ v2 ≤ v ∧ v3 ≤ v

l1 : l2 : l3 :

s12s8

Fig. 6. Abstract subsumption between s8 and s12

Definition 9. The “valuation” of a summary node nsum ∈
NS in state s, with respect to labeling l : NO → L is de-
fined as:

vals(nsum, l) :=
∨

t∈sumnodes(nsum)
f∈primflds(t)

fn(l(nsum), f) = vs(t, f)

where, sumnodes(nsum) denotes the set of nodes that are
summarized by nsum.

6.1.1 Example

To illustrate the approach, let us go back to the example
presented in Section 3. Figure 6 depicts the abstract heap
shape and the valuations of matched nodes for state s12.
The abstracted state is subsumed by state s8 as there is
a subsumption of heap shape, as represented by label-
ings of respective matching nodes and a valid implication
between the normalized numeric constraints of the two
states. Note that we don’t explicitly summarize list seg-
ments of size one (e.g. the second list element in s8); the
abstracted and the un-abstracted states for s8 are in fact
the same.

6.1.2 Discussion

Note that the list abstraction ensures that the number of
possible abstract heap configurations is finite; however,
it is still possible to have an infinite number of states
due to the numeric constraints. To address this issue,
we plan to use predicate abstraction in conjunction with
the abstractions presented here, to further abstract the
numeric constraints. This is the subject of future work.
Also note that the focus here is on abstracting heap
structures. Therefore we ignored the numeric values of
local program variables, which may also be unbounded
(they are currently discarded in the abstracted state).
Predicate abstraction can also be used for the local nu-
meric variables.

6.2 Abstraction for Arrays

We extended our framework with subsumption checking
and an abstraction for arrays of integers. The basic idea
is to represent symbolic arrays as singly linked lists and
to apply the (abstract) subsumption checking methods

developed for lists. Specifically, we maintain the arrays
as singly linked lists; nodes in the list represent individ-
ual array cells and their ordering in the list correspond
to the order of indices of array cells they represent. Con-
secutive (initialized) array elements are represented as
linked nodes. Summary nodes are introduced between
array elements that are not consecutive. These summary
nodes model zero or more uninitialized array elements
that may possibly exist in the (concrete) array.

With the list representation of arrays we determine
subsumption of program states with arrays as before.
However, the roots are now integer program variables
that are used to index the array, and the special sum-
mary nodes representing uninitialized array segments are
treated as any other node in the heap NH

O while check-
ing for shape subsumption in Algorithm 1. Abstraction
is applied in a way similar to abstraction for linked lists.
The definition of interruption is extended to contain the
special summary nodes.

We must note that this is only one particular ab-
straction, and there may be others – for example, ab-
stractions based on array representations as ordered se-
quences of updates. We adopt this particular representa-
tion because in this way we can leverage on our abstrac-
tion techniques for lists. Note that subsumption becomes
“approximate”, i.e., we might miss the fact that a state
subsumes another.

6.2.1 Array representation

A symbolic array A is represented by a symbolic value
len representing the array length and an association list
of array cells. Each array cell c is a pair (index, elem):
index is a symbolic value representing the index in the
array and elem is a symbolic value representing the value
stored in the array at position index.

The array cells are stored in a singly linked list which
is sorted according to the relative order of the indices of
the cells. Each list element corresponds to an array cell
in A. Given array cell c, let index(c) and elem(c) denote
the index and the value of c respectively; also let next(c)
denote the cell that is next to c in the list.

The following invariants hold for the list in a program
state with path condition PC.

1. PC ⇒ index(f) >= 0 is valid, where f is the first
cell in the list.

Saswat Anand et al.: Symbolic Execution with Abstraction 11

2. PC ⇒ index(l) < len is valid, where l is the last cell
in the list.

3. PC ⇒ index(c) < index(next(c)) is valid, where c is
an cell other than the last cell in the list.
Note that our framework maintains these invariants

through lazy initialization when array elements are ac-
cessed during symbolic execution. When an array is ac-
cessed with a symbolic index, the framework nondeter-
ministically chooses (1) an existing cell from the list, or
(2) a new cell, which is placed either at the beginning or
end of the list, or between two cells that may not cor-
respond to two consecutive elements of the array. In all
cases the path condition is updated so that the above
invariants hold for the new list. And as usual, if for any
of the cases the updated path condition becomes unsat-
isfiable, the path is not explored.

To be able to check for subsumption between states
containing arrays, we first apply a transformation (Al-
gorithm 3) to the heaps. The transformation introduces
special summary nodes, denoted by n∗, in the lists of
array cells to represent uninitialized array segments. An
array segment may be uninitialized if none of the array
elements in that segment have been accessed so far. Al-
gorithm 3 takes in the heap HA that represents the heap
of the program state containing a list of array cells rep-
resenting an array A, and returns an transformed heap
H ′A that contains additional special summary nodes.
The transformation ensures that if two adjacent array
cell c and next(c) in HA may represent non-consecutive
array elements, then they are separated by a special
summary node in H ′A. On the other hand, if c and
next(c) must represent two consecutive array elements,
they are connected directly by a next link in H ′A (as in
HA). Whether two adjacent array cells c and next(c)
in HA may represent non-consecutive array elements
is determined by checking whether PC ⇒ index(c) =
index(next(c)) − 1 is invalid; The formula is invalid if
there exists some solution of PC that does not satisfy
the constraint index(c) = index(next(c))−1, indicating
that for that particular solution, indices of array cells
c and next(c) are not consecutive. The transformation
also ensures that if the first(last) cell in HA may not
represent the first(last) element of the array A, a special
summary node is added before(after) the cell in H ′A. If
PC ⇒ index(f) = 0 is invalid, then it indicates that
the first array cell f may not represent the first element
of the array. Similarly, if PC ⇒ index(l) = len − 1 is
invalid, then it indicates that the last cell l may not
represent the last element of the array.

While checking for heap shape subsumption (Algo-
rithm 1), the heap is traversed from the elements of R;
each of which represents an reference-type variable in
the program. However, with arrays elements of R may
also represent integer-type program variables that index
into an array. Formally, let I denote the set of integer-
type program variables that index into an array, and
vs(i), i ∈ I denote the (symbolic) value of i in state s.

Data: Sorted linked list HA = (N, E) representing
array A

Result: Sorted linked list H ′A = (N ′, E′) that
contains additional summary nodes
representing uninitialized consecutive array
elements

begin1

foreach c in NO do2

add c to N ′
O;3

if c is the first element in HA ∧4

PC ⇒ index(c) = 0 is invalid then
add a special summary node n∗ before c in5

H ′A;
end6

if c is the last element in A ∧7

PC ⇒ index(c) = len− 1 is invalid then
add a special summary node n∗ after c in8

H ′A;
else9

next(c) := cell following c in A;10

if PC ⇒ index(c) = index(next(c))− 1 is11

invalid then
add a special summary node n∗ after c12

in A′;
end13

end14

end15

end16

Algorithm 3: Building sorted linked lists representing
symbolic arrays

Along with nodes representing reference-type (including
array-type) variables, now the heap also contains one
node for each variable i in I such it points to array cell
c if vs(i) = index(c); R contains all such nodes, and
as before, an arbitrary ordering on the elements of R is
imposed for the traversal in Algorithm 1.

Abstraction over arrays is very similar to the one
used for lists. It summarizes maximally uninterrupted
segments corresponding to consecutive array elements.
However, the definition for an interruption is slightly
different, as it considers the special summary nodes in-
troduced by Algorithm 3 as interruptions. Furthermore,
we do not have to take into account heap shared nodes
as in case of linked lists because arrays are represented
by acyclic linked lists.

Definition 10. A node c in is an interruption if c = n∗,
or c = null, or c is pointed to by a root r ∈ R.

Abstraction involves replacing all uninterrupted seg-
ments with a summary node (similar to list abstraction).

6.2.2 Example

Consider the symbolic array in Figure 7 (a); v0..v5 are
symbolic values stored in the initialized array elements.
The concrete values 0..3 and the symbolic values j and

12 Saswat Anand et al.: Symbolic Execution with Abstraction

lo hi

hilo

a

a

3

a:

n0 1 2 j

(a) Symbolic array:

lo hi

(b) List representation:

(c) Abstraction:

v3v1v0 v2 v4 v5

Path condition: 3 < j < len ∧ n = len − 1

v0 v1 v2 v3 v4 v5**
v0 v3 v4 v5**{v1, v2}

Fig. 7. A symbolic array (a), its list representation (b) and its abstraction (c)

n are array indices. Note that j and n are constrained
by the path condition; len is a symbolic value represent-
ing the array length. Local program variables lo and hi
are used to index the array. Figure 7 (b) shows the list
representation for the symbolic array. The list is sorted
according to the relative order of indices. The first four
array elements are represented by nodes that are directly
connected, because they represent consecutive array el-
ements from indices 0 to 3. However, the 5th array ele-
ment (containing value v4) is separated from the other
nodes a summary node (marked with a “*”) on each side;
it represents the fact that there may exist array elements
before and after this element (i.e., between this element
and the element with value v3 and similarly, between
this element and the element with value v5), but have
not been accessed so far during execution. Figure 7 (c)
shows the abstracted list. The special summary nodes
n∗ and the nodes pointed to by nodes representing the
program variables a, lo, hi are considered as interrup-
tions. And thus, the second and third nodes of the list in
(b) form a maximally uninterrupted segment and hence
is summarized into a new node that is constrained to
store a value that may be equal to the contents of either
of the summarized nodes (i.e., v1 or v2).

6.3 Abstraction for General Data Structures

Our approach can be extended to more general data
structures, e.g. by using an abstraction that is similar
to the list abstraction. The idea again is to summarize
all uninterrupted heap segments into summary nodes,
where an interruption is one of the following:

– a node pointed to by a reference variable
– a node that is heap shared (i.e., a node that is pointed

to by at least two other nodes)
– a node that represents null or uninit

As mentioned, the list abstraction that we use pre-
serves the deterministic nature of the heap; therefore

we can use Algorithm 1 for checking subsumption for
abstract heap structures. However, this may not hold in
general for other abstractions. For example, consider the
abstraction of a tree structure. Each selector field of a
summary node can now have a set of values (instead of
only one) representing multiple outgoing heap edges. To
address this issue, Algorithm 1 can be extended to sup-
port set of values of each selector field of summary nodes
(i.e., by comparing the set sizes and by fixing an order for
each set). This will yield a conservative approximation
of subsumption checking: Algorithm 1 may fail to deter-
mine that a structure is in fact subsumed by another.
We leave this extension for our future work. In future,
we also plan to study the decidability of subsumption
checking for more general heap abstractions (e.g., [21])
and extend our approach to these cases.

7 Experiments

We have implemented (abstract) subsumption checking
on top of the symbolic execution framework implemented
in JPF; the implementation uses the Omega library as a
decision procedure. We applied our framework for error
detection in two Java programs, that manipulate lists
and arrays respectively.

The first program, shown in Fig. 8(a), is a list parti-
tion taken from [9]. The method takes as input an acyclic
linked list l and an integer v and it removes all the nodes
whose elem fields are greater than v; the removed ele-
ments are stored in a new list, which is pointed to by
newl. A post-condition of the method is that each ele-
ment in the list pointed to by l after method’s execution
must be less than or equal to v. We introduced a bug in
the program so that the post-condition is not satisfied
for the buggy program. The bug is activated by uncom-
menting the line L1.

In order to apply symbolic execution, we first instru-
mented the code, as shown in Fig. 8(b). Concrete types

Saswat Anand et al.: Symbolic Execution with Abstraction 13

class Node{
Node next ;
int elem ;
. . .

}

Node p a r t i t i o n (Node l , int v){
Node curr , prev , newl , nextCurr ;
prev = newl = null ;
cur r = l ;
while (curr != null){

nextCurr = curr . next ;
i f (curr . elem > v){

i f (prev != null)
L1 : // i f (nextCurr != nu l l) // bug

prev . next=nextCurr ;
i f (curr == l) l = nextCurr ;
curr . next=newl ;
newl = curr ;

}
else prev = curr ;
curr = nextCurr ;

}
check () ;
return l ;

}
(a) Original code

class SymNode{
SymNode next ;
Express ion elem ;
. . .

}

SymNode p a r t i t i o n (SymNode l , Express ion v){
SymNode curr , prev , newl , nextCurr ;
prev = newl = null ;
cur r = l ;
while (curr != null){

Ver i fy . i g n o r e I f (ifSubsumed (1)) ;
nextCurr = curr . g e t next () ;
i f (curr . ge t e l em () . GT(v)){

i f (prev != null)
L1 : // i f (nextCurr != nu l l) // bug

prev . s e t n ex t (nextCurr) ;
i f (curr == l) l = nextCurr ;
curr . s e t n ex t (newl) ;
newl = curr ;

}
else prev = curr ;
curr = nextCurr ;

}
symCheck () ;
return l ;

}
(b) Instrumented code

Fig. 8. List Partition Example.

are replaced with symbolic types (library classes that
we provide), and concrete operations are replaced with
method calls that implement equivalent symbolic opera-
tions. For example, classes SymList and SymNode imple-
ment symbolic Lists and Nodes respectively, while class
Expression supports manipulation of symbolic integers.

Method ifSubsumed checks for state subsumption.
It takes an integer argument that denotes the program
counter, and it returns true only if the current program
state is subsumed by a state which was observed be-
fore at that program point. If ifSubsumed returns true,
then the model checker backtracks (as instructed by the
Verify.ignoreIf method); otherwise, the current state
is stored for further matching and the search continues.
check() and its symbolic version symCheck() checks if
the method’s post-condition is satisfied.

Symbolic execution with abstract subsumption check-
ing discovers the bug and it reports a counterexample of
10 steps, for an input list that has two elements, such
that the first element is ≤ v, and the second element is
> v.

The second program, shown in Fig. 9(a), is an ar-
ray partition taken from [4]. It is a buggy version of the
partition function used in the QuickSort algorithm, a
classic example used to study test generation. The func-
tion permutes the elements of the input array so that

the resulting array has two parts: the first part contains
values that are less than or equal to the chosen pivot
value a[0]; while the second part has elements that are
greater than the pivot value. There is an array bound
check missing in the code at line L2 that can lead to
an array bounds error. The corresponding instrumented
code is shown in Fig. 9(b) – class SymbolicIntArray im-
plements symbolic arrays of integer, while ArrayIndex
implements symbolic integers that are array indexes.

Symbolic execution with abstract subsumption check-
ing reports a counterexample of 30 steps, for an input
array that has four elements.

We also analyzed the corrected versions of the two
partition programs to see whether symbolic execution
with abstract subsumption checking terminates when
the state-space is infinite, which is the case for the two
programs. The state-exploration indeed terminates with-
out reporting any error. For the list partition the analysis
checked subsumption 23 times of which 11 states were
found to be subsumed (12 unique states were stored).
For the array partition the respective numbers were: 30
checks, with 17 subsumed and 13 states stored. This
demonstrates the effectiveness of the abstractions in lim-
iting the state space. We should note that subsumption
checking without abstraction is not sufficient to limit the
state space. This is in general the case for looping pro-

14 Saswat Anand et al.: Symbolic Execution with Abstraction

void pa r i t i o n (int [] a , int l en){
int tmp , p ivot ;
int l o ;
int hi ;
//assume (n > 2) ;
pivot = a [0] ;
l o = 1 ;
h i = n−1;
while (l o <= hi){

L2 : // wh i l e (a [l o] <= p i v o t) // bug
while (l o <= hi &&

a [l o] <= pivot){ // f i x
l o++;

}
while (a [h i] > pivot){

hi−−;
}
i f (l o < hi){

tmp = a [h i] ;
a [h i] = a [l o] ;
a [l o] = tmp ;

}
}

}
(a) Original code

class ArrayCel l {
Express ion index ;
Express ion elem ;
. . .

}
class ArrayIndex{

ArrayCel l c e l l ;
Express ion index ;
. . .

}
class SymbolicArray{

LinkedLis t v ; // l i s t o f array c e l l s
Express ion l ength ;

}
void pa r t i t i o n (SymbolicIntArray a , Express ion l en){

Express ion tmp , p ivot ;
ArrayIndex l o = new ArrayIndex (” l o ”) ;
ArrayIndex h i = new ArrayIndex (” h i ”) ;
Ver i f y . i g n o r e I f (n . LE (2)) ;
p ivot = a . get (0) ;
l o . a s s i gn (new IntegerConstant (1)) ;
h i . a s s i gn (n . minus (1)) ;
while (l o . index () . LE(h i . index ())) {

Ver i fy . i g n o r e I f (ifSubsumed (1)) ;
L2 : // wh i l e (a . g e t (l o) . LE(p i v o t)){ // bug

while (l o . index () . LE(h i . index ()) &&
a . get (l o) . LE(p ivot)){ // f i x

Ver i fy . i g n o r e I f (ifSubsumed (2)) ;
l o . a s s i gn (l o . index () . p l u s (1)) ;

}
while (a . get (h i) . GT(p ivot)){

Ver i fy . i g n o r e I f (ifSubsumed (3)) ;
h i . a s s i gn (h i . index () . minus (1)) ;

}
i f (l o . index () . LT(h i . index ())) {

Express ion tmp = a . get (h i) ;
a . s e t (hi , a . get (l o)) ;
a . s e t (lo , tmp) ;

} } } }
(b) Instrumented code

Fig. 9. Array Partition Example

grams. Although in theory, we should check for subsump-
tion at every program point to get maximum savings, it
may be very expensive.

In all our experiments, we checked for subsumption
inside every loop only once, before the body of the loop
is executed. The idea is similar to the use of cutpoints in
deductive verification of programs [10].

We should note that these simple preliminary exper-
iments show only the feasibility of the approach. A lot
more experimentation and engineering is needed to be
able to assess the merits of the approach on realistic
programs. We should note however that even for such
small examples, traditional testing methods would not
discover the errors easily (e.g. a test-suite which gives

100% statement, or branch coverage might not be able
to detect the errors).

8 Conclusion

We described a state space exploration approach that
uses symbolic execution and subsumption checking for
the analysis of programs that manipulate heap struc-
tures and arrays. The approach explores only feasible
program behaviors. We also defined abstractions for lists
and arrays, to further reduce the explored symbolic state
space. We implemented the approach in the Java PathFinder
tool and we applied it for error detection in Java pro-
grams.

Saswat Anand et al.: Symbolic Execution with Abstraction 15

The approach presented here is complementary to
over-approximation abstraction methods and it can be
used in conjunction with such methods, as an efficient
way of discovering counter-examples that are guaranteed
to be feasible. We view the integration of the two ap-
proaches as an interesting topic for future research. For
the future, we plan to investigate how/if our approach
extends to other shape abstractions and to use predi-
cate abstraction for the numeric program data. We also
plan to use our technique for systematic generation of
complex test inputs (similar to [18]) and to characterize
when there is loss of precision introduced by abstraction,
for automatic abstraction refinement (similar to [25]).
Moreover we plan to investigate the use of subsumption
checking for compositional analysis of large programs.
The presented abstractions were used in the context of
falsification; however, we believe that they have merit
in the context of verification - this could be achieved by
storing the abstracted state and starting the symbolic
execution from this abstracted state.

9 Acknowledgements

The first author was partially funded by NSF awards
CCF-0429117 and CCF-0306372 to Georgia Institute of
Technology during this work.

References

1. S. Anand, A. Orso, and M. J. Harrold. Type-dependence
analysis and program transformation for symbolic execu-
tion. In Proc. TACAS, pages 117–133, 2007.

2. S. Anand, C. S. Pasareanu, and W. Visser. Symbolic
execution with abstract subsumption checking. In Proc.
SPIN, pages 163–181, 2006.

3. S. Anand, C. S. Pasareanu, and W. Visser. JPF-SE:
A symbolic execution extension to Java Pathfinder. In
Proc. TACAS, pages 134–138, 2007.

4. T. Ball. A theory of predicate-complete test coverage
and generation. MSR-TR-2004-28, 2004.

5. T. Ball, O. Kupferman, and G. Yorsh. Abstraction for
falsification. In Proc. CAV, pages 67–81, 2005.

6. T. Ball and S. K. Rajamani. The SLAM toolkit. In Proc.
CAV, pages 260–264, 2001.

7. S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith.
Modular verification of software components in C. ACM
Trans. Computer Systems, 30(6):388–402, 2004.

8. D. Dams and K. S. Namjoshi. Shape analysis through
predicate abstraction and model checking. In Proc. VM-
CAI, pages 310–324, 2003.

9. C. Flanagan and S. Qadeer. Predicate abstraction for
software verification. In Proc. POPL, pages 191–202,
2002.

10. R. W. Flyod. Assigning meanings to programs. In
Proc. Symposia in Applied Mathematics 19, pages 19–32.
American Mathematical Society, 1967.

11. R. Ghiya and L. J. Hendren. Is it a tree, a DAG, or a
cyclic graph? a shape analysis for heap-directed pointers
in c. In Proc. POPL, pages 1–15, 1996.

12. P. Godefroid, N. Klarlund, and K. Sen. DART: Directed
automated random testing. In Proc. PLDI, pages 213–
223, 2005.

13. D. Gopan, F. DiMaio, N. Dor, T. Reps, and M. Sagiv.
Numeric domains with summarized dimensions. In Proc.
TACAS, pages 512–529, 2004.

14. D. Gopan, T. Reps, and M. Sagiv. A framework for
numeric analysis of array operations. In Proc. POPL,
pages 338–350, 2005.

15. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre.
Software verification with BLAST. In Proc. SPIN, pages
235–239, 2003.

16. G. J. Holzmann and R. Joshi. Model-driven software
verification. In Proc. SPIN, pages 76–91, 2004.

17. Java PathFinder. http://javapathfinder.sourceforge.net.
18. S. Khurshid, C. Păsăreanu, and W. Visser. Generalized

symbolic execution for model checking and testing. In
Proc. TACAS, pages 553–568, 2003.

19. S. Khurshid and Y. Suen. Generalizing symbolic execu-
tion to library classes. In Proc. PASTE, pages 103–110,
2005.

20. J. C. King. Symbolic execution and program testing.
Commun. ACM, 19(7):385–394, 1976.

21. V. Kuncak and M. Rinard. Existential heap abstraction
entailment is undecidable. In Proc. SAS, pages 418–438,
2003.

22. R. Manevich, E. Yahav, G. Ramalingam, and M. Sa-
giv. Predicate abstraction and canonical abstraction
for singly-linked lists. In Proc. VMCAI, pages 181–198,
2005.

23. C. Păsăreanu and W. Visser. Verification of Java pro-
grams using symbolic execution and invariant genera-
tion. In Proc. SPIN, pages 164–181, 2004.

24. C. S. Păsăreanu, M. B. Dwyer, and W. Visser. Finding
feasible abstract counter-examples. STTT, 5(1):34–48,
2003.

25. C. S. Păsăreanu, R. Pelánek, and W. Visser. Concrete
model checking with abstract matching and refinement.
In Proc. CAV, pages 52–66, 2005.

26. W. Pugh. The Omega test: A fast and practical integer
programming algorithm for dependence analysis. Com-
mun. ACM, 31(8), Aug. 1992.

27. S. Sagiv, T. W. Reps, and R. Wilhelm. Parametric shape
analysis via 3-valued logic. ACM Trans. Program. Lang.
Syst., 24(3):217–298, 2002.

28. K. Sen, D. Marinov, and G. Agha. CUTE: A concolic
unit testing engine for C. In Proc. ESEC/SIGSOFT
FSE, pages 263–272, 2005.

29. W. Visser, K. Havelund, G. Brat, S. J. Park, and
F. Lerda. Model checking programs. Automated Soft-
ware Engineering Journal, 10(2):203–232, April 2003.

30. T. Xie, D. Marinov, W. Schulte, and D. Notkin. Symstra:
A framework for generating object-oriented unit tests us-
ing symbolic execution. In Proc. TACAS, pages 365–381,
2005.

31. T. Yavuz-Kahveci and T. Bultan. Automated verification
of concurrent linked lists with counters. In Proc. SAS,
pages 69–84, 2002.

