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Symbolic Generation of Finite Difference Formulas*

By H. B. Keller and V. Pereyra

Abstract. Tables of coefficients for high order accurate, compact approximations to the

first ten derivatives on and at the midpoints of uniform nets are presented.   The exact

rational weights are generated and tested by means of symbolic manipulation imple-

mented through MACSYMA.   These weights are required in the application of deferred

corrections to new methods for solving higher order two point boundary value problems.

1. Introduction. Compact difference schemes are, by definition, those which

use the least number of net points to obtain consistent approximations (i.e. at least

first order accurate).  Extending this definition, higher order compact schemes are

those which use the least number of net points to obtain higher order accurate approx-

imations.  In this paper we derive and present tables of the coefficients for higher

order compact approximations, from accuracy h2 to h10, to the first 10 derivatives of

smooth functions on uniform nets.  These approximations are particularly useful in

applications of deferred corrections, and this was part of the motivation for the pre-

sent work [5].  Fast weight generators have also.been used for this purpose [1], [2]

but the current tables are more efficient.  In addition, our tables are motivated by new

schemes for solving higher order O.D.E. boundary value problems [5].

The derivation of the formulas is classical, involving no more than Taylor ex-

pansions.  However, the work is tedious and very prone to errors.  Thus, we have used

symbolic manipulation, implemented through MACSYMA, [6], both to derive the co-

efficients and to independently check their correctness.  The coefficients are rational

numbers and are given in their exact form as quotients of integers.  Partial tables of

some such coefficients have been published in [1], [7], [8], [9].   The suggestion to

use MACSYMA was made by the Numerical Analysis Group at Stanford University.

The second author would like to thank Professor Gene H. Golub for his hospitality

while visiting Stanford during the summer of 1975, where part of this work was car-

ried out.

2. Preliminaries. Given a uniform net {r} with step size h and a smooth func-

tion f(t) we study compact approximations to the derivatives of f(t) at t = 0 and at

t = A/2, using only function values {f(t¡)}. We prefer compact approximations since

they have truncation error expansions in powers of h2, they use a minimum number

of ordinäres for a given order of accuracy and have the smallest weights and error

constants. We use the notation Dpf(9) = dpf(9)/dtp, 0 = 0 or A/2, and EP2^f for the
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956 H. B. KELLER AND V. PEREYRA

compact approximation of order 2q to DPf(9).  These approximations are of the form

(2.1)

p,q
hPDP2-ef=   £      w?ff(tj) = hPDPf(9) + 0(hP+2q).

l=-m
P,Q

The index values ni       m     , and the number of mesh points involved np,o p,l
m.

+ m      + 1 for the various possible cases are given in Table A.
P,Q

p even

p odd

Table A

Index values and number of net points for the

compact difference approximations Dp2'qf

m. ,a

p,q

™P.a

p.q

m
p.<?

= 0

p/2+q-l

p + 2q-l

(p + l)/2 + q - 1

p + 2q

™P,a

9 =h/2

p/2+q-l

p + 2q

(p - l)/2 + q - 1

p + 2<7-l

2p.« + 1

We shall describe a general method for calculating the weights w£$ and give

tables of them for the range 1 <p< 10, 1 < g < 5.  The method is based on well-

known, even classical, facts that we now recall [3], [4].  The basic finite difference

operators that we use are:

ö+»/s*>/+i "«V).

(2.2) D0vi=(2h)-1(vi+x-vi_x),

D+D_vj = h-2(vj+x-2vj + v¡_x).

DjOj^h^^-v^),

Mivj = 2-i(vj±x +v¡),

Each of these operators has a formal asymptotic expansion in powers of A2.  For

smooth v(t) we obtain by Taylor expansions about the appropriate abscissa, v- or

vj±i/2:

(2.3a)

(2.3b)

(2.3c)

D±Vj =

M±Vj =

DoVj =

L       rfiv+l

D+  X D <~2v

„f, 4»(2i, + 1)!

L        n2v

D h2V

L      rx2v-r

D+Zwny.
L     rfiv+1

h2v

viil/2+0(h2L + 2),

vjiX/2+0(h2L+2),

Vj + 0(h2L + 2),
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SYMBOLIC GENERATION OF FINITE DIFFERENCE FORMULAS 957

(2.3d)
EL j)2v + 2

2L + 2-,
vf + 0(h^ + ¿)

Hexe Vjtx,2 stands for v(t- ± Vûi), and / is the identity operator. Clearly, these finite

difference formulas are all 0(h2) approximations to the first term in each right hand

side.

Approximations of order h2 to higher order derivatives at f ■ - 0 can now be

easily obtained by appropriate combinations of these basic operators.  We denote by

index "e" (even) those approximations for 0 = 0, and by index "0" (odd) those for

0 = A/2.  The approximations are defined as

(2.4a)

(2.4b)

(2.4c)

(2.4d)

Df-evj = (D+Dyvj,

Dl^v, = (D+D_yM_vf,

D\>i+i'evj=(D+DyD0vj,

D2tt + 1'">vj = (D+D_yD_vr

A little reflection shows that formal asymptotic expansions for these higher order

operators can be obtained by simply using the expansions (2.3).  Thus, for example,

using (2.3d) in (2.4a) yields:

(2.5) Df»'», =   D2+ £>2"+2

(2v + 2)!£A2"2 Vj + 0(h2L + 2).

Clearly, this has the expanded form, with rational coefficients, C2ßje:

Dl^'Vj = \D2li + ¿ h2vC\YD2^v>>  v¡ + 0(h2L + 2).
v=l

v^h

Similar expansions exist for the other formulas in (2.4) and so they are all 0(h2)

approximations to the corresponding derivatives.  To explicitly determine the coeffi-

cients C\^e we need only formally expand [•••]'* in (2.5) into powers of A2.  This

is one of the tedious and error prone computations that we do symbolically.

Our method for constructing higher order approximations is contained in the

next theorem.

Theorem 2.7.   Centered difference approximations accurate to order 2k for a

derivative of order p can be obtained recursively as:

fja\      nP>e = nP>e       - h2(-k~l)Cp',e np + 2(k-i),e        k = 2
(2.8) L)2k   - LT2(k-l)      n *~2{k-l),k-lU2 > K       z' • • ■

The operators D^k so defined have the asymptotic expansions:

(2.9) ¡jp.0 = jyp + £ h2vCP2kevDP + 2v+ 0(h2L + 2).

Proof.   The proof is by induction on k. The expansions for k = 1 are obtained
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958 H. B. KELLER AND V. PEREYRA

as in (2.5)-(2.6) by using (2.3) in (2.4).  Assume that for k > 2, any p > 0, 0 = e

or (¡> we have

<k-,)=^+    t   h2^k_xUDP + 2v + 0(h2L+2).
v=k-l

Using these expansions in (2.8), we obtain

L

z
v=k-l

dp2>°=d?+ z h2vcp2fk_n<vjyp+2v

2(k-l)£P,0 \ßP + 2(k-l) +  y   jJ2i>Cp + 2(k-l),e£)p + 2(k + i>-l)-A

+ 0(A2L + 1).

This simplifies, after collecting terms in like powers of A, to the form (2.9).  This

completes the induction argument, proves the theorem, and yields the recursive

formula for the coefficients:

rp,e   _ rp,e _ rp,e rp+2(k-i),e        v>k     o
C2fc,y _ C2(k-l),i>      L2(k-l),k-l^2,v-(k-l)     ' V ¿* K.

3.  Construction of the Finite Difference Operators.   Although Theorem 2.7

gives us a recipe for constructing high order approximations to any derivative, it does

not actually provide the formulas (2.1).  In order to obtain the weights wP,$ we use

the shift operator Ev¡ = vJ+l in (2.1) which can then be written as:

(3.1) hPDP2>qef=    £       <-e^/(0).

Also, the basic operators in (2.2) become

(3.2a) hD+ =(E-I),

(3.2b) hD_=(I-E~l),

(3.2c) hD0= 2~\E -E'1),

(3.2d) M+=2-1(E+f),

(3.2e) M_ = 2~1(E~1 + I),

(3-20 h2D+D_ ̂ (E-21 + E-1).

Since E1 is linear and it commutes with E' for any integers i, /, we can operate sym-

bolically with these expressions as if they were rational functions in the variable E.

Then, by (2.4) and (2.8) we can construct recursively the operators hpDP,'q and ob-

tain the actual weights wP,$.

We first observe that in

(3.3) hPDP2ke = hPD?2fk_x) - CP2fk_xhk_x(DP2 + 2^k-^hP + 2(k^)
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SYMBOLIC GENERATION OF FINITE DIFFERENCE FORMULAS 959

each difference operator is multiplied by an appropriate power of A so that no A's

will appear in these formulas.  Specifically, if we introduce

(3.4a) Dl^e =h2ßD2fl'e = (E-2I + E-ly,

(3Ah) 52M.0 = h^D2"'"' s«(f-2/ + E^y(E~l + I),

(3.4c) D2tl+l-e=h2)l + 1D2/+1'e = HE-^ + E-1yu(E-E-1),

(3.4d) Df + ló = A2m+1£>2"+1 •*=(£- 2/ + E-ly(I - E~l),

then the recursion (3.3) becomes:

fyp.e =fyp,e      _ rp,e Jip+2(k-i),e
u2k   _iy2(k-l)      ^2(k-l),k-lu2

k = 2, 3, .. . ;q = 0, 1, . . . ; 9 = 0, A/2.

Now by rearranging D^'k as a linear combination of positive and negative powers of

E we obtain (3.1).  That is the coefficient of E* in this linear combination is the

weight wP'g.

4.  Determination of Weights by Symbolic Manipulation.   The entire procedure

to construct the weights wp'¡¡ consists then of the following steps:

(A) Construct expansions for D^'e from those given in (2.3).
)P.e
r2k(B)  Construct expansions for DP,'k using the recursion (2.8) and (A).  This pro-

vides the coefficients Cp^kk.

(C) Construct D?,'6 by means of (3.4).

(D) Obtain Dfyk recursively by using (3.5) and the coefficients C^'^-i) (k-i)

from (B).

These tasks involve only multiplication of asymptotic expansions (for (A) and

(B)) and multiplication of polynomials in positive and negative powers of E.  All the

numerical coefficients involved are rational.  It is a very tedious task to compile fair-

ly extensive tables covering the range needed in most applications, even with the aid

of a computer.  This is where MACSYMA comes to our rescue.

MACSYMA (Project MAC's SYmbolic MAnipulation system) [6] is a large

computer programming system written in LISP and used for performing symbolic as

well as numerical mathematical manipulations. This sytem is available on a DEC PDP-

10 Computer at MIT and can be accessed through the ARPA Network.   MACSYMA

has faculties for the symbolic manipulation of truncated Taylor series, operations

with rational functions, and indefinite precision computations with rational numbers,

all of which are very convenient for our purposes.

As an example of the main tasks performed we show in the Appendix an actual

MACSYMA dialogue to obtain the weights in D\'e. Of course, we have used many

other powerful facilities of MACSYMA in order to produce efficiently the wealth of

formulas required.  What is more important perhaps, is that we have used MACSYMA

to make an independent check on the final formulas obtained and to output the

tables of the Appendix.  Thus, so far as we can determine, the coefficients given in

Tables 1-10 are the exact rational weights in the corresponding formulas.
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960 H. B. KELLER AND V. PEREYRA

The independent check consists in applying symbolically the computed formulas

D\'k to various powers of x and (x + A/2) and comparing them with the exact derivatives,

hqDq, of those powers. In particular,

(4.1) Dqkexp -hqDq(x +9f

should be zero for p <q + 2k and should be a known multiple ofh2k foxp = q +2k.

We have checked this for all the formulas presented (see (C34) in Appendix).

We have printed only half the number of weights taking advantage of the various

symmetries and antisymmetries listed below:

(a) w%« = w2_tf,

(b) w2r+l<q=-w2r¿l-q,

W w/,0    -w_/+10,

(A\ w2r+l<<i = - w2r+1'q

The weights are given in Tables 1 — 10 for/> 0.

For completeness we include also in Tables 11 and 12 the coefficients CP,'k k used

in the construction of the w's.

Appendix.  In this Appendix we present a self-contained example of the use of

MACSYMA to obtain the weights in D\,e, following the procedure of Section 4.

In order to make the following MACSYMA dialogue comprehensible to the un-

initiated we will give now the minimum of explanation necessary to understand it. We

assume a knowledge of some high level language, like FORTRAN or ALGOL.  Lines

labeled (C - -) are input by the user, while those labelled (D - -) or (E - -) are the

computer answers.

(C26) assigns to DH[2, 2] the value S7=12D2,'/r*2(/_1)/(20!.  This represents

the first 7 terms of the expansion of D\'e, as given in (2.3d).  (D26) is then the dis-

play of this sum.

In general, DH[n, m] will contain the first few terms of the asymptotic expan-

sion of D"^e. In (C27) we obtain D2,e by using the TAYLOR command that produces

the truncated Taylor expansion of (DH[2, 2])2 in the variable D up to terms in Z)14.

Then D\'e', the fourth order approximation to D2, is obtained by subtracting

from D\'e an 0(h2) approximation to h2D4/l2, namely DH[4, 2] * H ** 2/12.

With this expansion we have enough information to generate D\'e, which is done

in (C29)-(C33).  Here again we store D"¿e in EH[n, m].  The only new feature is the

command RATEXPAND which simply expands the operand by multiplying out expo-

nentiated sums, etc., in order to give the resulting formulas displayed in (D29)—(D33).

The desired weights are the coefficients in (D33).

Finally, our function F6 performs on EH[2, 6] = D\'e the check indicated at

the end of Section 4, where p = 8.  For completeness we display the function F6 and

the auxiliary functions F2, F3 and F4, although we shall not explain them here.
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Printout

(C26) DH[2, 2} : sum(2 * D ** (2 * I) * H ** (2 * (I - l))/(2 * I)\, I, 1, 7);

rry26ï g'4//12 Dl2Hí0 D10//8^      D^H6     D6H*
K      } 43589145600      239500800      1814400      20160      360

♦*£■ +»■

(C27) DH[4, 2] : TAYL0R(Z)#[2, 2] ** 2, D, 0, 14);

m™ miry i "^ i "^ i 17//6d'°   i 31//6gl2   i Hl°DlA i
(D27) /*/£+_ +   8o     +    30240     + 1814400    +2661120 +

(C28) DH[2, 4] : TAYL0R(£>#[2, 2] - DH[4, 2] * H ** 2/12, D, 0, 12);

ÎD28Ï /j;/tf   #*    #*    Z/8¿)1°    17//10p12   I
IUZÖJ w "        90 1008      21600       11975040

(C29) EH[2, 2] : E - 2 + E ** (- 1);

(D29) £ + 4 - 2

(C31)    £//[4, 2] : RATEXPAND(£7/[2, 2] ** 2);

(D31)    E2-4E-l + -±-2+6

(C32)    £7/[2, 4] : RATEXPAND(£#[2, 2] - £#[4, 2] /12);

tud¿;        12 + 3   + 3E     X2E2     2

(C33)    £7/[2, 6] : RATEXPANDÍ./T//12, 4]  + EH[2, 2] * EH[4, 2] /90);

(mn    E*    3E2     3E      3        3 1 49v      J    90      20        2       2E    20£2     90£3     18

(C34)     F6(EH[2, 6], 8, 3, 2);

RATEXPANd(56X6 - 56tf2^6 + 12H*\ = - 72^

V H2 '

(C35)     DISPFUN(F6, F3, F2, F4);
(E35)     F6(G, J,N,M): = BLOCK ([ ], F3(RATEXPAND(GX/), TV),

DISPLAY (RATEXPANDÍDIFF^, X, M)

- AH~M)))
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(E36)     F3(G, TV) : = BLOCK([ ], A: PART(G, 2/V + 1),

For / through TV do (Al: PART(G, J), A2: PART(G, 2N + 1 - J),

A3:NUMFACT0R(A1),A4: NUMFACTOR(A2),Al: £j, A2: ^|,

ifJ # N then A: A + A3F2(A1) + A4F4(A2)ELSE A: A + A3(JT +

^partíai,2,2) + A4LY-//)PART(A2'1'2>), A: RATSIMPL4))

(E37)     F2(G): = (PART(G, 2, 1) + H PARTfG, 1, 2))PART<G'2'2>

(E38)     F4ÍG): = (PART(G, 1,1)- HPAKT(G, 2, 2))PART(G.1-2)

Table 1

Weights at t¡ for second order approximations to

derivatives of orders p = 1 to 10 at t = t0 = 0

1

2

3

4

5

6

7

8

9

10

0

0

-2

0

6

0

-20

0

70

0

-252

1

1

1

-1

-4

5

2

15

-7

-56

21

210

0

I
2

1

-2

-6

7

28

-24

-120

0

0

0

0

}_
2

1

-3

27

2

45

0

0

0

0

0

0

1
2

1

-4

10

0

0

0

0

0

0

0

0

1
2

1
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p

Table 2

Weights at t= for fourth order approximations to

derivatives of orders p = 1 to 10 at t = r0 = 0

2 _ J_
3 12

0 0 0

"I \ -T2 ° ° ° °

o -f          . -i 0 0 0

f "Y              2 -i 0 0 0

»        » f -T ! 4 • •
6-^ 29 -13 3-1 0 0

2 4

o -S          17 -S M _A o
4 8 6 24

154 -126            68 -23 y -| 0

0 54 -^r 41-15 3-74 4

«1 MO                   1305 410 75 (. 5-637 540 -— — -y 6 - ^

Table 3

Weights at tf for sixth order approximations to

derivatives of orders p = I to 10 at t = t0 = 0

i
ps

0           !     "5 i ° ° °        °

"if         1-5 5 ° ° °        °
0             _61          169 _A J_ o 0            0

30          120 10 240

91           _L22        169 _2 _L 0 0
8                 15          60 5 240

0               M    _ 13 87 _19 _1¿U                 48          2 32 36 288

1023          32339 87 _ 19 13 Q            Q
20     8    2 16 24 240

971   885 755 601 _ 4J 2L       n
40   32 48 120 48 480

7007    971   885 755 601 _ 41^ _3J_   „
30   " 5    8 18 60 30 360

7323  1153 6283 166 139 _ B   J_
80  " 10 80 5 16 10   80

_10*i    2123 _U53 6283 B9 _13 \_
1066     8    2 24 83 8 6    8
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Table 6

Weights at t- for second order approximations to

derivatives of orders p = 1 to 10 at t = txj2 = A/2

i

2

3

4

5

6

7

8

9

10

2

-3

1

10

5

2

-35

7

2

21

-14

126     -84

-21 45

5

2

-7

10

36

75

2

35

2

0

0

0

0

0

0

0

0

Table 7

Weights at r;- for fourth order approximations to

derivatives of orders p = 1 to 10 at t = r, ,2 = A/2

i

2

3

4

5

6

7

8

9

10

17
24

17' 4

83

48

415

24

11
8

287
4

133

8

1197

4

227"~4~

24

13
16

U

8

45" 16

75' 8

39
4

9J":

277

8

831
4

2007
16

_5_
48

1" 8

59

48

59
24

25
4

35
2

435

16

783

8

5375
48

_7_
48

_5__
24

29
16

29

8

553" 48

237

8

1421

24

0

0

0

0

0

3_
16

J_' 24

ii
16

li
8

153

0

0

0

0

0

0

0

u
48

167 _ ]3
48   48
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Table 8

Weights at t, for sixth order approximations to

derivatives of orders p = 1 to 10 at t = tx^2 = A/2

665
576

1891
2304

1891

384

4307
1920

4307

192

4743
640

33201
320

25541
960

76623
160

25539
256

65

1152

1299
1280

1299
640

1229
320

1229

96

1875

128

4375

64

73063" 1280

219189
640

173413
768

17
5760

499
2304

499

1920

377

192

377

96

2645
256

3703
128

110545
2304

22109
128

54359
256

259
11520

37
1920

1547
3840

221
384

2855
768

2855
384

133427
5760

19061
320

31507
256

47

1280

47
1152

867
1280

2023

1920

4253
640

4253
320

11903

209
3840

133

1920

12221
11520

1111
640

2867
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0

0
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0
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Table 11

Coefficients Cp2'kek

i

2

3

4

5

6

7

8

l)

10

1
6

J_
12

4

6

\_

3

1
4~

5_

12

I
3

2

5_"¡2

30

_L
90

7

120

7

240

13' 144

13
240

31" 240

31
360

J7_"40

1
140

1
560

41
3024

41
7560

139

6048

139
12096

311
8640

311
15120

67
1260

67

2016

630

1
3150

479' 151200

479'453600

37
6480

37' 15120

2473" 259200

2473

518400

2021" 134400

2021"241920

Table 12

Coefficients C^k

±
24

_5_
24

_7_
24

_5_
24

1_

24

n
24

17
5760

259
5760

37
1920

47
640

47' 1152

209
1920

133" 1920

871
5760

67'240

31

120960

3229
322560

3229
967680

17281
967680

1571
193536

28067

967680

2159
138240

8521

193536

8521

322560

11513'464486400

117469
51609600

10679" 17203200

1997021" 464486400

153617
92897280

230443' 30965760

230443" 66355200

5599613" 464486400

329389
51609600

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SYMBOLIC GENERATION OF FINITE DIFFERENCE FORMULAS 971

Department of Applied Mathematics

California Institute of Technology

Pasadena, California 91125

1. C. BALLESTER & V. PEREYRA, "On the construction of discrete approximations to

linear differential expressions," Math. Comp., v. 21, 1967, pp. 297—302.

2. Â. BJÖRCK & V. PEREYRA, "Solution of Vandermonde systems of equations," Math.

Comp., v. 24, 1970, pp. 893-904.

3. E. ISAACSON & H. B. KELLER, Analysis of Numerical Methods, Wiley, New York,

1966.

4. C. JORDAN, Calculus of Finite Differences, Chelsea, "New York, 1947.

5. H. B. KELLER & V. PEREYRA, "Difference methods and deferred corrections for

ordinary boundary value problems," SIAM J. Numer. Anal. (To appear.)

6. MACSYMA, Reference Manual, The Mathlab Group, Project MAC, MIT, Boston, Mass.,

1975.

7. M. ABRAMOWITZ & I. A. STEGUN, Handbook of Mathematical Functions, National

Bureau of Standards, Appl. Math. Series, no. 55, Washington, D. C, 1964.

8. W. G. BICKLEY, Math. Gaz., v. 25, 1941, pp. 19-27.

9. B. FORNBERG, "On a Fourier method for the integration of hyperbolic equations,"

SIAM J. Numer. Anal, v. 12, 1975, pp. 509-528.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


