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Symbolic Generation of Finite Difference Formulas*

By H. B. Keller and V. Pereyra

Abstract. Tables of coefficients for high order accurate, compact approximations to the
first ten derivatives on and at the midpoints of uniform nets are presented. The exact
rational weights are generated and tested by means of symbolic manipulation imple-
mented through MACSYMA. These weights are required in the application of deferred
corrections to new methods for solving higher order two point boundary value problems.

1. Introduction. Compact difference schemes are, by definition, those which
use the least number of net points to obtain consistent approximations (i.e. at least
first order accurate). Extending this definition, higher order compact schemes are
those which use the least number of net points to obtain higher order accurate approx-
imations. In this paper we derive and present tables of the coefficients for higher
order compact approximations, from accuracy h? to h'9, to the first 10 derivatives of
smooth functions on uniform nets. These approximations are particularly useful in
applications of deferred corrections, and this was part of the motivation for the pre-
sent work [5]. Fast weight generators have also.been used for this purpose [1], [2]
but the current tables are more efficient. In addition, our tables are motivated by new
schemes for solving higher order O.D.E. boundary value problems [5].

The derivation of the formulas is classical, involving no more than Taylor ex-
pansions. However, the work is tedious and very prone to errors. Thus, we have used
symbolic manipulation, implemented through MACSYMA, [6], both to derive the co-
efficients and to independently check their correctness. The coefficients are rational
numbers and are given in their exact form as quotients of integers. Partial tables of
some such coefficients have been published in [1], [7], [8], [9]. The suggestion to
use MACSYMA was made by the Numerical Analysis Group at Stanford University.
The second author would like to thank Professor Gene H. Golub for his hospitality
while visiting Stanford during the summer of 1975, where part of this work was car-
ried out.

2. Preliminaries. Given a uniform net {ti} with step size £ and a smooth func-
tion f(#) we study compact approximations to the derivatives of f(¢) at ¢+ = 0 and at
t = h/2, using only function values {f(¢;)}. We prefer compact approximations since
they have truncation error expansions in powers of 42, they use a minimum number
of ordinates for a given order of accuracy and have the smallest weights and error
constants. We use the notation DPf() = dPf(6)/dt?, 8 = 0 or h/2, and D‘z"q‘9 f for the
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956 H. B. KELLER AND V. PEREYRA

compact approximation of order 2g to DPf(9). These approximations are of the form

m

P,q
@1 WDEIf= 3 whPf(t) = hPDPF(O) + O(hP*29).
I="Mpq
The index values m,, ., Hp'q,

and the number of mesh points involved Npg=m
+ rﬁp q 1 1 for the various possible cases are given in Table A.

q —P,q

TABLE A
Index values and number of net points for the
compact difference approximations D‘z’;f f

0=0 6 =h/2
m, pl2+q-1 pl2+q-1
D even n p+2g-1 p+2q
mp,q' @+DR2+qg-1 @-DR2+qg-1
p odd n o p+2g p+2g-1
My q Mp.q Mpq 1

We shall describe a general method for calculating the weights wi’# and give
tables of them for the range 1 <p < 10, 1 < g < 5. The method is based on well-
known, even classical, facts that we now recall [3], [4]. The basic finite difference
operators that we use are:

D+v,- Eh_l(v]-_,_l _v]')y D—vi Eh_l(vj_vi—l)’
(2.2 Dgv; = (2h) (V44 — vj_y)s M, =27 (v, + V),

Each of these operators has a formal asymptotic expansion in powers of h2. For

smooth vy(f) we obtain by Taylor expansions about the appropriate abscissa, v; or

Visy/2°
B L 2v+1
D 2 2L+2

D.v. = —— h??|v; + O(h ),
(2.3a) +Y; v; (2 + 1) ] jt1/2
( [ L Dzu 2v 0( 2L+2)
2.3b) Muv.=|T+ h v;, + O(h s

i ,E, 4¥(20)! fe1/2

(2.3¢) - [ L p»*' ., 2L+2

Dy;= |D + Zl ED)] h*? v; + O(h ),

=
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2, 5o DT 2L+2
(2.3d) D,D_v; = D* + ;12@+—2)!h v + O(h ).

Here Vis1)2 stands for (e 1%h), and I is the identity operator. Clearly, these finite
difference formulas are all O(h2) approximations to the first term in each right hand
side.

Approximations of order 22 to higher order derivatives at t; — 0 can now be
easily obtained by appropriate combinations of these basic operators. We denote by
index “e” (even) those approximations for § = 0, and by index “¢” (odd) those for
6 = h/2. The approximations are defined as

(2.42) D}*°v; = (D, D_Y'v;,

(2.4b) D%y, = (D, D_)'M_v;,
(2:4¢) D3#+1ey, = (D, D_)'Dyy;,
(2.4d) D2+1 ,¢vj = (D,D_)D_v;.

A little reflection shows that formal asymptotic expansions for these higher order
operators can be obtained by simply using the expansions (2.3). Thus, for example,
using (2.3d) in (2.4a) yields:

25 2u,e 2, 20, D2 IE 2L+2

() Dz'v’.= D +V§lh Zm! vj+0(h )

Clearly, this has the expanded form, with rational coefficients, C%f:;":
L

(2.6) D3y, = | D2 + Zlh”Cg‘;"’Dz(“*") v, + O(h*L+2),
v=

Similar expansions exist for the other formulas in (2.4) and so they are all O(h?)
approximations to the corresponding derivatives. To explicitly determine the coeffi-
cients C3%¢ we need only formally expand [* - -]* in (2.5) into powers of 2. This
is one of the tedious and error prone computations that we do symbolically.

Our method for constructing higher order approximations is contained in the
next theorem.

THEOREM 2.7. Centered difference approximations accurate to order 2k for a
derivative of order p can be obtained recursively as:

.0 = np.o _ 32(k—1)p,0 2(k-1),0 —
(28) D5 =DBGyy — n* C8G 1y ey DB k=2,
The operators D‘z’ko so defined have the asymptotic expansions:

L
2.9) D;z:,ke =pP+ 3 hz"C’z",f',,D”“"+ O(h2L+2),

v=k

Proof. The proof is by induction on k. The expansions for k = 1 are obtained
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958 H. B. KELLER AND V. PEREYRA

as in (2.5)—(2.6) by using (2.3) in (2.4). Assume that for k> 2,any p > 0,0 =e¢
or ¢ we have

L

+2 2L +2

Dg","_l)=DP+ ij h”C’z"&_l),va Y+ O(h ).
v=k—1

Using these expansions in (2.8), we obtain

L
D8l =DP + Y KOG, DPT?

v=k—1

L
_h2(k—1)02:,((;c_1),k_1[Dp+2(k—l) + Z h2vcg;2(k—l),9Dp+2(k+v—l)]

v=1

+ 0(h2L+ l).

This simplifies, after collecting terms in like powers of A, to the form (2.9). This
completes the induction argument, proves the theorem, and yields the recursive
formula for the coefficients:

0 — cp,0 — P9 p+2(k—1),0
v = Chlk—1),0 Col iy CER2E?, vk O

3. Construction of the Finite Difference Operators. Although Theorem 2.7
gives us a recipe for constructing high order approximations to any derivative, it does
not actually provide the formulas (2.1). In order to obtain the weights wi'd we use
the shift operator Ev; = v, in (2.1) which can then be written as:

"p,q ;
G.1) WPDRIf= 3 wEJEf0).
1=-mp,q

Also, the basic operators in (2.2) become

(3.2a) kD, =(E - I),

(3.2b) hD_=(I-E™Y),
(3.20) hDy ='2"YE-E~1),
(3.29) M, =2YE+D,
(3.2¢) M_=2YE! + ),
(3:2) WD, D_=(E-2A+E").

Since E7 is linear and it commutes with E' for any integers i, j, we can operate sym-
bolically with these expressions as if they were rational functions in the variable E.
Then, by (2.4) and (2.8) we can construct recursively the operators h"Dg;l" and ob-
tain the actual weights wg'g.

We first observe that in

, e X -1), -
(33) hPDB = hPDBE, 1) = CBY_ ) ooy (DB F2 (kD0 pp+2(k-1))
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each difference operator is multiplied by an appropriate power of h so that no h’s
will appear in these formulas. Specifically, if we introduce

(3.4a) D2me = p2epite = (E-2A + ETVW,

(3.4b) D29 = p2up2ud = WE - 2A + ETWE + D),
(34c)  Dw+lesptiplitle =y o+ ETYE-ETY,
(3.4d) 5§u+1,¢ = hz““D%““'"’ =(E-2A+EYW(I-E),

then the recursion (3.3) becomes:

~ .0 - , _ ) ~ —1),
D28 =D58 )~ CBo_yy kDB,
(.5)

k=2,3,...;q=0,1,_...;0=0,h/2.

Now by rearranging Bg,f as a linear combination of positive and negative powers of

E we obtain (3.1). That is the coefficient of E® in this linear combination is the
weight wfe"

4. Determination of Weights by Symbolic Manipulation. The entire procedure
to construct the weights wf'g consists then of the following steps:

(A) Construct expansions for Dg'e from those given in (2.3).

(B) Construct expansions for D’z’,f using the recursion (2.8) and (A). This pro-
vides the coefficients C57 .

(C) Construct 5‘2"" by means of (3.4).

(D) Obtain ﬁ’z",f recursively by using (3.5) and the coefficients Cg’&_l),(k_l)
from (B).

These tasks involve only multiplication of asymptotic expansions (for (A) and
(B)) and multiplication of polynomials in positive and negative powers of E. All the
numerical coefficients involved are rational. It is a very tedious task to compile fair-
ly extensive tables covering the range needed in most applications, even with the aid
of a computer. This is where MACSYMA comes to our rescue.

MACSYMA (Project MAC’s SYmbolic MAnipulation system) [6] is a large
computer programming system written in LISP and used for performing symbolic as
well as numerical mathematical manipulations. This sytem is available on a DEC PDP-
10 Computer at MIT and can be accessed through the ARPA Network. MACSYMA
has facilities for the symbolic manipulation of truncated Taylor series, operations
with rational functions, and indefinite precision computations with rational numbers,
all of which are very convenient for our purposes.

As an example of the main tasks performed we show in the Appendix an actual
MACSYMA dialogue to obtain the weights in 52"’. Of course, we have used many
other powerful facilities of MACSYMA in order to produce efficiently the wealth of
formulas required. What is more important perhaps, is that we have used MACSYMA
to make an independent check on the final formulas obtained and to output the
tables of the Appendix. Thus, so far as we can determine, the coefficients given in
Tables 1—10 are the exact rational weights in the corresponding formulas.
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960 H. B. KELLER AND V. PEREYRA

The independent check consists in applying symbolically the computed formulas
~2'ko to various powers of x and (x + #/2) and comparing them with the exact derivatives,
haD9, of those powers. In particular,

(4.1) D%8xP - hIDI(x + 0

should be zero for p < q + 2k and should be a known multiple of #2¥ forp = q + 2k.
We have checked this for all the formulas presented (see (C34) in Appendix).

We have printed only half the number of weights taking advantage of the various
symmetries and antisymmetries listed below:

(2) wjz':,q = w2r:q

_je’
6) wiLre = w2,
4.2)
© Wyt =W g
2r+1,q — __ ,,2rt1,q
@ wig ! =-wilig

The weights are given in Tables 1—10 forj > 0.
For completeness we include also in Tables 11 and 12 the coefficients C’z’,f  used
in the construction of the w’s.

Appendix. In this Appendix we present a self-contained example of the use of
MACSYMA to obtain the weights in D¢, following the procedure of Section 4.

In order to make the following MACSYMA dialogue comprehensible to the un-
initiated we will give now the minimum of explanation necessary to understand it. We
assume a knowledge of some high level language, like FORTRAN or ALGOL. Lines
labeled (C - -) are input by the user, while those labelled (D - -) or (E - -) are the
computer answers.

(C26) assigns to DH[2, 2] the value ZZ=12D2iH2(i'l)/(2i)!. This represents
the first 7 terms of the expansion of Dg", as given in (2.3d). (D26) is then the dis-
play of this sum.

In general, DH[n, m] will contain the first few terms of the asymptotic expan-
sion of D/»¢. In (C27) we obtain D3¢ by using the TAYLOR command that produces
the truncated Taylor expansion of (DH[2, 2])? in the variable D up to terms in D'4.

Then D:‘;'e, the fourth order approximation to D?, is obtained by subtracting
from D2*¢ an O(h?) approximation to h2D*/12, namely DH[4, 2] * H ** 2/12.

With this expansion we have enough information to generate D2+, which is done
in (C29)—(C33). Here again we store 5"";‘" in EH[n, m]. The only new feature is the
command RATEXPAND which simply expands the operand by multiplying out expo-
nentiated sums, etc., in order to give the resulting formulas displayed in (D29)—<(D33).
The desired weights are the coefficients in (D33).

Finally, our function F6 performs on EH[2, 6] = 52'8 the check indicated at
the end of Section 4, where p = 8. For completeness we display the function F6 and
the auxiliary functions F2, F3 and F4, although we shall not explain them here.
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PRINTOUT

DH[2,2) :sum(2*D #+ 2 * ) x H*x 2+« (I = 1)/(2+ D, I, 1, 7);

127510 108 8 6 74
D4H? +DH . D%H +171L16+1)171
43589145600 « 239500800 = 1814400 20160 ~ 360
4172
+DH e

12

DH[4, 2] : TAYLOR(DH[2, 2] ** 2,D, 0, 14);

4
H?DS  H°D® | 17H®D'® |, 314°D'?*  H'°D'*
IRID* + == + Zgo— + 30725~ + 1814400 ' 2661120

DH[2, 4] : TAYLOR(DH|2, 2] — DH[4, 2] * H *+ 2/12,D, 0, 12);

H*D® H°D® H®D'® _ 17H'°D'?

2 _ -
IR D 90 1008 21600 11975040

+...
EH[2,2] :E-2+E *x (-1);

1
E+E 2

EH[4, 2] : RATEXPAND(EH(2, 2] #** 2);

4 1
2 _ —=4+ =46
E?~4E-z+ 5

EH[2, 4] : RATEXPAND (EH[2, 2] - EH[4, 2]/12);

E* 4E 4 1 5
Y3 YE 2

EH[2, 6] : RATEXPAND(EH [2,4] + EH|2, 2] = EH[4, 2]/90);

E® 3E* 3k 3 __3 1 49

90 " 20 2 " 2E 208?  gop® 18

F&EH(2, 6], 8, 3, 2);
S6H2X® + 72H®

o )=—721116

RATEXPAND<56X6 -

DISPFUN(F6, F3, F2, F4);

F6(G, J, N, M) : = BLOCK ([ ], F3(RATEXPAND(GX”), V),

DISPLAY (RATEXPAND(DIFF(X’, X, M)

- AH™MY)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use




962 H. B. KELLER AND V. PEREYRA

(E36) F3(G, N): = BLOCK([ ], A: PART(G, 2N + 1),

For J through N do (Al: PART(G, J), A2: PART(G, 2N + 1 —-J),

A3: NUMFACTOR(AL1), A4: NUMFACTOR(AZ),AI:‘%, A2: %,

if J # N then A: A + A3F2(A1) + A4F4(A2)ELSE A: A + A3(X +
H)PART(A1,2,2) + A4(X_1{)PART(A2,1,2))’ A: RATSIMP(A))

(E37) F2G): = (PART(G, 2, 1) + H PART(G, 1, 2))PART(G.2,2)

(E38) F4(G): = (PART(G, 1, 1) - HPART(G, 2, 2))PART(G,1,2)

TABLE 1
Weights at t; for second order approximations to

derivatives of ordersp = 1to 10at t =t, =0
)

)
p 0 1 2 3 4 5
1 0 1 0 0 0 0
2 -2 1 0 0 0 0
1
3 0 -1 3 0 0 0
4 6 -4 1 0 0 0
5 1
5 0 3 -2 3 0 0
6 -20 15 -6 1 0 0
1

7 0 7 7 3 3 0
8 70 -56 28 -8 1 0

27 1
9 0 21 -24 > -4 3
10 -252 210 -120 45 -10 1
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TABLE 2
Weights at ¢ for fourth order approximations to
derivatives of ordersp = 1to 10at t =ty =0

,,i 0 1 2 3 a4 s 6
1 0 % - o o o o
2 | -3 3 -5 o o o o
3 0 —% 1 —18 o o0 o
| 21 2 -1 0 0 o
I R A
s | -2 % -1 3 -3 0 o
7| o -2 o -2 B2
8 154 -12 o -z 2 -1
9 0 54 —% 4 -15 3 -%
10 | -637 s BB A0 B 3
TABLE 3

Weights at t; for sixth order approximations to
derivatives of ordersp = 1 to 10at t =t, =0

j
» 0 1 2 3 4 5 6 7
3 3 1
1 ‘o y 30 w ° 0 0 0
49 3 _3 1
2 "1 2 2 0 ° 0 0 0
61 169 3 7
3|0 3 120 o 20 ° 0 0
9] 122 169 2 7
413 5 60 5 0 ©° 0 0
323 13 87 19 13
5|0 a8 2 32 36 88 0
6 |-1923 323 _39 &7 19 13 0
20 8 2 16 2 240
710 _9n 88 75 601 41 31
40 32 48 120 48 280
g | 2007 _971 885  _755 601 _4l 31,
30 5 3 18 60 30 360
o | o 7323 _ 1153 6283 166 139 _13 1
80 10 80 5 6 10 80
7323 1153 6283 139 13 1
10 -1066 T m e ¥ % 76 B
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966 H. B. KELLER AND V. PEREYRA

TABLE 6
Weights at t; for second order approximations to
derivatives of ordersp = 1to 10at t =t , = h/2

j
p 1 2 3 4 5 6
1|1 0 0 0 0 0
1 1
2 |3 5 0 0 0 0
3 |-3 1 0 0 0 0
3 1
4|1 3 5 0 0 0
s|10 -5 1 0 0 0
5 9 5 1
6132 2 2 2 0 0
7 |-35 21 -7 1 0 0
7 1
8| 7 14 10 3 3 0
9| 126 -84 36 -9 1 0
75 35 9 1
10]-21 45 5 > -3 5
TABLE 7

Weights at t; for fourth order approximations to
derivatives of orders p = 1 to 10 at t = tya = h/2

AN 1 2 3 4 5 6 7
9 1
1 2 50 0 0 0 0
17 13 s
2 2% 16 a8 0 0 0 0
17 131
3 - S g 0 0 0 0
83 45 59 7
4 a8 6 48 a8 0 0 0
a1s 75 59 s
5 2% 8 24 2% 0 0 0
41 39 25 29 3
6 8 2 3 16 6 0 0
®m a3 »® 1
7 3 2 2 8 % 0 0
s | B _wm ows s owm o _n
8 8 16 48 16 48
o | e s om w a3
2 4 8 8 8 8
ol 27 2007 5375 1421 _153 167 _13
a 16~ 48 2 8 48 48
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TABLE 8
Weights at t; for sixth order approximations to
derivatives of ordersp = 1to 10att =t ,, = h/2

Jj
> ] 2 3 4 5 6 7 8

65 65 17

'l 5% "11s2 560 O© 0 0 0 0
1891 1299 499 259

2”304 1280 2304 11520 ° 0 0 0
1891 1299 499 37

317382 620 1920 1920 0 0 0

G| BT 1m0 3 1sa7 7 6 .
1920 ~ 320 192 3840 1280
4307 1229 377 21 47

S| 792 T o6 9% 384 TR 0 0

o |4743 1875 2645 2855 867 209 . .
640 128 256 768 1280 3840

o |_33201 4375 3703 2855 2023 133 . .
320 64 128 384 1920 1920

g | 25541 73063 110545 133427 4253 12221 81
960 1280 2304 5760 640 11520 11520

o | 76623 21918 22100 _19061 4253 _uu 61
160 640 128 320 320 640 640

ol 25539 173413 54359 31507 _ 11903 2867 _403 77
256 768 256 256 256 256 256 768
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970 H. B. KELLER AND V. PEREYRA

TABLE 11
Coefficients Cg'ke' k

k
p 1 2 3 4
1 1 _1 1 1
6 30 140 630
2 1 1 1 __1
12 90 560 3150
3 1 1 41 __419
3 120 3024 151200
4 1 _ 1 41 __4719
6 240 7560 453600
s 1 13 139 37
3 144 6048 6480
6 1 _ 13 139 37
4 240 12096 15120
7 3 _3r 31 __u13
12 240 8640 259200
g 1 31 311 2473
3 360 15120 518400
9 1 1 67 2021
2 40 1260 134400
10 5 1 67 _ 2021
12 8 2016 241920
TABLE 12
7 pu¢
Coefficients C% % k
k
p\ 1 2 3 4
. 1 17 31 _ 11513
24 5760 120960 464486400
5 5 _ 259 3229 117469
24 5760 322560 51609600
3 1 _ 37 3229 _ 10679
8 1920 967680 17203200
4 1 _ 41 17281 _ 1997021
24 640 967680 464486400
s 5 47 1571 _ 153617
2 1152 193536 92897280
6 3 209 28067 _ 230443
8 1920 967680 30965760
; 1 _ 133 2159 230443
24 1920 138240 66355200
8 11 _ 871 8521 5599613
24 5760 193536 464486400
9 3 _ 67 8521 _ 329389
8 240 322560 51609600
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