
1

Symbolic Model Checking for Incomplete Designs

With Flexible Modeling of Unknowns
Tobias Nopper and Christoph Scholl

✦

Abstract—We consider the problem of checking whether an incomplete

design (i.e., a design containing ‘unknown parts’, so-called Black Boxes)

can still be extended to a complete design satisfying a given property or

whether the property is satisfied for all possible extensions. There are

many applications of property checking for incomplete designs, such

as early verification checks for unfinished designs, error localization in

faulty designs and the abstraction of complex parts of a design in order

to simplify the property checking task.

To process incomplete designs we present an approximate, yet sound

algorithm. The algorithm is flexible in the sense that for every Black

Box a different approximation method can be chosen. This permits

us to handle less relevant Black Boxes (in terms of the property) with

larger approximation and thus faster, whereas we do not lose important

information when the possible effect of more relevant Black Boxes is

modeled by more exact methods.

Additionally, we present a concept to decide exactly whether Black

Boxes with bounded memory can be implemented so that they satisfy a

given property. This question is reduced to conventional symbolic model

checking.

The effectiveness and feasibility of the methods is demonstrated by a

series of experimental results.

Index Terms—Symbolic model checking, verification, Black Boxes,

incomplete designs, abstraction, approximation, BDDs

1 INTRODUCTION

D ECIDING the question whether a circuit implementation fulfills

its specification is an essential problem in computer-aided

design of VLSI circuits. Growing interest in universities and industry

has led to new results and significant advances concerning topics like

property checking, state space traversal and combinational equiva-

lence checking.

For proving properties of sequential designs, Clarke, Emerson, and

Sistla presented model checking for the temporal logic CTL [3].

Burch et al. improved the technique by using symbolic methods based

on binary decision diagrams [4] for both state set representation and

state traversal in [5], [6].

In this paper we consider how to perform model checking of incom-

plete designs, i.e., designs which contain unknown parts, combined

into so-called Black Boxes. In doing so, we address two interesting

questions: The question whether it is still possible to replace the Black

Boxes by circuit implementations, so that a given property is satisfied

(‘realizability’) and the question whether the property is satisfied for

any possible replacement (‘validity’).

• The authors are with the Department of Computer Science,

University of Freiburg, 79110 Freiburg i. Br., Germany, (e-mail:

{nopper,scholl}@informatik.uni-freiburg.de)

• Parts of the article have been presented at DAC 2001 [1] and FMCAD

2004 [2].

There are three major benefits symbolic model checking for

incomplete designs can provide: First, instead of forcing verification

runs to the end of the design process where the design is completed,

it rather allows model checking in early stages of design, where

parts may not yet be finished, so that errors can be detected earlier.

Second, complex parts of a design can be replaced by Black Boxes,

simplifying the design, while many properties of the design still can

be proven, yet in shorter time. Third, the location of design errors

in circuits not satisfying a model checking property can be narrowed

down by iteratively masking potentially erroneous parts of the design.

In principle, the realizability problem could be solved exactly by

synthesis approaches such as [7], [8]. Of course, a property for

an incomplete design is realizable, if a complete design can be

synthesized from the property and the parts of the design which are

already known. However, due to complexity reasons, we are mainly

interested in approximate solutions to the realizability and the validity

problem. Whereas an exact solution to the realizability problem for

incomplete designs with several Black Boxes (potentially containing

an unrestricted amount of memory) is even undecidable in general

[9], we use symbolic methods providing approximate answers: Our

algorithm does not give a definite answer in every case, but it is

guaranteed to be sound in the sense that it never gives an incorrect

answer; it provides proofs of validity and disproofs of realizability for

arbitrary CTL formulas (unlike approaches using ‘non-deterministic

signals’ implemented in SMV [6] and VIS [10] which are only sound

for certain subclasses of CTL).

Our method is based on symbolic representations of incomplete

designs. Using these representations we provide different methods for

approximating the sets of states satisfying a given property φ. One set

is an over-approximation of the set of states satisfying the given CTL

formula φ for at least one substitution of the Black Boxes and the

second set is an under-approximation of the set of states satisfying the

formula for all Black Box substitutions. Approximate yet sound an-

swers for realizability and validity are computed based on these sets.

Our approach is able to use different methods for modeling

unknowns at the outputs of different Black Boxes within a single

model checking run. This permits us to handle less relevant Black

Boxes (in terms of the CTL formula) with larger approximation and

thus faster, whereas we do not lose important information when the

possible effect of more relevant Black Boxes is modeled by more

exact methods.

For an experimental evaluation we considered pipelined ALUs with

varying bit widths. The results show that our approximate methods

are able to provide proofs for large designs with bit widths up

to 64, whereas standard model checking succeeded only for much

smaller benchmarks. Moreover, the results show that the flexibility

of choosing approximations with different accuracy for different

Black Box outputs is essential for the success of our method. These

observations were also confirmed by an additional case study from

the railway domain.

scholl
Schreibmaschinentext
Paper submitted to IEEE Trans. Computers.Final paper appeared in IEEE Trans. Computers, vol. 62, no. 6, 2013, pp. 1234-1254.http://doi.ieeecomputersociety.org/10.1109/TC.2012.53

scholl
Schreibmaschinentext

scholl
Schreibmaschinentext

scholl
Schreibmaschinentext

scholl
Schreibmaschinentext

scholl
Schreibmaschinentext

2

Although the main focus of our paper lies on approximate solutions

to the realizability and validity problems — in order to make our

presentation more complete — we also present a concept how to

provide an exact solution to a restricted problem by means of a

conventional symbolic model checker: We assume an upper bound

to the number of internal states of the Black Boxes and symbolically

compute the exact set of Black Box replacements for which a property

is satisfied, i.e., we give exact answers to both the realizability and the

validity question. In contrast to controller synthesis approaches such

as [7], [8], we do not assume that Black Boxes have unlimited access

to all signals in the design, but we take into account that they are

only able to read the input signals connected to them. In Sect. 7 we

applied this concept to a design where we checked the realizability

of an arbiter which was specified by CTL formulas.

Our approach shares ideas with 3-valued model checking in-

troduced in the context of software model checking (e.g. [11]–

[13]); it extends these ideas, improves and adapts them making use

of characteristics of modular hardware designs and it provides an

efficient implementation based on symbolic methods. Compared with

methods from hardware verification such as Symbolic Trajectory

Evaluation (STE) [14] or verification using Uninterpreted Functions

(UIFs) [15], our method supports full CTL and allows Black Boxes

for sequential designs. Our approach (in its aspect of abstraction by

Black Boxes) is also related to localization reduction [16]. Bounded

model checking approaches with localization reduction (e.g. [17],

[18]) make use of efficient SAT solvers and are restricted to safety

properties. If the property allows a non-trivial amount of abstraction

of the full model, our BDD based symbolic method proves to be

competitive for large designs (and even for saftey properties) due to

property specific abstractions of different strengths. The method is

based on user knowledge about the design and on user assumptions

about the importance of certain parts of the design for the property

at hand. Especially if the interfaces of some Black Boxes are wide

(i.e. contain many signals), by our flexible modeling of unknowns

we are not only able to abstract complex implementations of Black

Boxes, but also to reduce the number of variables for interface

signals (which is an additional source of complexity). A more detailed

discussion of the relationship between our work and other approaches

from the literature can be found in Sect. 8.

The paper is structured as follows: After giving a brief review

of sequential designs and symbolic model checking in Sect. 2, we

define incomplete designs and the set of their completions in Sect. 3.

Sect. 4 introduces our method to perform symbolic simulation for

incomplete designs and in Sect. 5, we present a new algorithm capable

of performing sound and approximate symbolic model checking for

incomplete designs. In Sect. 6, we introduce a concept for an exact

algorithm to process incomplete designs in which a fixed upper bound

on the number of internal states is assumed for each Black Box. We

give a series of experimental results demonstrating the effectiveness

and feasibility of the methods in Sect. 7. Finally, Sect. 8 provides a

detailed discussion of related work and Sect. 9 concludes the paper.

2 PRELIMINARIES

Before we introduce symbolic model checking for incomplete designs

we give a brief review of symbolic model checking for complete

designs [5]. Symbolic model checking is applied to Kripke structures

(which may be derived from sequential designs) on the one hand and

to a formula of a temporal logic (in our case CTL (‘Computation

Tree Logic’)) on the other hand.

2.1 Sequential Designs and Kripke Structures

(Complete) sequential designs consist of nodes which are connected

by signals.1 The nodes represent primary inputs, primary outputs,

memory elements (flip-flops) storing single bits, or logic gates

implementing Boolean functions. In following we denote the list

of primary input nodes by X⃗ = (X1, X2, . . . , X|X⃗|), the list of

primary output nodes by Y⃗ = (Y1, Y2, . . . , Y|Y⃗ |), and the list of

flip-flops by Q⃗ = (Q1, Q2, . . . , Q|Q⃗|). q⃗
0 ∈ B

|Q⃗| gives the initial

values (initial state) of the flip-flops. Fig. 1 a) shows an example for

a sequential design with one primary input, three primary outputs,

two flip-flops initialized to 0, and three gates implementing Boolean

functions nor2, and2, xor2, respectively.

Each output of a node in the sequential design computes a Boolean

function f : B|Q⃗| × B
|X⃗| → B. Each primary input Xj computes a

Boolean function xj (which – strictly speaking – is the projection

function mapping (x1, . . . , x|X⃗|, q1, . . . , q|Q⃗|) ∈ B
|Q⃗| × B

|X⃗| to xj)
and each flip-flop Qk computes qk. The output functions of the logic

gates are computed recursively according to their gate function. In

Fig. 1 a) the corresponding Boolean functions of the nodes are shown

as Boolean expressions.

In symbolic model checking, BDD based representations of these

Boolean functions are computed by symbolic simulation [19]. For

this, the primary inputs and the outputs of the flip-flops are associated

with unique BDD variables and BDDs for the functions computed

by the gates of the design are built in topological order using BDD

operations.

The input functions δi of the flip-flops Qi compute the next state

of the flip flops and the functions λj corresponding to the primary

outputs compute the current output values (based on the current

state and the current input). Altogether a sequential design defines a

transition function δ⃗ : B|Q⃗| × B
|X⃗| → B

|Q⃗| and an output function

λ⃗ : B|Q⃗| × B
|X⃗| → B

|Y⃗ |. Again, see Fig. 1 a) for an example.

Now we can define the Kripke structure of a complete design D.

The states of the Kripke structure are defined as a combination of

states and inputs of D. The transition relation R of the Kripke struc-

ture connects states according to the transition function δ⃗ of D. The

labeling function L labels states with the information which inputs

(represented by atomic propositions xi) and outputs (represented by

atomic propositions yi) are 1 in these states.

Definition 1 (Kripke Structure of a Complete Design). Let D be a

sequential design with transition function δ⃗ : B|Q⃗| × B
|X⃗| → B

|Q⃗|,

output function λ⃗ : B|Q⃗|×B
|X⃗| → B

|Y⃗ |, and initial state q⃗ 0. A Kripke
structure for D is struct(D) := (S,R, L) where

• S := B|Q⃗| × B|X⃗|, R ⊆ S × S, L : S → V ,

• V := {x1, . . . , x|X⃗|} ∪ {y1, . . . , y|Y⃗ |},

• R :=
{(

(q⃗, x⃗), (q⃗ ′, x⃗ ′)
) ∣
∣ q⃗, q⃗ ′∈B|Q⃗|, x⃗, x⃗ ′∈B|X⃗|, δ⃗(q⃗, x⃗)= q⃗ ′

}
,

• and L
(
(q⃗, ϵ⃗)

)
:=

{
xi

∣
∣ ϵi = 1

}
∪

{
yi

∣
∣λi(q⃗, ϵ⃗) = 1

}
.

All states (q⃗ 0, x⃗) with x⃗ ∈ B
|X⃗| are called initial states of

struct(D).

2.2 Symbolic Model Checking for Complete Designs

Model checking decides whether a given design fulfills its speci-

fication given as a formula of a temporal logic. In this paper we

consider the widespread branching time logic CTL (Computation

Tree Logic) [3], [6]. CTL formulas specify properties of states of

Kripke structures. The semantics of CTL formulas can be defined

recursively based on their structure:

Definition 2 (Semantics of CTL). As usual we write struct(D), s |=
φ if the CTL formula φ is satisfied in state s = (q⃗, x⃗) ∈ S of
struct(D). If it is clear from the context which Kripke structure is

1. For a formal definition see Appendix A.

3

Y1

FF

Y2

Y3

X1

Q1

FF

Q2

0

0

a) Sequential Design

x1

δ2 = q1 ∨ q2

q2

δ1 = q2

q1

λ1 = x1 ∧ q2

λ2 = q2 ⊕ q2 = 0

λ3 = q1

Black

Box

Y1

FF

Y2

Y3

X1

Q1

0

b) Incomplete Design

BB
Y r

1FF
Xr

1

Qr

1

0

c) Sequential Design to replace Black Box

Fig. 1. Complete and incomplete sequential designs

used, we simply write s |= φ instead of struct(D), s |= φ. “|=” is
defined as follows:

s |= φ; φ ∈ V ⇐⇒ φ ∈ L(s)

s |= ¬φ ⇐⇒ s ̸|= φ

s |= (φ1 ∨ φ2) ⇐⇒ s |= φ1 or s |= φ2

s |= EXφ ⇐⇒ ∃s′ ∈ S : R(s, s′) and s′ |= φ

s |= EGφ ⇐⇒ there is a path (s0, s1, s2, . . .) with

s = s0 and ∀i ≥ 0: (si, si+1) ∈ R and si |= φ

s |= Eφ1Uφ2 ⇐⇒ there is a path (s0, s1, s2, . . .) with

s = s0 and ∀i ≥ 0: (si, si+1) ∈ R and there is

j so that sj |= φ2 and ∀0 ≤ i < j : si |= φ1

The remaining CTL operations ∧, EF , AX , AU , AG, and AF
can be expressed by using ¬, ∨, EX , EU , and EG [6].

In symbolic model checking, sets of states are represented by

characteristic functions (which are in turn represented by BDDs).

Before we define symbolic model checking, we need the following

three definitions:

Definition 3 (Cofactor). For a Boolean function f : Bn → B the

cofactor (or partial evaluation) wrt. y⃗ = ϵ⃗ (⃗ϵ ∈ B
|y⃗|) is defined as the

Boolean function f |y⃗=ϵ⃗ : Bn → B with f |y⃗=ϵ⃗(x⃗, y⃗, z⃗) = f(x⃗, ϵ⃗, z⃗)
for all (x⃗, y⃗, z⃗) ∈ B

n.

Definition 4. Let f : Bn → B be a Boolean function. ∃y⃗f is defined

as the Boolean function
∨

ϵ⃗∈B|y⃗| f |y⃗=ϵ⃗, ∀y⃗f as
∧

ϵ⃗∈B|y⃗| f |y⃗=ϵ⃗.

Definition 5 (Compose). Let f, g : B
n → B be Boolean

functions. The composition of xi by g in f is defined as the

Boolean function f |xi←g : B
n → B with f |xi←g(x1, . . . , xi,

. . . , xn) := f(x1, . . . g(x1, . . . , xn), . . . , xn) = (g · f |xi=0 + g ·
f |xi=1)(x1, . . . , xn) for all (x1, . . . , xn) ∈ B

n.

Composition (see e.g. [4]) can be naturally generalized to vectors

of variables and functions. In the definition of symbolic model

checking only the special case of renaming variables is needed.
Let Sat(φ) be the set of states of struct(D) which satisfy

formula φ and let χSat(φ) be its characteristic function, then χSat(φ)
can be computed recursively based on the characteristic function

χR(q⃗, x⃗, q⃗
′) :=

∏|q⃗|
i=1

(
δi(q⃗, x⃗) ≡ q′i

)
of the transition relation R:

χSat(xi)(q⃗, x⃗) := xi

χSat(yi)(q⃗, x⃗) := λi(q⃗, x⃗)

χSat(¬φ)(q⃗, x⃗) := χSat(φ)(q⃗, x⃗)

χSat((φ1∨φ2))(q⃗, x⃗) := χSat(φ1)(q⃗, x⃗) ∨ χSat(φ2)(q⃗, x⃗)

χSat(EXφ)(q⃗, x⃗) := χEX(χSat(φ))(q⃗, x⃗)

χSat(EGφ)(q⃗, x⃗) := χEG(χSat(φ))(q⃗, x⃗)

χSat(Eφ1Uφ2)(q⃗, x⃗) := χEU (χSat(φ1), χSat(φ2))(q⃗, x⃗)

with χEX(χN)(q⃗, x⃗) := ∃q⃗ ′∃x⃗ ′
(

χR(q⃗, x⃗, q⃗
′) ·

(
χN | q⃗←q⃗ ′

x⃗←x⃗ ′

)
(q⃗ ′, x⃗ ′)

)

χEG and χEU can be evaluated by the fixed point iteration

algorithms shown in Figs. 2 and 3.

χEG(χN) {
old := 1;
new := χN ;
while (old ̸= new) {

old := new ;
new := χN · χEX(old);

}
return new ;

}

Fig. 2. Fixed point iteration for EG

χEU (χN , χP) {
old := 0;
new := χP ;
while (old ̸= new) {

old := new ;
new := χP + (χN · χEX(old));

}
return new ;

}

Fig. 3. Fixed point iteration for EU

A complete sequential design satisfies a formula φ iff φ is satisfied
in all initial states of the corresponding Kripke structure struct(D):

D |= φ :⇐⇒ ∀x⃗ ∈ B
|X⃗| struct(D), (q⃗ 0, x⃗) |= φ

⇐⇒ ∀x⃗
((

χSat(φ)(q⃗, x⃗)
)
|q⃗=q⃗ 0

)

= 1

3 INCOMPLETE DESIGNS

Incomplete sequential designs may contain additional “Black Box”

(BB) nodes which represent parts of the design with unknown

(sequential) behavior, see Fig. 1 b) for an example with one input,

three outputs, one flip-flop, two gates implementing the Boolean

and2 resp. the Boolean xor2 function and one Black Box.

A Black Box BB in an incomplete design D can be replaced by

any sequential design Dr (without Black Boxes and with an arbitrary

number of flip-flops), as long as Dr has the same number of inputs

and outputs as the Black Box. The inputs and outputs of Dr are then

connected to the inputs and outputs of the former Black Box BB

in D; the result of this substitution is another (possibly incomplete)

sequential design Dc. E.g. the sequential design in Fig. 1 a) results

from the incomplete design in Fig. 1 b) by replacing the Black Box

with the sequential design in Fig. 1 c).2

If the incomplete design D resulted from a complete design by

abstractions replacing subcircuits by Black Boxes, then replacing

Black Boxes again by their concrete counterparts corresponds to the

well-known notion of abstraction refinement [16].

Definition 6 (Completion of an Incomplete Design). A sequential

design Dc that was constructed from an incomplete design D by

replacing all Black Boxes by sequential designs is called a completion

of D. C(D) is the set of all possible completions of D.

The two main questions we address in this paper are the realiz-

ability and the validity question:

Definition 7 (Realizability and Validity). Given an incomplete design

D and a CTL formula φ:

1) If there is a completion Dc ∈ C(D) of D which satisfies φ,

then the property φ is called realizable for D.

2) If all possible completions Dc ∈ C(D) of D satisfy φ, then

the property φ is called valid for D.

2. For formal definitions see Appendix A.

4

Black

Box

POUT

FF

POUT

POUT

PIN
x1

Z1

=0

q1

δ1=Z1

Z1⊕Z1

x1∧Z1 λ1=x1∧Z1

λ2=0

λ3=q1

0

a) Symbolic Zi-simulation

Black

Box

POUT

FF

POUT

POUT

PIN
0

X

0

X

1

0

X

1

X
0

b) (0, 1, X)-simulation for x1 = 0, q1 = 1

Black

Box

POUT

FF

POUT

POUT

PIN
x1

Z

x1∧Z

Z

q1

δ1=Z

λ1=x1∧Z

λ2=Z

λ3=q1

0

c) Symbolic Z-simulation

Fig. 4. Different methods to analyze an incomplete design

4 SYMBOLIC SIMULATION FOR INCOMPLETE DESIGNS

For symbolic CTL model checking of complete designs, symbolic

representations of the output functions λ⃗ and the transition functions δ⃗
are needed first. Of course, we cannot compute λ⃗ and δ⃗ for incomplete

designs due to the unknown Black Boxes. However, in order to

define an approximate model checking method for incomplete designs

in Sect. 5, we compute ‘approximate representations’ of output

functions λ⃗ and transition functions δ⃗ which contain information on

the potential effect of the Black Boxes.

Symbolic Zi-simulation

For that purpose we first consider symbolic Zi-simulation which

replaces the Black Box outputs by free input variables and in that way

evaluates the effect that Black Box outputs have on λ⃗ and δ⃗. Apart

from handling the Black Box outputs as additional inputs, symbolic

Zi-simulation works exactly as conventional symbolic simulation

[19]. (Replacing signals by free variables is not a new idea, but has

been used for a long time, e.g. for localization abstraction [16].)

Definition 8 (Symbolic Zi-Simulation). Let D be an incomplete
design over the library STD = {and2, or2, not}.3 Let zvar be a
function mapping distinct Boolean variables Zi to the outputs of the
Black Boxes. Moreover, we use Boolean variables x1, . . . , x|X⃗| for
the primary inputs and Boolean variables q1, . . . , q|Q⃗| for the flip-
flop outputs. The Boolean function fZi(m, j) for the j-th output of
a node m is defined as follows:

(1) If m is a primary input Xi, then fZi
(m, 1) = xi.

(2) If m is a flip-flop Qk, then fZi
(m, 1) = qk.

(3) If m is a Black Box, then fZi
(m, j) = zvar(m, j).

(4) If m is a not-gate whose predecessor is output k of node p, then

fZi
(m, 1) = fZi

(p, k).
(5) If m is an and2 -gate (or2 -gate) whose predecessors are output k1 of

p1 and output k2 of p2, then fZi
(m, 1) = fZi

(p1, k1)∧fZi
(p2, k2)

(fZi
(p1, k1) ∨ fZi

(p2, k2)).

Fig. 4 a) shows an example for symbolic Zi-simulation of the

incomplete design from Fig. 1 b).

The following lemma shows how the result of symbolic Zi-
simulation can be interpreted regarding the Black Boxes:

Lemma 1. Let D be an incomplete design and let Dc ∈ C(D)
be an arbitrary completion of D. For the j-th output of gate m in

D let fZi(m, j) be the Boolean function over variables (q⃗, x⃗, Z⃗)
computed by symbolic Zi-simulation of D. Furthermore, let f(m, j)
be the Boolean function over variables ((q⃗, q⃗ r), x⃗) computed by

(conventional) symbolic simulation of Dc (q⃗ r are variables intro-

duced by substitutions of Black Boxes by sequential designs). Then

the following holds for constants α ∈ B and β⃗ ∈ B
|q⃗|, γ⃗ ∈ B

|x⃗|:

fZi(m, j)| q⃗=β⃗
x⃗=γ⃗

= α⇒ f(m, j)| q⃗=β⃗
x⃗=γ⃗

= α.

Proof:

The proof simply follows from the fact that fZi(m, j)| q⃗=β⃗
x⃗=γ⃗

= α ∈ B

3. W.l.o.g. we restrict the library in the following to STD , since all types
of gates can be expressed using 2-input and2 gates, or2 gates and not gates.

implies that fZi(m, j)| q⃗=β⃗
x⃗=γ⃗

does not depend on the outputs of

the Black Boxes. Therefore f(m, j)| q⃗=β⃗
x⃗=γ⃗

= α for an arbitrary

substitution of the Black Boxes by sequential designs.

Symbolic Z-simulation

For analyzing combinational circuits with Black Boxes in [1]

we introduced symbolic Z-simulation. Compared to symbolic Zi-
simulation, this method is usually less expensive in terms of run time

and memory consumption, but it is also less accurate as measured by

the amount of information which can be extracted from the results.

Symbolic Z-simulation is motivated by the well-known (0, 1, X)-
simulation [14], [20], [21]. The value X represents unknown values

which come from the unknown functionality of the Black Boxes

in our context. If some input values of a gate are set to X during

(0, 1, X)-simulation, the output value is equal to X if and only if

there are two different replacements of the X values at the inputs

by 0’s and 1’s, which lead to different outputs of the gate. Fig. 4 b)

shows a (conventional) (0, 1, X)-simulation for the incomplete

design shown in Fig. 1 b) (with the input set to 0 and the flip-flop

state set to 1).

For symbolic Z-simulation, the symbolic version of (0, 1, X)-
simulation, a new variable Z is introduced, which is used to model

unknown values at the outputs of Black Boxes. Now, for each output

of a node in the incomplete design, the output function is obtained

by using a slightly modified version of symbolic simulation:

Definition 9 (Symbolic Z-Simulation). Let D be an incomplete

design over STD = {and2, or2, not}. Let Z be a new vari-

able different from x1, . . . , x|X⃗|, q1, . . . , q|Q⃗|. The Boolean function

fZ(m, j) for the j-th output of a node m is defined as in Def. 8 with

(3) and (4) replaced by

(3’) If m is a Black Box, then fZ(m, j) = Z.

(4’) If m is a not-gate whose predecessor is output k of node p,

then fZ(m, 1) = fZ(p, k)|Z←Z .

The main difference to conventional symbolic simulation is the

evaluation of not-gates: The not operation on the function for the

predecessor gate is followed by a compose operation (see Def. 5)

which composes Z for Z (written as fZ(p, k)|Z←Z). Fig. 5 (a)

shows a first example of Z-simulation for a design with two Black

Boxes. If the compose operation after processing the not-gate would

be omitted, then its output would compute Z, leading to the result 0 at

the output of the and2-gate, i.e. we would then lose the information

that the output value is always unknown (modeled by Z) due to the

Black Boxes.

Symbolic Z-simulation has the following property:

Lemma 2. Given an incomplete design D and a Boolean function

fZ(m, j) computed by symbolic Z-simulation for the j-th output of

node m. For all β⃗ ∈ B
|q⃗|, γ⃗ ∈ B

|x⃗|: fZ(m, j)| q⃗=β⃗
x⃗=γ⃗

∈ {0, 1, Z}.

The lemma can be proved by induction on the structure of D.

The proof is given in Appendix B. If fZ(m, j)| q⃗=β⃗
x⃗=γ⃗

= Z, then the

function value for input (β⃗, γ⃗) is unknown due to the Black Boxes.

5

a) Example 1

Black

Box 1

Black

Box 2

POUT

Z Z

Z

Z

Black

Box 2

f
MUX4

Black

Box 1

MUX2

x1

x2
PIN

b) Example 2

POUT

Fig. 5. Two incomplete designs

Fig. 4 c) shows another example of symbolic Z-simulation. Note

that — in contrast to symbolic Zi-simulation in Fig. 4 a) — the

second output cannot be proved to be constant 0. Since Z-simulation

cannot distinguish between unknown values at different Black Box

outputs, some information is lost. According to the following lemma,

Zi-simulation is always at least as accurate as Z-simulation:

Lemma 3. Let D be an incomplete design, fZ(m, j) the function

computed by symbolic Z-simulation for the j-th output of m and

fZi(m, j) the corresponding function computed by symbolic Zi-
simulation. Then the following holds for constants α ∈ B and

β⃗ ∈ B
|q⃗|, γ⃗ ∈ B

|x⃗|: If fZ(m, j)| q⃗=β⃗
x⃗=γ⃗

= α, then fZi(m, j)| q⃗=β⃗
x⃗=γ⃗

= α.

Again, the lemma is proved by induction on the structure of D;

the proof can be found in Appendix C.

Symbolic Z/Zi-simulation

Finally, we provide a mixed (symbolic) Z/Zi-simulation in order

to give the user more flexibility in controlling the trade-off be-

tween higher efficiency of Z-simulation and higher accuracy of Zi-
simulation. Here, some Black Box outputs are represented by variable

Z as in symbolic Z-simulation and some Black Box outputs by

distinct variables Zi as in symbolic Zi-simulation. Basically, sym-

bolic Z/Zi-simulation considers the Zi-modeled Black Box outputs

as additional inputs and then performs symbolic Z-simulation (always

replacing Z by Z when processing not gates):

Definition 10 (Symbolic Z/Zi-Simulation). Let D be an in-

complete design over STD . Let Z⃗l = (Z1, . . . , Zn) be a vector

of new variables and Z be a new variable, all different from

x1, . . . , x|X⃗|, q1, . . . , q|Q⃗|. Let zvar be a function mapping distinct

Boolean variables Zi or the variable Z to the outputs of the Black

Boxes. The Boolean function fZ/Zi
(m, j) for the j-th output of a

node m is defined as in Def. 8 with (4) replaced by

(4”) If m is a not-gate whose predecessor is output k of node p,

then fZ/Zi
(m, 1) = fZ/Zi

(p, k)|Z←Z .

Example. Figure 5 (b) shows an example comparing Z-, Zi- and

combined Z/Zi-simulation. If this design is simulated by using

symbolic Z-simulation (meaning that Z is assigned to the outputs

of both Black Box 1 and Black Box 2), a total number of 3 variables

are needed (x1, x2, Z) and the resulting function for the output is

fZ=Z.

If the design is simulated by using symbolic Zi-simulation instead

(meaning that for each output of Black Box 1 and Black Box 2 a new

Zi variable is used), 9 variables are needed (x1, x2, Z1, . . . , Z7), and

the function for the output is fZi = Z1x1+Z1 ·
(
x2+¬(Z2Z3Z4+

Z2Z3Z5 + Z2Z3Z6 + Z2Z3Z7)
)

(when variables Z1, . . . Z7 are

assigned top down to the Black Box outputs appearing in Fig. 5 (b).

When using symbolic Z/Zi-simulation for modeling Black Box

outputs, assigning Z to all outputs of Black Box 2, but different Zi’s
to the outputs of Black Box 1, e.g., we end up using 6 variables

(x1, x2, Z, Z1, Z2, Z3) and obtain the function fZ/Zi
= Z1x1 +Z1 ·

(x2 + Z).
Thus, Z/Zi-simulation generates an output function that is obvi-

ously less complicated than the result of symbolic Zi-simulation, yet

contains more information than the result of symbolic Z-simulation.

To give an example, for x1=1 and x2=0, the output can be proven

to be 1 using Z/Zi-simulation, while it is not possible to obtain this

information from symbolic Z-simulation.

In general, Z/Zi-simulation is at most as exact as symbolic Zi-
simulation, but at least as exact as symbolic Z-simulation. Moreover,

if for a node function in an incomplete design computed by Z-, Z/Zi-
or Zi-simulation a cofactor wrt. input and state variables is constant,

then the cofactor of the corresponding node function always evaluates

to the same constant, no matter how the Black Boxes are replaced

by sequential designs. This is summarized by the following theorem:

Theorem 4. Let D be an incomplete design, let Dc ∈ C(D) be an
arbitrary completion of D, let fZ(m, j), fZi(m, j), fZ/Zi

(m, j) be
the functions computed for the j-th output of node m in D by sym-
bolic Z-simulation, Zi-simulation, and Z/Zi-simulation, respectively,
and let f(m, j) be the function computed for the j-th output of node
m in Dc by symbolic simulation. For constants α ∈ B and for all

β⃗ ∈ B
|q⃗|, γ⃗ ∈ B

|x⃗|:

fZ(m, j)| q⃗=β⃗
x⃗=γ⃗

= α
(1)
⇒ fZ/Zi

(m, j)| q⃗=β⃗
x⃗=γ⃗

= α

(2)
⇒ fZi

(m, j)| q⃗=β⃗
x⃗=γ⃗

= α
(3)
⇒ f(m, j)| q⃗=β⃗

x⃗=γ⃗
= α.

Proof: Implication (1) is proved by induction on the structure

of D exactly as in the proof of Lemma 3 (simply replace fZi by

fZ/Zi
in the proof). Implication (2) follows from Lemma 3: Let

Z⃗l be the vector of Zi-variables also used in Z/Zi-simulation. Since

fZ/Zi
(m, j)| q⃗=β⃗

x⃗=γ⃗
= α, also fZ/Zi

(m, j)|q⃗=β⃗
x⃗=γ⃗
Z⃗l=ϵ⃗

= α for all ϵ⃗ ∈ B
|Z⃗l|.

Considering the Z⃗l-variables as primary inputs for the time being, we

can apply Lemma 3 and have fZi(m, j)|q⃗=β⃗
x⃗=γ⃗
Z⃗l=ϵ⃗

= α for all ϵ⃗ ∈ B
|Z⃗l|.

This implies fZi(m, j)| q⃗=β⃗
x⃗=γ⃗

= α. Implication (3) directly follows

from Lemma 1.

5 SYMBOLIC MODEL CHECKING FOR INCOMPLETE DE-

SIGNS

5.1 Basic Principle

Symbolic model checking for complete designs computes the set

Sat(φ) of all states satisfying a CTL formula φ and then checks

whether all initial states are included in this set. If so, the design

satisfies φ. The situation becomes more complex if we consider

incomplete designs, since for each replacement of the Black Boxes

we may have different state sets satisfying φ.

In contrast to conventional model checking we do not compute the

set Sat(φ), but we consider two sets SatexactE (φ) and SatexactA (φ):
The set SatexactE (φ) is defined to contain all states, for which there

is at least one completion so that φ is satisfied. In a similar manner,

SatexactA (φ) contains all states, for which φ is satisfied for all possible

completions.

Definition 11. Let D be an incomplete design and C(D) be the set
of completions of D.

SatexactE (φ) :=
{

(q⃗, x⃗) ∈ B
|Q⃗| × B

|X⃗|
∣
∣

∃Dc ∈ C(D), ∃q⃗ r ∈ B
|Q⃗c|−|Q⃗| : struct(Dc), ((q⃗, q⃗ r), x⃗) |= φ

}

SatexactA (φ) :=
{

(q⃗, x⃗) ∈ B
|Q⃗| × B

|X⃗|
∣
∣

∀Dc ∈ C(D), ∀q⃗ r ∈ B
|Q⃗c|−|Q⃗| : struct(Dc), ((q⃗, q⃗ r), x⃗) |= φ

}

(|Q⃗c| − |Q⃗| is the number of flip-flops in Dc added to D by Black

Box replacements.) We say that states (q⃗, x⃗) ∈ SatexactE (φ) ‘possibly

satisfy φ’ and that states (q⃗, x⃗) ∈ SatexactA (φ) ‘definitely satisfy φ’.

Of course, Def. 11 does not suggest a feasible algorithm for

computing SatexactE (φ) and SatexactA (φ), since the set of all possible

completions for an incomplete design is not finite. (This motivates our

approach to compute approximations of SatexactE (φ) and SatexactA (φ)

6

in Sect. 5.2.) Nevertheless, given SatexactE (φ) and SatexactA (φ), it is

easy to prove validity and to falsify realizability for the incomplete

design:

Lemma 5. A property φ is valid for an incomplete design D with

initial state q⃗ 0, if all states (q⃗ 0, x⃗) with x⃗ ∈ B
|X⃗| are included in

SatexactA (φ). A property φ is not realizable for D, if there is at least

one such state (q⃗ 0, x⃗) not belonging to SatexactE (φ).

Proof: Let Dc ∈ C(D) be an arbitrary completion of D and let

q⃗ 0r be the initial states of the flip-flops introduced by the replace-

ments of the Black Boxes. If ∀x⃗ ∈ B
|X⃗| : (q⃗ 0, x⃗) ∈ SatexactA (φ),

then ∀x⃗ ∈ B
|X⃗| : struct(Dc), ((q⃗ 0, q⃗ 0r), x⃗) |= φ (by Def. 11).

This means that Dc satisfies φ. φ is valid, since we assumed Dc

to be an arbitrary completion. If (q⃗ 0, x⃗) /∈ SatexactE (φ), then for all

completions Dc ∈ C(D) with initial states q⃗ 0r of the additional

flip-flops φ is not satisfied in the initial state ((q⃗ 0, q⃗ 0r), x⃗) of

struct(Dc). Thus, φ is not realizable for D.

Just as Black Boxes in incomplete designs lead to states only

possibly satisfying φ, there are also ‘possible transitions’ between

states in an incomplete design which may or may not exist in a

completion of the design — depending on the replacement of the

Black Boxes:

Definition 12. Let D be an incomplete design and let C(D) be the

set of completions of D. We define the incomplete design to have

a possible transition between states (q⃗, x⃗), (q⃗ ′, x⃗ ′) ∈ B
|Q⃗| × B

|X⃗|,

if there is a completion Dc ∈ C(D) for which there is a transition

between ((q⃗, q⃗ r), x⃗) and (q⃗ ′, q⃗ ′r), x⃗ ′) for some values q⃗ r , q⃗ ′r ∈
B
|Q⃗c|−|Q⃗|. (|Q⃗c| − |Q⃗| is the number of flip-flops in Dc added to D

by Black Box replacements.)

Possible transitions are used later on in order to compute states

that possibly or definitely satisfy a property φ.

5.2 Approximations

As mentioned above, for reasons of efficiency we compute approxi-

mations SatapprE (φ) and SatapprA (φ) for SatexactE (φ) and SatexactA (φ),
respectively – and similarly for the set of possible transitions. To

be more precise, we compute over-approximations SatapprE (φ) ⊇
SatexactE (φ) of SatexactE (φ) and under-approximations SatapprA (φ) ⊆
SatexactA (φ) of SatexactA (φ).

Then Lemma 5 directly implies the following lemma:

Lemma 6. Let SatapprE (φ) ⊇ SatexactE (φ) and SatapprA (φ) ⊆
SatexactA (φ). If all initial states (q⃗ 0, x⃗) are included in SatapprA (φ),
then φ is valid. If there is an initial state (q⃗ 0, x⃗) that is not included

in SatapprE (φ), then φ is not realizable.

Approximations SatapprE (φ) and SatapprA (φ) are computed based

on an approximate transition relation and on approximate output

functions for the incomplete design D.

To take account of the unknown behavior of the Black Boxes

in D we use the symbolic methods from Sect. 4: Let there be a

number of Black Box outputs modeled by Z and some other Black

Box outputs modeled by Zi–variables from {Z1, . . . , Zn}. Symbolic

Z/Zi-simulation computes symbolic representations of the output

functions λi(q⃗, x⃗, Z, Z⃗l) and transition functions δj(q⃗, x⃗, Z, Z⃗l).
In standard model checking for complete designs, an atomic

property yi is satisfied for a state (q⃗ fix, x⃗fix)∈B
|Q⃗|×B

|X⃗| if

λi|q⃗=q⃗ fix,x⃗=x⃗fix = 1. Here we include a state (q⃗ fix, x⃗ fix) into

SatapprA (yi), if λi is 1 for a fixed value (q⃗ fix, x⃗fix) assigned to (q⃗, x⃗)
and all possible assignments to Z and Z⃗l. We include (q⃗ fix, x⃗fix) into

SatapprE (yi), if λi is 1 for (q⃗ fix, x⃗fix) assigned to (q⃗, x⃗) and some

assignment to Z and Z⃗l. Thus we define the characteristic functions

of SatapprA (yi) and SatapprE (yi) as follows:

Definition 13.

χSatappr
A

(yi)(q⃗, x⃗) := ∀Z∀Z⃗l
(
λi(q⃗, x⃗, Z, Z⃗l)

)
(1)

χSatappr
E

(yi)(q⃗, x⃗) := ∃Z∃Z⃗l
(
λi(q⃗, x⃗, Z, Z⃗l)

)
(2)

Lemma 7. For SatapprA (yi) and for SatapprE (yi) as defined in Def. 13:

SatapprA (yi) ⊆ SatexactA (yi), SatexactE (yi) ⊆ SatapprE (yi).

Proof: If (q⃗ fix, x⃗ fix)∈SatapprA (yi), i.e., χSatappr
A

(yi)(q⃗
fix, x⃗ fix)=1,

then λi|q⃗=q⃗ fix,x⃗=x⃗ fix = 1 according to Def. 13, Eqn. (1). Consider an

arbitrary completion Dc ∈ C(D) where the replacement of the Black

Boxes introduces the additional state variables q⃗ r ∈ B
|Q⃗c|−|Q⃗| and

let λci ((q⃗, q⃗
r), x⃗) be the i-th output function of Dc. According to

Thm. 4, λci |q⃗=q⃗ fix,x⃗=x⃗fix = 1, and thus λci ((q⃗
fix, q⃗ r), x⃗ fix) = 1 for all

q⃗ r ∈ B
|Q⃗c|−|Q⃗|. That means that (q⃗ fix, x⃗ fix) ∈ SatexactA (yi), since

Dc was chosen arbitrarily.

If (q⃗ fix, x⃗ fix) /∈ SatapprE (yi), then λi|q⃗=q⃗ fix,x⃗=x⃗ fix = 0 according to

Def. 13, Eqn. (2). Then for an arbitrary completion Dc as given

above we have according to Thm. 4: λci |q⃗=q⃗ fix,x⃗=x⃗fix = 0, and thus

λci ((q⃗
fix, q⃗ r), x⃗ fix) = 0 for all q⃗ r ∈ B

|Q⃗c|−|Q⃗|. That means that

(q⃗ fix, x⃗fix) /∈ SatexactE (yi), since Dc was chosen arbitrarily.

The computation of SatapprA (φ) and SatapprE (φ) for general CTL

formulas φ is performed based on possible transitions. Here we work

with an approximation, too. We compute an over-approximation of

the possible transitions, represented by the characteristic function

χRE (q⃗, x⃗, q⃗ ′):

Definition 14.

χRE (q⃗, x⃗, q⃗ ′) := ∃Z⃗l
(
∏|q⃗|
i=1 ∃Z

(
δi(q⃗, x⃗, Z, Z⃗l) ≡ q′i

))

.

The following lemma states that χRE over-approximates the pos-

sible transitions:

Lemma 8. If χRE (q⃗ fix, x⃗ fix, q⃗ ′fix) = 0, then there is no possible

transition from (q⃗ fix, x⃗fix) to (q⃗ ′fix, x⃗ ′fix) (for an arbitrary next input

x⃗ ′fix).

Proof: If χRE (q⃗ fix, x⃗ fix, q⃗ ′fix) = 0, then

∀Z⃗l
(
∨|q⃗|
i=1 ∀Z

(
δi(q⃗

fix, x⃗ fix, Z, Z⃗l) ̸≡ q′i
fix)

)

= 1. This means that for

an arbitrary fixed output Z⃗l
fix of the Black Boxes modeled by Zi’s

there is an i ∈ {0, . . . , |q⃗| − 1} with

∀Z
(
δi(q⃗

fix, x⃗ fix, Z, Z⃗l
fix) ̸≡ q′i

fix)
= 1. (3)

δi(q⃗
fix, x⃗ fix, Z, Z⃗l

fix) = Z, δi(q⃗
fix, x⃗ fix, Z, Z⃗l

fix) = q′i
fix

or δi(q⃗
fix, x⃗ fix,

Z, Z⃗l
fix) = ¬q′i

fix
according to Lemma 2. In the two former cases,

Eq. (3) would not hold, thus we have δi(q⃗
fix, x⃗ fix, Z, Z⃗l

fix) = ¬q′i
fix

,

i.e., the output value of δi differs from q′i
fix

for each replacement of

the Z-modeled Black Boxes (Thm. 4).

Altogether we can conclude that the output value of δ⃗ for input

(q⃗ fix, x⃗ fix) differs from q⃗ ′fix independently from the values at the

outputs of Black Boxes, i.e., there cannot be a possible transition

from (q⃗ fix, x⃗fix) to (q⃗ ′fix, x⃗ ′fix).

Remark. Extending Definitions 11 and 12 with respect to our

approximations, we denote in the following not only the states in

SatexactE (φ), but also the states in SatapprE (φ) by ‘states possibly

satisfying φ’. Similarly, we characterize the states in SatapprA (φ) by

‘states definitely satisfying φ’ and all transitions described by χRE
as ‘possible transitions’.

Based on χRE , SatapprA (yi) and SatapprE (yi), it is possible to define

rules how arbitrary CTL formulas can be recursively evaluated. We

show here how to compute sets SatapprA (·) and SatapprE (·) for CTL

formulas EXψ, ¬ψ, (ψ1 ∨ψ2), EGψ, and Eψ1Uψ2. We start with

EXψ:

The basic idea behind the definition of SatapprE (EXψ) and

SatapprA (EXψ) is the following: If there is a possible transition from a

7

state (q⃗, x⃗) to another state possibly satisfying ψ, then (q⃗, x⃗) possibly

satisfies EXψ. If all possible transitions from a state (q⃗, x⃗) lead to

states definitely satisfying ψ, then (q⃗, x⃗) definitely satisfies EXψ.

The next definition formalizes and refines this idea:

Definition 15.

χSatappr
E

(EXψ)(q⃗,x⃗) :=∃q⃗ ′
(

χRE(q⃗, x⃗, q⃗
′) · ∃x⃗ ′

(
χSatappr

E
(ψ)| q⃗←q⃗ ′

x⃗←x⃗ ′

)
(q⃗ ′, x⃗ ′)

)

χSatappr
A

(EXψ)(q⃗,x⃗) :=∀q⃗ ′
(

χRE(q⃗, x⃗, q⃗
′)→∃x⃗ ′

(
χSatappr

A
(ψ)| q⃗←q⃗ ′

x⃗←x⃗ ′

)
(q⃗ ′, x⃗ ′)

)

Lemma 9. Let SatapprA (ψ) be an under-approximation of SatexactA (ψ)
and SatapprE (ψ) be an over-approximation of SatexactE (ψ), let

SatapprA (EXψ) and SatapprE (EXψ) be defined as in Def. 15. Then

SatexactE (EXψ)⊆SatapprE (EXψ), SatapprA (EXψ)⊆SatexactA (EXψ).

Proof: To prove the first part of Lemma 9, we assume that

(q⃗ fix, x⃗ fix) ∈ SatexactE (EXψ). This implies that there is a possible

transition from (q⃗ fix, x⃗ fix) to some state (q⃗ ′fix, x⃗ ′fix) ∈ SatexactE (ψ).
Since SatexactE (ψ) ⊆ SatapprE (ψ), there is also a possible transi-

tion (given by χRE) from (q⃗ fix, x⃗ fix) to some state (q⃗ ′fix, x⃗ ′fix) ∈
SatapprE (ψ). By Def. 15, this means that (q⃗ fix, x⃗fix) ∈ SatapprE (EXψ).

The proof for the second part is slightly more involved: Assume

that (q⃗ fix, x⃗ fix) /∈ SatexactA (EXψ). That means that there exists a

completion Dc of the incomplete design (with transition function

δ⃗c, and additional state variables q⃗ r ∈ B
|Q⃗c|−|Q⃗| introduced by re-

placements of Black Boxes) and there exists q⃗ fixr ∈ B
|Q⃗c|−|Q⃗|, such

that ((q⃗ fix, q⃗ fixr), x⃗fix)) ̸|= EXψ. I.e., with δ⃗c((q⃗ fix, q⃗ fixr), x⃗ fix) =
(q⃗ ′fix, q⃗ ′fix

r
): ((q⃗ ′fix, q⃗ ′fix

r
), x⃗ ′fix) ̸|= ψ ∀x⃗ ′fix ∈ B

|X⃗|. This leads

to χRE (q⃗ fix, x⃗ fix, q⃗ ′fix) = 1 ∧ ∀x⃗ ′fix ∈ B
|X⃗| : (q⃗ ′fix, x⃗ ′fix) /∈

SatexactA (ψ). Since SatapprA (ψ) ⊆ SatexactA (ψ):
χRE (q⃗ fix, x⃗ fix, q⃗ ′fix) = 1 ∧ ∀x⃗ ′fix ∈ B

|X⃗| : (q⃗ ′fix, x⃗ ′fix) /∈ SatapprA (ψ)
and thus

(
χRE (q⃗ fix, x⃗ fix, q⃗ ′fix) · ∀x⃗ ′χSatappr

A
(ψ)(q⃗

′fix, x⃗ ′)
)
= 1. Ac-

cording to Def. 15 this implies χSatappr
A

(EXψ)(q⃗
fix, x⃗ fix) = 0, i.e.,

(q⃗ fix, x⃗ fix) /∈ SatapprA (EXψ).

Negation and disjunction are handled as follows:

Definition 16.

χSatappr
A

(¬ψ)(q⃗, x⃗) := χSatappr
E

(ψ)(q⃗, x⃗) and

χSatappr
E

(¬ψ)(q⃗, x⃗) := χSatappr
A

(ψ)(q⃗, x⃗),

χSatappr
A

(ψ1∨ψ2)(q⃗, x⃗) := (χSatappr
A

(ψ1) ∨ χSatapprA
(ψ2))(q⃗, x⃗) and

χSatappr
E

(ψ1∨ψ2)(q⃗, x⃗) := (χSatappr
E

(ψ1) ∨ χSatapprE
(ψ2))(q⃗, x⃗).

Note that negation plays a special role here, since it turns an over-

approximation of the set of states which possibly satisfy ψ into an

under-approximation of the set of states which definitely satisfy ¬ψ
(and vice versa).

Lemma 10. Let SatapprA (ψ) be an under-approximation of

SatexactA (ψ) and SatapprE (ψ) be an over-approximation of

SatexactE (ψ), let SatapprA (¬ψ), SatapprE (¬ψ), SatapprA (ψ1 ∨ ψ2),
and SatapprE (ψ1 ∨ ψ2) be defined by Def. 16. Then

SatapprA (¬ψ) ⊆ SatexactA (¬ψ), (4)

SatexactE (¬ψ) ⊆ SatapprE (¬ψ), (5)

SatapprA (ψ1 ∨ ψ2) ⊆ SatexactA (ψ1 ∨ ψ2), (6)

SatexactE (ψ1 ∨ ψ2) ⊆ SatapprE (ψ1 ∨ ψ2). (7)

Proof:

SatapprA (¬ψ) = (B
⃗|Q|×B

⃗|X|) \ SatapprE (ψ) (Def.16)

⊆ (B
⃗|Q|×B

⃗|X|) \ SatexactE (ψ) (Precond. Lemma 10)

= SatexactA (¬ψ). (Def.11)

This proves Eqn. (4). With an analogous argument Eqn. (5) can

be proved. Eqn. (6) and Eqn. (7) follow easily by appropriate set

operations.

Finally, we define φ = EGψ and φ = Eψ1Uψ2 to be evaluated

by their standard fixed point iterations (see Figs. 2, 3) based on the

evaluation of EX defined above (two separate fixed point iterations

for SatapprA (·) and SatapprE (·)).

Lemma 11. If SatapprA (ψ) ⊆ SatexactA (ψ) and SatexactE (ψ) ⊆
SatapprE (ψ), SatapprA (EGψ), SatapprE (EGψ), SatapprA (Eψ1Uψ2), and

SatapprE (Eψ1Uψ2) are obtained by the fixed point iteration of Figs. 2

and 3, then SatapprA (EGψ) ⊆ SatexactA (EGψ), SatexactE (EGψ) ⊆
SatapprE (EGψ), SatapprA (Eψ1Uψ2) ⊆ SatexactA (Eψ1Uψ2) and

SatexactE (Eψ1Uψ2) ⊆ SatapprE (Eψ1Uψ2).

Proof: Since the evaluation of EG and EU is done by iterated

application of the EX-operator according to Figs. 2 and 3, the proof

follows immediately from the corresponding properties of EX (see

Lemma 9) and monotonicity of set union resp. intersection.

Theorem 12. If χSatappr
A

(φ) and χSatappr
A

(φ) are computed recursively

according to Definitions 13, 15, 16, then

∀x⃗
((
χSatappr

A
(φ)(q⃗, x⃗)

)
|q⃗=q⃗ 0

)

= 1 =⇒ φ is valid

∃x⃗
(

χSatappr
E

(φ)(q⃗, x⃗)|q⃗=q⃗ 0

)

= 1 =⇒ φ is not realizable

Proof: The proof follows directly from Lemmas 6–11.

Note that the results in this section have a strong relationship to

3-valued model checking known from the context of software model

checking [12], [13]. Details are discussed in Sect. 8.

5.3 Including Zi-Variables into the State Space

Sometimes the approximations considered above are too coarse to

obtain definite answers concerning validity or non-realizability of

CTL formulas (see also Sect. 7). A further improvement on the

accuracy of the two approximated sets can be obtained by including

Zi-variables assigned to Black Box outputs into the state space.

As a motivation for this, consider the CTL formula

φ = (y1 → EXy3) = (¬y1 ∨ EXy3) for the design illustrated

in Fig. 1 b). The formula essentially says that if the first output Y1

holds the value 1 in the initial state, then the third output Y3 holds

the value 1 in the next state of the design. The formula is valid,

since ‘output Y1 is 1’ implies that the flip flop input is 1 and thus

output Y3 is 1 in the next state. This holds independently from the

implementation of the Black Box.
If we recursively compute χSatappr

A
(¬y1∨EXy3) according to the

previous section (modeling the Black Box output by Z1), we obtain:

χSatappr
A

(¬y1)(q1, x1) = ∀Z1(λ1) = x1

χSatappr
A

(y3)(q1, x1) = ∀Z1(λ3) = q1

χSatappr
A

(EXy3)(q1, x1) = ∀q′1

((
∃Z1(δ1≡q′1)

)
→∃x′1(χSatapprA

(y3))| q1←q′
1

x1←x′
1

)

= ∀q′1

((
∃Z1(Z1≡q′1)

)
→q′1

)

= 0.

The validity of φ cannot be shown, since

∀x1(χSatappr
A

(y1∨EXy3)|q1=q01
) = ∀x1(x1 ∨ 0) = 0.

Having a closer look at the computation above, we observe: On

the one hand, only those states with x1 = 0 are included into

SatapprA (¬y1), since the output of the Black Box output might be 1
in the current state. On the other hand, SatapprA (EXy3)(q1, x1)=∅,

since the output of the Black Box output might be 0 in the current

state. Clearly the Black Box output cannot be 0 and 1 at the same

time and by case distinction wrt. Z1 we can prove that φ is valid.

8

Based on this consideration, our model checking routine for

incomplete designs is improved by including Zi-variables assigned to

Black Box outputs into the state space. In this way the corresponding

Black Box output values Zi are constant within each single state and

therefore in our example Z1 has a fixed value for each state.

Note that it is not always necessary to include all Zi’s into the

state space; this provides another possibility of flexibly processing

the unknowns at this point, which can be used as a tradeoff between

efficiency and accuracy.

Let Z⃗o be the Zi-simulated Black Box outputs that are included

into the state space and let Z⃗l be the Zi-simulated Black Box outputs

that are not included. Then the values of Z⃗o are constant within each

single state, while the values of Z⃗l are arbitrary as they were before.

Both the output function λ⃗(q⃗, x⃗, Z, Z⃗l, Z⃗o) and the transition

function δ⃗(q⃗, x⃗, Z, Z⃗l, Z⃗o) can be computed by using the symbolic

simulation from Sect. 4 for which it is not necessary to distinguish

between Z⃗l and Z⃗o.

Now the computation of sets Satappr,inclA (·) and Satappr,inclE (·) is

performed in a manner similar to the previous section. We start with

the sets of states definitely or possibly satisfying the atomic CTL

formula yi:

Definition 17.

χSatappr,incl
A

(yi)(q⃗, x⃗, Z⃗o) := ∀Z∀Z⃗l
(
λi(q⃗, x⃗, Z, Z⃗l, Z⃗o)

)

χSatappr,incl
E

(yi)(q⃗, x⃗, Z⃗o) := ∃Z∃Z⃗l
(
λi(q⃗, x⃗, Z, Z⃗l, Z⃗o)

)
.

Lemma 13. For Satappr,inclA (yi), Sat
appr,incl
E (yi) as defined in Def. 17:

(
∀Z⃗oχSatappr,incl

A
(yi)

)
≤χSatexact

A
(yi)

, χSatexact
E

(yi)
≤
(
∃Z⃗oχSatappr,incl

E
(yi)

)
.

Proof: The proof follows immediately from Lemma 7, since
(
∀Z⃗oχSatappr,incl

A
(yi)

)
= χSatappr

A
(yi) and

(
∃Z⃗oχSatappr,incl

E
(yi)

)
=

χSatappr
E

(yi).

Analogously, we define an over-approximation χRincl
E

for the char-

acteristic function of possible transitions:

Definition 18.

χRincl
E

(q⃗, x⃗, Z⃗o, q⃗
′) :=

(

∃Z⃗l
∏|q⃗|
i=1∃Z

(
δi(q⃗, x⃗, Z, Z⃗l, Z⃗o) ≡ q′i

))

.

As in the previous section the sets Satappr,inclA (EXψ) and

Satappr,inclE (EXψ) are computed based on Satappr,inclA (ψ),
Satappr,inclE (ψ) and χRincl

E
:

Definition 19.

χSatappr,incl
E

(EXψ)(q⃗, x⃗, Z⃗o) :=

∃q⃗ ′
(

χRincl
E

(q⃗, x⃗, Z⃗o, q⃗
′)· ∃x⃗ ′∃Z⃗′o

(
χSatappr,incl

E
(ψ)| q⃗←q⃗ ′

x⃗←x⃗ ′

Z⃗o←Z⃗′o

)
(q⃗ ′, x⃗ ′, Z⃗′o)

)

.

χSatappr,incl
A

(EXψ)(q⃗, x⃗, Z⃗o) :=

∀q⃗ ′
(

χRincl
E

(q⃗, x⃗, Z⃗o, q⃗
′)→∃x⃗ ′∀Z⃗′o

(
χSatappr,incl

A
(ψ)| q⃗←q⃗ ′

x⃗←x⃗ ′

Z⃗o←Z⃗′o

)
(q⃗ ′, x⃗ ′, Z⃗′o)

)

.

Lemma 14. If both Satappr,inclA (EXψ) and Satappr,inclE (EXψ)
are defined as in Def. 19,

(
∀Z⃗oχSatappr,incl

A
(ψ)

)
≤ χSatexact

A
(ψ) and

(
∃Z⃗oχSatappr,incl

E
(ψ)

)
≥ χSatexact

E
(ψ), then

(
∀Z⃗oχSatappr,incl

A
(EXψ)

)
≤ χSatexact

A
(EXψ) and

χSatexact
E

(EXψ) ≤
(
∃Z⃗oχSatappr,incl

E
(EXψ)

)
.

Proof:

Part 1:
(
∀Z⃗oχSatappr,incl

A
(EXψ)

)

= ∀Z⃗o∀q⃗
′
((

¬χRincl
E

)
∨ ∃x⃗ ′∀Z⃗′o

(
χSatappr,incl

A
(ψ)| q⃗←q⃗ ′

x⃗←x⃗ ′

Z⃗o←Z⃗′o

))

= ∀q⃗ ′
((

¬∃Z⃗oχRincl
E

︸ ︷︷ ︸

)
∨ ∃x⃗ ′∀Z⃗′o

(
χSatappr,incl

A
(ψ)

︸ ︷︷ ︸

| q⃗←q⃗ ′
x⃗←x⃗ ′

Z⃗o←Z⃗′o

))

From Definitions 14 and 18 we conclude
(
∃Z⃗oχRincl

E

)
=

χRE and from the precondition of the lemma we know

~δ ∃~xχN

~x

~q (~q)

Fig. 6. Illustration for the func-

tional preimage computation

for complete designs.

~δ ∃~xχN

~q (~q)
BB

~x

Z

~Zl

Fig. 7. Illustration for the func-

tional preimage computation

for incomplete designs

(
∀Z⃗oχSatappr,incl

A
(ψ)

)
≤ χSatexact

A
(ψ). So we can apply Lemma 9 and

obtain
(
∀Z⃗oχSatappr,incl

A
(EXψ)

)
≤ χSatexact

A
(EXψ).

Part 2:
(
∃Z⃗oχSatappr,incl

E
(EXψ)

)
=

= ∃Z⃗o∃q⃗
′
(

χRincl
E

· ∃x⃗ ′∃Z⃗′o
(
χSatappr,incl

E
(ψ)| q⃗←q⃗ ′

x⃗←x⃗ ′

Z⃗o←Z⃗′o

))

= ∃q⃗ ′
(

∃Z⃗oχRincl
E

︸ ︷︷ ︸

·∃x⃗ ′∃Z⃗′o
(
χSatappr,incl

E
(ψ)

︸ ︷︷ ︸

| q⃗←q⃗ ′
x⃗←x⃗ ′

Z⃗o←Z⃗′o

))

Again, we apply Defs. 14, 18, the precondition of the lemma and

Lemma 9 and obtain
(
∃Z⃗oχSatappr,incl

E
(EXψ)

)
≥ χSatexact

E
(EXψ).

For all remaining CTL operators ¬, ∨, EG and EU , Satappr,inclA (·)
and Satappr,inclE (·) are computed as already described in Sect. 5.2.

Lemmas like Lemma 10 and 11 hold with exactly the same arguments

as in Sect. 5.2.

Theorem 15. If χSatappr,incl
A

(φ) and χSatappr,incl
E

(φ) are computed

recursively as described above, then

∀x⃗
((

∀Z⃗o
(
χSatappr,incl

A
(φ)(q⃗, x⃗, Z⃗o)

))

|q⃗=q⃗ 0

)

= 1 =⇒ φ is valid

∃x⃗
(

∃Z⃗o
(
χSatappr,incl

E
(φ)(q⃗, x⃗, Z⃗o)

)
|q⃗=q⃗ 0

)

= 1 =⇒ φ not realizable

Proof: As shown above we have
(
∀Z⃗oχSatappr,incl

A
(φ)

)
≤

χSatexact
A

(φ) and
(
∃Z⃗oχSatappr,incl

E
(φ)

)
≥ χSatexact

E
(φ). So the theorem

follows from Lemma 6.

Example. Again, we consider the CTL formula φ = (¬y1 ∨EXy3)
for the design illustrated in Fig. 1 b):

χSatappr,incl
A

(¬y1)(q1, x1, Z1) = λ1 = x1 ∨ Z1

χSatappr,incl
A

(y3)(q1, x1, Z1) = λ3 = q1

χSatappr,incl
A

(EXy3)(q1, x1, Z1) = ∀q′1
(
(δ1 ≡ q′1) → ∃x′1∀Z

′
1(χSatA(y3))|

q1←q′
1

x1←x′
1

Z1←Z′
1

)

= ∀q′1
(
(Z1 ≡ q′1) → q′1

)
= Z1

Now the validity of φ can be shown:

∀x1∀Z1(χSatappr,incl
A

(y1∨EXy3)|q1=q01
) = ∀x1∀Z1(x1 ∨Z1 ∨Z1) = 1

5.4 Functional Preimage Computation

For complete designs, there are two methods to compute the preimage

of a given set of states, as it is needed for the computation of

Sat(EXψ) [22], [23]:

So far, we used the relational approach in our approximate model

checking procedures for incomplete designs. For complete designs

this approach builds the characteristic function of the transition

relation χR(q⃗, x⃗, q⃗
′) :=

∏|q⃗|
i=1

(
δi(q⃗, x⃗) ≡ q′i

)
which is then used in

the actual preimage computation for a given set of states (represented

by χN in this case):

χEX(χN)(q⃗, x⃗) := ∃q⃗ ′∃x⃗ ′
(
χR(q⃗, x⃗, q⃗

′) ·
(
χN | q⃗←q⃗ ′

x⃗←x⃗ ′

)
(q⃗ ′, x⃗ ′)

)

The functional approach uses the compose operator, with

f |xi←g := g · f |xi=0 + g · f |xi=1 for f, g : Bn → B and an input

variable xi of f (see Def. 5). Based on the compose operator, the

preimage of a set of states given by χN can be computed as follows:

χEX(χN)(q⃗, x⃗) :=
(
∃x⃗χN (q⃗, x⃗)

)
|q⃗←δ⃗(q⃗,x⃗)

(Here the composition of different variables qi by functions δ⃗(q⃗, x⃗)
is performed in parallel.) Fig. 6 illustrates this composition as the

9

composition of the Boolean circuit for δ⃗ into the Boolean circuit for

the characteristic function
(
∃x⃗χN

)
(q⃗) (variables qi of

(
∃x⃗χN

)
(q⃗)

are replaced by the corresponding transition functions δi(q⃗, x⃗)).
Note that the number of necessary variables can be decreased by

using compose operations instead of transition relations, since the q⃗ ′

variables are no longer needed. Moreover, the computation of the

transition relation is not needed. Due to this, the functional version

of preimage computation is often more efficient than the relational

version [22].

We now look into the question of how to generalize functional

preimage computation so that we can use it for model checking of

incomplete designs. In doing so, we first confine ourselves to the case

that Zi-variables are not included in the state space in order to keep

the presentation compact.

Taking into account that the transition function δ⃗(q⃗, x⃗, Z, Z⃗l) now

depends on the additional variables Z and Z⃗l, we have to replace the

usual compose operator by a new compose-Z operator:

Definition 20. The compose-Z operator “|cZ” for f : Bn → B with

input variables y1, . . . , yn and g : Bn+1 → B with input variables

y1, . . . , yn, Z, is defined as:

f |cZyi←g := g|Z←Z · f |yi=0 + g · f |yi=1 (8)

Just as in the definition of symbolic Z-simulation in Sect. 4 we have

to replace Z by Z after negation in the formula for compose-Z.

A composition of a vector of variables by compose-Z is computed

by a recursive computation of compositions (as for the original

compose operator) and the formula
(
∃x⃗χN (q⃗, x⃗)

)
|q⃗←δ⃗(q⃗,x⃗) for the

complete case is now replaced by
(
∃x⃗χN (q⃗, x⃗)

)
|cZq⃗←δ⃗(q⃗,x⃗,Z,Z⃗l) for

the incomplete case.

For a better understanding of compose-Z (together with its de-

ficiencies explained in the following and a corresponding improve-

ment) please assume for a moment that
(
∃x⃗χN (q⃗, x⃗)

)
is represented

as a BDD which in turn can be seen as a multiplexer circuit. In

Fig. 7 the output functions δi(q⃗, x⃗, Z, Z⃗l) of δ⃗ are inputs to the

BDD for
(
∃x⃗χN (q⃗, x⃗)

)
, i.e., they correspond to select-inputs of the

multiplexers in the circuit representation. Now it is easy to see that
(
∃x⃗χN (q⃗, x⃗)

)
|cZq⃗←δ⃗(q⃗,x⃗,Z,Z⃗l) as defined above can be interpreted as

the result of a symbolic Z/Zi-simulation of the Boolean circuit given

in Fig. 7 (δi play the role of g in Eqn. (8), the outputs of multiplexers

in
(
∃x⃗χN (q⃗, x⃗)

)
play the role of f in Eqn. (8)).

However, there is an obvious deficiency of simple symbolic

Z/Zi-simulation applied to multiplexer circuits derived from BDDs:

Consider the case that
(
f |yi=0

)
|y⃗=ϵ⃗ = 1,

(
f |yi=1

)
|y⃗=ϵ⃗ = 1

and g|y⃗=ϵ⃗ = Z in Eqn. (8). Symbolic Z/Zi-simulation computes
(
f |cZyi←g

)
|y⃗=ϵ⃗ = Z. In this special case it is easy to see that this

is an inaccuracy (inherited from conventional (0, 1, X)-simulation)

which is not really needed: g|y⃗=ϵ⃗ selects between
(
f |yi=0

)
|y⃗=ϵ⃗ = 1

and
(
f |yi=1

)
|y⃗=ϵ⃗ = 1. Even if the value of g|y⃗=ϵ⃗ is unknown, we

can easily conclude that the output of
(
f |cZyi←g

)
|y⃗=ϵ⃗ is 1. Based on

this observation we define an improved compose-Z operator which

improves the accuracy of the simple symbolic Z/Zi-simulation by

replacing Eqn. (8) as follows:

Definition 21. The improved compose-Z operator “|cZ,impr” for

f : Bn → B with input variables y1, . . . , yn and g : Bn+1 → B

with input variables y1, . . . , yn, Z, is defined as:

f |cZ,impr
yi←g := g|Z←Z · f |yi=0 + g · f |yi=1 + f |yi=0 · f |yi=1 (9)

The additional term in (9) may seem to be unnecessary at first sight,

yet it is easy to see that for
(
f |yi=0

)
|y⃗=ϵ⃗ = 1,

(
f |yi=1

)
|y⃗=ϵ⃗ = 1

and g|y⃗=ϵ⃗ = Z Eqn. (9) results in
(
f |cZ,impr
xi←g

)
|y⃗=ϵ⃗ = 1 which is

more exact than the result of simple Z/Zi-simulation (i.e., the result

contains more accurate information).

y0

FF
Black

Box
PIN POUT

Fig. 8. Motivating Example

for Exact Symbolic Model

Checking

BB

⇒
BB

FF

FF

Fig. 9. Extracting the flip-flops

from a Black Box with bounded

memory size of 2.

For the case that more than one variable is replaced by a function,

we have to define composition recursively:

Definition 22. Let f : Bn → B be a Boolean function over variables
y⃗ = (y1, . . . , yn) and gi : B

n+1 → B (1 ≤ i ≤ k) be Boolean
functions over variables (y1, . . . , yn, Z). The improved compose-Z
operator “|cZ,impr” is then recursively defined as:

f |cZ,impr
y1←g1
···

yk←gk

:= gk|Z←Z ·
(
f |yk=0

)
|cZ,impr

y1←g1
···

yk−1←gk−1

+ gk ·
(
f |yk=1

)
|cZ,impr

y1←g1
···

yk−1←gk−1

+
(
f |yk=0

)
|cZ,impr

y1←g1
···

yk−1
←gk−1

·
(
f |yk=1

)
|cZ,impr

y1←g1
···

yk−1
←gk−1

f |cZ,impr
∅

:=f

(Note that composition is performed in parallel here; a straight-

forward reduction of the composition for k variables to a series of

k compositions for single variables would lead to a different result,

since functions gj may depend on replaced variables yi.)
The consideration given above can be extended to the case that

some Black Box outputs are modeled by Z⃗o variables in the state

space. Then, using the improved compose-Z operator, we can define

χSatfunc
A

(EXψ) and χSatfunc
E

(EXψ) by functional preimage computation:

Definition 23.

χSatfunc
A

(EXψ)(q⃗,x⃗,Z⃗o) :=∀Z⃗l∀Z
(
(∃x⃗∀Z⃗oχSatfunc

A
(ψ))|

cZ,impr

q⃗←δ⃗(q⃗,x⃗,Z,Z⃗l,Z⃗o)

)

χSatfunc
E

(EXψ)(q⃗,x⃗,Z⃗o) :=∃Z⃗l∃Z
(
(∃x⃗∃Z⃗oχSatfunc

E
(ψ))|

cZ,impr

q⃗←δ⃗(q⃗,x⃗,Z,Z⃗l,Z⃗o)

)

For all other operators χSatfunc
E

(φ) and χSatfunc
A

(φ) are defined just as

χSatappr,incl
E

(φ) and χSatappr,incl
A

(φ).

Interestingly, we are able to prove that functional preimage compu-

tation with the improved compose-Z operator as defined above gives

exactly the same results as relational preimage computation:

Theorem 16. For arbitrary CTL formulas φ:

χSatfunc
E

(φ) = χSatappr,incl
E

(φ) and χSatfunc
A

(φ) = χSatappr,incl
A

(φ).

Proof: The proof is performed by induction on the structure

of φ. The main part consists of the equivalence of the relational

and functional definitions for the EX-operator. This is proven in

Appendix D by induction on the number of state bits in the design.

Experiments showing advantages of model checking using the

improved compose-Z operator instead of the relational approach are

given in Sect. 7.

6 EXACT SYMBOLIC MODEL CHECKING FOR BLACK

BOXES WITH BOUNDED MEMORY

6.1 Motivation

In the last section, we introduced a method to approximate both

SatexactE (φ), the set of states, for which there is at least one Black Box

replacement so that φ is satisfied, and SatexactA (φ), the set of states,

for which φ is satisfied for all Black Box replacements. Experiments

in Sect. 7 show that, based on these sets, we are able to provide

sound results for falsifying realizability and for proving validity of

incomplete designs. Yet, it is not possible to provide a result in every

scenario due to the approximate nature of our methods.

10

~x

~q
~q ′

~y

Black
~λ

~δ

~α
~a ~Z

Box
~β

⇒

~x

~q
~q ′

~y~λ

~δ

~α
~a

~ZΩ
Multiplexer

Tree

~Z

|~Z|

2
|~a|

Black Box

truth table

Fig. 10. Incomplete design with one combinational Black Box and the modified design in

which the Black Box has been replaced by its truth table variables and a select function.

Mux Mux
A

Read Ports

D DA

Register
File

Inst. Reg. (Input)

Register File State
(Output)

Reg Reg

ALU

Reg Write
PortD

A

C
on

tr
ol

Fig. 11. Pipelined ALU

For completeness we present in this section a concept how to

compute an exact solution to a restricted problem by means of a

conventional symbolic model checker: Here we assume that there

is a fixed upper bound on the number of flip-flops the possible

substitutions of the Black Boxes are allowed to have. Only with

this ‘bounded memory assumption’, the number of different possible

behaviors of the Black Boxes is finite and thus, it is conceptually

possible to compute the set of states fulfilling φ for each possible

completion c ∈ C(D) of the incomplete design D. (Without the

bounded memory assumption the problem with multiple Black Boxes

is undecidable [9].)

It is important to note that our method takes into account that the

Black Boxes are only able to read the input signals connected to

them. Thus, the exact method we present in the following is able to

provide an exact answer for the case that the Black Boxes do not

have global knowledge.

Example. Considering the small example from Fig. 8 together with

formula φ = EF (EXy0∧EX¬y0), it is easy to see that our approx-

imate methods are neither able to prove that φ is valid nor able to

prove that φ is not realizable. However, φ is indeed not realizable (no

matter how much memory is used for the Black Box): Consider two

finite primary input sequences from an initial state which differ only

in the last element. Since the Black Box input does not depend on the

primary input, but only on the state of the flip-flop, these two primary

input sequences produce the same input sequence at the Black Box

input. Thus, the primary output (which is the same as the Black Box

output) is the same for both input sequences. This means that the CTL

formula φ is not satisfied for any possible Black Box substitutions,

thus it is not realizable. Note that synthesis approaches such as [8]

would consider it as realizable due to their implicit assumption that

the Black Box behavior may depend on all signals of the design.

For most examples an explicit approach enumerating all possible

Black Box substitutions is obviously not applicable in practice due

to the enormous number of possible substitutions; a confirmation for

this statement is given by our experimental results in Sect. 7. For that

reason we use symbolic methods to implicitly consider all possible

choices for the Black Box substitutions in parallel.

First we show how Black Boxes with bounded memory can be

transformed into combinational Black Boxes, i.e., Black Boxes that

may only be substituted by designs without flip-flops. Then we take

a look at a concept for exact symbolic model checking for designs

containing combinational Black Boxes.

6.2 Exact Algorithm

We consider a Black Box with bounded memory, which means that

there is a fixed upper bound on the number of flip-flops the possible

substitutions are allowed to have; let b ∈ N0 be this upper bound.

Extracting Flip-Flops

Given this assumption, we can separate the flip-flops from the

Black Box without changing the behavior: We have to add b flip-

flops to the design and connect them to b additional outputs and

b additional inputs of the Black Box as illustrated in Fig. 9 for a

Black Box with bounded memory size of 2. The resulting transformed

Black Box is combinational, i.e., the possible substitutions are limited

to combinational designs.

Now it is sufficient to solve the model checking problem for

combinational Black Boxes.

A Concept for Exact Symbolic Model Checking of Incomplete

Designs with Combinational Black Boxes

For the time being, we restrict our view to incomplete designs con-

taining exactly one Black Box. Having performed the transformation

given above we can assume that the Black Box is combinational.

Then we can divide the combinational part of the design into four

parts (see left part of Fig. 10):

Since the Black Box considered in this section is limited to have

only combinational substitutions, we can assume the Black Box to

compute an unknown Boolean function β⃗ : B|⃗a| →B
|Z⃗|. Furthermore,

let α⃗ : B|q⃗|× B
|x⃗|→B

|⃗a| be the Boolean function of the circuit part

computing the Black Box inputs a⃗. As usual, λ⃗ and δ⃗ compute the

primary outputs resp. the next states. While α⃗ just depends on the

primary input x⃗ and the current state q⃗, δ⃗ and λ⃗ additionally depend

on the Black Box outputs Z⃗. All these functions can be computed

using symbolic simulation.

Now we describe how to develop a concept for exact solutions to

realizability and validity. To achieve this, we reduce the question

whether there exists a Boolean function β⃗ so that φ is satisfied

(realizability) and the question whether φ is satisfied for all Boolean

functions β⃗ (validity) to existential resp. universal quantification in

propositional logic.

Every function f : Bn → B
m can be described by its corre-

sponding truth table with m · 2n entries; likewise, we can describe

the Black Box function β⃗ : B|⃗a| → B
|Z⃗| by a truth table with

|Z⃗| · 2|⃗a| entries. We consider each entry of this truth table to be

a Boolean variable Zi,j (0 ≤ i < 2|⃗a|, 0 ≤ j < |Z⃗|). We use Z⃗ :=
(Z0,0, . . . ,Z0,|Z⃗|−1, . . . ,Z2|a⃗|−1,|Z⃗|−1) for the whole truth table.

An assignment of constant values to variables Z⃗ fixes one possible

replacement of the (combinational) Black Box. During symbolic

model checking the variables Z⃗ are included into the state space

(q⃗, x⃗, Z⃗). The values of Z⃗ do not change during a single run of the

resulting system, and thus, fixing the values for Z⃗ in an initial state

of the system means selecting a certain replacement of the Black Box

by a Boolean function.

In order to define both transition function and output function

depending on assignments to variables Z⃗ we have to introduce a

select function Ω: B|⃗a| × B
(|Z⃗|·2|a⃗|) → B

|Z⃗| that ‘selects’ entries

from the Black Box truth table variables Z⃗ depending on the value

of a⃗ (see right part of Fig. 10). Formally, Ωi(⃗a, Z⃗) := Za,i, where a
is the integer value described by the binary number a|⃗a|−1 . . . a1a0.

(This select function may be seen as a multiplexer tree.)

Definition 24. The output function λ⃗ and the transition function δ⃗
are defined by

λ⃗(q⃗, x⃗, Z⃗) := λ⃗
(
q⃗, x⃗,Ω

(
α⃗(q⃗, x⃗), Z⃗

))

11

and δ⃗(q⃗, x⃗, Z⃗) := δ⃗
(
q⃗, x⃗,Ω

(
α⃗(q⃗, x⃗), Z⃗

))
.

For our exact symbolic model checking, we essentially perform

conventional symbolic model checking (see Sect. 2) based on λ⃗ and

δ⃗ with a state space extended by variables Z⃗. Transitions from one

state to its successor in this extended state space (q⃗, x⃗, Z⃗) do not

change the values assigned to Z⃗. This keeps the functionality of the

Black Box fixed during an entire run of the system which starts with

a certain initial state specifying a constant assignment to Z⃗.

Theorem 17. The set of states χSat(φ)(q⃗, x⃗, Z⃗) that satisfy the

property φ depending on the Black Box truth table Z⃗ can be

evaluated as follows:

∀Z⃗∀x⃗
((
χSat(φ)(q⃗, x⃗, Z⃗)

)
|q⃗=q⃗ 0

)

= 1 ⇐⇒ φ is valid (10)

∃Z⃗∀x⃗
((
χSat(φ)(q⃗, x⃗, Z⃗)

)
|q⃗=q⃗ 0)

)

= 1 ⇐⇒ φ is realizable (11)

Proof: Since Z⃗ represents the complete truth table of the Black

Box β⃗, thus its whole functionality, there is a substitution of β⃗ so

that a property is satisfied in a certain initial state (q⃗ 0, x⃗) iff there

is some assignment to Z⃗ so that the property is satisfied in the

corresponding state (q⃗ 0, x⃗, Z⃗) of the transformed design (see Fig. 10).

Likewise, a property is satisfied in (q⃗ 0, x⃗) for all substitutions of β⃗
iff it is satisfied in (q⃗ 0, x⃗, Z⃗) for all possible assignments to Z⃗. Thus,

after a conventional symbolic model checking (with extended state

space (q⃗, x⃗, Z⃗)) we can reduce the validity/realizability question to

an universal/existential abstraction of Z⃗.

Multiple Black Boxes

It is easy to see that the method presented in this section can be

extended to designs containing multiple Black Boxes by separately

replacing them by corresponding truth table variables.

Complexity

The number of new Boolean variables introduced by the transforma-

tion shown above is exponential in the number of Black Box inputs

and in the upper bound on the number of flip-flops allowed for Black

Box substitutions (according to the bounded memory assumption).

For the transformed design we perform conventional symbolic model

checking. If in the worst case there is no benefit from the usage

of symbolic BDD representations, symbolic model checking needs

exponential time measured in the input size, thus the overall run

time is double exponential in the worst case. (However, experiments

in Sect.7.2 show that we do profit from symbolic representations in

practice.)

7 EXPERIMENTAL RESULTS

To demonstrate the feasibility and effectiveness of the presented

methods we implemented a model checker that is capable of perform-

ing symbolic model checking with flexible modeling of unknowns

and exact symbolic model checking. The model checker is based

on the BDD package CUDD 2.41 [24] and uses ‘Lazy Group

Sifting’ [25], a reordering technique particularly suited for model

checking. Sifting is invoked automatically as soon as the number

of active BDD nodes exceeds a (dynamic) threshold. Additionally,

partitioned transition functions [26] were used for relational preimage

computation. All experiments were performed on a Dual Opteron

2GHz with 4GB RAM under Linux.

7.1 Approximate Model Checking for Incomplete Designs

As a case study we used a class of simple synchronous pipelined

ALUs (see Fig. 11) with a register file and a forwarding unit; the

circuit is based on the design used in [5]. The ALU itself is able

to perform the four logic operations AND, OR, XOR and XNOR as

well as the three arithmetic operations ADD, SUB and MUL.

We checked the CTL formula

φ = AG
(

“R2 := R0 ⊕ R1” →
∧

j

(
(AX)2R0,j ⊕ (AX)2R1,j ≡ (AX)3R2,j

))

which corresponds to formula (1) in [5].4 It says that whenever the

instruction R2 := R0 ⊕ R1 is given at the inputs, the values in R2

three clock cycles in the future are identical to the exclusive-or of

R0 and R1 in the state two clock cycles in the future (Ri,j is the

value of the j-th Bit of the i-th register in the register file).

Experiment 1 (Proofs of Non-Realizability): In a first experiment,

we inserted an error to the implementation of the XOR operation5,

so it produced incorrect results. We compared a series of complete

pipelined ALUs with 16 registers in the register file and varying word

width to two incomplete counterparts: For the first, the adder and the

multiplier were substituted by Black Boxes and for the second, 12

of the 16 registers in the register file were masked out as well.

It can be seen that property φ is violated for the complete and

incomplete designs, independently of the implementation of the

adder function, the multiplier function and the registers replaced by

Black Boxes.

On the left hand side of Tab. 1 we give results of checking property

φ both for complete and incomplete pipelined ALUs with varying

word widths. For each word width and each pipelined ALU, the table

shows the number of BDD variables (‘BDD vars’), the peak memory

usage in bytes, the peak number of BDD nodes and the overall time

in CPU seconds. The timeout was 12000 CPU seconds. For this

experiment, transition relation based preimage computation was used.

Mainly because multipliers have a large impact on BDD size and

thus on computation time, the model checking procedure for complete

pipelined ALUs with multipliers of word width beyond 8 bit exceeds

the time limit (see Tab. 1, columns 2–5). In order to prevent the

assumption that this behavior is due to a poor implementation of our

basic symbolic model checker, we also include run times produced

by the BDD based symbolic CTL model checker implemented in VIS

[10] (using ‘Lazy Group Sifting’ as in our approach). Here only the

complete pipelined ALU with a word width of 2 could be verified.

For the incomplete pipelined ALUs we observed the result that

even our weakest method for approximate model checking (using

symbolic Z-simulated Black Boxes) was able to prove that the

property φ is not realizable. This can be verified for the incomplete

pipelined ALUs without adder and multiplier up to a word width of 64

bit within moderate CPU times and moderate memory consumption

(see Tab. 1, columns 6–9).

The results for the incomplete pipelined ALU, in which most of

the register file has been replaced by Black Boxes as well, show a

further speedup compared to the complete pipelined ALU (see Tab. 1,

columns 10–13). This is mainly due to the decrease of needed BDD

variables, caused by the reduction of many qi and q′i variables to a

single Z variable, and to the simplification of the transition function,

which does no longer depend on the input functions of the registers

that have been masked out.

Thus, we are able to mask out the most complex parts of the

pipelined ALU — the multiplier and the adder — and most of the

register file without losing any significance of the result. Note that

all Black Boxes lie in the ‘cone of influence’ for this property, i.e., in

the incomplete design they are connected to state variables occurring

in the property and thus cannot be removed by Cone-of-Influence

reduction [27].

Experiment 2 (Proofs of Validity): In a second experiment we

4. (AX)2 is an abbreviation of AXAX and (AX)3 is an abbreviation of
AXAXAX

5. The lowest bit of the output was the result of an OR instead of an XOR
of the two lowest input bits.

12

Faulty pipelined ALU, Black Box outputs modeled by Z Correct pipelined ALU, Black Box outputs modeled by Zi’s in the state space
No Black Boxes Adder and multiplier Adder, multiplier and No Black Boxes Adder and multiplier Adder, multiplier and

replaced (Z) 12 registers replaced (Z) replaced (Zi) 12 registers replaced (Zi)
word BDD mem. BDD VIS BDD mem. BDD BDD mem. BDD BDD mem. BDD VIS BDD mem. BDD BDD mem. BDD
width vars used nodes time time vars used nodes time vars used nodes time vars used nodes time time vars used nodes time vars used nodes time

2 117 30M 201K 8.9 5747 117 16M 87K 4.5 69 12M 26K 0.9 117 18M 186K 8.3 8416 121 13M 50K 2.4 97 13M 52K 1.8

4 193 42M 407K 69.9 TO 193 19M 101K 8.6 97 11M 15K 1.0 193 43M 428K 57.3 TO 201 28M 75K 4.0 153 14M 57K 5.0

6 269 74M 1349K 356.7 TO 269 44M 115K 16.0 125 14M 22K 1.5 269 81M 1386K 395.4 TO 281 30M 61K 8.2 209 28M 70K 4.5

8 345 239M 6295K 2781 TO 345 47M 91K 13.9 153 16M 21K 1.9 TO TO 361 40M 88K 12.9 265 27M 90K 14.5

12 TO TO 497 44M 83K 24.9 209 27M 34K 4.8 TO TO 521 48M 116K 33.9 377 34M 81K 20.5

16 TO TO 649 48M 88K 47.1 265 36M 28K 5.4 TO TO 681 48M 135K 59.1 489 48M 98K 35.7

24 TO TO 953 45M 94K 91.3 377 40M 36K 12.1 TO TO 1001 45M 90K 83.8 713 46M 113K 66.4

32 TO TO 1257 54M 216K 232.2 489 47M 35K 17.5 TO TO 1321 44M 150K 207.7 937 45M 91K 83.0

48 TO TO 1865 62M 143K 493.1 713 48M 46K 45.1 TO TO 1961 66M 165K 457.3 1385 50M 152K 175.2

64 TO TO 2473 65M 167K 3031 937 44M 47K 82.3 TO TO 2601 67M 183K 2284 1833 62M 160K 287.7

TABLE 1

Pipelined ALU with 16 registers: Falsifying realizability / proving validity of

AG
(
“R2 := R0 ⊕ R1” →

(
(AX)2R0 ⊕ (AX)2R1 ≡ (AX)3R2

))
using transition relations.

Outputs of the Black Boxes in Register File modeled with...
...separate Zi variables in the ...separate Zi variables not in the ...one single Z variable not in the ...one single Z variable not in the

state space, using transition relations state space, using transition relations state space, using transition relations state space, using compose-Z
word BDD memory BDD BDD memory BDD BDD memory BDD BDD memory BDD
width vars used nodes time vars used nodes time vars used nodes time vars used nodes time

2 605 578M 13M 28945 605 24M 50K 16.8 101 19M 98K 7.6 67 16M 85K 3.9

4 1141 628M 14M 71524 1141 35M 92K 63.5 133 32M 87K 7.9 85 16M 69K 4.2

6 TO 1677 45M 116K 115.0 165 36M 169K 17.4 103 17M 67K 2.9

8 TO 2213 55M 136K 192.0 197 34M 89K 8.1 121 34M 102K 7.9

12 TO 3285 74M 139K 184.8 261 46M 152K 26.2 157 31M 91K 6.0

16 TO 4357 93M 155K 257.6 325 48M 129K 26.5 193 42M 96K 8.5

24 TO 6501 216M 174K 331.9 453 48M 147K 45.6 265 40M 106K 16.8

32 TO 8645 220M 260K 603.1 581 51M 103K 60.6 337 48M 86K 15.2

48 TO 12933 249M 356K 725.8 837 45M 126K 100.9 481 49M 126K 58.7

64 TO 17221 564M 449K 1278 1093 55M 113K 141.1 625 47M 147K 77.9

TABLE 2

(Correct) incomplete pipelined ALU with 256 registers: Proving the validity of

AG
(
“R2 :=R0 ⊕ R1”→

(
(AX)2R0⊕(AX)2R1≡(AX)3R2

))
using Zi’s in the state space for the Black Boxes replacing the adder and

the multiplier and different methods for the Black Boxes in the register file.

considered the same CTL formula as above, yet this time we used a

correct implementation of the XOR operation. In this case, φ is sat-

isfied for the complete and valid for the incomplete pipelined ALUs.

On the right hand side of Tab. 1 we give the results for both

complete and incomplete pipelined ALUs tested with φ. Again, the

timeout was 12000 seconds and preimages were computed using a

transition relation.

In this example, the weaker methods assigning Z or non-state-

space Zi’s to the Black Box outputs were not powerful enough to

prove the validity of φ. However, in all cases the formula could be

proven to be valid by assigning Zi’s to the Black Box outputs and

including them into the state space.

The number of BDD variables needed for the incomplete pipelined

ALU has increased in comparison to symbolic Z-model checking

(compare the corresponding columns on the left hand side and the

right hand side of Tab. 1); this is due to the use of separate Zi
variables for each Black Box output instead of one single Z variable.

The effect can be observed best for the pipelined ALU with partially

masked register file. Although slower than the model checking runs in

the first experiment (for which all Black Box outputs were modeled

with Z) model checking of the incomplete pipelined ALUs with

Zi’s in the state space clearly outperforms the conventional model

checking of the complete version, for the same reasons as given

above.

Experiment 3 (Proofs of Validity, Effect of Mixed Z/Zi, Zi

Inside / Outside State Space): For a third experiment, we analyzed

a pipelined ALU with a larger register file now containing 256

registers. Both the adder and the multiplier of the pipelined ALU

were substituted by Black Boxes, and all but the lowest four registers

were masked out as well. We again considered the validity of φ.

In Experiment 3.1. we used separate Zi-variables for all Black Box

outputs, all included into the state space (just as in the second exper-

iment before). We then made use of the flexibility of our method: In

Experiment 3.2. we reduced the accuracy for the Black Boxes in the

register file by removing the corresponding Zi’s from the state space,

while keeping the ones for the Black Boxes replacing the adder and

the multiplier. In Experiment 3.3 a further reduction of accuracy for

the Black Boxes in the register file was achieved by modeling their

outputs with the single variable Z. Finally, Experiment 3.4 evaluates

functional preimage computation in the setup of Experiment 3.3..

In Tab. 2, columns 2–13, we give the results for the incomplete

pipelined ALUs with varying word widths tested with φ. Except for

the timeouts (the timeout was 86400 seconds (= 1 day)), we always

were able to prove validity of φ for the incomplete designs.6 In the

following we discuss the results for this set of experiments:

Experiment 3.1: If all Black Boxes are modeled with Zi’s in the

state space, a complex transition relation has to be built between

states that contain a considerable number of Zi variables, including

Zi variables representing the outputs of registers which were masked

out. On account of this, it is only possible to prove validity for a

word width up to 4 bit before exceeding the time limit (see Tab. 2,

columns 2–5).

Experiment 3.2: If only the Zi’s of the Black Boxes masking out the

multiplier and the adder are included into the state space, we have

to deal with smaller state space representations, which leads to the

6. Note that reducing the accuracy for the Black Boxes that replace the
adder and the multiplier (removing corresponding Zi’s from the state space
or replacing them by the single variable Z) leads to the situation that we are
not able to prove validity of φ. Due to lack of space we do not give run times
for these unsuccessful configurations in Tab. 2.

13

result that we are able to prove validity for all instances within the

time limit (see columns 6–9 of Tab. 2).

Experiment 3.3: In the case that all Black Box outputs in the register

file are modeled using one single Z variable (columns 10–13 of

Tab. 2), there is a further significant decrease in the number of

necessary BDD variables. For this reason, there is a considerable

speedup compared to the last experiment and validity could be proven

for all bit widths up to 64 within less than 2.5 CPU minutes.

Experiment 3.4: Here the relational preimage computation in the setup

of Experiment 3.3 was replaced by functional preimage computation

based on the improved compose-Z operator as introduced in Sect. 5.4.

The results are given in columns 14–17 of Tab. 2. Compared to the

corresponding results for preimage computation based on transition

relations (columns 10–13) they clearly show that the functional

approach using compose-Z performs even better in this case.

Additional Experiments: Additional experiments broadening the

experimental evaluation can be found in Appendix F.

For the pipelined ALU we also checked two additional formulas

from [5] (which are neither universal nor existential). The results

confirm our observations already made in this section. We addition-

ally observe that VIS with non-deterministic signals computes wrong

results for these properties (which is not very surprising, since they

do not belong to ACTL), whereas our tool gives a clear classification

into “valid”, “non-realizable” or “unknown”. It it worth to note that

our tool computes these answers within much shorter time and with

less memory consumption.

An example modeling a railway system was used as an additional

case study. For almost all formulas checked we were able to provide

definite results within short computation times. For the set of formulas

which fall into the class of safety properties we could show that our

approach compares favorably to SAT–based approaches such as [17].

7.2 Exact Symbolic Model Checking for Black Boxes with

Bounded Memory

Experiment 4: For a first evaluation of our exact symbolic model

checking method that has been presented in Sect. 6, we considered a

class of arbiters as described in [6]. Given a resource and a number

of clients trying to access the resource, the purpose of an arbiter is to

grant access only to a single client for each clock cycle. An arbiter

for n clients has n request inputs req1 . . . reqn, with reqi = 1 iff

client i requests access to the resource, and n acknowledge outputs

ack1 . . . ackn, with acki=1 iff the arbiter acknowledges the request

of client i.
[6] gives three CTL properties that an arbiter for n clients must

satisfy in order to work as expected:

φn1 =
∧

1≤i<j≤n

(
AG¬(acki ∧ ackj)

)

φn2 =
∧

1≤i≤n

(
AGAF (reqi → acki)

)

φn3 =
∧

1≤i≤n

(
AG(acki → reqi)

)

Property φn1 essentially says that the arbiter does not give an

acknowledge to two clients at the same time, φn2 states that every

persistent request should be eventually acknowledged and φn3 checks

that no acknowledge is given without a corresponding request.

For an arbiter with n clients, [6] provides an implementation which

uses 2 · n flip-flops.

We now focus on the question whether there is an implementation

using less than 2 ·n flip-flops. For this, we consider an arbiter with n
clients as an incomplete circuit that consists only of one Black Box

with n inputs req1 . . . reqn, n outputs ack1 . . . ackn and a bounded

memory of size m < 2n. If exact symbolic model checking for this

circuit and the CTL formula φn = φn1 ∧ φn2 ∧ φn3 states that this

problem is realizable, then there is an implementation of the Black

Box such that φn is satisfied.

Note that the approximate methods as given in Sect. 5 would not

be able to provide any proof, since the property φn is realizable, but

not valid.

Considering an arbiter for 2 clients, the implementation given in [6]

has 4 flip-flops. However, our model checker was able to prove that

for bounded memory size m = 1, there is an implementation of the

Black Box satisfying φ2 (but there is no memoryless implementation

with m=0). This result was achieved in 0.06 seconds with a peak

live BDD node count of 667.

For 3 clients, the implementation shown in [6] has 6 flip-flops.

While we were able to show that 1 flip-flop is not sufficient (φ3 ‘not

realizable’ with 1 flip-flop, shown in 0.39 seconds with a peak live

BDD node count of 3162), we could prove that there is a realization

with bounded memory size of 2. The proof was completed within

409.3 minutes with a peak live BDD node count of 13556734.

Note that an explicit enumeration of all possible implementations

is not feasible for this example: In order to show that φ3 is not

realizable with 1 flip-flop we had to enumerate and model check

1.8 · 1019 different implementations which would need more than

584 years, even if one model checking run for a complete design

would need only 1 ns (which is of course not a realistic assumption).

Remember that we needed only 0.39 seconds for this task.

Synthesis: As an interesting side effect, if realizability can be shown,

it is even possible to extract implementations realizing the property

from the result of our model checking run: Having a closer look at

the realizability check given by formula (11) of Sect. 6 (see page 11)

one can see that every satisfying assignment to the Z⃗ variables in

∀x⃗
(
χSat(φn)|q⃗=q⃗ 0

)
represents a Black Box implementation satisfy-

ing the property.

In our experiments we obtained the result that for the arbiter with

2 clients, there is a total of 16777216 Boolean functions the Black

Box can be replaced with, whereof 288 substitutions satisfy φ2. In

the case of 3 clients, 1.1857 · 1023 out of 1.4615 · 1048 possible

substitutions satisfy φ3. The BDD that represented all substitutions

satisfying φ3 had a size of 1134840 nodes.

For the case of 3 clients we extracted one possible implementation

by the following method: First we identified a shortest path from the

root to the 1-terminal in the BDD representing ∀x⃗
(
χSat(φ3)|q⃗=q⃗ 0

)
.

The corresponding assignment to the Z⃗ variables can be interpreted

as the entries of a function table for the Black Box, thus giving an

implementation. Variables with no assignment can be seen as don’t-

cares in the function table. Based on this, we used SIS [28] to obtain

a minimized circuit. Interestingly, the resulting circuit even holds

additional useful properties not required by φ3: Every time one or

more requests are made, at least one of them is granted. Additionally,

all requests are granted at the latest of two steps in the future (if the

requests are persistent).

Experiment 5: Experiment 4 presented above already demonstrates

that the exact method from Sect. 6 is able to prove or disprove

realizability or validity of properties for incomplete designs under

the assumption that an upper bound on the amount of memory

inside the Black Boxes is given. However, in Experiment 4 we did

not yet make use of another essential property of the method: The

method is exact even taking into account that the Black Boxes may

have only restricted access to information present in the system,

which is reflected by the fact that only a subset of the signals in the

circuit is defined as the inputs of the Black Box. This feature was

not demonstrated, because the ‘incomplete circuit’ in this example

just consists of a single Black Box.

In order to evaluate this additional feature as well, we considered

a second example: This example consists of an arbiter together with

14

req
1

ack1 req
2

ack2

req
3

ack3

Client 1

Client 3

Client 2
Black

Box

tog
1

crit1

tog
3

crit3

crit2

tog
2

Fig. 12. Arbiter with three clients

req
i
=0

crit i =0

req
i
=1

crit i =0

req
i
=1

crit i =1

ack i =0

ack i =1

tog
i
=0

tog
i
=1

tog
i
=0

tog
i
=1

“waiting”

“critical region”

“uncritical”

Fig. 13. Client automaton

three clients that were connected to the arbiter via request (reqi) and

acknowledge (ack i) signals as depicted in Fig. 12. Again, the arbiter

was replaced by a Black Box. Here, the behavior of the clients is

explicitly given and illustrated in Fig. 13: Initially, each client is in

the “non-critical” state until it receives a state toggle signal (tog i).

It then changes to the “waiting” state, in which the request signal

(reqi) signal is sent to the arbiter. As soon as the client receives an

acknowledge (ack i) signal from the arbiter, it moves into the “critical

region” state and accordingly sets the critical (crit i) signal. The client

stays in the “critical region” until it receives a state toggle signal

(togi). The toggle signal togi is used to model non-deterministically

points in time where the client i tries to enter or leave the critical

region.

We considered the property stating that no two clients are in

the critical region (indicated by crit i = 1) at the same time

and that for each client that is not in the critical region and

that receives a state toggle signal (indicated by togi = 1), there

is a successor state in which the client has entered the critical region:

φ =
∧

1≤i<j≤3
AG¬(crit i ∧ critj)

∧
∧

1≤i<j≤3
AG

(
(¬crit i ∧ togi) → EF crit i

)

Using our exact method, we were able to prove that the property

is realizable for this design even if the bounded memory of the Black

Box is limited to only 1 flip-flop (in contrast to the previous example

where we needed 2 flip-flops for an arbiter with 3 clients). The

proof was completed within 171.03 minutes with a peak live BDD

node count of 116678973. Automatic reordering was disabled for this

experiment. For 0 internal flip-flops, we were able to prove that the

property is not realizable, thus there is no combinational replacement

for the Black Box such that the property is satisfied.

It is interesting to note that the realizability result for memory

bounded to 1 flip-flop relies on the fact that the possible behaviors of

the clients are restricted, i.e., they are defined according to Fig. 13.

On the other hand, our solution does not assume that the arbiter

has access to signals different from its input signals: The actual

arbiter implementations which can be extracted from the result of

the model checking run are limited to have exactly the same set of

inputs as the original Black Box. Here this means that the arbiter

has no inputs other than the three reqi signals and the arbiter has no

possibility to ‘give itself an easy time’ by ‘reading’ internal states

of the clients (which would be the case for other approaches from

controller synthesis such as [8]).

While the method is able to provide interesting results as shown

in this section, BDD sizes in our experiments also indicate that the

exact method is applicable to benchmarks of moderate size only. This

again gives us a motivation for considering approximate methods for

solving realizability and validity questions.

8 RELATED WORK AND DISCUSSION

Some well-known model checking tools like SMV [6] (resp. NuSMV

[29]), and VIS [10] provide the definition of nondeterministic signals

(see [30]–[32]) which can be used to model uncertainty. Whereas for

universal subclasses of CTL like ACTL [27], abstracting parts of a

design with nondeterministic signals provides sound approximations,

model checking with nondeterministic signals is not able to solve

realizability and validity problems for arbitrary CTL formulas –

neither exactly nor approximately, see Appendix E for details. Only

universal properties that hold in the abstraction are guaranteed to

hold also in the concrete model, since these abstractions result just

in simulations [33] of the concrete model. In order to preserve

arbitrary CTL formulas, the stronger bi-simulations [34] would be

needed which usually reduce the complexity to a much smaller extent.

Therefore we work with larger approximations and compute over- and

underapproximations for CTL formulas instead of standard model

checking.

Symbolic Z-simulation, our simplest method to model Black

Boxes based on ternary (0, 1, X)-logic, is related to Symbolic Tra-

jectory Evaluation (STE) [14], [35]. In STE, some signals of the

design are automatically abstracted to X based on the property under

consideration. The success of STE relies on the fact that it allows

only very restricted properties: Typically, properties used in STE are

arguing about bounded time windows only; these properties (called

‘simple assertions’ in [14]) have the special form A ⇒ C where A
and C are so-called trajectory formulas. (The antecedent A expresses

constraints on signals at different times t, and the consequent C ex-

presses requirements that should hold on signals at (some other) times

t′.) STE solves the model checking problem by considering symbolic

representations for all runs of the system (‘trajectories’) fulfilling

A and all sequences of signals fulfilling C. The traces fulfilling A
are over-approximated using ternary (0, 1, X)-logic. In contrast to

that, approximations used in our method are not necessarily bound

to (0, 1, X)-logic and we support the full temporal logic CTL.

Combinational Black Boxes in incomplete designs may be seen

as Uninterpreted Functions (UIFs), as the value of the outputs

is unknown in both cases. UIFs have been mainly used in the

verification of pipelined microprocessors [15], [36]–[38] and model

functional blocks without sequential behavior. Functional consistency

constraints ensure that UIFs produce the same output values when

provided with same input values. The approaches mentioned above

are restricted to the verification of invariants whereas our method

is able to deal with the full temporal logic CTL and with sequential

Black Boxes.

During the last years Bounded Model Checking (BMC) has proved

to be effective for the verification of safety properties (or the more

general LTL properties as presented in the original paper [39]).

Initially, BMC was mainly used for bug finding (falsification of safety

properties); in the meantime there are several promising approaches

enabling verification as well, e.g. k-induction [40] or interpolation

[41]. By reducing the search for an error path of fixed length k
to a satisfiability problem, BMC profits from the power of efficient

modern SAT solvers. Even without any abstraction SAT solvers are

often successful by focussing their reasoning to the parts of the

system which are important for the verification of the property at

hand. The aspect of abstractions by using Black Boxes in our work is

related to automatic abstraction techniques like localization reduction

[16] in this context. Localization reduction abstracts away parts of

the sequential hardware design (e.g. beginning with flip flops not

occurring in the property and the logic required to compute their

next state). Then a complete verification technique is used for the

abstracted system (e.g. BDD based fixed point computation [42],

[43], BMC with a completeness threshold syntactically determined

in the abstract system [18], or BMC with k-induction [17]). If there

is a counterexample in the abstract model, it is checked by BMC

for the concrete model. If the abstract counterexample is not a

counterexample in the concrete model, then abstraction refinement

is performed (e.g. by using Counter-Example Guided Abstraction

15

Refinement (CEGAR) [44] (e.g. in [42]) or by analyzing the proof

of nonexistence of counterexamples of a certain length (e.g. in [17],

[43])). The procedure stops when a concretizable counterexample

is found or when the property can be proven for the abstract

model. In contrast to the SAT-based approaches mentioned above,

our approach uses BDD-based model checking. It is not restricted

to safety properties, but works for the full class of CTL formulas.

On the other hand, our abstraction methods are not automatic, but

they are based on user knowledge about the design and on user

assumptions about the importance of certain parts of the design for

the property to be verified. Whereas BDD-based methods are widely

believed to be applicable to medium-sized problems only (because of

the “state-space explosion problem”), our work shows that they may

be competitive even for safety properties, if they are complemented

with abstraction methods which allow property specific abstractions

of different strengths and if the property allows a non-trivial amount

of abstraction of the full model. Compared to SAT-based approaches

using localization reduction, our approach contains the additional idea

of combining stronger approximation methods with weaker ones:

Whereas abstraction by Black Boxes makes the verification task

easier by replacing complex parts of the overall system, the remaining

system may still suffer from complexity problems due to a large

number of variables, if the interfaces of some Black Boxes are wide

(i.e. contain many signals). In such cases the number of variables

may be reduced by a flexible application of Z-modeling.

In the context of software model checking there is a long line of

research on model checking branching properties of partial models

in different shapes. Modal Transition Systems (MTSs) [11], [45]

exhibit must- and may-transitions between states,7 while the state

labels in MTSs always have concrete values true and false. Bruns

and Godefroid [12], [46] introduced Partial Kripke Structures (PKSs)

where labels are allowed to have must and may values, while the

transitions between states are fixed. Kripke Modal Transition Systems

(KMTSs) introduced by Huth et al. [13] allow both must and may

labels and transitions. All of these modeling formalisms have been

shown to be equivalent [47], [48]. Additional formalisms like Belnap

Transition Systems [49] and Generalized KMTSs [50] are also basi-

cally equivalent to KMTSs [51]. Model checking for these systems

is based on 3-valued logic8 and is called 3-valued model checking.

The most prominent area of application for KMTSs (and their

equivalent counterparts) is the abstraction of possibly infinite state

spaces to finite state spaces by abstract interpretation of software

programs (leading to must resp. may transitions between abstract

states and must resp. may labels of abstract states) [52], [53]. In our

work we do not combine concrete states into abstract states, but we

abstract from components of a system. By doing so, we abstract from

the (possibly complex) internal functionality of components before a

symbolic representation of the overall system is computed. (I.e. we

remove the restrictions to the overall behavior resulting from the

concrete implementation of the component.) Moreover, abstraction

of already existing components is not the only application of our

methods for solving realizability and validity questions.

As in Sect. 5.2 of our paper, 3-valued model checking (e.g.

according to [13]) is reduced to recursive computations of sets of

states possibly and definitely fulfilling a property φ. The evaluation

of negation, disjunction, and fix point iterations for EG and EU are

exactly the same in [13] and in our work (see Def. 16, lemmas 10,

11). However, the evaluation of EX differs: In our work we consider

only possible transitions (i.e. may transitions) for EX evaluation: If

all possible transitions from a state lead to states definitely satisfying

7. In our paper ‘may transitions’ are called ‘possible transitions’.

8. The three values are called 0, 1, X in our paper.

ψ, then this state definitely satisfies ψ (see second part of Def. 15 on

page 7).9 We can choose this approach, since it is guaranteed in our

application that for each completion of an incomplete design there

‘remains at least one of the possible transitions’. The evaluation of

EX in [13] uses must-transitions: EXψ holds definitely in a state

q, if there is a must transition to another state q′ definitely fulfilling

ψ. This approach leads to less accurate results (consider e.g. the case

that from q there is no must transition but several may transitions

which all lead to states fulfilling ψ).

A main focus of our work is the question of how to compute

possible transitions (based on transition functions δi) and 3-valued

information on atomic propositions (based on output functions λi) in

an efficient and symbolic manner for our application (realizability

and validity questions for incomplete designs). The usage of Z-,

Z/Zi- and Zi-simulation provides different options to trade efficiency

against accuracy while computing such information.

Beyond that, accuracy can be increased by the inclusion of Zi-
variables into the state space (see Sect. 5.3) which to the best of our

knowledge does not have an analogon in the context of existing work

wrt. 3-valued model checking. Conceptually, this technique increases

accuracy by case splitting wrt. Black Box outputs.

Apart from the standard semantics for 3-valued model checking

there is also the so-called thorough semantics [46] which is more

accurate: Thorough model checking provides an exact solution to the

question whether all completions of a KMTS to a complete Kripke

structure fulfill a given property. Although our simpler approxima-

tions make use of 3-valued model checking, we can not use thorough

model checking to obtain more exact solutions to realizability and

validity questions. The main difference lies in the notion of com-

pletion: Completions in our sense consist in replacements of Black

Boxes by sequential designs, whereas completions in the context of

KMTSs basically consist in replacements of may transitions by fixed

transitions and replacements of unknowns for atomic propositions by

concrete values (0 or 1). Of course, replacements of Black Boxes by

incomplete designs lead to replacements of may transitions by fixed

transitions and to replacements of unknowns for atomic propositions

by concrete values as well, but not all of these replacements are

possible, since the replacements of different unknowns by concrete

values are correlated by the given incomplete design. Arbitrary

replacements as for KMTSs are not allowed. Thus, in our applica-

tion we could neither rely on negative answers of thorough model

checking for validity nor on positive answers for realizability. For

an exact solution to realizability we have to consider in addition

that Black Boxes are replaced by sequential designs and thus their

outputs can not take arbitrary values (e.g. identical sequences at the

Black Box inputs produce identical output sequences, see example

on page 10, Sect. 6.1). Altogether thorough model checking solves

a completely different problem – although there are similarities in

spirit wrt. increasing the accuracy of approximate methods.

In [54] the concept of 3-valued model checking was generalized to

multi-valued model checking based on (multi-valued) quasi-Boolean

algebras. Apart from 3-valued model checking as a special case of

multi-valued model checking, this generalization allows interesting

applications to other problems (by an appropriate choice of the

underlying quasi-Boolean algebra), e.g. to temporal logic query

checking [55], [56] and vacuity checking [57], [58]. Multi-valued

model checking problems can be solved by a multi-valued symbolic

model checker [54] or can be reduced to several classical model

checking problems [46], [59].

9. The additional existential quantification ∃x′ in the second part of Def. 15
comes from subtleties due to the translation of sequential designs into Kripke
structures.

16

Problems especially related to our exact approach from Sect. 6

were solved in symbolic controller synthesis [8] and in the context of

the ‘repair problem’ [60] which asks whether and how an erroneous

design can be repaired so that the property is satisfied. In these

approaches upper bounds to the number of states of the ‘Black Boxes’

are assumed, too. In [8] the Black Boxes have unlimited access to

all signals in the design. In contrast to that, our method takes into

account that the Black Boxes are only able to read the input signals

connected to them. Thus, the exact method from Sect. 6 is able to

provide an exact answer even for the case that the Black Boxes do

not have global knowledge. The approach from [60] also considers

limited access to signals in the design by universally quantifying

variables from a strategy which was selected for an appropriate game.

However, this step may destroy the selected strategy, and thus [60]

provides only a heuristical method.

Finally, a related problem is given in [61] where a Finite State

Machine (FSM) interacts with one unknown component (Black Box).

In [61] solutions of parallel language equations are used in order to

derive the set of all permissible sequential behaviors for the Black

Box so that the combined behavior satisfies an external specification.

The approach from [61] provides an exact solution and by explicitly

modeling communication channels between the FSM and the Black

Box it takes into account that the Black Box may have only restricted

access to the signals of the surrounding design (in contrast to

controller synthesis approaches such as [8]). Since this work was

done in the context of logic synthesis (and not verification), the

specification is not given by a temporal CTL formula as in our work,

but by another FSM.

9 CONCLUSIONS

We introduced a method that is able to use different methods for

modeling unknowns at the outputs of Black Boxes within a single

model checking run. This allows us to handle Black Boxes with larger

approximation and thus faster, if they are less relevant in terms of the

CTL formula, and at the same time we do not necessarily lose impor-

tant information which can only be provided by more exact methods.

Experimental results using our implementation proved that the

need for computational resources (both memory and time) could

be substantially decreased by masking complex parts of the design

and by using symbolic model checking for the resulting incomplete

design. The increase of efficiency was obtained while still providing

sound and useful results (even if the Black Boxes lie inside the cone

of influence [27] for the considered CTL formula).

Moreover, we presented a concept for exact symbolic model

checking of incomplete designs containing several Black Boxes with

bounded memory. This method is based on a reduction of the

problem to a conventional model checking problem by applying

transformations to the incomplete design at hand.

Acknowledment

We are indebted to Christian Miller whose efforts preparing the

experimental evaluation helped us very much.

REFERENCES

[1] C. Scholl and B. Becker, “Checking Equivalence for Partial Implemen-
tations,” in Design Automation Conf., 2001, pp. 238–243.

[2] T. Nopper and C. Scholl, “Approximate symbolic model checking for
incomplete designs,” in FMCAD, ser. LNCS, vol. 3312. Austin, Texas:
Springer Verlag, November 2004, pp. 290–305.

[3] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic Verification of
Finite–State Concurrent Systems Using Temporal Logic Specifications,”
ACM Trans. on Programming Languages and Systems, vol. 8, no. 2, pp.
244–263, 1986.

[4] R. E. Bryant, “Graph - based algorithms for Boolean function manipu-
lation,” IEEE Trans. on CAD, vol. 35, no. 8, pp. 677–691, 1986.

[5] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang,
“Symbolic Model Checking: 1020 States and Beyond,” Information and

Computation, vol. 98(2), pp. 142–170, 1992.

[6] K. L. McMillan, Symbolic Model Checking. Kluwer Academic Pub-
lisher, 1993.

[7] A. Pnueli and R. Rosner, “On the Synthesis of a Reactive Module,” in
ACM Symp. on Principles of Programming Languages. ACM Press,
1989, pp. 179–190.

[8] E. Asarin, O. Maler, and A. Pnueli, “Symbolic controller synthesis for
discrete and timed systems,” in Hybrid Systems. Springer, 1995, pp.
1–20.

[9] A. Pnueli and R. Rosner, “Distributed systems are hard to synthesize,” in
IEEE Symp. on Foundations of Computer Science, 1990, pp. 746–757.

[10] T. VIS Group, “VIS: A system for verification and synthesis,” in CAV,
ser. LNCS, vol. 1102. Springer Verlag, 1996, pp. 428–432.

[11] K. G. Larsen and B. Thomsen, “A modal process logic,” in LICS. IEEE
Computer Society, 1988, pp. 203–210.

[12] G. Bruns and P. Godefroid, “Model checking partial state spaces with
3-valued temporal logics,” in CAV, ser. LNCS, vol. 1633. Springer,
1999, pp. 274–287.

[13] M. Huth, R. Jagadeesan, and D. Schmidt, “Modal transition systems: A
foundation for three-valued program analysis,” in European Symp. on

Programming, vol. 2028. Springer, April 2001, pp. 155+.

[14] C.-J. H. Seger and R. E. Bryant, “Formal verification by symbolic
evaluation of partially-ordered trajectories,” Formal Methods in System

Design, vol. 6, no. 2, pp. 147–189, March 1995.

[15] J. R. Burch and D. L. Dill, “Automatic verification of microprocessor
control,” in Int’l Conf. on CAV, ser. LNCS, vol. 818. Springer Verlag,
1994, pp. 68–80.

[16] R. Kurshan, Computer-Aided Verification of Coordinating Processes.
Princeton University Press, 1994.

[17] B. Li, C. Wang, and F. Somenzi, “Abstraction refinement in symbolic
model checking using satisfiability as the only decision procedure,”
STTT, vol. 7, no. 2, pp. 143–155, 2005.

[18] D. Kroening, “Computing over-approximations with bounded model
checking,” Electr. Notes Theor. Comput. Sci., vol. 144, no. 1, pp. 79–92,
2006.

[19] R. E. Bryant, “Symbolic Boolean manipulation with ordered binary
decision diagrams,” ACM Computing Surveys, vol. 24, pp. 293–318,
1992.

[20] M. Abramovici, M. A. Breuer, and A. D. Friedman, Digital Systems

Testing and Testable Design. Computer Science Press, 1990.

[21] A. Jain, V. Boppana, R. Mukherjee, J. Jain, M. Fujita, and M. Hsiao,
“Testing, Verification, and Diagnosis in the Presence of Unknowns,” in
VLSI Test Symp., 2000, pp. 263–269.

[22] T. Filkorn, “Functional extension of symbolic model checking,” in Int’l

Conf. on CAV. Springer, 1992, pp. 225–232.

[23] P. F. Williams, A. Biere, E. M. Clarke, and A. Gupta, “Combining
decision diagrams and SAT procedures for efficient symbolic model
checking,” in Int’l Conf. on CAV, ser. LNCS, vol. 1855. Springer
Verlag, 2000, pp. 124–138.

[24] F. Somenzi, CUDD: CU Decision Diagram Package Release 2.3.1.
University of Colorado at Boulder, 2001.

[25] H. Higuchi and F. Somenzi, “Lazy group sifting for efficient symbolic
state traversal of FSMs,” in Int’l Conf. on CAD, 1999, pp. 45–49.

[26] R. Hojati, S. C. Krishnan, and R. K. Brayton, “Early quantification and
partitioned transition relations,” in IEEE Int’l Conf. on Computer Design,
1996, pp. 12–19.

[27] E. Clarke, O. Grumberg, and D. Peled, Model Checking. MIT Press,
1999.

[28] E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha,
H. Savoj, P. Stephan, R. K. Brayton, and A. L. Sangiovanni-Vincentelli,
“SIS: A system for sequential circuit synthesis,” University of Berkeley,
Tech. Rep., 1992.

[29] A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri, “Nusmv: A
new symbolic model verifier,” in Int’l Conf. on CAV. Springer Verlag,
July 1999, pp. 495–499.

[30] K. L. McMillan, The SMV language, Cadence Berkeley Labs, 1999.

[31] ——, The SMV system - for SMV version 2.5.4, Carnegie Mellon
University, 2000.

[32] T. Villa, G. Swamy, and T. Shiple, VIS User’s Manual, Electronics
Research Laboratory, University of Colorado at Boulder, 1996.

[33] R. Milner, “An algebraic definition of simulation between programs,”
in Proceedings of the 2nd international joint conference on Artificial

17

intelligence. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 1971, pp. 481–489.

[34] D. Park, “Concurrency and automata on infinite sequences,” in Pro-

ceedings of the 5th GI-Conference on Theoretical Computer Science.
London, UK: Springer-Verlag, 1981, pp. 167–183.

[35] C.-J. H. Seger, R. B. Jones, J. W. O’Leary, T. F. Melham, M. Aagaard,
C. Barrett, and D. Syme, “An industrially effective environment for
formal hardware verification.” IEEE Trans. on CAD, vol. 24, no. 9, pp.
1381–1405, 2005.

[36] S. Berezin, A. Biere, E. M. Clarke, and Y. Zhu, “Combining Symbolic
Model Checking with Uninterpreted Functions for Out-Of-Order Pro-
cessor Verification,” in FMCAD, 1998, pp. 369–386.

[37] R. E. Bryant, S. German, and M. N. Velev, “Processor Verification
Using Efficient Reductions of the Logic of Uninterpreted Functions to
Propositional Logic,” ACM Trans. on Computational Logic, vol. 2, no. 1,
pp. 1–41, 2001.

[38] S. K. Lahiri, S. A. Seshia, and R. E. Bryant, “Modeling and verification
of out-of-order microprocessors in UCLID,” in FMCAD, ser. LNCS, vol.
2517. Springer-Verlag, 2002, pp. 142–159.

[39] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic model
checking without BDDs,” in Tools and Algorithms for the Construction

and Analysis of Systems, ser. LNCS, vol. 1579. Springer Verlag, 1999.
[40] M. Sheeran, S. Singh, and G. Stålmarck, “Checking Safety Properties

Using Induction and a SAT-solver,” in Int’l Conf. on Formal Methods

in CAD, ser. LNCS, W. A. Hunt Jr. and S. D. Johnson, Eds., vol. 1954.
Springer, 2000, pp. 407–420.

[41] K. L. McMillan, “Interpolation and SAT-Based Model Checking,” in
Int’l Conf. on CAV, ser. LNCS, W. A. Hunt Jr. and F. Somenzi, Eds.
Springer, 2003.

[42] D. Wang, P.-H. Ho, J. Long, J. Kukula, Y. Zhu, T. Ma, and R. Damiano,
“Formal property verification by abstraction refinement with formal,
simulation and hybrid engines,” in DAC. ACM, 2001, pp. 35–40.

[43] C. Wang, B. Li, H. Jin, G. D. Hachtel, and F. Somenzi, “Improving ari-
adne’s bundle by following multiple threads in abstraction refinement,”
in ICCAD. IEEE Computer Society / ACM, 2003, pp. 408–415.

[44] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith,
“Counterexample-Guided Abstraction Refinement,” in Int’l Conf. on

CAV, ser. LNCS, vol. 1855. Springer, 2000, pp. 154–169.
[45] K. G. Larsen and L. Xinxin, “Equation solving using modal transition

systems,” in LICS. IEEE Computer Society, 1990, pp. 108–117.
[46] G. Bruns and P. Godefroid, “Generalized Model Checking: Reasoning

about Partial State Spaces,” in Int’l Conf. on Concurrency Theory, vol.
1877. Springer, 2000, pp. 168–182.

[47] P. Godefroid and R. Jagadeesan, “On the expressiveness of 3-valued
models,” in VMCAI, ser. Lecture Notes in Computer Science, L. D.
Zuck, P. C. Attie, A. Cortesi, and S. Mukhopadhyay, Eds., vol. 2575.
Springer, 2003, pp. 206–222.

[48] A. Gurfinkel and M. Chechik, “How thorough is thorough enough?” in
CHARME, ser. LNCS, vol. 3725. Springer, 2005, pp. 65–80.

[49] A. Gurfinkel, O. Wei, and M. Chechik, “Systematic construction of
abstractions for model-checking,” in VMCAI, ser. Lecture Notes in
Computer Science, E. A. Emerson and K. S. Namjoshi, Eds., vol. 3855.
Springer, 2006, pp. 381–397.

[50] S. Shoham and O. Grumberg, “Monotonic abstraction-refinement for
ctl,” in TACAS, ser. LNCS, vol. 2988, 2004, pp. 546–560.

[51] O. Wei, A. Gurfinkel, and M. Chechik, “Mixed transition systems
revisited,” in VMCAI, ser. LNCS, vol. 5403. Springer, 2009, pp. 349–
365.

[52] D. Dams, R. Gerth, and O. Grumberg, “Abstract interpretation of reactive
systems,” ACM Trans. Program. Lang. Syst., vol. 19, no. 2, pp. 253–291,
1997.

[53] P. Godefroid, M. Huth, and R. Jagadeesan, “Abstraction-based model
checking using modal transition systems,” in CONCUR, ser. LNCS, vol.
2154. Springer, 2001, pp. 426–440.

[54] M. Chechik, B. Devereux, S. M. Easterbrook, and A. Gurfinkel, “Multi-
valued symbolic model-checking,” ACM Trans. Softw. Eng. Methodol.,
vol. 12, no. 4, pp. 371–408, 2003.

[55] W. Chan, “Temporal-logic queries,” in Int’l Conf. on CAV, ser. LNCS,
vol. 1855. Springer, 2000, pp. 450–463.

[56] A. Gurfinkel, M. Chechik, and B. Devereux, “Temporal logic query
checking: A tool for model exploration,” IEEE Trans. Software Eng.,
vol. 29, no. 10, pp. 898–914, 2003.

[57] I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh, “Efficient detection of
vacuity in temporal model checking,” Form. Methods Syst. Des., vol. 18,
no. 2, pp. 141–163, 2001.

[58] A. Gurfinkel and M. Chechik, “How vacuous is vacuous?” in TACAS,
ser. LNCS, vol. 2988, 2004, pp. 451–466.

[59] ——, “Multi-valued model checking via classical model checking,” in
CONCUR, ser. Lecture Notes in Computer Science, R. M. Amadio and
D. Lugiez, Eds., vol. 2761. Springer, 2003, pp. 263–277.

[60] B. Jobstmann, A. Griesmayer, and R. Bloem, “Program repair as a
game,” in CAV, ser. LNCS, vol. 3576, 2005, pp. 226–238.

[61] N. Yevtushenko, T. Villa, R. K. Brayton, A. Petrenko, and A. L.
Sangiovanni-Vincentelli, “Solution of parallel language equations for
logic synthesis,” in IEEE Int’l Conf. on Computer-Aided Design. IEEE
Press, 2001, pp. 103–110.

[62] A. Biere and R. Brummayer, “Consistency checking of all different
constraints over bit-vectors within a sat solver,” in FMCAD. IEEE,
2008, pp. 1–4.

Tobias Nopper studied computer science from
1996 to 2003 at the University of Freiburg,
Germany, where he also received the Dipl.-
Inform. degree in 2003. From 2004 to 2010,
he was with the DFG transregional collabora-
tive research center “AVACS - Automatic Veri-
fication and Analysis of Complex Systems” at
the University of Freiburg in close collaboration
both with the University of Saarland and the
University of Oldenburg. His research interests
are formal verification of incomplete designs (cir-

cuits containing ”Black Boxes”), model checking and counterexample
generation.

Christoph Scholl received the Dipl.-Inform. and
the Dr.-Ing. degrees in computer science from
University of Saarland, Germany, in 1993 and
1997, respectively. In 2002 he received the venia
legendi from University of Freiburg, Germany.
In 2002/2003 he was an associate professor
for computer engineering at the University of
Heidelberg and in 2003 he joined the University
of Freiburg as an associate professor in the
Department of Computer Science. His research
interests include logic synthesis, real-time oper-

ating systems, and the verification as well of digital circuits and systems
and of hybrid systems. In this context a main focus of his work lies on
the development of efficient (symbolic) data structures and algorithms.

APPENDIX

A. Complete and Incomplete Designs

We first give a formal definition of (complete) sequential designs and

their semantics expressed by transition functions and output func-

tions. Then we extend the formal definition to incomplete designs.

18

POUT

FF

POUT

POUT

PIN

X1 Y1

Y2

Y3

Q1

mX1 mand

mxor

mFF

mY1

mY2

mY3

FF

Q2

mr

nor
mr

FF

0

0

a) Sequential Design

Black

Box

POUT

FF

POUT

POUT

PIN

X1 Y1

Y2

Y3

Q1

mX1 mand

mxor

mFF

mBB

mY1

mY2

mY3

0

b) Incomplete Design

POUTFF
PIN

Xr

1 Y r

1

Qr

1

mr

X1

mr

nor
mr

FF

mr

Y1

0

c) Sequential Design to replace Black Box

Fig. 14. Complete and incomplete sequential designs

Complete Designs

Definition 25 (Sequential Design). Let Bn,m = {f : Bn → B
m}

be the set of boolean functions with n inputs and m outputs and let

LIB ⊆
∪

n,m∈N Bn,m be a library of boolean functions. A sequential

design over LIB is a tuple D =
(
M, in, out , type, src, X⃗, Y⃗ , Q⃗, q⃗ 0

)

with the following properties:

1) M is a set of nodes.

2) in : M → N is a function returning the number of inputs of a

node.

3) out : M → N is a function returning the number of outputs of

a node.

4) type : M → LIB ∪
{
PIN ,POUT ,FF

}
is a function which

assigns a type to each node. Nodes with type PIN model

inputs of the sequential design, nodes with type POUT model

outputs, nodes with type FF model memory elements (flip-

flops) storing single bits, and nodes with a type from LIB

model gates implementing boolean functions. If type(m) ∈
LIB , then type(m) ∈ Bin(m),out(m), if type(m) = PIN ,

then in(m) = 0, out(m) = 1, if type(m) ∈ POUT , then

in(m) = 1, out(m) = 0 , and if type(m) = FF , then

in(m) = out(m) = 1.

5) Let M IN := {(m, i) |m ∈ M, 1 ≤ i ≤ in(m)} and

M OUT := {(m, i) |m ∈ M, 1 ≤ i ≤ out(m)}. The

“source” function src : M IN → M OUT models the con-

nections between the nodes. src(m, i) = (m′, j) if the j-th
output of node m′ is the source for the value at the i-th input

of node m.

6) X⃗ = (X1, X2, . . . , X|X⃗|) ∈ M |X⃗| is a list of all nodes with

type PIN .

7) Y⃗ = (Y1, Y2, . . . , Y|Y⃗ |) ∈M |Y⃗ | is a list of all nodes with type

POUT .

8) Q⃗ = (Q1, Q2, . . . , Q|Q⃗|) ∈ M |Q⃗| is a list of all nodes with

type FF .

9) q⃗ 0 ∈ B
|Q⃗| is the initial state of D, i.e., ∀1 ≤ i ≤ |Q⃗| flip-flop

Qi is initialized with q0i .

10) The sequential design is free of combinational cycles, i.e.,

if there is a list of nodes which are connected such that

they build a cycle, then there is at least one flip-flop in

the cycle. More precisely, if there is (m1, . . . ,mn) ∈ Mn

with ∃j, k ∈ N : src(m1, j) = (mn, k) and ∀2 ≤ i ≤
n : ∃j, k ∈ N : src(mi, j) = (mi−1, k), then there is at least

one i ∈ {1, . . . , n} with type(mi) = FF .

Example. Fig. 14 a) shows an example for a sequential design with

one input, three outputs, two flip-flops, and three gates implementing

boolean functions nor2, and2, xor2, respectively. The “source”

function src is depicted by arrows: There is an arrow from the j-th
output of node m′ to the i-th input of node m iff src(m, i) = (m′, j).

Now we define the boolean functions which are computed by the

nodes in a sequential design. These boolean functions are needed

later on to define transition and output functions of the design.

Definition 26. Let D =
(
M, in, out , type, src, X⃗, Y⃗ , Q⃗, q⃗ 0

)
be

a sequential design. The i-th output of a node m ∈ M com-

putes a boolean function f(m, i) : B|Q⃗| × B
|X⃗| → B. In the

definition of f(m, i) we denote the projection function which maps

(x1, . . . , x|X⃗|, q1, . . . , q|Q⃗|) ∈ B
|Q⃗| × B

|X⃗| to xj (qk) simply by xj
(qk). f(m, i) is defined as

f(m, i) :=

xj if m = Xj
qk if m = Qk
gi(f(src(m, 1)), . . . , if type(m)=g and gi is the

f(src(m, in(m)))) i-th output function of g

f(m, i) as defined above is well-defined, since the sequential

design D does not contain any combinational cycle.

Definition 27 (Transition and Output Function). Given a sequen-

tial design D =
(
M, in, out , type, src, X⃗, Y⃗ , Q⃗, q⃗ 0

)
, the func-

tion δ⃗ : B|Q⃗| × B
|X⃗| → B

|Q⃗| with δ⃗ := (f(src(Q1, 1)), . . . ,
f(src(Q|Q⃗|, 1))) is the function that computes the next state of

the flip-flops and is thus called the transition function. The func-

tion λ⃗ : B|Q⃗| × B
|X⃗| → B

|Y⃗ | with λ⃗ := (f(src(Y1, 1)), . . . ,
f(src(Y|Y⃗ |, 1))) is the function that computes the current output

values and is called the output function.

Incomplete Designs

We now provide a formal definition for incomplete designs that

are essentially sequential designs with additional “Black Box” (BB)

nodes with unknown (sequential) behavior.

Definition 28 (Incomplete Design). An incomplete design over

LIB ⊆
∪

n,m∈N Bn,m is a tuple D =
(
M, in, out , type, src, X⃗, Y⃗ ,

Q⃗, q⃗ 0
)

with the same properties 1)–3) and 5)–10) as in Def. 25 for

sequential designs. 4) is replaced by 4’) as follows:

4’) type : M → LIB ∪
{
PIN ,POUT ,FF ,BB

}
is a function

which assigns a type to each node. Nodes with type BB model

‘Black Boxes’ of the incomplete design. If type(m) ∈ LIB ,

then type(m) ∈ Bin(m),out(m), if type(m) = PIN , then

in(m) = 0, out(m) = 1, if type(m) = POUT , then

in(m) = 1, out(m) = 0, and if type(m) = FF , then

in(m) = out(m) = 1.

Example. Figure 14 b) illustrates an incomplete design with one

input, three outputs, one flip-flop, two gates implementing the

boolean and2 resp. the boolean xor2 function and one Black

Box. Just as in the case of complete sequential designs the

“source” function src is depicted by arrows. More precisely, D =
(
M, in, out , type, src, X, Y,Q, q⃗ 0

)
with

1) M = {mX1
,mBB ,mFF ,mand ,mxor ,mY1

,mY2
,mY3

}
2) in : {mBB ,mFF ,mY1

,mY2
,mY3

} 7→ 1,

in : {mand ,mxor} 7→ 2, in : {mX1
} 7→ 0

3) out : {mBB ,mFF ,mand ,mxor} 7→ 1,

out : {mY1
,mY2

,mY3
} 7→ 0

4) type(mX1
) = PIN , type(mBB) = BB , type(mFF) = FF ,

type(mand) = and2 , type(mxor) = xor2 , type(mY1
) =

type(mY2
) = type(mY3

) = POUT

19

5) src :
{
(mand , 1)

}
7→ (mX1

, 1)
src :

{
(mand , 2), (mxor , 1), (mxor , 2), (mFF , 1)

}
7→(mBB , 1)

src : (mBB , 1) 7→ (mFF , 1)
src : (mY1

, 1) 7→ (mand , 1)
src : (mY2

, 1) 7→ (mxor , 1)
src : (mY3

, 1) 7→ (mFF , 1)

Replacing Black Boxes in an Incomplete Design

A Black Box mBB in an incomplete design D can be replaced

by any sequential design Dr (without Black Boxes and with

an arbitrary number of flip-flops), as long as Dr has the same

number of inputs and outputs as the Black Box. The inputs and

outputs of Dr are then connected to the inputs and outputs of

the former Black Box mBB in D; the result of this substitu-

tion is another (possibly incomplete) sequential design Dc =
(
Mc, inc, outc, typec, srcc, X⃗c, Y⃗ c, Q⃗c, q⃗ 0c

)
. The exact definition

of a substitution of a Black Box by a sequential design is as follows:

Definition 29 (Replacement of a Black Box in an Incomplete
Design). Let D =

(
M, in, out , type, src, X⃗, Y⃗ , Q⃗, q⃗ 0

)
be an in-

complete design and let mBB ∈ M be a Black Box in D
(type(mBB) = BB). The replacement of mBB by a sequential design
Dr =

(
Mr, inr, outr, typer, srcr, X⃗r, Y⃗ r, Q⃗r, q⃗ 0r

)
with

∣
∣X⃗r

∣
∣ =

in(mBB) and
∣
∣Y⃗ r

∣
∣ = out(mBB) is defined as an incomplete design

Dc =
(
Mc, inc, outc, typec, srcc, X⃗c, Y⃗ c, Q⃗c, q⃗ 0c

)
as follows:

• Mc :=
(
M \ {mBB}

)
∪

(
Mr \

{
m′ ∈ Mr

∣
∣ type(m′) ∈

{PIN ,POUT}
})

• srcc(m, i) :=

src(m, i) if m ∈ M ∧ ∀j src(m, i) ̸= (mBB , j)
srcr(Y rj , 1) if m ∈ M ∧ src(m, i) = (mBB , j)

srcr(m, i) if m ∈ Mr ∧ ∀j srcr(m, i) ̸= (Xr
j , 1)

src(mBB , j) if m ∈ Mr ∧ srcr(m, i) = (Xr
j , 1)

• typec(m) :=

{
type(m), if m ∈ M

typer(m), if m ∈ Mr

• inc(m) :=

{
in(m), if m ∈ M

inr(m), if m ∈ Mr

• outc(m) :=

{
out(m), if m ∈ M

outr(m), if m ∈ Mr

• X⃗c := X⃗, Y⃗ c := Y⃗ , Q⃗c := (Q1, . . . , Q|Q⃗|, Q
r
1, . . . , Q

r
|Q⃗r|

)

• q⃗ 0c := (q01 , . . . , q
0
|Q⃗|

, q0r1 , . . . , q0r
|Q⃗r|

)

Example. The sequential design in Fig. 14 a) results from the

incomplete design in Fig. 14 b) by replacing the Black Box with

the sequential design in Fig. 14 c).

B. Proof of Lemma 2

In the proof we make use of the notions defined in Appendix A for

complete and incomplete sequential designs.

Proof: The proof is by induction on the structure of D. Of

course, the statement is true for type(m) ∈ {PIN ,FF ,BB}.

For type(m) ∈ {and2, or2} the proof follows easily from

fZ(src(m, 1))| q⃗=β⃗
x⃗=γ⃗

, fZ(src(m, 2))| q⃗=β⃗
x⃗=γ⃗

∈ {0, 1, Z} by the induc-

tion hypothesis. For type(m) = not we have

(fZ(src(m, 1))|Z←Z)| q⃗=β⃗
x⃗=γ⃗

= (fZ(src(m, 1))| q⃗=β⃗
x⃗=γ⃗

)|Z←Z

which is also in {0, 1, Z}, if we assume fZ(src(m, 1))| q⃗=β⃗
x⃗=γ⃗

∈
{0, 1, Z} by induction hypothesis.

C. Proof of Lemma 3

In the proof we make use of the notions defined in Appendix A for

complete and incomplete sequential designs.

Proof: The lemma is proved by induction on the structure of

D. For type(m) ∈ {PIN ,FF} fZ(m, j) = fZi(m, j) and thus the

statement holds. For type(m) = BB , the precondition of the lemma

never holds and nothing has to be proved.
Now consider type(m) = and2. Then

fZ(m, 1)| q⃗=β⃗
x⃗=γ⃗

=
(

fZ(src(m, 1)) · fZ(src(m, 2))
)

| q⃗=β⃗
x⃗=γ⃗

=
(

fZ(src(m, 1))| q⃗=β⃗
x⃗=γ⃗

)

·
(

fZ(src(m, 2))| q⃗=β⃗
x⃗=γ⃗

)

.

• Case 1: fZ(m, 1)| q⃗=β⃗
x⃗=γ⃗

=1. Then

fZ(src(m, 1))| q⃗=β⃗
x⃗=γ⃗

=fZ(src(m, 2))| q⃗=β⃗
x⃗=γ⃗

=1

and by induction hypothesis

fZi(src(m, 1))| q⃗=β⃗
x⃗=γ⃗

=fZi(src(m, 2))| q⃗=β⃗
x⃗=γ⃗

=1.

Thus, fZi(m, 1)| q⃗=β⃗
x⃗=γ⃗

=1.

• Case 2: fZ(m, 1)| q⃗=β⃗
x⃗=γ⃗

= 0. Since fZ(src(m, 1))| q⃗=β⃗
x⃗=γ⃗

and

fZ(src(m, 2))| q⃗=β⃗
x⃗=γ⃗

∈ {0, 1, Z} because of Lemma 2, one of

these two terms has to be 0, assume w.l.o.g. the first one.

Then fZi(src(m, 1))| q⃗=β⃗
x⃗=γ⃗

= 0 by induction hypothesis and

fZi(m, 1)| q⃗=β⃗
x⃗=γ⃗

=0.

The cases type(m) = or2 and type(m) = not can be proved in an

analogous manner and are omitted here.

D. Proof of Theorem 16

Proof: The theorem is proved by induction on the structure of

the CTL property φ. For cases φ = xi, φ = yi, φ = ¬ψ and

φ = ψ1∨ψ2, this is trivial to show, since for these cases, χSatappr,incl
A

(·)

(χSatappr,incl
E

(·)) and χSatfunc
A

(·) (χSatfunc
E

(·)) are defined in the same way

(see Def. 23). The proofs for EGψ and Eφ1Uφ2 follow from the

proof for EXψ.

Before we show that χSatappr,incl
A

(EXψ) = χSatfunc
A

(EXψ) and

χSatappr,incl
E

(EXψ) = χSatfunc
E

(EXψ), we first state a few facts necessary

for the proof.

Facts. Let f : Bn+1 → B be a boolean function over variables
(x1, . . . , xn, Z) resulting from symbolic Z-simulation according to
Def. 9. Let y be a boolean variable. Then:

It follows from Lemma 2 that f is monotonically increasing in Z,

i.e., f |Z=0 ≤ f |Z=1. (12)

∀Zf = f |Z=0 · f |Z=1
(12)
= f |Z=0 (13)

∃Zf = f |Z=0 + f |Z=1
(12)
= f |Z=1 (14)

f |Z=0 · f |Z=1 = 0, since f |Z=0 · f |Z=1

(12)

≤ f |Z=1 · f |Z=1 = 0 (15)
(
∃Z(f ≡ y)

)
= ∃Z(f · y + f · y)

= (f · y + f · y)|Z=0 + (f · y + f · y)|Z=1

= (f |Z=0 + f |Z=1) · y + (f |Z=0 + f |Z=1) · y

(13),(14)
= f |Z=0 · y + f |Z=1 · y (16)

(
∃Z(f ≡ y)

) (16)
=

(
f |Z=0 · y + f |Z=1 · y

)

= f |Z=0 · f |Z=1 + f |Z=0 · y + f |Z=1 · y + y · y

(15)
= f |Z=0 · y + f |Z=1 · y (17)

Additionally, it follows directly from Def. 22 that for functions

f, g1, . . . , gn : B
n+1 → B over variables (x⃗, Z) that are monotoni-

cally increasing in Z, f |cZ,impr
x⃗←g⃗ is also monotonically increasing in

Z. (7)

As defined in Defs. 18, 19 and 23 (with n = |q⃗|):

χSatappr,incl
A

(EXψ)(q⃗, x⃗, Z⃗o)

20

= ∀q⃗ ′
((

∃Z⃗l

n∏

i=1

(
∃Z(δi ≡ q′i)

))

→
(
∃x⃗∀Z⃗oχSatappr,incl

A
(ψ)

)
|q⃗←q⃗ ′

)

= ∀Z⃗l∀q⃗
′

((n∏

i=1

(
∃Z(δi ≡ q′i)

))

→
(
∃x⃗∀Z⃗oχSatappr,incl

A
(ψ)

)
|q⃗←q⃗ ′

)

χSatfunc
A

(EXψ)(q⃗, x⃗, Z⃗o) = ∀Z⃗l∀Z
(
(∃x⃗∀Z⃗oχSatfunc

A
(ψ))|

cZ,impr
q⃗←δ⃗

)

We now define f :=
(
∃x⃗∀Z⃗oχSatappr,incl

A
(ψ)

) IA
=

(
∃x⃗∀Z⃗oχSatfunc

A
(ψ)

)
.

(‘IA’ means ‘by induction assumption’.) Note that f does only

depend on variables q⃗. Then we only have to show that

∀q⃗ ′
(∏n

i=1

(
∃Z(δi ≡ q′i)

)
→ f |q⃗←q⃗ ′

)

= ∀Z
(

f |cZ,impr
q⃗←δ⃗

)

to conclude χSatappr,incl
A

(EXψ) = χSatfunc
A

(EXψ). This is proved by

induction on the number of state bits n = |q⃗|:

• n = 0, i.e., no composition is needed:

∀q⃗ ′
(∏n

i=1

(
∃Z(δi ≡ qi)

)
→ f |q⃗←q⃗ ′

)

= 1 → f |q⃗←q⃗ ′ = f = ∀Zf = ∀Z
(

f |cZ,impr
q⃗←δ⃗

)

• n−1 → n: Let q⃗−1 := (q1, . . . , qn−1), q⃗
′−1 := (q′1, . . . , q

′
n−1)

and δ⃗−1 := (δ1, . . . , δn−1).

∀q⃗ ′
(n∏

i=1

(
∃Z(δi ≡ q′i)

)
→ f |q⃗←q⃗ ′

)

= ∀q⃗ ′
(
(
∃Z(δn ≡ q′n)

)
+

(n−1∏

i=1

(
∃Z(δi ≡ q′i)

)
→ f |q⃗←q⃗ ′

))

= ∀q′n

(
(
∃Z(δn ≡ q′n)

)
+

∀q⃗ ′−1
(n−1∏

i=1

(
∃Z(δi ≡ q′i)

)
→

(
f |qn←q′n

)
|q⃗−1←q⃗ ′−1

))

IA= ∀q′n

(
(
∃Z(δn ≡ q′n)

)
+ ∀Z

((
f |qn←q′n

)
|cZ,impr

q⃗−1←δ⃗−1

))

(17), (7),
(13)
= ∀q′n

(

δn|Z=1 · q
′
n + δn|Z=0 · q′n

+
((
f |qn←q′n

)
|cZ,impr

q⃗−1←δ⃗−1

)

|Z=0

)

=
(

δn|Z=0 +
((
f |qn=0

)
|cZ,impr

q⃗−1←δ⃗−1

)

|Z=0

)

·
(

δn|Z=1 +
((
f |qn=1

)
|cZ,impr

q⃗−1←δ⃗−1

)

|Z=0

)

= δn|Z=0 · δn|Z=1 + δn|Z=0 ·
((
f |qn=1

)
|cZ,impr

q⃗−1←δ⃗−1

)

|Z=0

+ δn|Z=1 ·
((
f |qn=0

)
|cZ,impr

q⃗−1←δ⃗−1

)

|Z=0

+
((
f |qn=0

)
|cZ,impr

q⃗−1←δ⃗−1

)

|Z=0 ·
((
f |qn=1

)
|cZ,impr

q⃗−1←δ⃗−1

)

|Z=0

(15)
=

(

δn|Z←Z ·
((
f |qn=0

)
|cZ,impr

q⃗−1←δ⃗−1

)

+ δn ·
((
f |qn=1

)
|cZ,impr

q⃗−1←δ⃗−1

)

+
((
f |qn=0

)
|cZ,impr

q⃗−1←δ⃗−1

)

·
((
f |qn=1

)
|cZ,impr

q⃗−1←δ⃗−1

))

|Z=0

Def.
22=

(

f |cZ,impr
q⃗←δ⃗

)

|Z=0
(7), (13)
= ∀Z

(

f |cZ,impr
q⃗←δ⃗

)

χSatappr,incl
E

(EXψ) = χSatfunc
E

(EXψ) can be shown analogously.

E. Model Checking for Incomplete Designs using Nonde-

terministic Signals

Well-known CTL model checkers such as SMV and VIS provide so-

called ‘nondeterministic assignments’ resp. ‘nondeterministic signals’

to model nondeterminism [30]–[32]. Nondeterministic signals can be

Mux Mux
A

Read Ports

D DA

Register
File

Inst. Reg. (Input)

Register File State
(Output)

Reg Reg

ALU

Reg Write
PortD

A

C
on

tr
ol

Fig. 15. Pipelined ALU

x0

q0 q′
0

y0Z0a0

x0

x1

x2

Z0

q0 q′
0

y0

FF 0 FF 1

a) First counterexample b) Second counterexample

Black

Box

Black

Box

Fig. 16. Counterexamples

handled exactly as primary inputs, leading to a standard CTL model

checking procedure for designs containing nondeterministic signals.

Since the functionality of Black Boxes is not known, one could

assume that nondeterministic signals for handling Black Box outputs

would provide at least approximate solutions to the realizability or

validity problem.

As a first example for this, we consider the well-known pipelined

ALU circuit from [5] (see Fig. 15). In [5], Burch et al. showed

by symbolic model checking that (among other CTL formulas) the

following formulas are satisfied for the pipelined ALU (the formulas

essentially say that the content of the register file R two (resp. three)

clock cycles in the future is uniquely determined by the current state

of the system; Ri,j is the value of the j-th Bit of the i-th register in

the register file):10

AG
∧

i,j

((
EXEX Ri,j

)
≡

(
AXAX Ri,j

))

(18)

AG
∧

i,j

((
EXEXEX Ri,j

)
≡

(
AXAXAX Ri,j

))

(19)

Now we assume that the ALU’s adder has not yet been imple-

mented and it is replaced by a Black Box. The outputs of the Black

Box are modeled by nondeterministic signals. In this situation SMV

provides the result that formula (19) is not satisfied.11 However, it is

clear that there is at least one replacement of the Black Box which

satisfies the CTL formula (a replacement by an adder, of course).

Moreover, it is not hard to see, that the formula is even true for all

possible replacements of the Black Box by any (combinational or

sequential) circuit, so one would expect SMV to provide a positive

answer both for formula (18) and formula (19).

Although the previous example already shows that the usage of

nondeterministic signals leads to non-exact results, we will have

a closer look at two small examples to show that there is no

interpretation of the results as some kind of approximation to the

solution. (Here we consider SMV, but similar results hold for VIS as

well.)

10. (AX)2 is short for AXAX and (AX)3 is short for AXAXAX; same
for (EX)i.

11. Using VIS, the verification already fails for formula (18) — this is due
to a slightly different modeling of automata by Kripke structures in VIS and
SMV.

21

AG
∧

i,j

(

(

EXEX Ri,j

)

≡

(

AXAX Ri,j

)

)

AG
∧

i,j

(

(

EXEXEX Ri,j

)

≡

(

AXAXAX Ri,j

)

)

Relational preimage Functional preimage VIS (non-det.) Relational preimage Functional preimage VIS (non-det.)
word BDD memory BDD memory BDD memory BDD memory
width nodes used time result nodes used time result time result nodes used time result nodes used time result time result

2 67K 5975K 0.37 valid 7K 4912K 0.05 valid 0.3 failed 129K 7024K 0.39 unknown 8176 4928K 0.05 unknown 0.4 failed

4 242K 9073K 0.98 valid 9K 4977K 0.11 valid 1.1 failed 267K 9509K 1.16 unknown 16K 5097K 0.15 unknown 1.1 failed

6 89K 6467K 1.86 valid 12K 5070K 0.19 valid 5.0 failed 222K 8737K 1.91 unknown 25K 5284K 0.24 unknown 5.1 failed

8 152K 7628K 2.80 valid 17K 5195K 0.30 valid 98.1 failed 318K 15M 3.06 unknown 32K 5444K 0.37 unknown 111.8 failed

12 430K 17M 7.01 valid 30K 5473K 0.60 valid 32.6 failed 590K 28M 8.02 unknown 47K 5790K 0.75 unknown 35.0 failed

16 624K 29M 11.64 valid 47K 5829K 1.03 valid 88.3 failed 824K 32M 12.61 unknown 64K 6153K 1.32 unknown 97.2 failed

24 1038K 36M 26.15 valid 55K 6123K 2.43 valid 386.4 failed 1416K 43M 29.39 unknown 94K 11M 2.98 unknown 402.5 failed

32 881K 34M 29.36 valid 127K 12M 4.07 valid TO failed 1541K 45M 31.83 unknown 127K 12M 4.98 unknown TO failed

48 1566K 46M 48.35 valid 214K 13M 9.71 valid TO failed 1542K 46M 59.41 unknown 214K 22M 11.67 unknown TO failed

64 1098K 41M 68.33 valid 409K 25M 17.63 valid TO failed 1089K 41M 76.83 unknown 409K 25M 21.22 unknown TO failed

TABLE 3

Pipelined ALU with 16 registers: Proving validity.

Hypothesis 1: ‘A negative result of SMV means that a property

is not valid.’

The circuit from Fig. 16 a) together with formula φ1 = AG(AXy0∨
AX¬y0) provides us a counterexample for this hypothesis. Formula

φ1 checks whether in all states which are reachable from an initial

state the output of the Black Box is the same for all successor states.

If we substitute the Black Box output by a nondeterministic signal

(modeled in SMV by a new primary input), SMV obviously provides

the result that φ1 is not satisfied. Now consider two finite primary

input sequences from an initial state which differ only in the last

element. Since the Black Box input does not depend on the primary

input, but only on the state of the flip-flop (see Fig. 16 a)), these

two primary input sequences produce the same input sequence at the

Black Box input. Thus, the primary output (which is the same as the

Black Box output) will be the same for both input sequences. This

means that the CTL formula φ1 is satisfied for all possible Black Box

substitutions, thus it is valid. So we observe that a negative result of

SMV does not mean that a property is not valid.

Hypothesis 2: ‘A negative result of SMV means that a property

is not realizable.’

We consider the circuit shown in Fig. 16 b) and the CTL formula

φ2 = AGy0. We assume that the flip-flop is initialized by 1. If we

replace the Black Box output by a nondeterministic signal (modeled

internally by a new primary input), SMV provides the result that φ2

is not satisfied. However, it is easy to see that the formula is satisfied

if the Black Box is substituted with the constant 1 function; so the

property is realizable. Thus, a negative result of SMV does not mean

that a property is not realizable.

Hypothesis 3: ‘A positive result of SMV means that a property is

valid.’

Again, we consider the example shown in Fig. 16 b) and the CTL

formula φ3 = ¬φ2 = EF¬y0. If we substitute the Black Box output

by a nondeterministic signal, SMV provides the result that φ3 is

satisfied. However, since property φ3 is the negation of property φ2

which has been proven to be realizable when considering the second

hypothesis, it is obvious that φ3 is not valid. Thus, a positive result

of SMV does not mean that a property is valid.

Hypothesis 4: ‘A positive result of SMV means that a property is

realizable.’

Finally, we reconsider the circuit shown in Fig. 16 a) in combination

with φ4 = ¬φ1 = ¬AG(AXy0 ∨ AX¬y0). Again, we assume the

Black Box output to be a nondeterministic signal and we verify the

circuit using SMV, which provides the result that φ4 is satisfied.

However φ4 is not realizable, since φ4 = ¬φ1 and φ1 has been

proven to be valid when considering the first hypothesis. Thus, a

positive result of SMV does not mean that a property is realizable.

Conclusion

Using nondeterministic signals for Black Box outputs is obviously

not capable of performing correct model checking for incomplete

designs — the approach is even not able to provide an approximate

algorithm for realizability or validity.12

F. Additional Experimental Data

To broaden the experimental basis of our evaluation we performed

additional experiments both for the pipelined ALU from Fig. 15

with different properties and for a benchmark from the railway

transportation domain as described below. All experiments were

performed on a Intel Xeon 3.07GHz under Linux with a time limit

of 86400 CPU seconds (= 1 day) and a memory limit of 4GB RAM.

Pipelined ALU

In addition to the property considered in Sect. 7.1 we considered

the following two properties for the pipelined ALU which were also

taken from [5]:

AG
∧

i,j

((
EXEX Ri,j

)
≡

(
AXAX Ri,j

))

(20)

AG
∧

i,j

((
EXEXEX Ri,j

)
≡

(
AXAXAX Ri,j

))

(21)

The formulas essentially say that the content of the register file R

two (resp. three) clock cycles in the future is uniquely determined by

the current state of the system; Ri,j is the value of the j-th Bit of the

i-th register in the register file. Both formulas hold for the complete

design. We replaced the ALU (see Fig. 15) by a Black Box, modeled

the Black Box outputs by Zi variables and included them into the

state space.

Formula (20): Our results for formula (20) are shown on the left

hand side of Tab. 3. The results show that the formula could be

proven to be valid (independently from the implementation of the

ALU). All pipelined ALUs up to a bit width of 64 could be verified

within a few seconds and with a moderate memory consumption.

Comparing the relational preimage computation with the functional

preimage computation as introduced in Sect. 5.4 we can observe that

12. Yet, there are subclasses of CTL, for which VIS and SMV can provide
correct results: Considering ACTL (type A temporal operators only, negation
only allowed for atomic propositions), a positive result of SMV/VIS means
that the property is valid. Considering ECTL (analogously for E operators),
a negative result of VIS means that the property is not realizable; this is not
true for SMV due to its implicit universal abstraction of the primary inputs
(including primary inputs resulting from nondeterministic signals) at the end
of the evaluation.

22

functional preimage computation is faster by a factor between 3.9

and 11.7.

Finally, we performed the same experiment using VIS [10] with

non-deterministic signals (using ‘Lazy Group Sifting’ as in our

approach), i.e., the ALU was replaced and its outputs were modeled

by non-deterministic signals. VIS computes the result that the formula

fails on the design, although it is valid (independently from the

implementation of the ALU). The reason for this is due to the fact

that formula (20) does not fall into the ACTL fragment of CTL. It

is known that the abstraction with non-deterministic signals in VIS

is only sound for ACTL formulas. When we compare the run times

with our tool all the same, we can observe that our tool computes the

correct result much faster (both for relational and functional preimage

computation). For bit width of 32 and larger VIS runs into the timeout

(of 1 CPU day), whereas our tool finishes within seconds.

If we use weaker approximation methods for the Black Box (using

Z-variables or Zi-variables not in the state space) in our approach,

then we can neither prove validity of the formula nor disprove

realizability.

Formula (21): The results for formula (21) are shown in Tab. 3 on

the right hand side. Unfortunately, we can neither prove validity of

the formula nor disprove realizability, even if we use our strongest

approximation with Zi-variables in the state space. In contrast to

VIS with non-deterministic signals our tool clearly states that the

model checking result is unknown, i.e., validity can not be proven

and realizability can not be disproven. This information is computed

within seconds by our tool, with run times and memory consumption

similar to formula (20).

Railway Case Study

We considered a case study based on the rail segment control from the

FunkFahrBetrieb (FFB) specification of the Deutsche Bahn, which

is closely related to the European Train Control System (ETCS)

level 2/3 Movement Authority. The case study models the railway

system, consisting of the rail segments and the trains. The access

to the rail segments is controlled by the rail segment manager, who

grants or denies rail segment requests issued by the trains. The trains

send requests for the rail segments before using them (determined

by the schedules of the trains). In our benchmark the trains try to

reserve up to three rail segments (following in their schedule) in

advance; they do not enter a segment prior to obtaining a permission

from the rail segment manager. After leaving a segment, a train

returns its grant. Here we consider a subset of the German ICE route

network with 6 trains and 66 segments. Fig. 17 shows a graphical

representation of the segments (represented by nodes) together with

their interconnection structure (represented by edges). Each train and

each segment is modeled as a finite state machine. The complete

system contains 1096 flip flops.

We considered two classes of properties. The first class of proper-

ties checks for potential collisions, i.e., it checks whether two trains

may be on a segment with the same number. For a pair of trains i
and j with i ̸= j formula R1i,j is

AG
(
seg no traini ̸= seg no trainj

)
. (22)

Thus for 6 trains we obtain 15 formulas R1i,j . (Three out of these

formulas are trivial, since the corresponding trains do not have any

common segments on their schedules.)

The second class of properties checks whether in all configurations

reachable from the initial state a request of train i for segment j will

be granted in some of the successor states. This leads to the formula

R2i,j :

AG
(
request traini segj → EFgrant segj traini

)
. (23)

BreR

HaHR

NueR

NueL

WueR

ObeR

ObeL

BeOR

BeOL

MaiL

FrFL

KufR

MueR

SohL

KasR

GoeR

BeHL
WolL

MueL

EssL

DorL

KufL

HaHL

BreL

SohR
DueR ManR

FrFR FrHR

BasR

FreR

PasL

WueL

DuiR

DuiL

HaAR KieR

ManL

StuL

KarL

KoeR

MaiR

AugL

PasR

FrHL

AugR

FreL

BasL

StuR

KieL

HaAL

EssR

KobR

FulR

GoeL

KoeL

KobL

FulL

KasL

KarR

BeHR

WolR

DorR

DueL

Fig. 17. Railway case study: Track segments are represented by

nodes, the routes followed by different trains according to their

schedule are represented by edges with different arrow heads

for different trains.

Results for formulas R1i,j: In the experiments for formulas R1i,j
all segments which are not both on the schedule of train i and on the

schedule of train j are replaced by Black Boxes (i.e. a segment is

replaced by a Black Box, if a collision can never take place on this

segment due to the schedules of the trains). In Tab. 4 the name of the

formula is given in column 1 (the three trivial formulas mentioned

above are omitted), in column 2 the fractions of flip flops remaining

in the system after replacements by Black Boxes are given. In a first

experiment all Black Box outputs are modeled by Zi-variables in

the state space, in a second experiment they are modeled by Zi-
variables not in the state space. In a third experiment we use a

flexible style of modeling: All outputs of Black Boxes corresponding

to segments which are neither on the schedule of train i nor on the

schedule of train j are modeled by the Z-variable, the remaining

outputs by Zi-variables not in the state space. The results for the

first experiment and relational preimage computation are shown in

columns 3 and 4 of Tab. 4, the results of the second experiment

with relational preimage computation in columns 5 and 6, and the

results of the third experiment and relational preimage computation in

columns 7 and 8. The corresponding results for functional preimage

computation are shown in columns 9–14. Whereas for relational

preimage computation there are still a few timeouts in the table, all

problems could be solved using functional preimage computation and

the validity of the formulas could be proven. In most cases the run

times decrease when weaker approximations are used: For relational

preimage computation the run times in column 6 are better than those

in column 4 in 11 out of 12 cases (for R13,5 and R15,6 even much

23

Relational preimage computation Functional preimage computation
Zi in Zi not in Zi in Zi not in

remain. state space state space mixed Z/Zi state space state space mixed Z/Zi MCAIGER PureSAT
Formula flip flops mem time mem time mem time mem time mem time mem time result step time

R11,2 20.8% 26M 101.1 26M 95.3 11M 36.6 21M 83.8 21M 83.0 6700K 32.7 TO 46 MO

R11,3 20.8% 47M 564.0 44M 132.7 37M 96.1 49M 227.5 48M 193.1 51M 115.9 MO 29 MO

R11,4 18.2% 48M 137.2 27M 120.2 25M 102.8 35M 97.6 37M 100.8 42M 80.8 TO 50 MO

R11,5 18.2% 27M 118.7 27M 100.4 12M 53.5 22M 94.8 22M 97.0 27M 48.1 MO 31 MO

R11,6 18.2% 27M 105.0 27M 102.7 13M 58.0 21M 89.4 21M 86.7 13M 53.1 MO 26 3242

R12,4 18.2% 27M 98.3 26M 93.7 13M 53.1 21M 83.5 21M 82.5 13M 48.2 MO 35 MO

R13,4 51.5% TO TO TO 69M 4387 119M 12783 318M 15969 TO 61 MO

R13,5 31.0% 300M 53755 64M 443.9 59M 416.6 96M 2556 61M 400.6 122M 1958 TO 48 MO

R13,6 28.5% 69M 1511 48M 377.6 52M 165.8 63M 839.3 58M 397.3 68M 737.6 MO 26 MO

R14,5 31.0% 172M 54839 47M 199.3 51M 131.3 91M 2031 98M 856.2 123M 1954 MO 17 MO

R14,6 25.9% 64M 3478 70M 1511 TO 61M 402.2 61M 359.1 57M 278.7 TO 36 MO

R15,6 23.4% TO 62M 982.0 56M 172.4 48M 351.2 49M 205.7 55M 386.7 TO 47 MO

TABLE 4

Railway case study, Formula R1i,j ..

remain. Relational preimage Functional preimage
Formula flip flops memory time memory time

R21,0 46.6% 65M 1304 60M 405.8

R22,42 23.4% 40M 150.1 24M 88.7

R23,51 54.0% TO TO

R24,8 59.1% TO 451M 38207

R25,12 33.6% TO 185M 6170

R26,2 38.7% TO 104M 1308

TABLE 5

Railway case study, Formula R2i,j .

better), the run times in column 8 are better than the run times in

column 6 in 10 out of 12 cases. For functional preimage computation

the situation is similar (but somewhat less clear than before): the run

times in column 12 are better than the run times in column 10 in 9

out of 12 cases, the run times in column 14 are better than those in

column 12 in 7 out of 12 cases. The results confirm again that it is

possible to verify large non-trivial examples by replacing parts of the

design which are not relevant to the considered property by Black

Boxes and they confirm the benefit from flexible modeling of Black

Box outputs.

Note that we are not able to prove validity, if we choose an even

weaker approximation which models all Black Box outputs by the

Z-variable.

Since the formulas R1i,j are safety properties, it is possible to

check them using SAT solvers as well. We tried both McAiger

(version 100810) [62] and PureSAT [17] which is included in VIS.

McAiger uses Bounded Model Checking with k–induction [40].

PureSAT also uses k-induction, but for automatically abstracted mod-

els; if a counterexample in the abstract model is not concretizable,

then abstraction refinement is performed by analyzing the proof of

nonexistence of counterexamples of a certain length in the concrete

model (see also Sect. 8). Column 15 shows the results of McAiger.

All runs exceeded either the time limit (1 CPU day) or the memory

limit (4 GB). Column 16 gives the number k of unwindings of

the design in McAiger’s Bounded Model Checking approach which

were analyzed when the time limit / memory limit was exceeded.

The results for PureSAT are shown in column 17. PureSAT with

its automatic abstraction refinement finishes at least for one of the

simpler instances (R11,6), within a CPU time of 54 minutes. In this

example the simple strategy used for our tool (“mask out segments

which are not both on the schedule of train 1 and on the schedule

of train 6”) removes the largest number of flip flops among all other

instances (896 flip flops out of 1096), leading to a run time of 53.1

CPU seconds for the flexible approach with Z/Zi modeling and

functional preimage computation.

Results for formulas R2i,j: In Tab. 5 we show results of for-

mulas R2i,ji for each train i together with one segment ji on its

schedule. The segment ji for train i was selected randomly with

the additional constraint that it has to be on the schedule of train

i. (Otherwise the formula R2i,ji is trivially true, since the request

signal request traini segji is constant false, leading to run times of

a few seconds in all of these cases.) Here all segments which are not

on the schedule of train i were replaced by Black Boxes. The fraction

of remaining flip flops in the model is given in column 2 of Tab. 5,

it ranges from 23.4% to 59.1% (corresponding to 256 to 648 flip

flops). Both run times and memory consumptions for formulas R2i,j
are considerably larger than those for formulas R1i,j . Nevertheless,

the version with functional preimage computation is able to prove

validity within the time and memory limits for all but one instance.

Validity could be proven using the simplest modeling of Black Box

outputs by a single Z-variable.

