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Abstract. We introduce a symbolic model checking procedure for Probabilistic
Computation Tree Logic PCTL over labelled Markov chains as models. Model
checking for probabilistic logics typically involves solving linear equation sys-
tems in order to ascertain the probability of a given formulaholding in a state.
Our algorithm is based on the idea of representing the matrices used in the lin-
ear equation systems by Multi-Terminal Binary Decision Diagrams (MTBDDs)
introduced in Clarkeet al [14]. Our procedure, based on the algorithm used by
Hansson and Jonsson [24], uses BDDs to represent formulas and MTBDDs to
represent Markov chains, and is efficient because it avoids explicit state space
construction. A PCTL model checker is being implemented in Verus [9].

1 Introduction

Probabilistic techniques, and in particular probabilistic logics, have proved successful
in the specification and verification of systems that exhibit uncertainty, such as fault-
tolerant systems, randomized distributed systems and communication protocols. Mod-
els for such systems are variants of probabilistic automata (such as labelled Markov
chains used in e.g. [24, 34, 35, 17]), in which the usual (boolean) transition relation
is replaced with its probabilistic version given in the form of a Markov probability
transition matrix. The probabilistic logics are typically obtained by “lifting” a non-
probabilistic logic to the probabilistic case by constructing foreach formula� and a
real numberp in the [0; 1]-interval the formula[�]�p in whichp acts as athreshold for
truth in the sense that for the formula[�]�p to be satisfied (in the states) the proba-
bility that � holds ins must beat leastp (see [26, 32, 25] for a different approach).
With such logics one can expressquantitativeproperties such as “the probability of
the message being delivered withint time steps is at least0:75” (see e.g. the timing or
average-case analysis of real-time or randomized distributed systems [24,23, 5, 6, 2])
or (the more prevalent)qualitativeproperties, for which� is required to be satisfied by
almost all executions (which amounts to showing that� is satisfied with probability 1,
see e.g. [1, 17, 23, 24, 21, 22, 29, 30, 34]).? This research was sponsored in part by the National Science Foundation under grant no. CCR-
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Much has been published concerning the verification methods for probabilistic log-
ics. Probabilistic extensions of dynamic logic [26] and temporal and modal logics,
e.g. [2, 6, 17, 24, 21, 27, 30, 31, 34], and automatic procedures for checking satisfaction
for such logics have been proposed. The latter are based on reducing the calculation of
the probability of formulas being satisfied to a linear algebra problem:for example, in
[24], the calculation of the probability of ‘until’ formulas is basedon solving the linear
equation system given by ann�nmatrix wheren is the size of the state space. Optimal
methods are known (for sequential Markov chains, the lower bound is single exponen-
tial in the size of the formula and polynomial in the size of the Markov chain [18]),
but these algorithms are not of much practical use when verifying realistic systems. As
a result, efficiency of probabilistic analysis lags behind efficient model checking tech-
niques for conventional logics, such as symbolic model checking [11, 12,10, 8, 15, 28],
for which tools capable of tackling industrial scale applications are available (cf.smv).
This is undesirable as probabilistic approaches allow one to establish that certain prop-
erties hold (in some meaningful probabilistic sense) where conventional model checkers
fail, either because the property simply is not true in the state (but holds in that state
with some acceptable probability), or because exhaustive search of only a portion of the
system is feasible.

The main difficulty with current probabilistic model checking is the needto inte-
grate a linear algebra package with a conventional model checker. Despite the power of
existing linear algebra packages, this can lead to inefficient and time consuming com-
putation through the implicit requirement for the construction of the state space. This
paper proposes an alternative, which is based on expressing the probability calculations
in terms of Multi-Terminal Binary Decision Diagrams (MTBDDs) [16]. MTBDDs are
a generalization of (ordered) BDDs in the sense that they allow arbitrary real numbers
in the terminal nodes instead of just 0 and 1, and so can provide a compact representa-
tion for matrices. As a matter of fact, in [13] MTBDDs have been shown to performno
worsethan sparse matrices. Thus, converting to MTBDDs ensures smooth integration
with a symbolic model checker such assmv and has the potential to outperform sparse
matrices due to the compactness of the representation, in the same way as BDDshave
outperformed other methods. As with BDDs, the precise time complexity estimates of
model checking for MTBDDs are difficult to obtain, but the success of BDDsin practice
[8, 28] serves as sufficient encouragement to develop the foundations of MTBDD-based
probabilistic model checkers.

In this paper we consider a probabilistic extension of CTL called Probabilistic Com-
putation Tree Logic (PCTL), and give asymbolicmodel checking procedure which
avoids the explicit construction of the state space. We use finite-state labelled Markov
chains as models. The model checking procedure is based on that of [24, 18], but we
use BDDs to represent the boolean formulas, and a suitable combination of BDDs and
MTBDDs for probabilistic formulas. Currently, we are implementing the PCTL sym-
bolic model checking in Verus [9]. For reasons of space we omit much detail from this
paper, which will be reported in [4]. We assume some familiarity with BDDs, automata
on infinite sequences, probability and measure theory [8, 33, 20].



2 Labelled Markov chains

We use discrete time Markov chains as models (we do not consider nondeterminism).
Let AP denote a finite set of atomic propositions. Alabelled Markov chainover a set
of atomic propositionsAP is a tupleM = (S;P; L) whereS is a finite set ofstates,P : S � S ! [0; 1] a transition matrix, i.e.

Pt2S P(s; t) = 1 for all s 2 S,
andL : S ! 2AP a labelling functionwhich assigns to each states 2 S a set of
atomic propositions. We assume that there are2n states for somen, and that there are
sufficiently many atomic propositions to distinguish them (i.e.L(s) 6= L(s0) for all
statess, s0 with s 6= s0). Any labelled Markov chain may be transformed into one
satisfying these conditions by adding dummy states and new propositions.

Execution sequences arise by resolving the probabilistic choices. Formally, an ex-
ecution sequencein M is a nonempty (finite or infinite) sequence� = s0s1s2; : : :
wheresi are states andP(si�1; si) > 0, i = 1; 2; : : :. The first state of� is denoted
by first(�). �(k) denotes thek + 1-th state of�. An execution sequence� is also
called apath, and afull path iff it is infinite. Path!(s) is the set of full paths� withfirst(�) = s. For s 2 S, let �(s) be the smallest�-algebra onPath!(s) which
contains the basic cylindersf� 2 Path!(s) : � is a prefix of�g where� ranges over
all finite execution sequences starting ins. The probability measureProb on�(s) is
the unique measure withProb f � 2 Path!(s) : � is a prefix of� g = P(�) whereP(s0s1 : : : sk) = P(s0; s1) �P(s1; s2) � : : : �P(sk�1; sk).
Example 1.We consider a simple communication protocol similar to that in [24]. The
system consists of three entities: a sender, a medium and a receiver. The sender sends
a message to the medium, which in turn tries to deliver the message to thereceiver.
With probability 1100 , the messages get lost, in which case the medium tries again to
deliver the message. With probability1100 , the message is corrupted (but delivered); with
probability 98100 , the correct message is delivered. When the (correct or faulty) message
is delivered the receiver acknowledges the receipt of the message. For simplicity, we
assume that the acknowledgement cannot be corrupted or lost. We describe the system
in a simplified way where we omit all irrelevant states (e.g. the state where the receiver
acknowledges the receipt of the correct message).
We use the following four states:sinit the state in which the sender passes the message

to the mediumsdel the state in which the medium tries to deliver the
messageslost the state reached when the message is lostserror the state reached when the message is corrupted

sinitsdel slostserrora1; a2 a2a1 11 0:980:01 0:01 1�
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The transitionsdel ! sinit stands for the acknowledgement of the receipt of the correct
message,serror ! sinit for the acknowledgement of the receipt of the corrupted mes-
sage. We use two atomic propositionsa1, a2 and the labelling functionL(sinit) = ;,L(sdel) = fa1; a2g, L(slost) = fa2g, L(serror) = fa1g.



3 Probabilistic branching time temporal logic

In this section we present the syntax and semantics of the logic PCTL (Probabilistic
Computation Tree Logic) introduced by Hansson & Jonsson [24]4. PCTL is a proba-
bilistic extension of CTL which allows one to express quantitativeproperties of proba-
bilistic processes such as “the system terminates with probability at least0:75”. PCTL
contains atomic propositions and the operators: next-stepX and untilU . The operatorsX andU are used in connection with an interval of probabilities. The syntax of PCTL
is as follows:� ::= tt j a j �1 ^ �2 j :� j [ X� ]wp j [ �1U�2 ]wp
wherea is an atomic proposition,p 2 [0; 1], w is either� or >. Formulas of the
form X� or �1U�2, where�, �1, �2 are PCTL formulas, are calledpath formulas.
PCTL formulas are interpreted over the states of a labelled Markov chain, whereaspath
formulas are interpreted over paths. The subscriptw p denotes that the probability of
paths starting in the current state fulfilling the path formula isw p. Thus, PCTL is like
CTL, except that the path operatorsA andE in CTL have been replaced by the operator[ � ]wp. The usual derived constants and operators are:ff = :tt, �1 _ �2 = :(:�1 ^:�2), �1 ! �2 = :�1 _ �2. Operators for modelling “eventually” or “always” can
be derived by:[3�]�p = [ttU�]�p, [2�]�p = :[3:�]>1�p, and similarly for[�]>p.

Let M = (S;P; L) be a labelled Markov chain. The satisfaction relationj= �S � PCTL is given bys j= tt for all s 2 S s j= �1 ^ �2 iff s j= �1 ands j= �2s j= a iff a 2 L(s) s j= :� iff s 6j= �s j= [X�]wp iff Prob f� 2 Path!(s) : � j= X�g w ps j= [�1U�2]wp iff Prob f� 2 Path!(s) : � j= �1U�2g w p� j= X� iff �(1) j= �� j= �1U�2 iff there existsk � 0 with �(i) j= �1, i = 0; 1; : : : ; k� 1 and�(k) j= �2.
For a path formulaf the setf� 2 Path!(s) : � j= fg is measurable [34, 18]. Ifs j= �
then we says satisfies� (or � holds ins). The truth value of formulas involving the
linear time quantifiers3 and2 can be derived:s j= [3�]wp iff Probf� 2 Path!(s) : �(k) j= � for somek � 0g w ps j= [2� ]wp iff Probf� 2 Path!(s) : �(k) j= � for all k � 0g w p.
Given a probabilistic processP , described by a labelled Markov chainM = (S;P; L)
with an initial states, we sayP satisfies a PCTL formula� iff s j= �. For instance, ifa is an atomic proposition which stands for termination andP satisfies[3a]�p thenP
terminates with probability at leastp.

4 Multi-terminal binary decision diagrams

Ordered Binary Decision Diagrams (BDDs) [7, 8, 15, 28] are a compact representation
of boolean functionsf : f0; 1gn ! f0; 1g. They are based on the canonical represen-
tation of the binary tree of the function as a directed graph obtained through folding4 For simplicity we omit the bounded ‘until’ operator of [24].



internal nodes representing identical subfunctions (subject to an ordering of the vari-
ables to guarantee uniqueness of the representation) and using 0 and 1 as leaves. In [16]
it is shown how one can generalize BDDs to cogently and efficiently represent matrices
in terms of so-calledmulti-terminalbinary decision diagrams (MTBDDs).

Formally, MTBDDs can be defined as follows. Letx1; : : : ; xn be distinct variables,
which we order byxi < xj iff i < j. A multi-terminal binary decision diagram
(MTBDD) over (x1; : : : ; xn) is a rooted, directed graph with vertex setV contain-
ing two types of vertices,nonterminalandterminal. Each nonterminal vertexv is la-
belled by a variablevar(v) 2 fx1; : : : ; xng and two childrenleft(v), right(v) 2 V .
Each terminal vertexv is labelled by a real numbervalue(v). For each nonterminal
nodev, we requirevar(v) < var(left(v)) if left(v) is nonterminal, and similarly,var(v) < var(right(v)) if right(v) is nonterminal. A suitable adaptation of the op-
eratorREDUCE(�) [7] yields an operator which accepts an MTBDD as its input and
returns the corresponding reduced MTBDD.

Each MTBDDQ over fx1; : : : ; xng represents a functionFQ : f0; 1gn ! IR,
and, vice versa, each functionF : f0; 1gn ! IR can be described by a unique reduced
MTBDD over(x1; : : : ; xn). In the sequel, by the MTBDD for a functionF : f0; 1gn !IR we mean the unique reduced MTBDDQ with FQ = F . If all terminal vertices are
labelled by 0 or 1, i.e. if the associated functionFQ is a boolean function, the MTBDD
specializes to a BDD over(x1; : : : ; xn).

MTBDDs are used to representD–valued matrices as follows. Consider a2m�2m–
matrixA. Its elementsaij can be viewed as the values of a functionfA : f1; : : : 2mg �f1; : : : 2mg ! D, wherefA(i; j) = aij . Using the standard encodingc : f0; 1gm !f1; : : : 2mg of boolean sequences of lengthm into the integers, this function may be
interpreted as aD–valued boolean functionf : f0; 1gm ! D wheref(x; y) =fA(c(x); c(y)) for x = (x1 : : : xm) andy = (y1 : : : ym). This transformation now al-
lows matrices to be represented as MTBDDs. In order to obtain an efficient MTBDD–
representation, the variables off are permuted. Instead of the MTBDD forf(x1 : : :xm; y1 : : : ym), we use the MTBDD obtained fromf(x1; y1; x2; y2; : : : xm; ym). This
convention imposes a recursive structure on the matrix from which efficient recursive
algorithms for all standard matrix operations are derived [16].

4.1 Representing labelled Markov chains by MTBDDs

To represent the transition matrix of a labelled Markov chain by a MTBDD weabstract
from the names of states and instead, similarly to [8, 15], use binary tuples of atomic
propositions that are true in the state. LetM = (S;P; L) be a labelled Markov chain.
We fix an enumerationa1; : : : ; an of the atomic propositions and identify each states
with the booleann-tuplee(s) = (b1; : : : ; bn) wherebi = 1 iff ai 2 L(s). In what fol-
lows, we identifyP with the functionF : f0; 1g2n ! [0; 1], F (x1; y1; : : : ; xn; yn) =P((x1; : : : ; xn); (y1; : : : ; yn)), and representM by the MTBDD forP over (x1; y1;: : : ; xn; yn). The associated MTBDD is denoted byP .

Example 2.For the system in Example 1 we use the encodinge(sinit) = 00, e(sdel) =11, e(slost) = 01 e(serror) = 10. The values of the matrixP, the functionF and the
MTBDD P for F are are given by:



00 01 10 11
00 0 0 0 1
01 0 0 0 1
10 1 0 0 0
11 98100 1100 1100 0

F (x1; y1; x2; y2) = 8>><>>:1 : if x1y1x2y2 2 f0101; 0111; 1000g1100 : if x1y1x2y2 2 f1011; 1110g98100 : if x1y1x2y2 = 10100 : otherwise.x1 y1y1 x2x2y2 y2 y2 y2
i ii iii i i i
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(The thick lines stand for the “right” edges, the thin lines for the “left” edges.)

4.2 Operators on MTBDDs

Our model checking algorithm makes use of several operators on MTBDDs proposed
in Bryant [7] and Clarkeet al [14]. We briefly describe them below.
Operator BDD(�): takes an MTBDDQ and an intervalI , and returns the BDD rep-
resenting the functionF (x) = 1 if FQ(x) 2 I , elseF (x) = 0. We obtainB =BDD(Q; I) from Q by changing the values of the terminal vertices (into 1 or 0 de-
pending on whether or notvalue(v) 2 I) and applying Bryant’s reduction procedureREDUCE(�). We writeBDD(Q;> p) rather thanBDD(Q; ]p;1[) andBDD(Q;�p) rather thanBDD(Q; [p;1[).
OperatorAPPLY (�): allows elementwise application of the binary operatorop to two
MTBDDs. If op is a binary operator on reals (e.g. multiplication� or minus�) andQ1,Q2 are MTBDDs overx thenAPPLY (Q1; Q2; op) yields a MTBDD overx which
represents the functionf(x) = fQ1(x) op fQ2(x):
Operator COMPOSEk(�): This operator allows the composition of a real functionF : f0; 1gn+k ! IR and boolean functionsGi : f0; 1gn ! f0; 1g, i = 1; : : : ; k givingH(x) = F (x;G1(x); : : : ; Gk(x)).
Matrix and vector operators: The standard operations on matrices and vectors have
corresponding operations on the MTBDDs that represent them [13]. If MTBDDs A
andQ over2n andn variables represent the matrixA and vectorq respectively, thenMV MULTI(A;Q) denotes the MTBDD overn variables that represents the vector
A � q.
Operator SOLV E(�): [8] presents a method to decompose a regular matrixA into a
lower and upper triangular matrices and a permutation matrix. Using this LU-decompo-
sition we can obtain an operatorSOLV E(A;Q) that takes as its input a MTBDDA
over2n variables where the corresponding matrixA is regular and a MTBDDQ overn
variables which represents a vectorq, and returns a MTBDDQ0 overn variables which



represents the unique solution of the linear equation systemA � x = q. Alternatively,
we can use iterative techniques to solve the equations; our experiments indicate that this
performs better.

4.3 Description of (MT)BDDs by relational terms of the �-calculus

We will use the�-calculus as a notation for describing (MT)BDDs. In the algorithm
in the next section, all our (MT)BDDs are either over2n variables (in which case they
represent2n�2n matrices), or overn variables (in which case they represent vectors of
length2n). For example, ifB, C are BDDs overn variables andu = (u1; : : : ; un),v = (v1; : : : ; vn), thenD = �uv [B(u) ^ C(v)] is a BDD over2n variables; ifB;C represent the vectors(bi)1�i�n and (ci)1�i�n respectively, thenD represents
the matrix whose element in theith row andjth column isbi ^ cj . The BDDE =�u [B(u) ^ C(u)] is a BDD overn variables, representing the vector(bi ^ ci)1�i�n.

We writeTRUE for the BDD overn variables which returns 1 in all cases of its
arguments. We write:B instead of�x[:B(x)], andB1 ^B2 for the BDD�x[B1(x)^B2(x)]. If x = (x1; : : : ; xn), y = (y1; : : : ; yn) thenx = y abbreviates the formulaV1�i�n(xi $ yi).

We require one further operator. If the labelled Markov chainM = (S;P; L) is rep-
resented by a MTBDDP as described in Section 4.1, andB1,B2 are BDDs that repre-
sent the characteristic functions of subsetsS1,S2 ofS, thenREACH(B1; B2; BDD(P;> 0)) represents the set of statess 2 S from which there exists an execution sequences = s0; s1; : : : ; sk with k � 0 ands0; : : : ; sk�1 2 S1, sk 2 S2, and which is used in
the operatorUNTIL(�) defined in Section 5.
Operator REACH(�) Let B1, B2 be BDDs withn variables andT a BDD with 2n
variables. We defineREACH(B1; B2; T ) to be the BDD overn variables which is
given by the�-calculus formula�Z �x [B2(x) _ (B1(x) ^ 9y[Z(y) ^ T (x; y)])]. This
operator uses the method of [8] to obtain the BDD for a term involvingthe least fixed
point operator�.

5 Model checking for PCTL

Our model checking algorithm for PCTL is based on established BDD techniques
(i.e. converting boolean formulas to their BDD representation), which itcombines with
a new method, namely expressing the probability calculation for the probabilistic for-
mulas in terms of MTBDDs. In the case of[X�]wp the probability is calculated by
multiplying the transition matrix by the boolean vector set to 1 iff the state satisfies�,
whereas for[�1U�2]wp we derive an operator calledUNTIL(�), based on [24], which
we express in terms of MTBDDs.

LetM = (S;P; L) be a labelled Markov chain which is represented by a MTBDDP over2n variables as described in Section 4.1. For each PCTL formula�, we define
a BDDB[�] overx = (x1; : : : ; xn) that representsSat(�) = fs 2 S : s j= �g. We
compute the BDD representationB[�] of a PCTL formula� by structural induction:B[tt] = TRUE B[ai] = �x [xi]B[:�] = :B[�] B[�1 ^ �2] = B[�1] ^ B[�2]



B[ [X�]wp ] = BDD (MV MULTI (P;B[�]); w p )B[ [�1U�2]wp ] = BDD ( UNTIL(B[�1]; B[�2]; P );w p ) )
The operatorUNTIL(B[�1]; B[�2]; P ) assigns to each states 2 S the probability
of the set of full paths froms satisfying�1U�2; formally, it represents the functionS ! [0; 1], s 7! ps, whereps = Prob f� 2 Path!(s) : � j= �1U�2g : Our method
for computingps is based on the partition ofS introduced in [24, 18], but we must
compute with BDDs. We first compute the setV = fs 2 S : ps > 0g and then setV 0 = V n Sat(�2). We then have:ps = 1 if s j= �2; ps = 0 if s 62 V ; and for the
remaining cases (i.e. those such thats 2 V 0)ps = Xt2V 0P(s; t) � pt + Xt2Sat(�2)P(s; t) � pt + Xt2SnV P(s; t) � pt:
In the second term, eachpt = 1 and in the third term, eachpt = 0. Thereforeps
(s 2 V 0) satisfies ajV 0j-dimensional equation system of the formx = A x + b, or
equivalently(I �A) x = b whereI is thejV 0j � jV 0j identity matrix. One can show
this system has a unique solution using the method in [24, 18].

We now demonstrate howUNTIL(�) can be expressed in terms of MTBDDs. LetBi = B[�i], i = 1; 2. The setV is given by the BDDB = REACH(B1; B2; BDD(P;> 0)), V 0 by B0 = �x [B(x) ^ :B2(x)]. In order to avoid the BDD for the “new”
transition matrixA with dlog2 jV 0je variables, we instead reformulate the equation in
terms of the matrixP0 = (p0s;t)s;t2S which is given by:p0s;t = P(s; t) if s; t 2 V 0 andp0s;t = 0 in all other cases. The MTBDDP 0 for P0 can be obtained from the MTBDDP representing the Markov transition matrix. The following lemma shows thatI � P0
is regular (we omit the proof).

Lemma 1. Let V 0, P0, I be as as above. Then,I � P0 is regular. The unique solution
x = (xs)s2S of the linear equation system(I � P0) � x = q whereq = (qs), qs =Pt2Sat(�2)P(s; t) satisfies:xs = ps if s 2 V 0.
The algorithm for the operatorUNTIL(�) is shown in Figure 1. It first calculates the
MTBDDsB andB0, for V andV 0. B2 is used as a mask to obtainP 0 from P ; it sets
to 0 the entries not corresponding to states inV 0. We next calculate the MTBDDQ
for the vectorq, and use the operatorSOLV E(�) to obtain the MTBDDQ0 satisfyingFQ0(s) = ps for all s 2 V 0. The result, the MTBDDQ00 for the vectorp = (ps)s2S , is
obtained from the MTBDD for the functionF (x) = maxf FB2(x); FQ0(x) �FB0(x) g
which usesQ0 for all s 2 V 0 and ensures that 1 is returned as the probability of the states
already satisfying�2.

Example 3.Let � = [ try to deliver U correctly delivered ]�0:9 wheretry to deliver = a2 andcorrectly delivered = :a1 ^ :a2. We consider the system
in Example 1. Our algorithm first computes the BDDsB1 for Sat(try to deliver) =fsdel; slostg, B2 for Sat(correctly delivered) = fsinitg, and then applies Algo-
rithm UNTIL(B1; B2; P ). V = fsinit; sdel; slostg is represented by the BDDB,V 0 = fsdel; slostg by the BDDB0. Thus,B2, P 0 andA stand for the matricesB2 = 0B@ 0 0 0 00 1 0 10 0 0 00 1 0 11CA P0 = 0B@0 0 0 00 0 0 10 0 0 00 1100 0 01CA A = 0B@1 0 0 00 1 0 �10 0 1 00 � 1100 0 1 1CA



Algorithm: UNTIL(B1; B2; P )
Input: A labelled Markov chain represented by a MTBDDP over2n variables,

BDDsB1,B2 overn variables
Output: MTBDDX overn variables which represents the function that assigns to each

state the probability of a path from the state reaching aB2-state via an execution
sequence throughB1-states

Method:B := REACH(B1; B2; BDD(P;> 0)); B0 := �x [ B(x) ^ :B2(x) ];B2 := �x1y1 : : : xnyn [B0(x1; : : : ; xn) ^B0(y1; : : : ; yn)];P 0 := APPLY (P;B2; �); I := �x1y1 : : : xnyn [x = y];A := APPLY (I; P 0;�); Q := MV MULTI (P; B2);Q0 := SOLV E(A;Q); Q00 := APPLY (B2; APPLY (Q0; B0; �);max);
Return(REDUCE(Q00)).

Fig. 1. Algorithm UNTIL(B1; B2; P )B2 (viewed as a vector) isq2 = (1; 0; 0; 0). Thus,Q is the MTBDD for the vectorP � q2 = (0; 0; 1; 0:98). We solve the linear equation system0B@ 1 0 0 00 1 0 �10 0 1 00 � 1100 0 11CA � x = 0B@ 00198100 1CA
which yields the solutionx = (0; 9899 ; 1; 9899 ) (represented by the MTBDDQ0). More-
over, the MTBDDAPPLY (Q0; B0; �) can be identified with the vector(0; 9899 ; 0; 9899 ).UNTIL(B1; B2; P ) and the BDDB[�] are of the following form.x1x2 x2jj j��	��	 ��	HHHjAAU %�01 9899 x1 x2j j? ��	HHHj%� 01
Thus,B[�] represents the characteristic function forSat(�) = fsinit; sdel; slostg.
6 Implementing PCTL model checking

We are integrating PCTL symbolic model checking within Verus [9], which is a tool
specifically designed for the verification of finite-state real-time systems. Verus has
been used already to verify several interesting real-time systems: an aircraft controller,
a medical monitor, the PCI local bus, and a robotics controller. These examples have not
been originally modeled using probabilities. However, these systems exhibit behaviors
which can best be described probabilistically. The integration of PCTL model check-
ing with Verus allows us to verify stochastic properties of these and other interesting
applications.



The Verus language is an imperative language with a syntax resembling thatof the C
language with additional special primitives to express timing aspects such as deadlines,
priorities, and delays. An important feature of Verus is the use of thewait statement
to control the passage of time. In Verus time only passes when a wait statement is
executed: non-wait statements execute in zero time. This feature allows a more accurate
control of time and leads to models with less states, since consecutive statements not
separated by await statement are compiled into a single state. To describe probabilistic
transitions we extend the Verus language with the probabilisticselect statement.

From the Verus description of the application, the tool generates automatically a
labeled state-transition graph and the corresponding transition probability matrix using
BDDs and MTBDDs respectively.

The first experimental results of our PCTL symbolic model checking implementa-
tion are promising: Parrow’s Protocol (which is of a similar size to Example 1) can be
verified in less than a second. We have modeled a fault tolerant system [23, p. 168–171]
with three processors that has about 35000 reachable states (out of108 states). A safety
property of this system took only a few seconds to check. Next we plan toevaluate
how well PCTL symbolic model checking performs as a formal verification tool in real
applications by modeling industrial size systems.

7 Concluding remarks and further directions

We have proposed a symbolic model checking procedure for the logic PCTL which we
are implementing using MTBDDs in Verus, thus forming the basis of anefficient tool
for verifying probabilistic systems. Our algorithm can be extended to cater for “bounded
until” of [24] which is useful in timing analysis of systems. We expect that MTBDDs
can be used to derive PCTL� model checking by applying the methods of [18]. Like-
wise, testing of probabilistic bisimulation and simulation [3, 19] can be implemented
using MTBDDs. An extension to the case of infinite state systems, perhaps by appropri-
ate combination with induction, as well as a generalization to allow non-determinism,
would be desirable.
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