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Understanding the functioning of genetic regulatory networks supposes a modeling of
biological processes in order to simulate behaviors and to reason on the model. Unfor-
tunately, the modeling task is confronted to incomplete knowledge about the system.
To deal with this problem we propose a methodology that uses the qualitative approach
developed by R. Thomas. A symbolic transition system can represent the set of all
possible models in a concise and symbolic way. We introduce a new method based on
model-checking techniques and symbolic execution to extract constraints on parameters
leading to dynamics coherent with known behaviors. Our method allows us to efficiently
respond to two kinds of questions: is there any model coherent with a certain hypothetic
behavior? Are there behaviors common to all selected models? The first question is illus-
trated with the example of the mucus production in Pseudomonas aeruginosa while the
second one is illustrated with the example of immunity control in bacteriophage lambda.

Keywords: Gene networks; qualitative dynamical models; symbolic execution; temporal
properties; model-checking.

1. Introduction

Modeling and simulation are often necessary to understand genetic regulatory net-
works as the complexity of the interleaved interactions between constituents of the
network (mainly genes and proteins) makes intuitive reasoning too difficult.1 The
typical difficulty in the modeling approach is the lack of precise knowledge about
the system, with very few reliable quantitative data. To overpass this bottleneck,
qualitative models have been developed (for example in Refs. 2, 3, 4), whose goal
consists in abstracting details of the system although preserving qualitative obser-
vations. For example, in the multivalued discrete approach developed by R. Thomas
and co-workers,3 the concentrations of the constituents are represented by integer
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variables which can only take a finite number of values. It has been shown that such
a discrete model can be seen as a qualitative abstraction of a system of piecewise-
linear differential equations.5 This formalism has been used to model various gene
networks (for example in Refs. 6, 7, 8, 9, 10).

Nevertheless, even in such a discrete and finite formalism there are usually more
than one model compatible with the knowledge on the system. Knowledge gener-
ally consists, on the one hand, in inhibitions or activations between genes and other
constituents of the network, and on the other hand, in behaviors, observed in ex-
periments. Inhibitions or activations allow one to constrain the possible values of
the parameters of the model, on which the evolution depends. It is more difficult
to select the parameters corresponding to observed behaviors. The property relat-
ing homeostasis (stable cyclic behavior) or multi-stationarity to the steadiness of
characteristic states of feedback circuits11 can be used to decrease the number of
parameter values to be considered, as in the GINsim tool.12

To go further, two main ideas have been proposed. The first one consists in
using constraint logic programming, to manipulate partially known models.13 As
this approach does not allow one to describe all observed behaviors, the difficulty of
selecting parameters according to observations remains. The other one uses a tem-
poral logic (computational tree logic or CTL) to specify the behaviors. Verification
of behavior specification is then studied for each complete model (i.e. where each
parameter has a precise value) independently. Thus the tool SMBioNet14 selects the
models with respect to a given specified behavior after having exhaustively gener-
ated all possible models. In the tool GNA,15 CTL is also used to specify behaviors
but only one complete model can be simulated.

In this paper we propose a method combining the advantages of both approaches.
The set of possible models can be represented by a unique formal model, a symbolic
transition system (STS).16 Symbolic execution techniques allow the simulation of
the STS, generating the possible behaviors. We specify behaviors using linear tempo-
ral logic (LTL),17 and we select parameters with respect to LTL formulas by building
constraints: parameters satisfying these constraints define the set of all models ver-
ifying the specified LTL behavior. This work has been implemented in the Agatha
tool, which is also used for validation purposes of industrial specifications.18,19

In Sec. 2, after having described the discrete modeling, we introduce constraints
deduced from gene interactions and show their use in the system associated to mucus
production in Pseudomonas aeruginosa. This system will be used as a running
example to explain our method. Section 3 is divided in three parts. We firstly
explain the translation of a set of models into a STS model, we then introduce
symbolic execution techniques. We secondly explain how behaviors can be specified
with LTL formulas, and the way we extend usual model-checking techniques to
characterize parameters coherent with the LTL formulas. We thirdly show how
this framework can be fruitfully applied to discover the unknowns (parameters or
behaviors) of the genetic regulatory network. We address more specifically the two
following questions: is there any model coherent with a certain hypothetic behavior?
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Are there behaviors common to all possible models? Section 4 demonstrates the
whole methodology on the example of immunity control in bacteriophage lambda.

2. Discrete modeling of genetic regulatory networks

In this section we first present the notion of discrete descriptions, also called com-
plete or basic models, which model the different possible behaviors. We then show
how biological knowledge, in particular the well known gene interaction graph, can
be used to construct a set of acceptable discrete descriptions.

2.1. Discrete description

After having proposed an asynchronous boolean modeling,20 R. Thomas generalized
his approach in a multivalued discrete modeling.3,21,22

In this approach the genetic regulatory network is described by n variables, each
representing the concentration of a constituent of the actual network, mainly the
proteins produced by the genes of the network. Each variable xi can take an integer
value between 0 and a maximum value bi. A state E = (E1, . . . , En) is a vector
of values of the variables. With each state E, and each variable xi, is associated a
parameter K(xi, E), which has an integer value between 0 and bi. This parameter
is the value toward which the associated variable tends in the associated state. It
means that in the state E:

• If K(xi, E) > Ei , then (E1, . . . , Ei + 1, . . . , En) is a successor of E;
• If K(xi, E) < Ei , then (E1, . . . , Ei − 1, . . . , En) is a successor of E;
• If K(xi, E) = Ei for all i, then E is called a steady state, and has only itself

as successor.

The associated transition graph is constituted of the states, and the transitions be-
tween each state and its successors. This complete model, for which each parameter
has been instantiated, is called in the sequel a discrete description.

Even if the exact values of the parameters can not be measured in vivo, equalities
and inequalities between parameters can be deduced when positive or negative
interactions between genes are known, as shown in Sec. 2.2.

Example 1. We consider a system with two variables x and y, corresponding to
two proteins. If b1 = 2 and b2 = 1 then x can take values 0, 1 or 2 and y can take
values 0 or 1. If K(x, (0, 0)) = 1 and K(y, (0, 0)) = 1 then the state (0, 0) has two
successors, (1, 0) and (0, 1). It means that if in the system the concentrations of
the two proteins are at the lowest level, the concentrations increase to reach a state
corresponding to (1, 0) or (0, 1). This example will be detailed in Sec. 2.3.

2.2. Constraints deduced from interactions

Interactions between constituents of a network imply constraints on the parameters.
Typically a product xi can have a positive or a negative effect on a product xj : if
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the concentration of xi is under a certain threshold, the rate of synthesis of xj is not
affected, but if the concentration of xi is beyond the threshold, the rate of synthesis
of xj increases in the case of a positive interaction, or decreases in the case of a
negative interaction. Then in the discrete description, there is an integer value θ

called the discrete threshold of the interaction of xi on xj : when the integer value
associated with xi is lower than θ, there is no effect, and when the integer value
is greater than or equal to θ, then the interaction is effective. It can be translated
into the following constraints: let E = (E1, . . . , En) be a state where Ei < θ, and
let E′ = (E′

1, . . . , E
′
n) be a state with E′

i ≥ θ and for k 6= i, Ek = E′
k, that is E′

differs from E only in its ith coordinate, then

• K(xj , E) ≤ K(xj , E
′) in the case of a positive interaction;

• K(xj , E) ≥ K(xj , E
′) in the case of a negative interaction.

Moreover, if E = (E1, . . . , En) and E′ = (E′
1, . . . , E

′
n) are states where Ei < θ,

E′
i < θ and Ek = E′

k if k 6= i, then K(xj , E) = K(xj , E
′); similarly, if Ei ≥ θ and

E′
i ≥ θ then K(xj , E) = K(xj , E

′).
These equalities allow to introduce a notation of the parameters: if X is a subset

of {x1, . . . , xn} whose elements can have an interaction on xj , then K(xj , X) is the
value of all parameters K(xj , E) where E is a state such that the value of the
elements of X are beyond the threshold of the interaction on xj , and the variables
not in X have a value under the threshold (or do not have an interaction on xj).

If a product xi has interactions with two different products xj and xk, the thresh-
olds of the two interactions are usually different. So, in the discrete description, xi

can take at least three values, as xi can be under the two thresholds, between the
two thresholds, or beyond the two thresholds.

Sometimes more precise knowledge about the interactions is available. For ex-
ample the presence of two different products x and y can be necessary to acti-
vate a gene z, or x can activate z but the simultaneous presence of x and y pro-
duces an inhibition. These two facts are respectively translated into constraints:
K(z, {x}) = K(z, {y}) = K(z, ∅) and K(z, {x, y}) ≥ K(z, ∅) in the first case, or
K(z, {x, y}) ≤ K(z, ∅) ≤ K(z, {x}) in the second case.

2.3. Mucus production in Pseudomonas aeruginosa

Pseudomonas aeruginosa are bacteria that secrete mucus (alginate) in lungs af-
fected by cystic fibrosis, but not in common environment. As this mucus increases
respiratory deficiency, this phenomenon is a major cause of mortality. Details of
the regulatory network associated with the mucus production are described by Go-
van and Deretic.23 The simplified regulatory network, as proposed by Guespin and
Kaufman,24 contains the protein AlgU (product of algU gene), and an inhibitor
complex anti-AlgU (product of muc genes). AlgU has a positive effect on anti-AlgU
and on itself, while anti-AlgU has a negative effect on AlgU. A sufficient concentra-
tion of AlgU leads to the production of mucus (by activating different alg genes).
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The discrete description of the associated network contains two variables x and y,
respectively corresponding to AlgU and anti-AlgU. x can take the values 0, 1, 2,
and y can take the values 0, 1. We assume that if x ≥ 1 then x has a positive effect
on y, if x = 2 then x has a positive effect on itself. If y = 1 then y has a negative
effect on x. Moreover the production of mucus is possible only if the concentration
of x is greater than or equal to 2 (see Fig.1).

Fig. 1. Graph of interactions associated with the mucus production. Each arrow indicates an
interaction from a regulator to a regulated variable; the sign indicates a positive or negative effect,
and the integer is the threshold of the interaction.

Some constraints can be deduced from this graph of interactions as described in
Sec. 2.2. For example K(x, ∅) = K(x, (0, 0)) = K(x, (1, 0)) (the value of x, 0 or 1,
is under the threshold of the interaction on itself, which is 2, and the value of y, 0,
is under the threshold of the interaction on x, which is 1). The inequalities between
parameters are K(x, {y}) ≤ K(x, ∅) ≤ K(x, {x}) and K(x, {y}) ≤ K(x, {x, y}) ≤
K(x, {x}) (because y has a negative interaction on x, and x has a positive interaction
on itself), and similarly K(y, ∅) ≤ K(y, {x}) (x has a positive interaction on y).
Moreover we assume that K(x, {y}) = 0 and K(y, ∅) = 0. This additional constraint
means that the basal level of x and y is 0, as K(x, {y}) and K(y, ∅) are less than
or equal to the other parameters. The set of all constraints deduced from the graph
of interactions will be denoted by C in the sequel.

It has been observed that mucoid P. aeruginosa can continue to produce mucus
isolated from infected lungs. It is commonly thought that the mucoid state of P.
aeruginosa is due to a mutation which cancels the inhibition of algU gene. An
alternative hypothesis has been made: this mucoid state can occur in reason of an
epigenetic modification, i.e. without mutation.24 The models compatible with this
hypothesis are constructed in Refs. 25, 14. We use the same example to explain our
methodology in Sec. 3.

2.4. Manipulating sets of discrete descriptions

We have just shown that the only knowledge of the graph of interactions is not
sufficient to precisely determine which is the true behavior of the biological system:
numerous discrete descriptions can fit the constraints deduced from the interaction
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graph. In the example of Fig. 1, there 34 × 22 = 324 discrete descriptions sincea

parameters K(x, ∅), K(x, {x}), K(x, {y}) and K(x, {x, y}) can take three different
values (0, 1 or 2), and parameters K(y, ∅) and K(y, {x}) can take two different
values (0 or 1).

In order to precise the behavior of the biological system, complementary biolog-
ical knowledge, different from previously used interaction graphs, have to be taken
into consideration. Each new biological information allows us to reduce the set of
acceptable discrete descriptions. In the example of Fig. 1 if we take for granted that
y tends towards its basal level (i.e. 0) when x does not activate it, then we can
deduce that K(y, ∅) = 0; then there remain 162 acceptable discrete descriptions.

The aim of this paper is to propose a method for manipulating such sets of
discrete descriptions. The two main technical contributions are:

• expressing biological knowledge by temporal logic formulas involving equal-
ities and inequalities on gene expression levels;

• denoting sets of acceptable discrete descriptions by mean of a symbolic
model provided with constraints on parameters.

Next section focuses on these both aspects.

3. Symbolic modeling and analysis

3.1. Symbolic transition systems and symbolic execution

A symbolic transition system (STS)16 is a transition system whose transitions are
labeled by conditions on STS variables and assignments of STS variables. Each
initialization of STS variables yields a basic model where each variable has a precise
initial value, and all transitions are defined according to the STS transitions. Thus, a
STS, denoted by M , is parameterized by an initialization function. We can associate
to M the set of all basic models obtained by applying an initialization function:
{σ(M) | σ initialization function} denotes this set.

For specifying genetic regulatory networks, the STS variables correspond to
the set of parameters K(xi, E) of the associated discrete descriptions and the set
of STS states is exactly the set of states of the associated discrete descriptions.
The transitions are labeled according to the rules defined in Sec. 2.1. Nevertheless
we need to take into account additional knowledge corresponding to constraints
deduced from interactions. These constraints can naturally be expressed as first
order formulas over the set of parameters. In this article we call symbolic model
any couple (M, C), where M is the STS with parameters K(xi, E) as STS variables
and C a set of constraints over parameters K(xi, E). It defines a set of basic models
{σ(M) | σ initialization function ∧ ∀C ∈ C, σ |= C}. Each basic model σ(M) is
precisely a discrete description associated to the values of parameters defined by σ

and σ |= C means that the parameters instantiated by σ satisfy the constraint C.

aLet us recall that a discrete description is completely defined by the values of parameters.
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Symbolic execution has been introduced for analysis purposes of computer
programs.26 The method has been extended to STSs, and is used in the Agatha
tool for behavioral analysis27 and conformance testing.28 As the known constraints
and rules of evolution of a discrete description can easily been specified in a STS,
we have adapted symbolic execution techniques to generate all behaviors compat-
ible with the constraints on the parameters. The method constructs a tree whose
vertices are states labeled by constraints, with the following rules:

• The root of the tree is a state, associated with the initial constraints C.
• Let us suppose that E is an already constructed state of the tree, labeled by

the constraints CE , and that there is a STS transition from E to E′ labeled
by the condition D. The state E′ provided with the constraint CE ∪{D} is
built iff the conjunction of the constraints of CE ∪{D} is satisfiable. A new
transition is built from (E, CE) to (E′, CE′), where CE′ = CE ∪ {D}.

• The process is repeated until the new state has already been encountered
in the tree path from the root to the new state.

Let us point out that every state in the tree is associated with constraints whose
conjunction is called path condition; this path condition is the condition on para-
meters under which the path exists.

Figure 2 shows the possible paths in the case of the mucus production system
in P. aeruginosa, with (x, y) = (0, 0) as initial state, and C as initial constraints as
described in Sec. 2.3. For simplicity reason, the constraints labeling vertices are not
represented in the figure.

Fig. 2. Symbolic execution from the initial state (0, 0). Squares indicate steady states. Each state
of the figure is associated with constraints: for example (1, 0) is a successor of (0, 0) if K(x, ∅) > 0.
So the set of constraints associated with (1, 0) is C ∪ {K(x, ∅) > 0}; (0, 0) is a steady state if
(K(x, ∅) = 0∧K(y, ∅) = 0). But (0, 1) is not a successor of (0, 0) because in this case K(y, ∅) > 0,
which is not compatible with the initial constraint K(y, ∅) = 0.

3.2. Specification of paths and synthesis of constraints

3.2.1. Linear temporal logic

To search a specific path in the symbolic execution tree we adapt model-checking
techniques for linear temporal logic (LTL).17 Intuitively model-checking techniques
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consist in exploring all states of a basic model to state whether this model satisfies
or not a given temporal logic formula.29

A LTL formula expresses properties of a path. This logic adds to the classical
operators of propositional logicb mainly two temporal operators, called Next (N),
and Until (U). If f and g are formulas, Nf means that f is true in the following
state of the path, and fUg means that f is true in each state of the path, until g

becomes true (and g eventually happens). We can then define the operators Finally
(F ) and Globally (G); Ff means that f eventually happens (and can be written
>Uf); Gf means that f is always true (and can be written ¬F (¬f)).

We extend classical LTL model-checking techniques designed for basic models
to STSs. Just as classical LTL model-checking only considers pertinent paths ac-
cording to the formula, our method also considers pertinent paths according to the
formula, but in our case each state of a path is provided with constraints on pa-
rameters. The key point is that a path is eliminated as soon as the conjunction of
constraints is no more satisfiable. This leads to a minimal tree construction and
gives us the solutions in term of constraints: the disjunction of the path conditions
associated to all remaining paths. The resulting constraint represents all parameter
valuations compatible with the behavior specified by the formula. To summarize,
given a symbolic model (M, C), extended LTL model-checking allows us to compute
all initialization functions (i.e. parameter valuations) leading to basic models satis-
fying a LTL formula. In other words, the extended LTL model-checking associates
to any LTL formula a characteristic constraint defining the discrete descriptions
satisfying it.

Let us remark that the developed technique constructs the disjunction of con-
straints on possible paths. Then satisfying a LTL formula for a model means that
there exists at least a path satisfying the LTL formula. Such a property is quali-
fied as existential. On the contrary we may want to select models whose all paths
satisfy the formula (universal property). In such a case the negation of the univer-
sal property is unsatisfiable. We have then to specify this impossible behavior as a
LTL formula. It suffices to take the negation of the associated constraint to find all
models compatible with the universal property.

3.2.2. Adding experimental knowledge to the symbolic model

When considering behaviors, expressed as LTL formulas, supposed to be known to
occur in the actual system, we can add the corresponding characteristic constraints
D to the symbolic model (M, C). We get the symbolic model (M, C ∪D) restricting
the set of discrete descriptions.

For example, P. aeruginosa do not produce mucus in a common environment,
so there is no path from a state where x = 0 to a state where x = 2. That is clearly
an universal property. In order to show that it is not possible to reach x = 2 from

bAs ¬ (not), ∧ (and), ∨ (or), > (true), ⊥ (false).
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x = 0, we consider the formula (x = 0) ∧ F (x = 2). The associated constraint,
generated by our method, is K(x, ∅) > 1. The negation is simply K(x, ∅) ≤ 1. All
discrete descriptions verifying the latter constraint satisfy the universal property.

3.3. Extracting knowledge from the symbolic model

Let us come back to the two central questions asked in the Introduction: is there any
model coherent with a certain hypothetic behavior? Are there behaviors common
to all possible models?

The first question consists in specifying the hypothesis with LTL formulas, and
finding the associated constraints. When the constraints are not satisfiable, there
is no model compatible with the LTL formulas. When they are satisfiable, the
solutions of the constraints give all parameter valuations, each one corresponding
to a discrete description satisfying the LTL formulas (see example 2).

The second question consists in finding properties common to all discrete de-
scriptions associated to a symbolic model (M, C). The set of constraints C precisely
represents such common properties (see Sec. 4 for an illustration).

Example 2. If the hypothesis of an epigenetic change in mucoid P. aeruginosa is
verified, bacteria which produce mucus can continue to produce mucus in a common
environment. A path beginning with x = 2 which turns back forever to x = 2 is
described by ((x = 2) ∧ G(F (x = 2))). The resulting constraint can be written
((K(x, {x, y}) = 2 ∧ K(y, {x}) = 1) ∨ (K(x, {x}) = 2 ∧ K(y, {x}) = 0)). This
constraint implies that the (mucoid) state (2, 1) is a steady state, or that (2, 0)
is a steady state. There are 8 discrete descriptions verifying the constraints; in
these models the mucoid state can be related to an epigenetic modification. These
constraints imply the existence of a stable mucoid state, but not that all paths
from a mucoid state come back to a mucoid state. This more restrictive behavior,
is achieved if K(x, {x, y}) > 1, i.e. for 4 models from the 8.

4. Application to immunity control in bacteriophage lambda

4.1. Immunity control in bacteriophage lambda and associated STS

Bacteriophage lambda is a virus whose DNA can integrate into bacterial chro-
mosome and be faithfully transmitted to the bacterial progeny. After infection,
most of the bacteria display a lytic response and liberate new phages, but some
display a lysogenic response, i.e. survive and carry lambda genome, becoming im-
mune to infection. Figure 3 is the graph of interactions described by Thieffry and
Thomas6 which has also been studied in Ref. 30. Four genes are involved, called
cI, cro, cII and N. The states, represented by a vector (cI, cro, cII, N), are in
{0, 1, 2} × {0, 1, 2, 3} × {0, 1} × {0, 1}. Even with the constraints deduced follow-
ing Sec. 2.2, the associated symbolic model represents 1 052 000 different discrete
descriptions.
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Fig. 3. Graph of interactions associated with immunity control in bacteriophage lambda. Arrows
are labeled by the threshold and sign of the corresponding interaction.

4.2. Lytic and lysogenic pathways of lambda-phage

4.2.1. Specification of known behaviors

The lytic response leads to the states (0,2,0,0) or (0,3,0,0) where cro is fully ex-
pressed. The lysogenic response leads to the state (2,0,0,0), where cI is fully ex-
pressed, and the repressor produced by cI blocks the expression of the other viral
genes, leading to immunity. We define the LTL formulas: lytic = (cI = 0 ∧ cro ≥
2 ∧ cII = 0 ∧N = 0) and lysogenic = (cI = 2 ∧ cro = 0 ∧ cII = 0 ∧N = 0).

When the system reaches a lytic or lysogenic state it does not leave it, so
lytic ∧ F (¬lytic), and lysogenic ∧ F (¬lysogenic) specify impossible paths. The
viral proteins are initially absent when the viral genome integrates a cell, and
lytic and lysogenic responses are possible: this is translated into the two formu-
las init ∧ F (lytic) and init ∧ F (lysogenic) where init = (cI = 0 ∧ cro = 0 ∧ cII =
0 ∧N = 0).

4.2.2. Deduced constraints

As lytic ∧ F (¬lytic) and lysogenic ∧ F (¬lysogenic) specify impossible paths, the
constraints added to the symbolic model are (K(cI, {cro}) = 0 ∧ K(cro, ∅) >

1 ∧ K(cII, ∅) = 0 ∧ K(N, {cro}) = 0) and (K(cI, {cI}) = 2 ∧ K(cro, {cI}) =
0 ∧ K(cII, {cI}) = 0 ∧ K(N, {cI}) = 0). All models verifying the previous con-
straints verify init∧F (lytic). The constraint associated with init∧F (lysogenic) is
(K(cI, ∅) = 2) ∨ (K(cI, {cII}) = 2 ∧K(cII, {N}) = 1 ∧K(N, ∅) = 1).

4.3. Questioning the symbolic model

In all discrete descriptions represented by the symbolic model, K(cro, ∅) > 1: in
this case there is always the path to lysis (0000) → (0100) → (0200).

The additional constraint associated with init ∧ F (lysogenic) is (K(cI, ∅) =
2) ∨ (K(cI, {cII}) = 2 ∧ K(cII, {N}) = 1 ∧ K(N, ∅) = 1). In the models where
K(cI, ∅) = 2, there is a direct pathway to immunity: (0000) → (1000) → (2000); in
all other models, (K(cI, {cII}) = 2 ∧ K(cII, {N}) = 1 ∧ K(N, ∅) = 1) implies the
existence of the path: (0000) → (0001) → (0011) → (1011) → (2011) → (2010) →
(2000), which is the most likely pathway according to Thieffry and Thomas.6
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There are 2156 models with the specified behaviors: lytic and lysogenic states
are stable, and there is a pathway from initial state to lysis and to lysogeny. In all
these models, there is a common path to lysis, and one path from the two described
paths to lysogeny.

5. Conclusion

We have shown how a symbolic model representing a set of possible discrete descrip-
tions of a genetic regulatory network permits to deal with incomplete knowledge.
Known interactions can be translated in constraints on the parameters, which can be
specified in a symbolic transition system. This STS can be simulated with symbolic
execution techniques. The known behaviors can be specified with LTL formulas,
and then, model-checking techniques have been extended to select the constraints
on parameters associated with these behaviors. Adding these contraints to the STS,
a symbolic model representing the discrete descriptions coherent with the known
behaviors is obtained.

Then we have explained how the symbolic model can be used to reveal new
results: the possibility of hypothetic behaviors can be tested (as the epigenetic
change in P. aeruginosa) or common behaviors between all possible descriptions
can be found (as possible pathways to lysis or lysogeny in bacteriophage lambda).

A promising follow-up to the work presented here would be to develop a method
to find not only the common behaviors, but also discriminating properties, in order
to refine the symbolic model. Such a property would permit one to propose biological
experiments, in order to restrict the possible parameter valuations.
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