
Symbolicnumeric Sparse Interpolation of Multivariate
Polynomials

[Extended Abstract]

Mark Giesbrecht
School of Computer Science

University of Waterloo,
Canada

mwg@uwaterloo.ca

George Labahn
School of Computer Science

University of Waterloo,
Canada

glabahn@uwaterloo.ca

Wenshin Lee
Dept. Wiskunde en Informatica

Universiteit Antwerpen,
Belgium

wenshin.lee@ua.ac.be

ABSTRACT

We consider the problem of sparse interpolation of an ap-
proximate multivariate black-box polynomial in floating-point
arithmetic. That is, both the inputs and outputs of the
black-box polynomial have some error, and all numbers are
represented in standard, fixed-precision, floating point arith-
metic. By interpolating the black box evaluated at random
primitive roots of unity, we give efficient and numerically
robust solutions. We note the similarity between the ex-
act Ben-Or/Tiwari sparse interpolation algorithm and the
classical Prony’s method for interpolating a sum of expo-
nential functions, and exploit the generalized eigenvalue re-
formulation of Prony’s method. We analyze the numerical
stability of our algorithms and the sensitivity of the solu-
tions, as well as the expected conditioning achieved through
randomization. Finally, we demonstrate the effectiveness of
our techniques in practice through numerical experiments
and applications.

1. Introduction

In many computer algebra applications, multivariate poly-
nomials are encountered in such a way that an implicit rep-
resentation is the most cost effective for computing. A black-
box representation of a multivariate polynomial is a proce-
dure that, for any given input, outputs the evaluation of the
polynomial at that input. Black boxes may also represent
approximate polynomials, where the coefficients may have
errors or noise. In such cases one would expect the evalua-
tions of the black box to have errors as well. In this paper
we demonstrate effective numerical algorithms for the sparse
interpolation problem for approximate black-box polynomi-
als: how to reconstruct an accurate representation of the
polynomial in the power basis. This representation is pa-
rameterized by the sparsity — the number of non-zero terms
— and its cost will be proportional to this sparsity (instead

of the dense representation size).

Suppose we have a black box for a multivariate polynomial
f ∈ C[x1, . . . , xn] which we know to be t-sparse, that is,

f =
X

1≤j≤t

cjx
dj1
1 x

dj2
2 · · ·xdjn

n ∈ C[x1, . . . , xn], (1.1)

where c1, . . . , ct ∈ C, (dj1 , . . . , djn) ∈ Z≥0 are distinct for
1 ≤ j ≤ t, and t is “small.” Evaluating

b1 = f(α1), b2 = f(α2), . . . , bκ = f(ακ),

at our own choice of points α1, α2, . . . ακ ∈ C
n, where κ =

O(t), we would like to determine the coefficients c1, . . . , ct ∈
C and the exponents dj1 , . . . , djn , for 1 ≤ j ≤ t, of f . Of
course, if the evaluation points are not exact, this may not
possible, so we ask that our algorithms are numerically ro-

bust: if the evaluations eb1, . . . ,ebκ are relatively close to their
true values, we want the coefficients ec1, . . . , ect ∈ C we com-
pute to also be relatively close to their values in the exact
computation.

Black-box polynomials appear naturally in applications such
as polynomial systems [5] and the manipulation of sparse
polynomials (e.g., factoring polynomials [16, 6]). Sparsity
with respect to the power (or other) basis is also playing an
ever more important role in computer algebra. As problem
sizes increase, we must be able to capitalize on the struc-
ture, and develop algorithms whose costs are proportional
only to the size of the support for the algebraic structures
with which we are computing. A primary example is that of
(exact) sparse interpolation of f as in (1.1), reconstructing
the exponents djk

and non-zero coefficients c1, . . . , ct from
a small number of evaluations of f . The best known exact
interpolation methods that are sensitive to the sparsity of
the target polynomial are the algorithms of Ben-Or/Tiwari
[3] and of Zippel [25]. Although both approaches have been
generalized and improved (see [26, 15, 14, 24]), they all de-
pend upon exact arithmetic.

With recent advances in approximate polynomial computa-
tion, we are led to investigate the problem of sparse inter-
polation in an approximate setting. Black-box polynomials
can capture an implicit model of an object which can only
be sampled approximately. Moreover, sheer size and com-
plexity requires that we exploit sparsity and use efficient
(i.e., IEEE floating point) arithmetic in a numerically sound

manner. Polynomial interpolation is an important compo-
nent in approximate multivariate factorization algorithms
[7], and sparse interpolation can often be used to speed up
the procedure when there are more than two variables.

The problem of multivariate polynomial interpolation is hardly
new, with early work going back at least to Kronecker [17].
See [8] for a survey of early work in this area. More recently
there has been much activity on the topic, of both an al-
gorithmic and mathematical nature. See [18] for a good
survey of the state of the art. To our knowledge, none
of the previous numerical work has considered the prob-
lems of identifying the (sparse) support and sparse multi-
variate interpolation. Sparsity is considered in a different,
bit-complexity model, using arbitrary precision arithmetic
by Mansour [19], who presents a randomized algorithm for
interpolating a sparse integer polynomial from (limited pre-
cision) interpolation points (wherein bits of guaranteed ac-
curacy can be extracted at unit cost). The algorithm guar-
antees an answer with controllably high probability, though
its cost is dependent on the absolute size L of the largest co-
efficient in f , as well as the sparsity t and degree. Moreover,
it would also seem to be quite expensive, requiring about
O((log L)8 · t log deg f) bit operations.

In Section 2, we present the algorithm of Gaspard Riche,
Baron de Prony, from 1795 [21] (generally referred to as
“Prony’s algorithm”) for interpolating sums of exponential
functions. We show that it is very similar to the algorithm
for sparse polynomial interpolation of Ben-Or and Tiwari
[3]. In Section 3 we adapt Ben-Or and Tiwari’s method to
floating-point arithmetic and identify the numerical difficul-
ties encountered. We also adapt a recent, and much more
stable, variant of Prony’s algorithm [20, 12] to the problem
of polynomial interpolation. This algorithm, developed for
the shape from moments problem, makes use of generalized
eigenvalues for added numerical stability.

In Section 4, we give a detailed analysis of the numerical
behaviour of our algorithms and sensitivity of the under-
lying problems. In particular, we show that the stability
of our algorithms is governed by ‖V −1‖2/ min |cj |, where V
is a (hidden) Vandermonde matrix of the support terms of
the polynomial evaluated at the sample points. The coef-
ficients c1, . . . , ct are intrinsic to the problem, and in some
sense having one of them too small may indicate an incor-
rect choice of t. On the other hand, the condition of V (as
indicated by ‖V −1‖) is really a property of the method, and
we address this directly.

Our key innovation in this regard is the use of evaluation
points at random roots of unity. The use of roots of unity
allows us to reconstruct the exponents in our multivariate
problem using the Chinese remainder algorithm. Numer-
ically this also adds considerable stability to the interpo-
lation problem by reducing large variations in magnitude
implied by evaluating polynomials of high degree. In partic-
ular, the Vandermonde matrix V discussed above will have
entries which are roots of unity. Still, difficulties can arise
when the values of different terms in the target polynomial
become clustered, and a naive floating point implementation
of Ben-Or/Tiwari may still be unstable. It is the choice of a
random primitive root of unity which avoids this clustering

with high probability. We prove modest theoretical bounds
to demonstrate this improvement by exhibiting a bound on
‖V −1‖ which is dependent only on the sparsity (and not on
the degree or number of variables in f). Moreover, we show
that in practice the improvement in stability is far more
dramatic, and discuss why this might be so.

In Section 5, the numerical robustness of our algorithms is
demonstrated. We show the effects of varying noise and
term clustering and the potential numerical instability it
can cause. We demonstrate the effectiveness of our ran-
domization at increasing stability dramatically, with high
probability, in such circumstances.

2. Prony and Ben-Or/Tiwari’s methods
for exact interpolation

In this section we describe Prony’s method for interpolat-
ing sums of exponentials and the Ben-Or/Tiwari algorithm
for multivariate polynomials. We show that these two algo-
rithms are closely related.

2.1 Prony’s method

Prony’s method seeks to interpolate a univariate function
F (x) as a sum of exponential functions. That is, it tries to
determine c1, . . . , ct ∈ C and µ1, . . . , µt ∈ C such that

F (x) =

tX

j=1

cje
µjx with cj 6= 0. (2.1)

Since there are 2t unknowns, one would expect to need a
system of at least the same number of equations in order to
determine these unknowns. If bj = eµj , by evaluating F (0),
F (1), . . . ,F (2t − 1) we can obtain a non-linear system of
2t equations relating the 2t variables µ1, . . . , µt, c1, . . . , ct.
Prony’s method solves this non-linear system by converting
it into a problem of root finding for a single, univariate poly-
nomial, and the solving of (structured) linear equations. Let
Λ(z) be the monic polynomial having the bj ’s as zeros:

Λ(z) =

tY

j=1

(z − bj) = zt + λt−1z
t−1 + · · ·λ1z + λ0.

It is straightforward to derive that λ0, . . . , λt−1 satisfy
2
6664

F (0) F (1) . . . F (t − 1)
F (1) F (2) . . . F (t)

...
...

. . .
...

F (t − 1) F (t) . . . F (2t − 2)

3
7775

2
6664

λ0

λ1

...
λt−1

3
7775 = −

2
6664

F (t)
F (t + 1)

...
F (2t − 1)

3
7775 .

After solving the above system for coefficients λ0, . . . , λt−1

of Λ(z), b1, . . . , bt (hence also µ1, . . . , µt) can be determined
by finding the roots of Λ(z). The remaining unknown coeffi-
cients c1, . . . , ct can then be computed by solving the trans-
posed Vandermonde system:

2
6664

1 · · · 1
b1 · · · bt

...
. . .

...
bt−1
1 · · · bt−1

t

3
7775

2
6664

c1

c2

...
ct

3
7775 =

2
6664

F (0)
F (1)

...
F (t − 1)

3
7775 (2.2)

2.2 The Ben-Or/Tiwari method

For a given black-box polynomial f with n variables, in exact
arithmetic the Ben-Or/Tiwari method finds coefficients cj

and integer exponents (dj1 , . . . , djn) such that

f(x1, . . . , xn) =
tX

j=1

cjx
dj1
1 · · ·xdjn

n , (2.3)

for 1 ≤ j ≤ t, with c1, . . . , ct 6= 0. Let βj(x1, . . . , xn) =

x
dj1
1 · · ·xdjn

n be the j-th term in f , and

bj = βj(ω1, . . . , ωn) = ω
dj1
1 · · ·ωdjn

n

with ω1, . . . , ωn ∈ D pairwise relatively prime, where D is a
unique factorization domain. Note that bk

j = βj(ω
k
1 , . . . , ωk

n)
for any power k.

If we set F (k) = f(ωk
1 , . . . , ωk

n), then the Ben-Or/Tiwari
algorithm solves for the bj and the cj , much as is done in
Prony’s method. That is, it finds a generating polynomial
Λ(z), determines its roots, and then solves a Vandermonde
system. In addition, once the individual terms bj are found
as the roots of Λ(z) = 0, the exponents (dj1 , . . . , djn) are
determined by looking at their unique factorizations: bj =

ω
dj1
1 ω

dj2
2 . . . , ω

djn
n , which can be easily achieved through re-

peated division of bj by ω1, . . . , ωn.

We note that, as an alternative which we employ in the
our algorithms in the next section, we could also choose
ω1, . . . , ωn to be roots of unity of relatively prime order
(i.e., ωpi

i = 1, ωj
i 6= 1 for 1 ≤ j < pi, and pi > degxi

f ,
gcd(pi, pj) = 1 whenever i 6= j). Then, given bj , we can
again uniquely determine (dj1 , . . . , djn).

3. Numerical methods for sparse inter-
polation

In this section we present two methods for black-box inter-
polation of sparse multivariate polynomials in floating-point
arithmetic. One is a straightforward modification of the
Ben-Or/Tiwari algorithm, while the other method makes
use of a reformulation of Prony’s method using generalized
eigenvalues [12].

3.1 A Modified Numeric Ben-Or/Tiwari Algorithm

If the steps of the Ben-Or/Tiwari algorithm are directly im-
plemented in floating-point arithmetic, then difficulties arise
at various stages of the computation. The first difficulty is
that the subroutines employed for linear system solving and
root finding in the Ben-Or/Tiwari algorithm need to use
floating-point arithmetic. Hence, they may encounter sig-
nificant numerical errors. The second difficulty is that we
can no longer employ exact divisions to recover the expo-
nents of each variable in a multivariate term.

While it is well-known that Hankel and Vandermonde ma-
trices can often be ill-conditioned, this is particularly true
when the input is real, as it is in the Ben-Or/Tiwari al-
gorithm. For example, when all the coefficients of f are
positive, the Hankel matrix in Prony’s algorithm is positive
definite, and its condition number may grow exponentially
with the dimension [1].

Instead, our modified numeric Ben-Or/Tiwari algorithm makes
use of evaluation points at appropriate primitive (complex)
roots of unity. This turns out to reduce our conditioning

problems with the encountered Hankel and Vandermonde
systems (see Subsection 4.1), and has the added advantage
that it allows us to recover the exponent of each variable
in a multivariate term. We also assume that we have an
upper bound on the degree of each variable in f . Let f
be as in (2.3). Choose p1, . . . , pn ∈ Z>0 pairwise relatively
prime such that pk > degxk

f for 1 ≤ k ≤ n. The complex
root of unity ωk = exp(2πi/pk) has order pk, which is rela-
tively prime to the product of other pj ’s. Now consider the
following sequence for interpolation:

αs = f(ωs
1, ω

s
2, . . . , ω

s
n) for 0 ≤ s ≤ 2t − 1, (3.1)

with ωk = exp(2πi/pk). Setting m = p1 · · · pn and ω =

exp(2πi/m), we see ωk = ωm/pk for 1 ≤ k ≤ n.

Each term βj(x1, . . . , xn) in f is evaluated as βj(ω1, . . . , ωn)
= ωdj , and each dj can be computed by rounding logω(ωdj) =
logω(βj(ω1, . . . , ωn)) to the nearest integer. Note that this
logarithm is defined modulo m = p1 · · · pn. Because the pk’s
are relatively prime, the exponent for each variable (dj1 , . . . ,
djn) ∈ Z

n
>0 can be uniquely determined by the reverse steps

of the Chinese remainder algorithm (see, e.g., [11]). That
is, we have dj ≡ djk

mod pk for 1 ≤ k ≤ n and

dj = dj1 ·
„

m

p1

«
+ · · · + djn ·

„
m

pn

«
. (3.2)

Algorithm: ModBOTInterp

Input: ◮ a floating-point black box f : the target polyno-
mial;

◮ t, the number of terms in f ;
◮ D1, . . . , Dn: Dk ≥ deg(fxk

).

Output: ◮ cj and (dj1 , . . . , djn) for 1 ≤ j ≤ t such thatPt
j=1 cjx

dj1
1 · · ·xdjn

n approximately interpolates f .

(1) [Evaluate f at roots of unity.]

(1.1) Choose p1, . . . , pn pairwise relatively prime and
pj > Dj . Let m = p1 · · · pn, ω = exp(2πi/m), and

ωk = exp(2πi/pk) = ωm/pk .

(1.2) Evaluate αs = f(ωs
1, ω

s
2, . . . , ω

s
n), 0 ≤ s ≤ 2t−1.

(2) [Recover (dj1 , . . . , djn).]

(2.1) Solve the associated Hankel system
2
6664

α0 . . . αt−1

α1 . . . αt

...
. . .

...
αt−1 . . . α2t−2

3
7775

| {z }
H0

2
6664

λ0

λ1

...
λt−1

3
7775 = −

2
6664

αt

αt+1

...
λ2t−1

3
7775 . (3.3)

(2.2) Find roots b1, . . . , bt for Λ(z) = zt +λt−1z
t−1 +

· · · + λ0 = 0.

(2.3) Recover (dj1 , . . . , djn) from dj = round(logω bj)
via (3.2) by the reverse Chinese remainder algorithm.

(3) [Compute the coefficients cj.]

Solve an associated Vandermonde system: (now βj =

x
dj1
1 · · ·xdjn

n are recovered, b̃j can be either bj or
βj(ω1, . . . , ωn))

2
6664

1 · · · 1

b̃1 · · · b̃t

...
. . .

...

b̃t−1
1 · · · b̃t−1

t

3
7775

2
6664

c1

c2

...
ct

3
7775 =

2
6664

α0

α1

...
αt−1

3
7775 . (3.4)

3.2 Interpolation via Generalized Eigenvalues

We now give another algorithm which avoids the solving
for a Hankel system and the subsequent root finding. This
is done by using a reformulation of Prony’s method as a
generalized eigenvalue problem, following [12]. As before,
consider f as in (2.3) evaluated at primitive roots of unity
as in (3.1). Define Hankel systems

H0 =

2
64

α0 · · · αt−1

...
. . .

...
αt−1 · · · α2t−2

3
75 , and H1 =

2
64

α1 . . . αt

...
. . .

...
αt . . . α2t−1

3
75 .

Let bj = βj(ω1, . . . , ωn). If we set Y = diag(b1, . . . , bt),
D = diag(c1, . . . , ct), and

V =

2
6664

1 1 . . . 1
b1 b2 . . . bt

...
...

. . .
...

bt−1
1 bt−1

2 . . . bt−1
t

3
7775 , (3.5)

then H0 = V DV Tr, H1 = V DY V Tr. The solutions for
z ∈ C in the generalized eigenvalue problem

(H1 − zH0)v = 0, (3.6)

for a generalized eigenvector v ∈ C
t×1, are bj = βj(ω1, . . . ωn)

for 1 ≤ j ≤ t. If ω1, . . . , ωn are chosen as described in the
previous subsection, we can also recover the multivariate
terms βj(x1, . . . , xn) through the same method. To com-
plete the interpolation, we need to compute the coefficients,
which requires the solving of a transposed Vandermonde sys-
tem over a numerical domain. The cost of the entire proce-
dure is bounded by the cost of solving the generalized eigen-
value problem, which can be accomplished in a numerically
stable manner with O(t3) operations (see, e.g., [13]).

The algorithm for sparse interpolation using generalized eigen-
values is the same as ModBOTInterp with the exception of
step (2), which we present here.

Algorithm: GEVInterp (Step 2)

(2) [Recover (dj1 , . . . , djn).]

(2.1) Find solutions b1, . . . , bt for z in the generalized
eigenvalue problem H1v = zH0v.

(2.2) Recover (dj1 , . . . , djn) from dj = round(logω bj)
via (3.2) by the reverse Chinese remainder algorithm.

4. Sensitivity analysis and randomized
conditioning

In this section we focus on the numerical accuracy of the
sparse interpolation algorithms presented in the previous
section. We also introduce a new randomized technique
which will dramatically improve the expected numerical sta-
bility of our algorithms.

Both the Ben-Or/Tiwari algorithm and the generalized eigen-
value method first recover the polynomial support. That
is, they determine which terms are non-zero in the target
polynomial. We look at the numerical sensitivity of both
techniques, and link it directly to the choice of sparsity t
and the condition of the associated Vandermonde system
V . After the non-zero terms are determined, both methods
need to separate the exponents for different variables and

recover the corresponding coefficients, again via the Van-
dermonde system V . Finally, we show how randomization
of the choice of evaluation points can substantially improve
the conditioning of V , and hence improve the stability of
the entire interpolation process.

4.1 Conditioning of the associated Hankel system

Consider the modified numeric Ben-Or/Tiwari algorithm de-
scribed in Subsection 3.1. In order to determine coefficients
for the polynomial Λ(z) = zt + λt−1z

t−1 + · · ·+ λ0, we need
to solve a Hankel system as in (3.3). In general, if the poly-
nomial f is evaluated at powers of real values, the difference
between the sizes of varying powers will contribute detri-
mentally to the conditioning of the Hankel system. This
problem of scaling is avoided in our method, since our H0

is formed from the evaluations on the unit circle. The fol-
lowing proposition links the condition of H0 directly to the
condition of V and to the size of the reciprocals 1/|cj | of the
coefficients cj in the target polynomial (for 1 ≤ j ≤ t).

Proposition 4.1.

• ‖H−1
0 ‖ ≥ 1

t
max

j

1

|cj |
, and ‖H−1

0 ‖ ≥ ‖V −1‖2

P
1≤j≤t |cj |

.

• ‖H−1
0 ‖ ≤ ‖V −1‖2 · max

j

1

|cj |
.

Thus, bounds for ‖H−1
0 ‖ involve both the (inverses of) the

coefficients of the interpolated polynomial c1, . . . , ct and the
condition of the Vandermonde system V . In some sense the
coefficients c1, . . . , ct are intrinsic to a problem instance, and
having them very small (and hence with large reciprocals)
means that we have chosen t too large. The Vandermonde
matrix V , on the other hand, is intrinsic to our algorithm,
and we will address its conditioning, and methods to im-
prove this conditioning, in the following sections.

4.2 Root finding on the generating polynomial

In our modified numeric Ben-Or/Tiwari algorithm, for re-
covering non-zero terms in f , we need to find the roots for
Λ(z) = 0. In general, finding the roots of a polynomial can
be very ill-conditioned with respect to perturbations in the
coefficients [23].

However, all the roots bj = βj(ω1, . . . , ωn) as (2.3) are on
the unit circle by our choice of evaluation points. Using
Wilkinson’s argument for points on the unit circle, the fol-
lowing theorem shows that the condition can be improved,
and related to the separation of the roots b1, . . . , bt.

Theorem 4.1. For a given polynomial f(x1, . . . , xn) =Pt
j=1 cjβj(x1, . . . , xn) interpolated on the unit circle, let bk

be a zero of Λ(z) and b̃k a zero of Λ(z) + ǫΓ(z), then

|bk − b̃k| <
ǫ · ‖Γ(z)‖1

|
Q

j 6=k(bk − bj)|
+ Kǫ2

Note that ǫ · ‖Γ(z)‖1 is an upper bound for the perturbation
of the polynomial Λ(z) evaluated on the unit circle, which is
also a measure of the size of a perturbation in the solution
of the Hankel system (3.3). The value of |

Q
j 6=k(bk − bj)| is

directly related to the condition of the Vandermonde system
(3.5), and depends on the distribution of bj ’s on the unit
circle (see Subsection 4.6).

4.3 Error bounds for generalized eigenvalues

We can further analyze the generalized eigenvalue approach
described in Subsection 3.2. In particular, we once again
link the sensitivity directly to the condition of V , that is,
to ‖V −1‖, and to the magnitude of the smallest coefficient.
Along similar lines to [12], we can prove the following:

Theorem 4.2. Assume the generalized eigenvalue prob-
lem in (3.6) has generalized eigenvalues b1, . . . , bt ∈ C and
corresponding eigenvectors v1, . . . , vt ∈ C

×1. Consider the
perturbed problem

“
(H1 + ǫ bH1) − z(H0 + ǫ bH0)

”
v = 0 (4.1)

for ǫ > 0 and normalized perturbations bH0, bH1 ∈ C
t×t with

‖ bH0‖ = ‖H0‖ and ‖ bH1‖ = ‖H1‖. Then (4.1) has solutions

(generalized eigenvalues) eb1, . . . ,ebt ∈ C, with

|ebj − bj | < ǫ · 2t2 · ‖(c1, . . . , ct)‖∞ · ‖V −1‖2

|cj |
for 1 ≤ j ≤ t.

4.4 Separation of powers

After computing approximations eb1, . . . ,ebt for the term val-
ues b1, . . . , bt, we still need to consider the precision required
for correctly recovering the integer exponents (with respect
to ω = exp(2πi/m)) by taking the logarithms of bj = ωdj

(with respect to ω), for 1 ≤ j ≤ t, as in (3.2). Since each
bj lies on the unit circle, we really need only consider the

argument of ebj in determining its logarithm with respect to

ω (i.e., we normalize ebj := ebj/|ebj |).

Two consecutive mth roots of unity on the unit circle are
separated by an angle of radian 2π

m
, and the distance between

these two points is bounded below by twice the sine of half
the angle between them. Thus, in order to separate any two
such points by rounding one must have the computed values
eb1, . . . ,ebt of b1, . . . , bt correct to

|bj −ebj | ≤
1

2
|2 sin(

π

m
)| <

π

m
, and m = p1 · · · pn,

for 1 ≤ j ≤ t, where p1, . . . , pn are primes with pk > deg fxk

for 1 ≤ k ≤ n.

We note that π/m is not a particularly demanding bound,
and is easily achieved (for fixed precision floating point num-
bers) when H is well-conditioned, for reasonably size m. In
particular, we need only O(log m) bits correct to effectively
identify the non-zero terms in our target sparse polynomial.

4.5 Recovering the coefficients

Once the values of b1, . . . , bt, and hence exponents of the
non-zero terms, have been determined, it still remains to
compute their coefficients c1, . . . , ct, which can be done in a
number of ways. Most straightforwardly, we can solve the
Vandermonde system V in equation (3.4) (Step 3 in algo-
rithm ModBOTInterp) to determine the coefficients c1, . . . , ct.
The main issue in this case is the condition of V , which is
not obviously good. We examine this in Subsection 4.6.

If the term are determined as general eigenvalues in (3.6) by
the QZ algorithm, the computed eigenvectors v1, . . . , vt can
be used to reconstruct the coefficients. See [12].

4.6 Condition of the Vandermonde System

While Vandermonde matrices can be poorly conditioned,
particularly for real number data [9, 1], our problem will
be better behaved. First, all our nodes (b1, . . . , bt) lie on the
unit circle. For example, in the case of t × t Vandermonde
matrices as in (3.5), the 2-norm condition number has the
optimal value of 1 when the nodes are all the mth roots of
unity [10, example 6.4]. A slightly less uniform sequence of
nodes is studied in [4], where the nodes are chosen according
to a Van der Corput sequence, to achieve a 2-norm condition
number of

√
2t of a t × t Vandermonde matrix (for any t).

Both results suggest the possibility of well-conditioning of
complex Vandermonde matrices, especially when the spac-
ing of the nodes is relatively regular.

More generally, when b1, . . . , bt are all mth roots of unity
(for m ≥ t) we have the following bounds for ‖V −1‖ from
[10] (translated to the 2-norm):

max
1≤k≤t

1/
√

tQ
j 6=k |bj − bk|

< ‖V −1‖ ≤ max
1≤k≤t

2t−1
√

tQ
j 6=k |bj − bk|

.

(4.2)

Of course, in our case these bounds may still be dependent
exponentially on t and m, particularly if b1, . . . , bt are clus-
tered. In the worst case, we find

‖V −1‖ >
1√
t
·

„
m

2π(t − 1)

«t−1

.

For a more general discussion, see [2]. This indicates that as
m, as well as t, gets larger, the condition of V can get dra-
matically worse, particularly if m is large. As an example, if
m = 1000 (which might occur with a tri-variate polynomial
of degree 10 in each variable) with 10 terms, V could have
condition number greater than 1016. This is quite worri-
some, as m is proportional to the number of possible terms
in the dense representation, and in particular is exponential
in the number of variables n. Moreover, the bound seems
surprising bad, as one might hope for better conditioning as
m gets larger, when there is greater “opportunity” for node
distribution. This is addressed in the next subsection.

4.7 Randomized reconditioning

We now demonstrate how a small amount of randomization
ameliorates the problem of potential ill-conditioning in the
Vandermonde matrix dramatically.

Suppose p1, . . . , pn are distinct primes, pk > degxk
f , and

ω = exp(2πi/m) for m = p1 · · · pn. If the target polyno-
mial f is evaluated at powers of (ω1, . . ., ωn) for ωk =

ωm/pk (cf. Subsection 3.1), the distribution of term values
on the unit circle is fixed because the polynomial terms are
fixed. We may well end up in a situation where the Van-
dermonde matrix is ill-conditioned as discussed above. To
eliminate this possibility with high probability, we will in-
troduce a randomization as follows. Instead of using ωk =
ωm/pk = exp(2πi/pk), the principle pkth primitive root of
unity, we choose a random pkth primitive root of unity,
ωk = exp(2πirk/pk), for some 1 ≤ rk < pk. Equivalently,
we choose a single r with r ≡ rk mod pk, 1 ≤ r < m, so that
ωk = ωmr/pk (see (3.2)).

To analyze the distribution of term values, instead of the

multivariate f =
Pt

j=1 cjx
dj1
1 · · ·xdjn

n , we equivalently con-

sider the univariate ef(x) =
Pt

j=1 cjx
dj where dj = dj1(m/p1)+

· · · + djn(m/pn) (cf. Subsection 3.1). Now the term values
are ωd1 · · ·ωdt , and the stability of recovering the djs thus
depends upon the condition of the Vandermonde matrix V
on nodes ωd1 , . . . , ωdt . This in turn is inversely related to
the product of the differences |ωdj − ωdk | for 1 ≤ j < k ≤ t
as described in (4.2).

For each interpolation attempt, we pick an r uniformly and
randomly from 1 . . . m−1. The condition number of the new

Vandermonde matrix eV , with nodes bj = ωrdj for 1 ≤ j ≤ t
is now inversely related to the differences |rdj − rdk| =
r|dj − dk| mod m. In some sense we are multiplying each
difference by (the same) random number r, hopefully min-
imizing the chance that there are many small differences.
Once the Hankel matrix H0 is constructed, we can check
the conditioning, and if it is poor, we can choose another
random r and repeat the process. The next theorem, and
especially the following discussion, gives us some assurance
that we never have to do this very often.

Theorem 4.3. Let p1, . . . , pn > t2/2 be distinct primes
as above, with m = p1 . . . pt and ω = exp(2πi/m). Let
0 ≤ d1, . . . , dt ≤ m − 1 be distinct. Suppose r is chosen

uniformly and randomly from 1, . . . , m − 1 and let eV be the
Vandermonde matrix on nodes bi = ωrdi . Then, with prob-
ability at least 1/2,

‖eV −1‖ ≤
√

t

„
2t2

π

«t−1

.

Proof. For 1 ≤ j < k ≤ t, let ∆jk = |dj − dj | mod m.
There are at most

`
t
2

´
≤ t2/2 distinct values of ∆jk. Fix

ℓ := m/t2, and let c ∈ {1, . . . , ℓ}. For each ∆jk there is at
most one r ∈ Zm such that r∆jk ≡ c mod m. Thus, there
are at most t2/2 · ℓ = m/2 values of r such that for any ∆jk

and any c ∈ {1, . . . , ℓ} we have r∆jk 6≡ c mod m.

Assume that the chosen r is such that r∆jk 6≡ 1, . . . , ℓ. Then
for all 1 ≤ j < k ≤ t we have

|ωrdj − ωrdk | = |ωr(dj−dk) − 1| ≥ |ωm/t2 − 1| = |e2πi/t2 − 1|

= 2 sin(π/t2) ≥ 2

„
π

t2
− π3

6t6

«
≥ π

t2
.

Using (4.2) this yields

‖eV −1‖ ≤
√

t · max
1≤k≤t

2t−1

Q
j 6=k |ωdj − ωdk | ≤

√
t

„
2t2

π

«t−1

.

This eliminates any dependence upon m, and hence any de-
pendence upon the size of the dense representation of the
polynomial. However, we believe this is probably still far
from optimal. Considerable cancellation might be expected
in the sizes of the entries of V −1, though bounding these
formally seems difficult.

We have conducted intensive numerical experiments which
suggest that the bound (in terms of t) on the condition num-
ber is much lower. For the experiments, we assume the

worst case before the randomization, with nodes clustered
as ω, ω2, . . . , ωt. We also assume that we are in the univari-
ate case, where m is prime. Neither of these assumptions
have any substantial effect on the results of the experiments.
We ran the experiment 100 times for each value of m and
sparsity percentage t, and report the median condition num-
ber.

n \%t 0.1 1 2 5 10
101 2.21 2.19 3.64 9.91 26.9
211 2.25 3.69 6.95 25.2 69.4
401 2.42 6.63 15.5 75.3 137
1009 2.25 23.1 64.3 205 1.53e3
10007 22.6 1.10e3 1.85e3 2.79e3 3.36e4

Figure 2. Median condition number of V ; t a percentage of m.

It is observed that the actual condition number appears to
be remarkably small, and a (perhaps naive) conjecture might
be that it is linear in t. In any case, the condition number
is low, and in practice this makes for a very stable recovery
process from V . This will be fully validated in the upcoming
Section 5.

Finally, we note that the techniques in Theorem 4.3 are eas-
ily extended to show that all leading minors of H0 are sim-
ilarly well-conditioned. This leads us to a possible way to
identify the sparsity t of f by simply computing α0, α1, . . .
(at a random root of unity) until H0 becomes ill-conditioned.
With high probability we should identified t. Again, numer-
ical evidence suggests much better expected conditioning of
the leading minors of H0, and hence quite a strong criteria
for identifying the sparsity of f .

5. Experiments

For our experiments we have tested both the modified Ben-
Or/Tiwari and the generalized eigenvalue methods. Our
computational environment is the computer algebra system
Maple 10 using hardware (IEEE floating point) arithmetic

Our algorithms interpolate multivariate polynomials. How-
ever, during the computation, a multivariate polynomial
is regarded as a univariate polynomial on the unit circle
through the (reverse) steps of the Chinese remainder algo-
rithm (essentially variable substitution; see Subsection 3.1).
Therefore, we concentrate our tests on sparse univariate ex-
amples. Since the stability of our algorithms is directly de-
pendent upon the condition of the underlying Vandermonde
system, we arrange our tests by the condition of this system.
We look at the case when it is well conditioned, and when it
starts off poorly conditioned, and examine how randomness
generally avoids the poorly conditioned case.

Term values evenly distributed on the unit circle

This is the best and “easiest” case, wherein the Vander-
monde system is well-conditioned. We randomly generated
100 univariate polynomials, with the number of terms be-
tween 10 and 50, and roughly evenly distributed the term
degrees between 0 and 1000. When the non-zero coefficients
are randomly distributed between -1 and 1, the following ta-
ble reveals the performance of both interpolation algorithms.
Robustness is evaluated as the 2-norm distance between the

interpolation result and the target polynomial. For this we
list both the mean and median for the performance of the
interpolation of these 100 random polynomials.

Random noise Ben-Or/Tiwari
0 Mean .120505981901393e − 11

Median .133841077792715e − 11
±10−12 ∼ 10−9 Mean .581398079681344e − 9

Median .582075115365304e − 9
±10−9 ∼ 10−6 Mean .570763804647327e − 6

Median .569467774610552e − 6
±10−6 ∼ 10−3 Mean .577975930552999e − 3

Median .583391747553225e − 3

Random noise Generalized Eigenvalue
0 Mean .120594593261080e − 11

Median .133636116920920e − 11
±10−12 ∼ 10−9 Mean .581398474087412e − 9

Median .582077799081834e − 9
±10−9 ∼ 10−6 Mean .570763804248465e − 6

Median .569467779291746e − 6
±10−6 ∼ 10−3 Mean .577975930554979e − 3

Median .583391747541653e − 3

As the above table illustrates, well-conditioned Vandermonde
systems give excellent interpolation results, and the amount
of the input noise is proportional to the error in the output.
We also note that there is little gain in using the generalized
eigenvalue algorithm in this case (and indeed, it is consid-
erably slower). This should not be particularly surprising
given Proposition 4.1.

Clustered term values

For a second experiment, we interpolate polynomials with

terms x0, x3, x6, x⌊ 994
t−2

⌋+6, x⌊ 2·994
t−2

⌋+6, . . ., x⌊
(t−3)·994

t−2
⌋+6 at

powers of ω = exp(2π/1000), in which terms x0, x3, and x6

are close to each other.

In our test, we encounter a (numerically) singular system
when the (random) noise is in the range of ±10−9 ∼ 10−6.
We list the mean and median of all the non-singular results.
We also note that 11 of the 99 non-singular results are of
distance less or around .0001 from the target polynomial.

Random noise Ben-Or/Tiwari
0 Mean .136907950785253e − 9

Median .101038098751213e − 9
±10−12 ∼ 10−9 Mean .118191438770386e − 6

Median .700404450937545e − 7
±10−9 ∼ 10−6 Mean .713728504313218

Median .641238385320081
±10−6 ∼ 10−3 Mean .843675339146120

Median .754345867272459

Random noise Generalized Eigenvalue
0 Mean .137847635557337e − 9

Median .105150252450990e − 9
±10−12 ∼ 10−9 Mean .118192220230628e − 6

Median .700455264514340e − 7
±10−9 ∼ 10−6 Mean .710891838764534

Median .641238385320072
±10−6 ∼ 10−3 Mean .843662476563188

Median .754345867272456

In this experiment, good interpolation results may still be
obtained for Vandermonde systems with a few nodes clus-
tered on the unit circle. However, such results tend to be
very sensitive to noise.

Effective randomization to ameliorate term value ac-
cumulation

In our third set of tests we consider the effect of randomiza-
tion to improve the numerical conditioning of the interpo-
lation problems. Here we consider polynomial interpolation
associated with a Vandermonde system with 3 terms clus-
tered. That is, the 100 random univariate polynomials, with
the number of terms between 10 and 50, all have terms x0,
x, and x2. All other remaining term are roughly evenly
distributed the term degrees between 3 and 1000.

We interpolate the polynomial at powers of exp(2πi/1009).
As the following table shows, the clustering greatly affects
the effectiveness of both interpolation algorithms.

Random noise Ben-Or/Tiwari
0 Mean 92.8019727202980

Median 73.4823536193264

Random noise Generalized Eigenvalue
0 Mean 92.8019727200298

Median 73.4823536202312

However, after randomization, that is, instead of interpolat-
ing at powers of ω = exp(2πi/1000), we interpolate at pow-
ers of ω = exp(2rπi/1009) for a random r ∈ {1, . . . , 1008},
for the same set of random polynomials, we have the follow-
ing results.

Random noise Ben-Or/Tiwari
0 Mean 27.9983307662379

Median .242793778266858e − 7
±10−12 ∼ 10−9 Mean .869652877288326

Median .170781612648532e − 6

Random noise Generalized Eigenvalue
0 Mean 30.6022221605261

Median .242734723141759e − 7
±10−12 ∼ 10−9 Mean .863424321492980

Median .170790199598136e − 6

Notice that, although we do not obtain good interpolation
results each time, the error at the median is generally quite
good (a terribly conditioned randomization can affect the
mean dramatically). In practice, upon obtaining an ill-
conditioned result, we would simply re-randomize and re-
peat the computation. Theorem 4.3 provides assurances
that we should never have to restart this many times be-
fore achieving a well-conditioned Vandermonde matrix, and
hence obtain reliable results.

The full Maple code along with a broader range of exper-
iments (including the examples mentioned in [22], can be
found at the web site:
http://www.scg.uwaterloo.ca/∼ws2lee/issac06-interp.

Acknowledgments

We thank Erich Kaltofen for his encouragement and com-
ments, Bernhard Beckermann for his help (particularly on
Section 4.1), and Bernard Mourrain. We would also like to
thank Annie Cuyt and Brigitte Verdonk for pointing us to
recent related works.

6. REFERENCES
[1] B. Beckermann. The condition number of real

Vandermonde, Krylov and positive definite Hankel
matrices. Numeriche Mathematik, 85:553–577, 2000.

[2] B. Beckermann, G. Golub, and G. Labahn. On the
numerical condition of a generalized Hankel eigenvalue
problem. submitted to Numerische Matematik, 2005.

[3] M. Ben-Or and P. Tiwari. A deterministic algorithm
for sparse multivariate polynomial interpolation. In
Proc. Twentieth Annual ACM Symp. Theory Comput.,
pages 301–309, New York, N.Y., 1988. ACM Press.

[4] A. Córdova, W. Gautschi, and S. Ruscheweyh.
Vandermonde matrices on the circle: spectral
properties and conditioning. Numerische Mathematik,
57:577–591, 1990.

[5] R.M. Corless, M. Giesbrecht, I. Kotsireas, and S.M.
Watt. Numerical implicitization of parametric
hypersurfaces with linear algebra. In
E. Roanes-Lozano, editor, Artificial Intelligence and
Symbolic Computation: International Conference
AISC 2000, pages 174–183, Heidelberg, Germany,
2001. Springer Verlag.

[6] A. Dı́az and E. Kaltofen. FoxBox a system for
manipulating symbolic objects in black box
representation. In O. Gloor, editor, Proc. 1998
Internat. Symp. Symbolic Algebraic Comput.
(ISSAC’98), pages 30–37, New York, N. Y., 1998.
ACM Press.

[7] S. Gao, E. Kaltofen, J. May, Z. Yang, and L. Zhi.
Approximate factorization of multivariate polynomials
via differential equations. In ISSAC 2004 Proc. 2004
Internat. Symp. Symbolic Algebraic Comput., pages
167–174, 2004.

[8] M. Gasca and T. Sauer. On the history of multivariate
polynomial interpolation. J. Computational and
Applied Mathematics, 122:23–35, 2000.

[9] W. Gautschi and G. Inglese. Lower bounds for the
condition numbers of Vandermonde matrices.
Numerische Mathematik, 52:241–250, 1988.

[10] Walter Gautschi. Norm estimates for inverses of
Vandermonde matrices. Numerische Mathematik,
23:337–347, 1975.

[11] K. O. Geddes, S. R. Czapor, and G. Labahn.
Algorithms for Computer Algebra. Kluwer Academic
Publ., Boston, Massachusetts, USA, 1992.

[12] G. H. Golub, P. Milanfar, and J. Varah. A stable
numerical method for inverting shape from moments.
SIAM J. Sci. Comput., 21(4):1222–1243, 1999.

[13] G. H. Golub and C. F. Van Loan. Matrix
Computations. Johns Hopkins University Press,
Baltimore, Maryland, third edition, 1996.

[14] D. Yu. Grigoriev, M. Karpinski, and M. F. Singer.
Fast parallel algorithms for sparse multivariate
polynomial interpolation over finite fields. SIAM J.
Comput., 19(6):1059–1063, 1990.

[15] E. Kaltofen and Lakshman Yagati. Improved sparse
multivariate polynomial interpolation algorithms. In
P. Gianni, editor, Symbolic Algebraic Comput.
Internat. Symp. ISSAC ’88 Proc., volume 358 of Lect.
Notes Comput. Sci., pages 467–474, Heidelberg,
Germany, 1988. Springer Verlag.

[16] E. Kaltofen and B. Trager. Computing with
polynomials given by black boxes for their evaluations:
Greatest common divisors, factorization, separation of
numerators and denominators. J. Symbolic Comput.,
9(3):301–320, 1990.

[17] L. Kronecker. Über einige Interpolationsformeln für
ganze Funktionen mehrerer Variabeln, Lecture at the
academy of sciences, December 21, 1865, volume H.
Hensel (Ed.), L. Kroneckers Werke, Vol. I. Teubner,
Stuttgart, 1895. reprinted by Chelsea, New York, 1968.

[18] R. Lorentz. Multivariate Hermite interpolation by
algebaic polynomials: a survey. J. Computational and
Applied Mathematics, 122:167–201, 2000.

[19] Y. Mansour. Randomized approximation and
interpolation of sparse polynomials. SIAM Journal on
Computing, 24(2):357–368, 1995.

[20] P. Milanfar, G. C. Verghese, W. C. Karl, and A. S.
Wilsky. Reconstructing polygons from moments with
connections to array processing. IEEE Trans. Signal
Processing, 43(2):432–443, 1995.

[21] Baron de Prony, Gaspard-Clair-François-Marie Riche.
Essai expérimental et analytique sur les lois de la
Dilatabilité des fluides élastique et sur celles de la
Force expansive de la vapeur de l’eau et de la vapeur
de l’alkool, à différentes températures. J. de l’École
Polytechnique, 1:24–76, 1795.

[22] Andrew J. Sommese, Jan Verschelde, and Charles W.
Wampler. Numerical factorization of multivariate
complex polynomials. Theoretical Computer Science,
315(2–3):651–669, 2004.

[23] J. H. Wilkinson. Rounding errors in algebraic
processes. Prentice-Hall, Englewood Cliffs, N.J., 1963.

[24] Z. Zilic and K. Radecka. On feasible multivariate
polynomial interpolations over arbitrary fields. In
S. Dooley, editor, ISSAC 99 Proc. 1999 Internat.
Symp. Symbolic Algebraic Comput., pages 67–74, New
York, N. Y., 1999. ACM Press.

[25] R. Zippel. Probabilistic algorithms for sparse
polynomials. In Proc. EUROSAM ’79, volume 72 of
Lect. Notes Comput. Sci., pages 216–226, Heidelberg,
Germany, 1979. Springer Verlag.

[26] R. Zippel. Interpolating polynomials from their values.
J. Symbolic Comput., 9(3):375–403, 1990.

