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Abstract—Performance prediction is an important engineering tool that provides valuable feedback on design choices in program

synthesis and machine architecture development. We present an analytic performance modeling approach aimed to minimize

prediction cost, while providing a prediction accuracy that is sufficient to enable major code and data mapping decisions. Our approach

is based on a performance simulation language called PAMELA. Apart from simulation, PAMELA features a symbolic analysis technique

that enables PAMELA models to be compiled into symbolic performance models that trade prediction accuracy for the lowest possible

solution cost. We demonstrate our approach through a large number of theoretical and practical modeling case studies, including six

parallel programs and two distributed-memory machines. The average prediction error of our approach is less than 10 percent, while

the average worst-case error is limited to 50 percent. It is shown that this accuracy is sufficient to correctly select the best coding or

partitioning strategy. For programs expressed in a high-level, structured programming model, such as data-parallel programs, symbolic

performance modeling can be entirely automated. We report on experiments with a PAMELA model generator built within a data-

parallel compiler for distributed-memory machines. Our results show that with negligible program annotation, symbolic performance

models are automatically compiled in seconds, while their solution cost is in the order of milliseconds.

Index Terms—Performance prediction, parallel processing, analytic performance modeling.
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1 INTRODUCTION

IN high-performance computing, application performance
is very sensitive to program features such as code and

data partitioning, and machine computation and commu-
nication parameters. Performance prediction is an impor-
tant engineering tool that provides timely feedback on
design choices in program synthesis as well as in machine
architecture development. Apart from prediction accuracy,
prediction cost largely determines the utility of performance
prediction tools. To enable a user to quickly find his/her
way in the multidimensional design space, performance
models often need to be used interactively. This implies
that, e.g., parameterized plots be generated in seconds,
despite the staggering dimensions in high-performance
computing. To enable compile-time synthesis, an even more
drastic cost reduction is required in view of the huge
number of model evaluations required in automatic
optimization. In this paper, we study to what extent
prediction cost can be minimized while retaining sufficient
prediction accuracy to allow a correct ranking of different
design choices during the first stages of parallel algorithm
and/or architecture development.

Prediction cost breaks down into modeling cost, associated

with deriving the model, and solution cost, associated with

evaluating the model for some parameter setting. Xu et al. rate

the effectiveness of a performance prediction method in

terms of the so called prediction ratio [37]. Loosely speaking,

the prediction ratio is defined as the actual application

execution time divided by the sum of the modeling cost and
the solution cost. In their definition, the modeling cost equals
the measurement time associated with determining program
or machine-specific information needed in the performance
model (program profiling, machine benchmarking). We will
extend the definition of modeling cost to include the
construction of the model itself. Depending on the particular
performance modeling approach, model construction cost
can be as complex as developing the program and/or
machine itself. Similarly, solution cost is a critical factor.
When a performance model is parameterized, solution cost
may well dominate as modeling cost is typically amortized
over many evaluations.

Performance prediction approaches take many shapes, the
choice of underlying modeling formalism depending on the
desired tradeoff between prediction cost and accuracy.
Although potentially accurate, modeling formalisms such
as stochastic Petri nets [3] or process algebras [16] are not
attractive due to the exponential solution cost. Although
approaches based on a combination of directed acyclic task
graphs (DAGs) and queuing networks [1], [20], [23] pair
comparably high modeling power with a high efficiency, the
polynomial time complexity of the solution process still
entails considerable cost for very large problem sizes. In
symbolic approaches, the application is transformed into an
explicit, algebraic performance expression. In contrast to the
above numeric approaches, symbolic prediction techniques
offer even lower solution cost that is less dependent on
problem size. Typically, parallel programs and machines
have some degree of regularity (replication). Being reflected
in the symbolic performance model, this regularity is
exploited through symbolic simplification, reducing solution
cost by many orders of magnitude. However, this advantage
comes at a price. While manual approaches, such as BSP [33]
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and LogP [9], pair accuracy with low solution cost, modeling
cost is still significant due to the labor-intensive and error-
prone derivation effort. Alternatively, symbolic prediction
techniques based on stochastic SP (series-parallel) DAGs [29]
and, most notably, deterministic SP DAGs offer a mechan-
ized, compile-time derivation scheme (e.g., [5], [7], [11], [24],
[35]). However, unlike the DAG/queuing network ap-
proaches mentioned earlier, pure DAG approaches do not
account for mutual exclusion synchronization. Conse-
quently, unacceptable prediction errors arise when perfor-
mance is largely dominated by contention for resources such
as locks, servers, processors, network links, or memories.

In this paper, we show that a symbolic performance
modeling approach is possible that minimizes both modeling
cost and solution cost, while providing a prediction accuracy
that is acceptable during the first stages of parallel program
design. Our approach is based on the use of an intermediate
modeling formalism called PAMELA (PerformAnce ModEl-
ing LAnguage [12]). PAMELA is a compositional, process
oriented performance simulation language. Apart from
simulation, PAMELA features a performance analysis techni-
que that enables PAMELA models to be compiled into symbolic
performance models that trade prediction accuracy for the
lowest possible solution complexity. In our approach, we
combine the low cost critical path analysis of deterministic SP
DAGs with an approximate analysis of the effects of mutual
exclusion. The restriction to deterministic workloads, essen-
tial to obtain minimum solution cost, does not degrade
prediction accuracy. Although at the fine grain task level
variance can be considerable, at the highly aggregate level at
which the effects of parallel composition is computed,
variance is much more limited [2], [22]. While the mutual
exclusion analysis does not compromise the low solution cost
associated with SP DAG analysis, it fundamentally improves
prediction accuracy to a level that is acceptable during the
first stages of parallel system design. Experimental results on
six parallel programs and two distributed memory architec-
tures show an average prediction error of less than 10 percent,
while the average worst-case error is limited to 50 percent. It is
shown that this accuracy is more than sufficient for a clear
assessment of application scalability and identification of the
best coding or partitioning strategy.

Our modeling approach is illustrated in Fig. 1. For both
program and machine, a separate PAMELA model is con-
structed (manually or generated). After algebraic substitution

of the machine model in the program model, the resulting
model is translated by a PAMELA compiler into the symbolic
performance model. Due to the PAMELA compiler’s symbolic
simplification capabilities, a dramatic solution cost reduction
of many orders of magnitude is achieved when compared to
simulation.

As the PAMELA simulation formalism is intuitively
close to the computational system under study, modeling
cost is significantly reduced compared to manual sym-
bolic approaches that do not provide tool support.
Moreover, for programs that are expressed in terms of a
high-level programming model such as the data-parallel
model, the program modeling process can be entirely
mechanized, requiring relatively few program annota-
tions. Consequently, the entire performance modeling
effort effectively reduces to compiling parallel programs to
symbolic performance models [13], yielding an extremely
high prediction ratio. We report on experiments with a
PAMELA model generator that has been developed as
part of a compiler that translates data-parallel Java
programs for distributed-memory (MPI) machines [15].
Results for four data-parallel programs (MATMUL, ADI,
GAUSS, and PSRS) demonstrate that with minimum
program annotation and machine modeling effort, the
symbolic model is generated in a matter of seconds, while
the solution cost is in the order of milliseconds.

The paper is organized as follows: In the next section, we
present the PAMELA language, the symbolic compilation
process, and its inherent prediction accuracy. In Section 3, we
demonstrate the cost/performance ratio of the
PAMELA approach through a number of theoretical and
practical modeling case studies. In Section 4, we describe the
results obtained with the automatic PAMELA generator. In
Section 5, we compare our approach with related work in
symbolic performance prediction. Finally, in Section 6, we
summarize our contribution.

2 MODELING FORMALISM

In this section, we describe the PAMELA language, the
symbolic analysis, and we discuss the prediction accuracy.
The language and analysis is implemented in terms of a
mathematical tool [26] that compiles process expressions into
simplified execution time expressions.

2.1 Language

PAMELA is a process-oriented performance simulation
language designed to capture concurrency and timing
behavior of parallel systems. Original data computations
are only modeled in terms of their workload, similar to, e.g.,
Petri nets and queuing networks. Based on a process algebra,
PAMELA uses the equation syntax and substitution semantics
found in ordinary algebra. A PAMELA model of a program is
written as a set of process equations. The left-hand side of the
root equation is usually denoted L.

Work (computation, communication) is described by the
elementary use process. The construct useðs; �Þ exclusively
acquires service from a server s for � time units (excluding
possible queuing delay). In the sequel we will generally refer
to servers as resources. A resource shas a multiplicity, denoted
jsj, that may be larger than one. As in traditional queuing
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networks, resource queues have infinite capacity. The mutual
exclusion synchronization offered by the use construct is
defined according to a work conserving scheduling discipline
with nondeterministic conflict arbitration. The precise dis-
cipline (such as FCFS or PS) is not relevant to the symbolic
timing analysis described in the next section. As in queuing
networks, it is convenient to define an infinite server �, where
j�j ¼ 1. Instead of useð�; �Þ, we will simply write delayð�Þ.

Program and machine models are composed from use (or
delay) processes using the following three process composi-
tion mechanisms:

. Sequential composition, expressed through the binary
operator “;” and the n-ary replication operator seq,
defined as seqði ¼ a; bÞ Li � La ; . . . ; Lb.

. Parallel composition, expressed through the binary
operator “k ” and the n-ary replication operator par,
defined as parði ¼ a; bÞ Li � La k . . . k Lb. Parallel
composition includes barrier synchronization to
terminate the parallel process.

. Conditional composition, expressed through
if ðcÞ L, where c is a Boolean condition. An optional
else construct is provided.

The implicit condition synchronization of the parallel and
sequential composition constructs enables the expression of
models that are similar to SP DAGs. However, the modeling
power of PAMELA extends static DAGs by virtue of the
mutual exclusion from the use construct, which also provides
the nondeterminism required to model dynamically sched-
uled systems. This property is discussed in Section 3.

We conclude this section by modeling the Machine Repair
Model (MRM) [21] which offers a typical demonstration of
the modeling approach in PAMELA. In an MRM P clients
either spend �l on local processing, or request service time �s
from a single FCFS server s, for a total cycle count of N
iterations (N may be infinite, i.e., symbolic). The
PAMELA model of the MRM is given by the following process
equation:

L = par ðp ¼ 1; P Þ
seq ði ¼ 1; NÞ {

delayð�lÞ ;

useðs; �sÞ
}

For reading convenience, the process expression is displayed
in program format including the usual indentation. Note that
instead of modeling the server as a process, a passive resource
is used. This is typical for PAMELA’s top-down modeling
paradigm where all inherent problem parallelism is ex-
pressed, possibly constrained by a limited number of
resources such as locks, servers, processors, communication
links, memories, etc. The modeling paradigm is further
discussed in Section 3.

2.2 Analysis

As PAMELA models represent a time simulation of
concurrent system execution, each PAMELA expression L
has an associated execution time T ðLÞ. T ðLÞ is typically
computed by simulation,1 which is a high-cost solution

technique. The low-cost, symbolic transformation proce-
dure we describe in this paper, yields a lower bound T lðLÞ,
trading accuracy for a drastic solution cost reduction. The
approach is based on an approximation of the time delay
due to mutual exclusion (contention), integrated within a
condition synchronization delay analysis (critical path
analysis of the SP DAG).

Conditional composition is transferred into the time
domain according to the transformation

T ðif ðcÞ LÞ ¼ if ðcÞ T ðLÞ: ð1Þ

The time domain expression is subsequently reduced using
information on the truth value (probability) of c. An example
is given in Section 3.2. In the following, we assume all
conditional process compositions have been processed.

Let L denote a PAMELA model comprising some parallel
and/or sequential composition of use or delay tasks. One
estimate ofT lðLÞ is given by analyzing the effects of condition
synchronization. Let’ðLÞdenote the critical path estimate. In
terms of the binary composition operators “;” and “k ,” the
following recursion holds

’ðLÞ ¼

’ðL1Þ þ ’ðL2Þ; L ¼ L1 ; L2;
maxð’ðL1Þ; ’ðL2ÞÞ; L ¼ L1 k L2;
�; L ¼ delayð�Þ;
�; L ¼ useðr; �Þ:

8>><>>: ð2Þ

As mutual exclusion is ignored it follows ’ðLÞ � T ðLÞ.
Another estimate of T ðLÞ is given by analyzing the effects

of mutual exclusion. Let �ðLÞ ¼ ð�1; . . . ; �MÞ denote the total
service demand vector of L, where M is the total number of
resources involved and �m denotes the service demand on
resource rm. We will write �mðLÞ to denote the mth element of
�ðLÞ. It (recursively) holds

�ðLÞ ¼
�ðL1Þ þ �ðL2Þ; L ¼ L1 ; L2;
�ðL1Þ þ �ðL2Þ; L ¼ L1 k L2;
�em; L ¼ useðrm; �Þ;

8<: ð3Þ

where em ¼ ð0; . . . ; 0; 1; 0; . . . ; 0Þ is the M-dimensional unit
vector in themdirection, and addition and multiplication are
defined element-wise. Let !ðLÞ denote the lower bound on
T ðLÞ due to mutual exclusion. Then,

!ðLÞ ¼ max
m¼1...M

�mðLÞ
jrmj

: ð4Þ

As condition synchronization is ignored it follows
!ðLÞ � T ðLÞ.

Combining the lower bounds due to contention and
critical path analysis it follows that a lower bound on T ðLÞ
is given by the following recursion

T lðLÞ ¼
T lðL1Þ þ T lðL2Þ; L ¼ L1 ; L2;
maxðT lðL1Þ; T lðL2Þ; !ðLÞÞ; L ¼ L1 k L2;
�; L ¼ delayð�Þ;
�; L ¼ useðr; �Þ:

8>><>>: ð5Þ

The integration of contention and critical path analysis is
implemented in terms of the second transformation rule that
applies to parallel composition. Traditional compile-time
analysis typically disregards ! while queuing analysis
typically disregards ’.
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Note that the time complexity of the T l expression
generation equals that of traditional critical path analysis.
While the above process generates symbolic expressions
whose numeric evaluation complexity still compares to that
of simulation, the typical regularity within the expressions
enables the PAMELA compiler to simplify T l, reducing
evaluation cost by many orders of magnitude. This important
property of symbolic techniques is demonstrated throughout
the paper where Oð1Þ time complexity is achieved in most
examples and experiments.

We conclude this section with a symbolic analysis of the
MRM example presented earlier. Mechanically applying the
above transformations yields

T lðLÞ ¼ max max
p¼1...P

XN
i¼1

ð�l þ �sÞ;max
XP
p¼1

XN
i¼1

�s e
0

 !" #
:

This expression is simplified by the compiler to T l ¼
N maxðP�s; �l þ �sÞ which has Oð1Þ solution complexity.
Unlike traditional compile-time analysis, T l accounts for the
additional queuing delay when s is saturated.

2.3 Accuracy

As mentioned earlier, our analysis approach implies a
sacrifice in prediction accuracy. In this section, we study the
tightness of the lower bound T l compared to the simulation
result T . Although the prediction error of T l is theoretically
unlimited, we will show that the average worst-case error is
limited to 50 percent, i.e., E½T l=T � � 0:5, while the average
error is typically much less.

To introduce our study, Fig. 2 compares T l with T for the
MRM example. The figure shows thatT l essentially forms the
asymptotes of T , with a deviation of less than 50 percent
occurring at the saturation point P � ¼ ð�s þ �lÞ=�s. Notice the
OðP Þ error of traditional compile-time analysis (’) for
P > P �. From (5) and the above example it follows that
T l approaches T either when ’� ! (critical path dominates)
or when’� ! (queuing dominates). To study the prediction
error, we introduce an independent parameter �, coined
contention index, that expresses the relative degree of conten-
tion within a model according to � ¼ logð!=’Þ.

Fig. 3 shows the ratio � ¼ T l=T for 1,000 random
PAMELA models with � values ranging from ÿ2 < � < 2.
Each model comprises N ¼ 100 coarse-grain tasks that
execute a large sequence of random accesses to M resources,

where M varies from 2; . . . ; 100 across the 1,000 models. The
access distribution is uniform, as load balance produces the
worst accuracy scenarios. The results clearly show a high
degree of correlation between � and �, where the deviation
from unity is maximum for models that exhibit � ¼ 0, in
which case it holds T l ¼ 0:5T on average. The predictive
value of � is quite strong, especially considering the fact that
two models with comparable � values are usually entirely
different. Our measurements show that N is large enough to
be representative for much larger models. Additional
measurements indicate that the minimum value of � at
� ¼ 0, denoted ��, highly correlates withM, while exhibiting
an asymptote for large M given by �� � 0:5 [14]. This result
agrees with the result from asymptotic bounding analysis of
queuing systems [38]. For anM server, load balanced system
with total service demandD, Mean Value Analysis [21] yields
a response time given by the recursion

RP ¼ Dþ
D

M

RPÿ1

RPÿ1 þ Z
ðP ÿ 1Þ;

where P denotes the number of jobs. Let CðP Þ ¼ RðP Þ þ Z
denote the mean cycle time. The largest deviation of CðP Þ
from the lower bound Cl ¼ maxðDþ Z; ðD=MÞP Þ occurs
for P � ¼ ðDþ ZÞM=D. Since for finite P the slope of RðP Þ
is less than D=M, it follows that CðP Þ < Dþ ðD=MÞP þ Z.
Consequently CðP �Þ < 2Cl which agrees with our average
50 percent worst-case prediction error mentioned above.

3 MODELING EXAMPLES

In this sect ion, we demonstrate the part icular
PAMELA approach to modeling parallel programs and
machines through a number of modeling examples. In order
to enable our static, symbolic analysis PAMELA is restricted to
an orthogonal synchronization model, separating condition
synchronization constructs (seq, par), from mutual exclusion
(use). Despite the restricted modeling power, a wide range of
parallel computations can be adequately modeled by focus-
ing on the algorithm (problem) level, instead of the imple-
mentation (machine) level. At the algorithm level inherent
problem parallelism is expressed in terms of condition
synchronization (DAG), while the mapping of the parallel
algorithm on a limited number of (virtual) machine resources
can be separately expressed in terms of mutual exclusion
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(including the nondeterminism required to adequately
model dynamic scheduling). At the implementation level,
however, such an orthogonal synchronization structure is
often no longer apparent. A typical example is a dynamic
message-passing program where static and dynamic syn-
chronizations have become intertwined, prohibiting our
static analysis scheme. A compelling demonstration of the
potential semantic gap between algorithm and implementa-
tion is the MPI implementation of the APSP algorithm
described in Section 3.8. At algorithm level, the application
is simply modeled in terms of an SP DAG, combined with
mutually exclusive server access (compare MRM). In
contrast, directly modeling the MPI code, featuring a
dynamic work load scheduling process, would require a
modeling power equivalent to that of, e.g., CSP. Conse-
quently, automatically “reverse-engineering” the implemen-
tation back into the algorithm level model is typically beyond
machine capability. We coin our top-down modeling
approach contention modeling to express the fact that the
various scheduling constraints on problem parallelism,
induced by software and hardware resources, are modeled
in terms of contention (mutual exclusion). In the following,
we present some typical modeling case studies to demon-
strate our modeling approach, the ease with which symbolic
performance models are derived, the low solution complexity
that is achievable, and the limited prediction error that is
incurred.

3.1 Pipelining

Consider the pipelined processing ofN data sets involving an
M unit pipeline (e.g., vector unit, packet-switched commu-
nication pipeline, software pipeline). Instead of modeling the
implementation in terms of a classic, static non-SP synchro-
nization pattern (diamond DAG), parallelism is expressed at
the algorithm level in terms of parallel data set processes
obtaining service from each stage. Consequently, the model is
expressed as an SP DAG of contending tasks

L = par ði ¼ 1; NÞ
seq ðm ¼ 1;MÞ

useðum; �mÞ,
where um models stage m, and �m denotes the associated
processing time. Symbolic analysis yields

T l ¼ max
XM
m¼1

�m;N max
M

m¼1
�m

 !
:

The prediction error compared to the exact (manual) solution

T ¼M�m þ ðN ÿ 1ÞmaxMm¼1 �m is negligible for cases where

either ’ dominates (latency term, N �M) or where !

dominates (bandwidth term, N �M). The maximum error

(50 percent) occurs for load-balanced systems (i.e., �m ¼ �) for

the case N ¼M, where T l reduces to T l ¼ N� while

T ¼ ð2N ÿ 1Þ� . Note that pipeline synchronization cannot

be modeled in great detail. As mutual exclusion in PAMELA

assumes infinite queues, all data is implicitly modeled to

queue at the slowest stage whereas in reality data would

occupy each stage. This lack of modeling power, however,

does not affect the accuracy of the overall performance result

T l.

3.2 Branching

Consider the sequential program

for (i = 1:N)
if (x[i] != 0)

x[i] = x[i] * a;

that scales the vectorxby a constanta. Let the machine model
be given by the single equationmult ¼ useðcpu; �Þ (we ignore
all other instructions for simplicity). Then, the algorithm is
modeled by

L ¼ seq ði ¼ 1; NÞ if ðnzðiÞÞ mult;

where nz models the nonzero test. Substituting the machine
model in the program model and subsequently applying the
symbolic analysis yields

T l ¼
XN
i¼1

if ðnzðiÞÞ �:

Let nzðiÞ be modeled by a stochastic binary process
Bp 2 f0; 1g, where the truth probability parameter p is
determined by, e.g., vector density profiling. Then,T l reduces
to T l ¼ p� which has Oð1Þ complexity. Note that memory
hierarchy is also modeled using conditional composition.

3.3 Vectorization

Consider the vector scaling

forall (i = 1:N)
x[i] = x[i] * a;

Let the algorithm be modeled as

L ¼ par ði ¼ 1; NÞ multðiÞ

where multðiÞmodels the multiplication process (we ignore
all other instructions for simplicity). We consider three
different machine mappings. A sequential implementation is
expressed by the machine model multðiÞ ¼ useðs; �sÞ, where
s models a scalar multiplier unit. It follows T l ¼ N�s.
Alternatively, vectorization implies the use of a pipelined unit
modeled by multðiÞ ¼ seq ðj ¼ 1; SÞ useðvj; �vÞ where vj
models each of the S vector stages. It follows T l ¼
max ðS�v;N�vÞ which implies speedup provided �v < �s and
N is sufficiently large. Finally, a fully parallel implementation
is modeled bymultðiÞ ¼ useðsi; �sÞ, i.e.,N scalar units, which
yields T l ¼ �s. Thus, evaluating machine mappings is a
matter of substituting the appropriate machine model while
the algorithm model remains unchanged.

3.4 Vector Chaining

Consider mapping

forall (i = 1:N) {

a[i] = d[i] * e[i];

c[i] = a[i] * b[i];

}

to a machine with vector units mult1 and mult2 as defined
earlier. Sequentializing the statements is modeled by

L ¼ f par ði ¼ 1; NÞ mult1ðiÞ g ;

f par ði ¼ 1; NÞ mult2ðiÞ g;
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which compiles toT l ¼ 2 maxðS�v;N�vÞ. Alternatively, chain-
ing both vector operations is modeled by

L ¼ par ði ¼ 1; NÞ f mult1ðiÞ ; mult2ðiÞ g;

where mult1ðiÞ ; mult2ðiÞ literally models the hardware
concatenation. This model compiles to T l ¼ maxð2S�v;N�vÞ
which predicts double bandwidth (for largeN). The example
illustrates how structure (PAMELA) is compiled into behavior
(symbolic model).

3.5 Memory Bank Contention

Consider a memory bank system comprising M interleaved
memory banks with access time �m. Let a memory vector port
generate the address sequence fðiÞ; i ¼ 1; . . . ; N . The vector
access is modeled by

L = par ði ¼ 1; NÞ {

useðport; �cÞ ;

useðmfðiÞ mod M; �mÞ
}

The port is modeled as a passive resource, serializing the
N parallel requests at the port request rate 1=�c. It follows

T l ¼maxð�c þ �m;maxðN�c;

max
M

m¼1

XN
i¼1

if ðfðiÞmodM ¼ mÞ �mÞÞ:

When M is sufficiently large, memory contention does not
occur and T l reduces to the familiar memory pipeline
characterized by startup time �c þ �m and bandwidth 1=�c
[18]. For small M memory bank contention depends on f .
Let fðiÞ ¼ Si, where S denotes the access stride. Then, T l

reduces to

T l ¼ maxð�c þ �m;maxðN�c;N gcdðM;SÞ�m=MÞÞ:

As �c < �m it follows T l ¼ N gcdðM;SÞ�m=M which implies
an effective memory bandwidth of M=ðgcdðM;SÞ�mÞ. This
mechanically compiled result equals the effective memory
bandwidth derived in, e.g., [25].

3.6 Data Partitioning

Consider the vertical relaxation phase

for (i = 1:N-2)

forall (j = 0:N-1)

update(i,j);

in ADI where update refers to the scalar update of matrix
element ai;j as a function of aiÿ1;j and aiþ1;j. Let ai;j be mapped
on processor �ði; jÞ. Let update (i,j) also be performed by
processor �ði; jÞ (owner-computes rule). The algorithm is
modeled by

L = seq ði ¼ 1; N ÿ 2Þ
par ðj ¼ 0; N ÿ 1Þ

updateði; jÞ
where updateði; jÞ ¼ useðcpu�ði;jÞ; �uÞ models update

(i,j). We consider the choice between a block partitioning
on either the j or the i axis. Without loss of generality, we
assume P jN and B ¼ N=P . The j axis partitioning implies
�ði; jÞ ¼ bj=Bc. Hence, updateði; jÞ ¼ useðcpubj=Bc; �uÞ which

yields T l ¼ ðN ÿ 2ÞN=P�u (linear speedup). In contrast, the
i axis partitioning implies �ði; jÞ ¼ bi=Bc which yields T l ¼
ðN ÿ 2ÞN�u (no speedup). The “processor contention”
modeling approach is also used in the PAMELA generator
described in Section 4. The corresponding measurement
results of the vertical ADI phase are presented in Section 4.3.

3.7 Network Contention

In this section, we model a synthetic benchmark program
running on a 4� 4 T800 transputer mesh. The benchmark is
characteristic for irregular finite element (FEM) computa-
tions and executes a coarse grain FEM computation graph (SP
DAG) in a macro data flow style. The N ¼ 100 tasks are
mapped to the P ¼ 16 processors using multithreading.
Although out of service, the T800 mesh makes an interesting
target machine. The communication infrastructure is still
implemented in software, which necessitates accurate net-
work contention modeling.

A task (thread) running on processor p is modeled by a
useðcpup; . . .Þ process. The communication model is more
detailed. The message-passing implementation is based on a
“virtual link” service that provides a dedicated logical
channel between a sender and receiver thread [27]. Each data
transfer is modeled as a pipeline, each process modeling the
propagation of an individual 120 bytes packet (compare
Section 3.1). Letmoveðs; r; lÞdenote the PAMELA model of an l
bytes nonblocking, asynchronous data transfer between
sending processor index s and receiving processor r. Let nk ¼
s . . . rdenote the index of theK nodes involved in the pipeline
route (dimension-order routing). Then, the communication
model is given by [�s]

moveðs; r; lÞ = par ði ¼ 1; dl=120eÞ f
seq = ðk ¼ 2; K ÿ 1Þ {

useðfnk ; 181Þ k
useðxnk ; 108Þ

} ;

useðxr; 108Þ
}

where xn denotes node link transfer (DMA) services, and fn
denotes node forwarding services. The model accurately
captures the effective bandwidth degradation when multiple
virtual links are simultaneously active. Table 1 shows some
results for 106 byte concurrent data transfers for the
subtopology 0ÿ 1ÿ 2. Each tuple ðs; rÞ corresponds to a
transfer from node s to r. An exponent kdenotes k concurrent
ðs; rÞ transfers. Apart fromT l, the measured valueTm, and the
PAMELA simulation result T , the traditional static prediction
Tt is listed to illustrate the prediction errors of latency/
bandwidth models, which do not model contention.

The results show that the error of T l is within 10 percent.
The difference between Tm and T in the last row is caused by
the fact that the PAMELA’s nondeterministic conflict arbitra-
tion model sometimes yields better results that the actual
arbitration performed in the router.

Table 2 summarizes the measurement results for the
benchmark program for 14 random SP graphs G1 . . .G14,
selected to cover the worst-case � region. The computation
workload per task (thread) is uniformly distributed over
½0:06; 6:1� s, while the message size is uniformly distributed
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over ½104; 106� bytes. The symbolic prediction T l is presented
in terms of � (T l=T ) which shows that the worst-case
prediction error is well within 50 percent (27 percent on
average with a maximum of 45 percent). Program and
machine performance is captured by the PAMELA model
with reasonable accuracy. On average, T under estimates Tm

by only 4 percent which is almost entirely due to ignoring the
bandwidth consumption of message acknowledgements.
The Tt value (i.e., ’) demonstrates the prediction error of
traditional static analysis.

3.8 APSP

In this section, we model a parallel All Pairs Shortest Path
(APSP) algorithm implemented in terms of an MPI message-
passing interface. The algorithm computes the shortest paths
between all pairs of nodes in an N nodes weighted directed
graph, by running Dijkstra’s sequential algorithm for each
node in parallel. The implementation is based on an
SPMD farmer-worker scheme where P worker processors
execute Dijkstra’s algorithm, and a central farmer processor
serves the workers by issuing target nodes and collecting the
shortest path length information. As the work load of the
sequential algorithm is highly node-dependent, worker
scheduling is dynamic on an FCFS basis in order to avoid
unnecessary performance loss (i.e., a selective communica-
tions scheme is used). Rather than considering the complex
and analytically intractable MPI implementation, we focus on
the parallel algorithm level, i.e., parallel clients that dynami-
cally contend for service.

The performance of the APSP program is captured by the
PAMELA model

apsp = par ðp ¼ 1; P Þ
seq ði ¼ 1; N=P Þ {

delayð�cÞ ;

useðs; �sÞ
}

The computation workload due to Dijkstra’s algorithm is
modeled by delayð�cÞ. The useðs; �sÞ process models both the
computation service (issuing nodes, collecting path lengths)

as well as the communication costs as the server processor is
involved in all incoming and outgoing traffic. The dynamic
load balancing is implicitly modeled in terms of the use

process, a constant iteration bound N=P , and a client-
independent workload �c (a more detailed, i-dependent
bound and workload would make no difference).

The MPI program is run on a 64 nodes partition of the
DAS I distributed-memory machine (Pentium Pro nodes
interconnected by Myrinet hardware [6]). The average
computation workload �c is determined by dividing the
sequential execution time of the N nodes APSP algorithm
by N . The computation and communication workload �s
is determined by separately measuring the computation
workload for one service iteration, while adding commu-
nication workload for one node issue plus N vector
collects (computed using a simple latency/bandwidth
model that has been measured separately). Fig. 4
compares the execution time predictions (p) with the
actual measurements (m) for two diamond graphs of N ¼
256 nodes and N ¼ 1; 024 nodes. Similar to the MRM
example, the largest prediction error occurs near the
server saturation point. For N ¼ 256, the prediction error
is 4 percent on average with a maximum of 10 percent.
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Results for Some 106 Byte Concurrent Transfers [s]

TABLE 2
Measurements vs. Predictions [s]

Fig. 4. APSP execution time [s] (N = 256 and 1,024).



For N ¼ 1; 024, the prediction error is 9 percent on
average with a maximum of 27 percent.

4 AUTOMATIC PERFORMANCE MODELING

As mentioned in Section 3, PAMELA expresses condition
synchronization and mutual exclusion according to an
orthogonal synchronization model. As the high-level, data-
parallel programming model expresses condition synchro-
nization (data dependencies), it falls within the orthogonal
model. Consequently, the entire performance modeling
process can be automated, providing an extremely high
prediction ratio. The non-SP synchronizations that are
present in some data-parallel computations are necessarily
ignored in the mapping to the PAMELA SP condition
synchronization model. As our results confirm, however,
the corresponding increase in execution time prediction is
small compared to the inherent accuracy of our symbolic
analysis approach. Even for pathological non-SP synchroni-
zation patterns and task work load distributions, the error is
shown to be quite limited [10]. In this section, we present the
results of a PAMELA generator [15], implemented as part of a
compiler that translates programs written in Spar/Java, a
data-parallel Java dialect [34], for distributed-memory
machines. The four applications involved in the experiment
are MATMUL (Matrix Multiplication), ADI (Alternate
Direction Implicit integration, vertical phase), GAUSS
(Gaussian Elimination), and PSRS (Parallel Sorting by
Regular Sampling). By supplying a few program annotations
to provide information on data-dependent branches and loop
bounds, the Spar/Java compiler automatically generates a
PAMELA program model.

As explained in Section 3, model generation is based on the
source code, rather than the generated SPMD message-
passing code. Let the vector V be cyclically partitioned over
P processors. A (pseudocode) statement

forall (i = 1:N)

V[i] = .. * ..;

will generate

par ði ¼ 1; NÞ {

. . . ;

multðimod P Þ ;
. . .

}

(if the compiler uses a simple owner-computes rule). The
machine model multðpÞ models multiplication workload
charged to processor (index) p in terms of mutual exclusion
(use), similar to the ADI modeling example in Section 3.6. The
generated PAMELA program model is subsequently com-
piled, producing a simplified symbolic performance model in
a matter of seconds. Our results demonstrate that this
performance modeling approach delivers sufficient accuracy
to enable correct selection between various programming
alternatives.

4.1 Machine Model

The PAMELA program model is generated in terms of
computation models such as multðpÞ (multiply), and the
communication models lmoveðpÞ (local move), gmoveðp; qÞ

(interprocessor move), and bcastðp; P Þ (P processors broad-
cast). In the machine models, p and q denote processor
indices. The distributed-memory machine used for the
experiments is the DAS I machine mentioned in Section 3.8.
Aiming to provide a mere proof of concept, the machine
model is kept extremely simple. All local computations
(integer, double precision) such as multðpÞ map to the same
scalar workload model useðcpup; �cÞ. Local memory traffic is
modeled by lmoveðpÞ ¼ useðcpup; �lÞ, where �l depends on
the access stride (described later on). Point-to-point com-
munication is modeled by gmoveðp; qÞ ¼ useðcpup; �gÞ,
where �g depends on whether communication is generated
in scalar mode (�g models latency) or vector mode (�g
models bandwidth). Broadcasts are modeled by
bcastðp; P Þ ¼ seq ðp ¼ 0; P ÿ 1Þ gmoveðp; qÞ. The absence
of broadcast parallelism is due to the sequential code
generated by the Spar/Java compiler. For the current
virtual machine (Spar/Java compiler, Pentium Pro, Myr-
inet) communication cost is dominated by CPU overhead
rather than network delays. Hence, no explicit network
contention model such as in Section 3.7 is required.

The machine parameters �c, �l, and �g are measured at the
Spar/Java virtual machine level. The local communication
parameter �l is determined by a simple matrix computation
benchmark

for (k = 1:K)

for (i = 1:N)

for (j = 1:S:N)

statement;

where N ¼ 1; 024 represents a matrix dimension, S denotes
the stride, and statement has the forms V[i] = A[i,j],
and A[i,j] = V[i], to distinguish between a matrix load
and store, respectively. Although simple, the benchmark is
representative for applications where matrices are accessed
that exceed the 256 Kbytes L2 cache capacity. As the 32 bytes
cache line size accommodates four matrix elements, the
fraction of cache misses per store is proportional to S for
S ¼ 1; . . . ; 4. Measurements show that �l is approximately
proportional to minðS; 4Þ for matrix stores, while the stride
sensitivity for loads is less. The local computation parameter
�c is determined by extending statement with various
simple arithmetic expressions (additions, subtractions, mul-
tiplication). The global communication parameter �g is
determined by mapping A and V onto different processors
for point-to-point transfers and broadcasts. Unlike point-to-
point transfers, broadcasts are only measured for the V[i] =
A[i,j] statement, where V is replicated on all processors.

In the following sections, all measurements (“m” in the
plots) and predictions (“p” in the plots) are given terms of
absolute execution time instead of speedup, in order to fully
demonstrate the accuracy of the prediction technique. The
sizes of the four test codes range from 40 (ADI) to 900 (PSRS)
lines of Spar/Java code. The sizes of the generated
PAMELA models range from 3,000 (ADI) to 5,000 (PSRS) lines
of PAMELA code (including the models for runtime functions,
and debugging comments). The sizes of the compiled
symbolic performance models for the main function range
from 15 lines (ADI) to 20 lines (GAUSS).
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4.2 MATMUL

MATMUL computes the product ofN �N matricesA andB,
yieldingC.A is block-partitioned on the i axis, whileB andC
are block-partitioned on the j-axis. In order to minimize
communication, the row ofA involved in the computation of
the row ofC is assigned to a replicated vector (i.e., broadcast).
The experiment demonstrates the consistency of the predic-
tion model for various N and P . The results forN = 256, 512,
and 1,024 are shown in Fig. 5. The prediction error is 5 percent
on average with a maximum of 7 percent.

4.3 ADI

The ADI experiment follows the discussion in Section 3.6. The
prediction for a 1; 024� 1; 024 matrix, shown in Fig. 6 clearly
distinguishes between the block partitioning on the j-axis
(vertical) and the i-axis (horizontal). The prediction error of
the vertical version for large P is caused by the fact that the
PAMELA model generated by the compiler does not account
for the loop overhead caused by the SPMD level processor
ownership tests. The maximum prediction error is therefore
77 percent but must be attributed to the current generator
version, rather than the PAMELA method. The average
prediction error is 15 percent.

4.4 GAUSS

The Gaussian elimination code illustrates the use of the
PAMELA model in predicting the difference between cyclic

and block partitioning, and also demonstrates the impor-
tance of modeling cache effects. The 512� 512 matrix is
partitioned on the j-axis. The submatrix update is coded in
terms of an i loop, nested within a j loop. As the SPMD
ownership tests apply to the j axis, the jÿ i loop
arrangement minimizes the overhead. The results shown
in Fig. 7 illustrate the ability of the PAMELA model to
predict the superior load balancing of a cyclic partitioning
compared to a block partitioning. The prediction error for
large P is caused by the fact that individual broadcasts may
partially overlap due to the use of asynchronous commu-
nication, which is not modeled by bcast.

Fig. 8 shows the performance of a slightly modified code
based on an iÿ j loop arrangement. The results show that the
cache performance improvement as a result of the arrange-
ment outweighs the ownership test overhead. For a cyclic
partitioning S scales with P which causes delayed speedup.
For a block partitioning it always holds S ¼ 1. Indeed, the
model predicts that, for compute-bound settings, it is block
partitioning that produces the best results. The prediction
error is 13 percent on average with a maximum of 35 percent.

4.5 PSRS

PSRS sorts a vectorX ofN elements into a result vectorY . The
vectors X and Y are block-partitioned. Each X partition is
sorted in parallel. Using a global set of pivots X is
repartitioned into Y , after which each Y partition is sorted

162 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 2, FEBRUARY 2003

Fig. 5. MATMUL execution time [s] (N=256, 512, and 1,024).

Fig. 6. ADI execution time [s] (vertical and horizontal data mapping).

Fig. 7. GAUSS execution time [s] (j-i loop, cyclic and block mapping).

Fig. 8. GAUSS execution time [s] (i-j loop, cyclic and block mapping).



in parallel. Fig. 9 shows the prediction results forN ¼ 819; 200

for two different data mapping strategies. In the original
program, all arrays except X and Y are replicated (i.e., pivot
vector and various index vectors). This mapping, however,
introduces a severeOðNP Þ communication bottleneck. In the
improved program version this problem is solved by
introducing a new index vector that is also partitioned. The
prediction error is 12 percent on average with a maximum of
26 percent.

4.6 Summary

For each of the four test programs, Table 3 lists the number of
application-specific annotations (A), the compilation time
(CT) of the PAMELA model generated by the Spar/Java
compiler (generation time itself is negligible), the solution
time (ST) of the model, and the average prediction error (err).
The timing results are expressed in CPU s (450 Mhz Pentium
II). In PSRS, a data-dependent, dynamic program, six
annotations were necessary, only one of which required a
few sequential profiling runs (the Quicksort function). Since
machine benchmarking, sequential profiling, and
PAMELA compilation time is amortized over many parameter
settings, modeling cost cost is negligible. The average time to
compile a symbolic performance model is 11 s. To illustrate
the cost reduction impact of symbolic cost estimation, the
solution costs are shown before (ST1) and after automatic
simplification (ST2). The solution time ST2 listed in the table
reflects the simplification capability of the current PAMELA

compiler version. For instance, large strings of maximiza-
tions, additions and multiplications of only two or three
symbols are not yet properly reduced, as well as certain sum
reductions in GAUSS although Oð1Þ solutions exist [13]. The
table shows that the average time to obtain the performance
plots currently ranges from 330�s to 16.1 ms per point. As the
numerical evaluation of the symbolic model is performed
using the PAMELA compiler’s internal numeric evaluator,
more specialized evaluators may produce further speedup.
The overall average prediction error is less than 10 percent
with a maximum of 77 percent, which is due to trivial
modeling inaccuracies, rather than the inherent inaccuracy of
the PAMELA approach as explained earlier. Apart from
providing a good scalability assessment, the model correctly
predicts the best design choice in all cases.

5 RELATED WORK

As in all performance modeling approaches, symbolic
techniques aim at finding an acceptable tradeoff between
accuracy and modeling cost. An important accuracy issue
in static approaches is the way in which dynamic
program and machine information is incorporated in the
model. As acquiring this information involves some form
of actual measurement, this term in the modeling cost
equation may potentially degrade the prediction ratio. In
abstract symbolic modeling approaches, the model is
complemented by a carefully chosen measurement meth-
odology. A typical example is the measurement of the
latency metric, introduced by Zhang et al. [39], which
accounts for all dynamic overheads for a particular
program-machine combination. When measured for a
different number of processors, the analytical model is
capable of predicting application scalability with high
accuracy. In the more detailed performance prediction
approach by Xu et al. [37], measurement also plays a
central role in determining, e.g., loop execution times at
program level and, e.g., communication times at the
machine level (all measured for a particular program-
machine combination). The importance of the measure-
ment cost has led them to explicitly address the issue in
terms of the prediction ratio we cited in the introduction.
In the above approaches, dynamic information is mea-
sured in a program�machine space, in order to provide
the highest accuracy. Trading accuracy for prediction
ratio, we separate program and machine modeling by
using an explicit workload interface at the relatively fine
grain (virtual) machine instruction level, similar to
simulation (yet without the simulation costs). Conse-
quently, dynamic information is measured in a programþ
machine space, significantly improving model portability
by amortizing machine benchmarking cost (e.g., �c; �l; �g)
and program profiling cost (e.g., branching probabilities)
over the combined space. In contrast to portable
approaches such as BSP [33] and LogP[9], we model
algorithm and architecture workload and synchronization
structure in terms of a program, the symbolic model being
compiled automatically.

Our symbolic performance modeling approach has been
primarily inspired by the existing work in the static, compile-
time prediction field, where the separation of program and
machine spaces is commonly adopted. Although the idea of
automatically generating symbolic performance models from
programs originates from the sequential domain [36], most
influential work is found in the parallel domain. Approaches
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based on deterministic SP DAG analysis in the flavor of (2)
include the work of Atapattu and Gannon [5], Balasundaram
et al. [7], Clement and Quinn [8], Fahringer [11], Mendes and
Reed [24], and Wang [35]. Approaches based on stochastic SP
DAGs include the work of Lester [22], and Sahner and Trivedi
[29]. None of the work addresses mutual exclusion, except in
terms of architecture-specific forms of memory contention
analysis [5], network contention analysis [11], and the
benchmarking of collective (contending) communication
procedures [7]. Although the mutual exclusion oriented
DAG approaches mentioned in the introduction [1], [20], [23]
are inherently superior in modeling contention, they are not
considered in the above comparison because of their numeric
approach.

Static approaches that take into account the effects of a
limited number of processor resources include the work of
Allen et al. [4], Polychronopoulos and Banerjee [28], Sarkar
[30], and So et al. [32]. Similar to our approach the critical path
prediction is augmented with a lower bound of comparable
accuracy, which is derived using Graham’s list scheduling
theory [17]. An improvement has been described by Jain and
Rajaraman [19], by iteratively applying the analysis to
separate DAG layers, much in the flavor of (5). Unlike our
generic approach, only processor resources are considered.
Furthermore, the list scheduling theory cited only applies to
dynamic, work conserving scheduling disciplines (unforced
idleness), while forced idleness is quite common, especially in
systems featuring static mappings that are poorly designed.
Targeted at real-time systems, Shaw [31] presents a predic-
tion scheme that computes both a lower and upper bound on
the execution time. The scheme approximately accounts for
critical sections and processor sharing but does not explicitly
model memory and network contention.

6 CONCLUSION

Performance prediction cost is a critical success factor in the

design of parallel applications and architectures. This

particularly applies to the initial design stages where

prediction cost is of more priority than optimum prediction

accuracy, given the huge design space involved. In this paper,

we have presented a symbolic performance modeling

approach aimed at minimizing modeling time and solution

time, while providing sufficient prediction accuracy to select

the best design alternatives. The approach is based on

modeling a parallel program and machine in terms of a

performance simulation formalism called PAMELA. Instead

of simulation the PAMELA model is compiled to a symbolic

performance model. The compilation method integrates

critical path analysis typical for compile-time cost estimation,

with asymptotic bounding analysis from queuing theory,

yielding a lower bound T l on the simulation result T . This

analytic tractability is the result of a careful restriction of the

formalism’s modeling power to the equivalent of determi-

nistic SP DAGs (condition synchronization) combined with

mutual exclusion.
The introduction of PAMELA minimizes modeling cost in

two ways. Instead of going through a labor-intensive and
error-prone process of directly deriving a symbolic perfor-
mance model, only a PAMELA model needs to be constructed.

As the PAMELA simulation formalism is intuitively close to
the system under study, modeling cost is greatly reduced,
making PAMELA an attractive tool to model and (analytically)
reason about the performance impact of algorithmic and
architectural designs. For high-level structured program-
ming models such as the data-paral lel model ,
PAMELA models can be directly compiled from the program.
As annotation effort is relatively small, modeling cost nearly
reduces to compilation cost, which is in the order of seconds.
Moreover, as the performance model is parameterized,
modeling cost (including program annotation, profiling,
machine benchmarking) is amortized over many model
evaluations.

Due to the inherent regularity (replication) of many
parallel or sequential programs and data partitionings, the
symbolic performance models are amenable to an aggressive
symbolic simplification. The simplification that is part of the
PAMELA compilation process dramatically reduces solution
cost by many orders of magnitude compared to simulation.
Combined with the very low modeling cost this results in an
extremely high prediction ratio. For the data-parallel pro-
gram experiments in Section 4, the solution cost currently
ranges in the milliseconds. This cost is expected to decrease as
the PAMELA compiler’s symbolic simplification engine
further matures.

Although a static analysis technique is used to compile
PAMELA models to symbolic predictions, prediction accu-
racy is improved over traditional critical path analysis
techniques due to the approximate, symbolic analysis of
contention. Theory and experiments show that on average the
inherent, worst-case prediction error of T l is limited to a
50 percent underestimation of T , regardless of system size,
whereas traditional static techniques, that account for
condition synchronization only, entail errors that are vir-
tually unlimited. In addition, it is shown that the potential
underestimation can be predicted by the contention index �
that is compiled as a side result of T l. PAMELA’s restricted
modeling power, required for analytic tractability, implies
that parallel program/machine combinations be best mod-
eled at the parallel algorithm level to avoid potential
modeling errors due to the semantic gap between algorithm
and implementation. In practice, this restriction hardly
induces modeling inaccuracies. This is demonstrated by a
number of theoretic and empirical modeling case studies,
including a parallel benchmark program on a T800 transputer
grid, and five parallel programs on a cluster of Pentium Pros
connected by Myrinet (APSP, MATMUL, ADI, GAUSS,
PSRS). Our results show that the average prediction error is
less than 10 percent. It is also shown that this prediction
accuracy is more than sufficient to assess application
scalability (all applications), and to correctly select between
alternative data partitionings (ADI, GAUSS) and code
modifications (GAUSS, PSRS).
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