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Abstract. Speculative parallelism refers to searching in parallel for a
solution, such as finding a pattern in a data base, where finding the first
solution terminates the whole parallel process. Different performance pre-
diction methods are required as compared to traditional parallelism. In
this paper we introduce an analytical approach to predict the execution
time distribution of data-dependent parallel programs that feature N -
ary and binary speculative parallel compositions. The method is based
on the use of statistical moments which allows program execution time
distribution to be approximated at O(1) solution complexity. Measure-
ment results for synthetic distributions indicate an accuracy that lies in
the percent range while for empirical distributions on internet search en-
gines the prediction accuracy is acceptable, provided sufficient workload
unimodality.

1 Introduction

Analytically predicting the execution time distribution of dependent parallel
programs is an extremely challenging problem. Even for fixed problem size the
variety of typical input data sets may cause a considerable execution time vari-
ance. Especially for time-critical applications, merely predicting the mean exe-
cution time does not suffice and knowledge on the execution time distribution is
essential. In particular, the execution time distribution of a parallel composition
of tasks with stochastic workloads is computationally demanding.

Parallel composition can be distinguished in and-parallel and or-parallel com-
positions. Of the two forms, and-parallel composition is most common in parallel
computing, and typically results from task or data parallelism, where each task
essentially involves different computation (workload), or the same computation
on different data, respectively. Consider an and-parallel composition of N tasks
having an execution time Xi. As in and-parallelism the slowest computation
(largest workload) determines overall execution time Y , it follows that

Y =
N

max
i=1

Xi. (1)

Or-parallel composition, in contrast, results from speculative parallelism
where each task is initiated without being sure that its execution should com-
plete. Instead of and-parallel composition, an or-parallel composition terminates
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when one of the parallel tasks has been completed. Examples of or-parallel com-
position include searching in parallel for a solution, such as finding patterns in
a data base, where the first solution found terminates the whole parallel pro-
cess. As the fastest task completion now determines the performance, the overall
execution time Y is given by

Y =
N

min
i=1

Xi. (2)

Other areas where computing the minimum of a set of stochastic numbers is
of interest include reliability analysis (e.g., system breakdown is determined by
earliest component failure), and road traffic analysis (e.g., speed of a vehicle
chain on a single lane is determined by the slowest).

In this paper we consider the solution of Eq. (2) which has received less
attention compared to Eq. (1), despite its obvious utility. While many authors
have studied Eq. (1) as part of their prediction techniques [2,3,5,6,7,8,9,10,13,14,
15,16], some authors also include Eq. (2) in their analysis [6,9,14], but restrict
the analysis either to specific distributions rarely found in (parallel) programs,
or assume distributions to be symmetric [6].

When Xi are deterministic Eq. (2) provides an exact and low-cost predic-
tion tool. When, as in data-dependent programs, Xi is stochastic, interpreting
Eq. (2), e.g., in terms of mean values in the sense of

E[Y ] =
N

min
i=1

E[Xi] (3)

produces a severe error, which for symmetric distributions Xi is linear in the
variance of Xi and logarithmic in N [6]. The same applies to Eq. (1).

Solving Eq. (2) presents a major problem that is well-known in the field of
order statistics. There are a number of approaches to express an execution time
distribution, the choice of which largely determines the trade-off between ac-
curacy and cost involved in solving Y. An exact, closed-form, solution for the
distribution of Y is expressed by using the cumulative density function (cdf) [18].
Unfortunately, many execution time distributions do not have a closed-form cdf
function, such as the normal distribution and most of the distributions obtained
from measurements. Alternative approaches restrict the type of distribution to
those for which Eq. (2) can be solved, such as the class of exponomial distri-
butions [14] or Erlang and Hyperexponential distributions [9]. While proven a
powerful tool for, e.g., reliability modeling, such a distribution workload rarely
occurs in practice.

Another, more general way of expressing distributions is based on approxi-
mating an execution time distribution in terms of a limited number of statistical
moments. In [1] an analytic performance prediction technique based on the first
four statistical moments is presented for sequential and conditional task compo-
sitions. The raw moment of X, denoted E[Xr], is defined by

E[Xr] =
∫ ∞

−∞
xrdFX(x). (4)
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Although the approach is straightforward in the sequential domain, for parallel
composition, however, there is in general no analytic, closed-form solution for
E[Y r] in terms of E[Xr] due to the following integration problem. From Eqs. (2)
and (4) we obtain

E[Y r] =
∫ ∞

−∞
xrd(1 − (1 − FX(x))N ). (5)

The right-hand side integration is fundamentally impossible to solve analytically
in such a way that E[Y r] can be expressed directly as function of E[Xr]. This
problem becomes even more complicated when different workloads are involved.

Recently, a similar integration problem, arising from the and-parallel case,
has been solved, by introducing generalized lambda distributions as an approx-
imation of the execution time distribution [2,3]. Based on a similar approach,
in this paper we solve the integration problem in Eq. (5) for the or-parallel
composition, for both N -ary or-parallel composition (identical workload distri-
butions), and binary or-parallel composition (different workload distributions).
Our contribution has the specific advantage that the approximation of E[Y r],
now readily expressed in terms of the first four input moments E[Xr], has high
accuracy and O(1) solution complexity. Furthermore, this approach extends the
use of statistical moments, shown to be successful in the sequential domain [1]
and the and-parallel domain [2,3] into the or-parallel domain. To the best of our
knowledge such an approach towards solving E[Y r] in terms of E[Xr] has not
been described elsewhere.

The remainder of the paper is organized as follows. Section 2 presents the
rationale behind our choice of generalized lambda distributions and describes
how our closed-form solution for E[Y r] is derived. The accuracy of our method
is described in Section 3 using standard distributions that are characteristic of
workload distributions found in practice. In Section 5 we state our conclusion.

2 Analysis

2.1 Rationale

As mentioned in Section 1, our performance prediction method is based on the
use of a limited number of statistical moments (typically the first four moments,
i.e., mean, variance, skewness and kurtosis) aimed to pair good accuracy with
minimum solution complexity. Previously, the method has been applied to com-
pute the execution time distribution of sequential programs based on the distri-
bution parameters of the constituent program parts such as loops, branches, and
basic blocks [1]. The method provides a very good prediction of the execution
time of sequential programs, while the analysis is straightforward. In contrast,
the analysis of determining the distribution of a parallel composition in terms of
input distributions is problematic as described in Section 1. Directly applying the
moment method in the analysis is fundamentally impossible due to integration
problems. In order to extend the application of our moment method to parallel



Symbolic Performance Prediction of Speculative Parallel Programs 91

composition we introduce the use of generalized lambda distributions (GLD) for
two reasons. First and most importantly, due to the specific formulation of the
GLD we can solve our integration problem in Eq. (5) so that it becomes possible
to obtain the moments of Y . Second, unlike other approximating distributions
such as, e.g., Pearson distributions, the GLD comprises of only four parame-
ters which makes it directly compatible to our four-moment method used in the
sequential domain.

2.2 Generalized Lambda Distributions

The generalized lambda distribution, GLD(λ1, λ2, λ3, λ4), is a four-parameter
distribution defined by the percentile function R as function of the cdf, 0 ≤ F ≤
1, according to [12]

X = RX(F ) = λ1 +
Fλ3 − (1 − F )λ4

λ2
(6)

where λ1 is a location parameter, λ2 is a scale parameter and λ3 and λ4 are shape
parameters. While the cdf does not exist in simple closed form, the probability
density function (pdf) is given by

f(x) =
dF

dRX(F )
=

1
R′

X(F )
=

λ2

λ3Fλ3−1 + λ4(1 − F )λ4−1 . (7)

This four-parameter distribution includes a wide range of curve shapes. Specifi-
cally, the distribution can provide good approximations to well-known densities
as found in [12]. Provided that the lambda values are given, obtaining the sta-
tistical moments proceeds as follows. Without loss of generality let λ1 = 0. Then
from Eqs. (4) and (6) the rth raw moment of X is given by

E[Xr] =
1
λr

2

r∑
i=0

(
r

i

)
(−1)iB(λ3(r − i) + 1, λ4i + 1) (8)

where B denotes the beta function as defined by

B(a, b) =
∫ 1

0
ta−1(1 − t)b−1dt. (9)

Since the beta function has been provided in the current standard mathematical
library, the computation cost of Eq. (8) for r up to four is negligible.

To obtain the four lambda values from the moments we can refer to a table
provided in [12]. If more precise lambda values are required, an alternative to
looking up the table is to apply a method based on function minimization such
as the Nelder-Mead simplex procedure [11]. This procedure requires a constant
number of iteration steps. Even for a 10−10 precision for the lambda values,
our experiments show that no more than 100 iteration steps are required which
involves evaluating Eq. (8) (i.e., in total less than 105 floating point operations).
Thus providing the first four moments, the cost of obtaining the lambda values
from the table is also negligible.
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2.3 Or-Parallel Composition
In this section we present how the GLD is applied in the analysis of speculative,
or-parallel composition. Our results are stated in terms of the following two
theorems for N -ary and binary compositions, respectively.

Theorem 1. The nth order statistic
Let Y1 ≤ Y2 ≤ . . . ≤ YN be random variables obtained by permuting N inde-

pendent and identical distributed (iid) variates of continuous random variables
X, i.e., X1, X2, . . . , XN , in increasing order. Let E[Xr], r = 1, 2, 3, 4 exists while
X can be expressed in terms of GLD(λ1, λ2, λ3, λ4) where λj are functions of
E[Xr]. Without loss of generality let λ1 = 0. Then for n = 1, 2, . . . , N the rth
raw moment of Yn is given by

E[Y r
n ] =

n

λr
2

(
N

n

) r∑
i=0

(
r

i

)
(−1)iB(λ3(r − i) + n, λ4i + N − n + 1) (10)

where B denotes the beta function.

�

For the proof we refer to [4].
Theorem 1 enables us to express E[Y r] in terms of E[Xr], using the GLD

by simply looking up a table [12] and subsequently using Eq. (10). Note, that
our analysis technique is parametric in the problem size N (the number of tasks
involved in the parallel section). Moreover, note that the solution complexity is
entirely independent of N (i.e., O(1)). If more precise lambda values are required,
an alternative to looking up the table is to apply a method based on function
minimization such as the Nelder-Mead simplex procedure [11]. This procedure
requires a constant number of iteration steps. Even for a 10−10 precision for the
lambda values, our experiments show that no more than 100 iteration steps are
required which involves evaluating Eq. (8) (i.e., in total less than 105 floating
point operations).

As in speculative parallel composition Y is determined by the smallest Xi, the
specific instance n = 1 of Theorem 1 applies (i.e., the smallest order statistic).
Our result is stated in the following corollary.

Corollary 1. N -ary or-parallel composition
Under the same assumption as in Theorem 1 let random variable Y be defined
as

Y = min(X1, X2, . . . , XN ). (11)

Then the rth raw moment of Y is given by

E[Y r] =
N

λr
2

r∑
i=0

(
r

i

)
(−1)iB(λ3(r − i) + 1, λ4i + N). (12)

The proof can be straightforward obtained from Eq. (10) by substituting n = 1.
Similar to sequential compositions the solution complexity of Eq. (12) is en-
tirely independent of N (i.e., O(1)) while its computation cost is negligible small
(cf. Eq. (8)).
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While Theorem 1 and associated corollary restrict the workload Xi to be iid,
for different workload in binary or-parallel composition we present the following
theorem.

Theorem 2. Binary or-parallel composition
Let random variable Y be defined as

Y = min(X1, X2) (13)

where Xi are independent random variables for which E[Xr
i ] for r = 1, 2, 3, 4

exist. Let Xi can be expressed in terms of GLD(λ1, λ2, λ3, λ4) where λi,j are
functions of E[Xr

i ]. Then the raw moments of Y are given by

E[Y r] =
∫ 1

0
(RX1(F ))r(1 − FX2(RX1(F ))) + (RX2(F ))r(1 − FX1(RX2(F )))dF.

(14)

�

Again, for the proof we refer to [4].
A straightforward implementation of Eq. (14) is as follows

E[Y r]=
1
K

K∑
k=1

((RX1(
k

K
))r(1−FX2(RX1(

k

K
)))+(RX2(

k

K
))r(1−FX1(RX2(

k

K
))))

(15)
where K is large. In practice, K = 104 is sufficiently large.

Based on the GLD an alternative approach to compute FXi
(RXj

(k/K)) is
using Newton’s method according to the following.

FXi,l+1(RXj
(k/K)) = FXj,l

− RXj
(FXj,l

)/R′
Xj

(FXj,l
) (16)

where FXj,0 = 1/K. The use of Newton’s method is appropriate since we need the
GLD only to represent the execution distribution in the integration (Eq. (14)).
Furthermore Newton’s method converges quadratically and converges to a so-
lution within a few iteration due to specific property of cdf. The evaluation of
Eq. (15) requires 60 ms on a 1 GHz Pentium III processor.

3 Synthetic Distributions

This section describes the quality of our prediction approach when applied to
some of the frequently-used standard distributions. The estimation quality is
defined by the relative error εr evaluated from the predicted moments E[Y r

p ] and
the measured moments E[Y r

m], according to

εr =
|E[Y r

m] − E[Y r
p ]|

E[Y r
m]

(17)

where E[Y r
p ] may be Eq. (12) or (15) for N -ary or binary parallel composition,

respectively. In all experiments in this paper we use εr in Eq. (17) to determine
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the estimation error of our method using 6,000 data samples. For the standard
distributions E[Y r

m] is computed using Eq. (5) since the cdf’s are known.
For the uniform distribution, E[Y r] is determined exactly since the GLD and

Newton’s method express this distribution exactly.
The exponential distribution (used by many authors) is typical for workloads

occurring when, e.g., searching for a key in a data base. The results for E[X] = 1
εr [%] for N -ary parallel composition is shown by Figure 1 (left) while for binary
composition where E[X1] = 1, and E[X2] = 1/θ εr [%] is shown by Figure 1
(right). The figure shows that εr is in the percent range and insensitive to θ
value variation.
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Fig. 1. εr [%] for N -ary and binary exponential distribution

Next, we consider the normal distribution, which is also appropriate to model
workloads as found in many programs. For N -ary composition we let E[X] = 0
and Var[X] = 1 while N varies to 10,000. εr is in the percent range as shown
by Figure 2. For binary composition we let E[X1] = 1 and Var[X1] = 1, while
E[X2] = µ and Var[X2] = σ2. We vary µ and σ as shown in Figure 3. In Figure 3
(left), εr is in the percent range and increases logarithmically as function of σ.
Numerical instabilities in the computation of E[Y r

m] prohibit larger values for σ.
In Figure 3 (right), εr decreases logarithmically as function of µ, and εr < 1%.
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Fig. 2. εr [%] for N -ary normal distribution
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Fig. 3. εr [%] for binary normal distribution

4 Empirical Distributions

While the previous distributions already provide an indication of the perfor-
mance of our technique, in this section we present the results for empirical
distributions as measured from a distributed search application (using search
engines) on the internet. For a large number of queries, each query is sent to
each site in parallel, the response time being determined by the fastest response.

The search engines are located at URL addresses in the USA (dot com),
Europe (dot nl), and Latin America (dot cl). As query we search 2,000 large
cities around the world while as response we obtain html text, which includes the
search time (in seconds) excluding internet communication delay. The workload
distribution is shown in Figure 4 (left). The dot cl domain has a left-skewed
distribution while the dot com and dot nl domains have bimodal distributions.
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Fig. 4. Empirical distributions (left) and εr [%] for .cl (right)

In an N -ary or-parallel search, we represent all sites on one particular domain
in terms of one workload distribution X and apply Eq. (12). To resemble identical
distributions for X we repeat the search on one domain up to 128 times in
unconsecutive manner to avoid probable caching mechanism in the search engine.
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The prediction error is shown in Figures 4 (right) and 5 for the dot cl, dot com
and dot nl domains, respectively. For all three cases εr increases for larger N . The
average error for the dot cl domain is appreciable since the distribution is sharply
left-skewed where the distribution mass is concentrated near the minimum value.
In such case the fitting for lambda values is very sensitive. The error for the dot
com and dot nl domains are much worse and increase rapidly for larger N ,
which is caused by the fact that the distribution of X is no longer unimodal, a
requirement of our technique.
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Fig. 5. εr [%] for N -ary or-parallel (.com: left and .nl: right)

In a binary or-parallel search we combine each possible combination of two
domains and apply Eq. (15). The prediction error for the mean is in the percent
range as given in Table 1 while for the higher moments the prediction error is
moderate, since again, the workloads are no longer unimodal.

Table 1. εr [%] for empirical distributions

X1 X2 ε1[%] ε2[%] ε3[%] ε4[%]

.cl .com 4.0 8.5 21 73

.com .nl 1.1 9.3 21 45

.nl .cl 1.8 4.7 19 37

5 Conclusion

In this paper we have presented an analytical approach to predict the execution
time distribution of N -ary and binary speculative parallel composition at a mere
O(1) solution complexity. Measurement results for uniform, exponential and nor-
mal distributions indicate an accuracy that lies in the percent range while for
real workload distributions on internet search engines the prediction error is in
the 10 percent range, provided workload unimodality.
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