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M
obile robots are complex systems that combine mechanical elements such as

wheels and gears, electromechanical devices such as motors, clutches and

brakes, digital circuits such as processors and smart sensors, and software pro-

grams such as embedded controllers. They have mechanical constraints (e.g., a

car-like robot cannot move sideways), limited energy resources, and computa-

tion, sensing, and communication capabilities. They operate in environments cluttered with

possibly moving and shape changing obstacles, and their objectives can change over time, such

as in the case of appearing and disappearing targets. Robot motion planning and control is the

problem of automatic construction of robot control strategies from task specifications given in

high-level, human-like language. The challenge in this area is the development of computation-

ally efficient frameworks allowing for systematic, provably correct, control design accommodat-

ing both the robot constraints and the complexity of the environment, while at the same time

allowing for expressive task specifications. 

A typical motion task for one robot moving in an environment with obstacles is simply stated

as “go from A to B and avoid obstacles.” A common approach to this problem is based on a

hierarchical, three-level process. At the first level, the obstacle-free configuration space of the

robot is partitioned into cells, and adjacency relations between cells are determined. The result is

presented in the form of a graph. Since any path connecting the cell containing A to the cell

containing B in this graph satisfies the specification (i.e., it avoids obstacles), we call this the

specification level. In the second step, a path on this graph is chosen, for example using an opti-

mality criterion penalizing the travelled distance and/or the proximity to obstacles. We will call

this the execution level. Finally, in the third step called the implementation level, a reference trajecto-

ry traversing the sequence of cells given by the path is generated, and robot controllers are con-

structed so that the reference trajectory is followed.

The so-called symbolic approaches that we discuss in this article fit into the three-level hier-

archy presented above, and draw upon well-established concepts in related areas, such as
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behavior-based robotics and hybrid control systems. As we

enrich the language (at the specification level) and formally

take into account real-world robot control, sensing, and com-

munication constraints, concepts and tools from the theory of

computation such as automata and languages arise naturally,

hence the name “symbolic.”

For example, the previous motion specification “go from

A to B and avoid obstacles” is not rich enough to describe a

large class of tasks of interest in practical applications. The

accomplishment of the mission might require the attainment

of either A or B, convergence to a region (“reach A eventual-

ly and stay there for all future times”), visiting targets

sequentially (“reach A, and then B, and then C”), or surveil-

lance (“reach A and then B infinitely often”). Such specifica-

tions consisting of logical and temporal statements translate

naturally to formulas of temporal logics (see the following for

an informal introduction to such a logic), which are tradition-

ally used to specify correctness and safety properties of digital

circuits and software programs. A language (set of words) satis-

fying such a formula is in general accepted by an automaton,

which can seen as a generalization of a graph. If this automa-

ton is then synchronized with a labeled graph capturing the

transitions that the robot system can take between adjacent

cells in the environment, then the set of all solutions at the

specification level can be represented as an automaton, as

opposed to a graph as described previously (see the top level

of the hierarchy in Figure 1).

The search performed at the execution level becomes more

involved than path finding, and is related to the classical prob-

lem of model checking in formal analysis. For example, if the

Figure 1. (a) Hierarchical abstraction and computation architecture. A high level specification, such as a temporal logic formula over
environmental predicates, together with a discrete graph representation of the environment, produces the set of all possible dis-
crete solutions to the problem. A discrete execution is selected by taking into account the robot constraints, and then implemented
as a hybrid automaton giving the control strategy for each robot. (b) A heterogeneous team of robots moving in an environment
with obstacles and targets. The directed graph connecting the robots shows the communication architecture of the team.

Implementation Level

Execution Level

Specification Level

Output: Controller Implementation

Partition Set of All Discrete Solutions:

Automaton Over Partition Regions

Robot-Compatible Execution String

Input: High-Level Specification

Over Environmental Predicates

Graph Search

Generation of

Control Laws

Robot Control Strategy:

Quantized Control

System, Hybrid Automaton

Mechanical, Control, Sensing,

and Communication Constraints

U Y
Controller

guard12

guard21

reset12

reset21

(a)

(b)

x = f2(x,u)

Inv2

x = f1(x,u)

Inv1

. .



MARCH 2007 IEEE Robotics & Automation Magazine 63

specification is given in linear temporal logic (see the follow-

ing), this process involves a search for strongly connected

components in a graph. As before, the result is an execution

string ( e.g., a sequence of regions to be visited by the robot),

which can now be infinite (second level of the hierarchy in

Figure 1). The alphabet of such a string is a finite set of con-

trol symbols or strategies, which can be determined by the

partition of the environment or by predefined behaviors. The

alphabet and the syntactical constructs over it are further

restricted by control and sensor quantization, mechanical and

communication constraints, and complexity limits.

A typical scenario arising in robot motion planning and

control is shown for illustration at the bottom of Figure 1.

Roughly, a heterogeneous team of robots is required to visit

targets (regions marked with flags), while avoiding obstacles

(red regions). At the same time, the robots might be required

to assemble into one or more formations of desired geometry,

such as line, triangle, hexagon, etc. The specification language

should be rich and natural (e.g., allowing for statements as the

one given previously). The obstacles can move and the targets

can appear and disappear randomly in time and space. The

robots have mechanical, control, and sensing constraints. The

team is also subject to (possibly time-varying) communication

constraints, illustrated as the graph connecting the robots in

Figure 1. We ask the following question: “can we develop a

computational framework allowing for specifying such a task

in a high-level, human-like language, with automatic genera-

tion of provably correct robot control laws?” 

Throughout the rest of this article, we discuss existing

results providing partial answers to the above question, and

emphasize the remaining open issues and challenges. The dis-

cussion is focused on the notion of discretization, which

enters the problem at all levels of the hierarchy shown in Fig-

ure 1. An environment-driven discretization is induced when

a robotic mission is specified geometrically in terms of regions

of interest in the environment. Such a discretization, when

supported by the existence of low-level controllers driving the

robots through the resulting regions, can be successfully used

to provide a solution to our problem for robots with simple

dynamics moving in static, a priori known environments. For

robots with complicated dynamics moving in dynamically

changing, possibly unknown environments, the discretization

is more appropriate at the level of controllers rather than envi-

ronment, leading to control-driven discretizations. For exam-

ple, a number of behaviors (or closed-loop control laws) can

be concatenated in order to negotiate an unknown environ-

ment or cope with robot mechanical constraints.

Environment-Driven Discretization
Throughout this article, we will assume that the dynamics of a

robot are described by a control system of the form

ẋ = f (x, u), x ∈ X , u ∈ U, (1)

where x is the state of the robot, u is its control input, X is

the state space, and U is the control constraint set.

Let us first focus on the implementation level of the hierar-

chy proposed at the top of Figure 1, and ask the following ques-

tion: Given an execution string (i.e., a sequence of adjacent

triangles to be visited by a robot in finite time) over regions in a

partitioned environment, can we generate a robot control strat-

egy implementing it? In other words, can we generate a control

strategy driving the robot through the given sequence in finite

time, while keeping it in the last region for all future times? 

Consider for example the sequences of tr iangles

�1,�2, . . . ,�9 from Figure 2(b), which can be seen as an

execution string over a triangulated environment such the one

shown in Figure 2(a). A possible solution is shown as the

sequence of vector fields from Figure 2(b), where feedback

controllers u� i
(x) are assigned to each triangle � i . More for-

mally, the resulting closed-loop system is a hybrid automaton

(as illustrated at the implementation level in Figure 1)

ẋ = f (x, u� i
(x)), x ∈ � i , whose trajectories traverse the

sequence �1,�2, . . . ,�9 in finite time, with convergence

inside �9 . This strategy has been shown to work for any

sequence of adjacent triangles and for a robot with affine

dynamics (i.e., f (x, u) = Ax + b + Bu in (1), which

includes the fully actuated case f (x, u) = u) in [1]. Also, the

vector fields in adjacent triangles can be matched on the sepa-

rating facets, so that the produced vector field is continuous

everywhere, which results in smooth robot trajectories. The

computation of controllers consists of polyhedral operations

only, which can be efficiently performed.

Let us now see if richer specifications can also be handled

in a similar automatic fashion. Assume, as before, that the

dynamics of a robot are described by an affine system. How-

ever, we consider that the specifications are given as temporal

and logic statements over polyhedral regions in the environ-

ment. Consider, for example, that the robot moves in an envi-

ronment with three obstacles o1 , o2 , o3 and three targets

r1, r2, r3 that need to be surveyed (visited infinitely many

times). In other words, we consider the following task: 

“Always avoid obstacles o1, o2, o3 and visit regions r1, r2, r3, in this

order, infinitely often.” This specification immediately translates

to a formula of linear temporal logic (LTL) over the set of

symbols o1, o2, o3, r1, r2, r3 . Informally, LTL formulas are

made of temporal operators, Boolean operators, and atomic

propositions connected in any sensible way. Examples of tem-

poral operators include X (next time), F (eventually, or in the

future), G (always or globally), and U (until). The Boolean

operators are the usual ¬ (negation), ∨ (disjunction), ∧ (con-

junction), ⇒ (implication), and ⇔ (equivalence). The atomic

propositions are properties of interest about a system, such as

the set of obstacles and targets in our example. Using this

notation, the task can be formally written as the following

LTL formula:

G(F( r1 ∧ F( r2 ∧ F r3)) ∧ ¬(o1 ∨ o2 ∨ o3)). (2)

The semantics of LTL formulas are given over labelled tran-

sition graphs (also called Kripke structures, or transition sys-

tems). In our example, such a transition system is obtained
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from the dual graph of the partition induced by the regions of

interest, if the vertices are labelled according to their being part

of obstacles or of targets, and if the edges are seen as transitions

that a robot can take. We say that a robot can take a transition

from a region q i to a region q j if we can design a feedback

controller uq i q j
(x) driving the robot in finite time from region

q i to region q j through the separating facet, irrespective of the

initial position of the robot in q i . State q i has a self transition if

we can design a feedback controller uq i q i
(x) keeping the robot

in region q i for all times, irrespective of the initial position of

the robot in q i . As before, the computation of such controllers

can be performed by polyhedral operations.

To find initial states and control strategies from which the

specification can be accomplished, one can now use a method

closely related to LTL model checking [2]. Specifically, this

procedure produces an automaton exhaustively describing all

possible solutions to the problem. This corresponds to the “set

of all discrete solutions” shown in the top box at the “specifica-

tion level” in Figure 1. In this automaton, a run can be select-

ed, which corresponds to the “execution level” in Figure 1.

For such a run, an implementation is found in the form of a

hybrid automaton, which associates one (or several) control

laws of the form uq i q j
(x) for each region q i . This corresponds

to the “implementation level” in Figure 1. 

It is important to note that all the steps in the framework

presented previously are performed automatically: Given the

specification in terms of a formula over linear predicates in

the environmental coordinates, the robots control strategy is

automatically determined. The approach also has the advan-

tage that it is robust, in the sense that small perturbations in

measurements of robot positions do not affect the overall

produced motion. On the negative side, the method is not

complete in the sense that, if a solution is not found, it

might still exist.

Even though these results suggest that automatic control of

robots from high level specifications given as formulas of some

temporal logic is useful and possible, several fundamental

questions remain to be answered. For example, it is not at all

clear that LTL is the right specification language. There are

specifications (such as “proposition π holds infinitely often on

all runs”) which cannot be expressed in LTL, but can be

accommodated by the incomparable logic computation tree

logic (CTL). It is also possible that LTL is too expressive, and

an unnecessarily large amount of time is spent for model

checking-type analysis. Simpler fragments of LTL might be

enough, as suggested in [3]. The main challenge when

The challenge in this area is the

development of computationally

efficient frameworks allowing for

systematic, provably correct,

control design accommodating

both the robot constraints and the

complexity of the environment,

while at the same time allowing

for expressive task specifications.

Figure 2. (a) Triangulation of the free space in a polygonal environment and the dual graph. (b) String of nonrepetitive triangles
in a triangulated environment is executed by constructing affine vector fields in each triangle.
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choosing a specification language is to find a good compro-

mise between the expressivity of the language and the com-

plexity of the analysis and synthesis algorithms.

Extending the aforementioned methods to more realistic

robot models will raise some nontrivial questions that should

be addressed in the near future. First, controllers guaranteeing

robot transition from one region to another or making a

region an invariant for a robot have not yet been developed

for robots with nonholonomic (nonintegrable differential)

constraints (see the following). Second, this approach should

take into account constraints induced by digital controllers

and sensors such as finite input and output spaces.

Finally, and arguably the most challenging open question is

the following: “given a team of locally interacting robots, and

a high level (global) specification over some environment,

how can we automatically generate provably correct (local)

control strategies?” What global (expressive) specifications can

be efficiently distributed? How should we model local inter-

actions (e.g., message passing versus syncronization on com-

mon events)? 

Control-Driven Discretizations
The approach presented in the previous section uses environ-

ment discretization to capture the complexity of the environ-

ment. While allowing for a rich specification language over the

partition regions, it is (in current form) restricted to static, a

priori known environments and simple robot dynamics, such

as fully actuated or affine dynamics with polyhedral speed con-

straints. Robots with more complex dynamics such as

unmanned ground car-like vehicles and air helicopter-like

vehicles might not be able to implement executions strings

over partition regions. In this situation, the discretization may

be more appropriate at the level of controllers rather than envi-

ronments. The argument behind such a control-driven dis-

cretization is that the global control task can be broken down

into more easily defined behavioral building-blocks, each

defined with respect to a particular subtask, sensing modality,

or operating point. Strings over such behaviors make up words

in so-called motion description languages (MDLs) [4]. An

example of such a string is (k i1, ξ i1), . . . , (k iq , ξ iq), where

k i j
: ℜ+ × X → U are feedback control laws and

ξ i j
: ℜ+ × X → {0, 1} are temporal or environmentally dri-

ven interrupt conditions, j = 1, . . . , q. The robot parses such

words as ẋ = f (x, k i1( t, x)) until ξ i1( t, x) = 1, at which

point the timer t is reset to 0, and ẋ = f (x, k i2( t, x)) until

ξ i2( t, x) = 1, and so on. In other words, as in the case of the

implementation of an execution string over regions of a parti-

tioned environment discussed previously, the robot control

strategy is a hybrid automaton (as illustrated at the “implemen-

tation level” of the hierarchy in Figure 1).

Having noted that promising results in this area have been

obtained, a number of challenges remain largely unsolved,

including: “Given a robot platform and a high-level mission,

what is the minimal number of control modes guaranteeing

that the mission is completed?” “Given a set of control modes,

what is the set of overall behaviors achievable by the system?”

“What is the best control program achievable from a set of

control modes given a particular mission?” and “Given exam-

ple trajectories, can the corresponding multi-modal control

program be recovered?” In the next two sections, we high-

light and discuss some of the steps that have been taken toward

answering these questions. 

Dealing with Nonholonomy
and Control Constraints
Planning feasible trajectories for robots with motion con-

straints (e.g., a car that cannot move sideways) is a complex

problem in which symbolic approaches were proved to

achieve crucial simplifications. The intuition behind this

approach is the following.  Let us consider the problem of fly-

ing small-scale autonomous helicopters, making full use of

their maneuvering capabilities. Dynamic models for such

robotic vehicles are very complex, and not even well known

away from hovering conditions. Yet, human pilots are able to

control remotely such helicopters and perform extremely

challenging aerobatic maneuvers with remarkable precision

and skill. Arguably, pilots are not optimizing the helicopter

trajectory and the control inputs in real-time—rather, they

execute complex routines by sequencing well-rehearsed

maneuvers. Using such a concept, it was possible to demon-

strate completely automated acrobatic flight of small-scale

helicopters [5].

The basic property enabling such a symbolic approach is the

invariance of robot dynamics to certain transformations, such

as translations and rotations about certain axis, and translations

in time. This is a key characteristics of human-designed vehi-

cles, since this ensures that motion-control skills learned at one

time/location can be effectively used at other places and other

times. Formally, this property is called symmetry and is associ-

ated to a certain group, such as the group of rigid body

motion, or a subgroup, such as pure rotations and translations.

Control Quanta

The first example of symbolic control of a robotic system was

introduced through the so-called control quanta, applicable to

driftless systems with symmetries. (A driftless system is such that

it stops when a zero control input is applied.) A control quan-

tum is any (reasonable, e.g., measurable) control signal with

finite time support. As such, it can also be seen as a symbol in a

MDL, as described previously. The application of a control

quantum to a driftless system results into a finite displacement of

the system. Continuing with our helicopter example, let us

consider that the control quantum q i, i = 1, . . . , m makes the

helicopter take off from (0, 0) and land at (�x i,�y i). After a

sequence of n1 instances of q1, n2 instances of q2, etc., the heli-

copter will land at 
∑m

i=1 n i(�x i,�y i). Note that, even though

we are not using a detailed model of the dynamics of the heli-

copter, this claim is convincing since we expect the helicopter's

dynamics to be invariant with respect to translations. It can be

shown that a very small number of control quanta (three in this

case) are sufficient to be able to move the helicopter arbitrarily

close to any desired point on the ground. The right sequence of
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control quanta achieving the desired displacement can be found

in polynomial time, and does not rely on the knowledge of the

detailed dynamics of the helicopter, but rather on the aggregate

effect of each control quantum, as summarized in the vectors

(�x i,�y i).

Clearly, trajectories constructed in this way may not always

be the most efficient: In our case, the execution of each sym-

bol would require the helicopter to take off and land. A more

sophisticated method for symbolic control is based on the

notion of compatibility between control quanta. Let us con-

sider for example a control quantum q3 that makes the heli-

copter take off from the origin and hover at an altitude of 100

m, over a certain location (�x3,�y3), and a control quantum

q4 that start from hover at 100 m, moves the helicopter by

(�x4,�y4). Finally, let q5 be a control quantum that starts

from hover at 100 m, over the origin, lands the helicopter at

(�x5,�y5). A new characteristics of these control quanta is

the fact that they are not necessarily compatible with one

another, i.e., they cannot be arbitrarily combined. For exam-

ple, q4 cannot be applied when the helicopter is on the

ground; q5 cannot be applied twice in a row; q3 does not

necessarily lead to an altitude of 200 m if repeated twice (e.g.,

because of ground effect). Note that q1, q2, and q4 are com-

patible with themselves, i.e., they are repeatable. These rules

for combining control quanta define a language, i.e., a subset

of all the strings that can be obtained combining symbols from

the alphabet {q1, q2, q3, q4, q5}, that can be encoded as the

set of strings accepted by a finite state machine like the one

shown in Figure 3. For example, (q1, q3, q5, q5, q4, q2, q1) is

a valid string, whereas (q1, q4, q5) is not.

Motion Primitives

Instead of using control quanta chosen from a collection of

controls, one could think of simplifying a robot control

problem by piecing together, in an appropriate way, a set of

elementary trajectories chosen from a small library—that are

themselves guaranteed to satisfy the constraints. Such feasible

trajectories that can be combined sequentially to produce

more complicated trajectories are called motion primitives.

In [6], the following classes of motion primitives have

been identified: i) trim primitives and ii) maneuvers. Trim

primitives are repeatable primitives that can be arbitrarily

cut, resulting in other repeatable primitives. This generalizes

the notion of steady state, or relative equilibrium: Families

of compatible trim primitives can be parameterized by the

time duration, e.g., by a timer interrupt as in the previous.

Maneuvers are motion primitives that are compatible with

trim primitives. In other words, a maneuver is (the class of

equivalence of ) an arbitrary trajectory that starts and ends at

steady-state conditions. For example, a loop is a maneuver

that can only be started from steady and level flight at a

given speed, and ends when steady and level flight is recov-

ered. The language defined by the compatibility relations is

encoded by a finite-state machine called a maneuver

automaton, as depicted in Figure 3; such language allows

the generation of motion plans combining steady-state tra-

jectories with possibly complex and acrobatic maneuvers.

Motion primitives can be generated in several ways, for

example by recording the actions of a human pilot; if an

accurate model of the robot’s dynamics is available, model-

based approaches are also possible, e.g., to design optimal

maneuvers. In real-world applications though, it is seldom

the case that the application of a pre-recorded control

input results in the same trajectory for the system. In order

to reject unavoidable disturbances, open-loop motion

primitives should be made robust using feedback control.

Note that individual primitives can be allowed to be desta-

bilizing, as long as closed paths on the automaton are sta-

ble: for example, acrobatic maneuvers can be performed in

an essentially open-loop fashion, as long as a recovery peri-

od is allowed.

Figure 3. A hierarchy of libraries for symbolic motion planning:
(a) Control quanta with a common interface. (b) Control quanta
with compatibility relations. (c) A maneuver automaton including
several trim primitives, and acrobatic maneuvers.
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Feedback Encoding

Feedback can also be used to extend the applicability of sym-

bolic motion planning strategies. In this more general case, the

control quantum corresponding to a given symbol α also

depends on the current state of the robot [i.e., u = u(x, t, α)

in (1)]. This can essentially change the system at hand into a

different system that is amenable to simpler motion control

strategies. For example, in [7], the notion of feedback encod-

ing is introduced, which affords the wealth of feedback-equiv-

alence results in the nonlinear systems literature; in other

words, through feedback encoding, broad classes of complex

nonlinear systems can be abstracted (at least locally) to a linear

system. Planning for such systems can then be achieved in a

linear setting, and then projected back to the original systems

by feedback decoding. 

While the symbolic approach to motion planning

described in this section has been applied successfully to chal-

lenging problems in autonomous mobile robotics, including

acrobatic aircraft and off-road races, several challenges still

need to be overcome: “What is the best choice of motion

primitives for achieving a given class of tasks?” “Given an

alphabet of motion primitives, what is the penalty associated

with restricting the robot’s trajectories to those obtained

through combination of those primitives—with respect to a

larger set of primitives?” and “Can we extend this symbolic

approach to  motion planning to multiple-robot systems?”

Solving these problems will require a deep understanding of

the interplay between the differential nature of the constraints

on the dynamics of a robot, and the combinatorial nature of

task specifications, discussed previously.

Low-Complexity, Symbolic Control Programs
One way of finding the appropriate set of control modes is by

letting the control mode selection be driven by experimental

data. For instance, one can envision a scenario in which a

human operator is controlling a mobile platform, and then,

through an analysis of the input-output sample paths, con-

struct motion description languages that reproduce the

human-driven robot behavior. Note that since the control

modes are feedback laws, this would correspond to recovering

control strategies rather than trajectories. If we let � denote

the set of all recovered modes, a recovered mode-string

σ ∈ �⋆ (�⋆ is the set of all finite length strings over �)

requires a total of length(σ ) log2[card(�)] bits for its specifi-

cation. This complexity measure (specification complexity)

thus allows a tradeoff between the length [denoted length(σ )]

of the string and the total number of available control modes

[denoted card(�)].

In [8], a method was developed for recovering mode

strings from empirical data with low specification complexity.

Figure 4. Ten ants are moving around in a tank (a). The conical visual scope as well as the closest obstacles (dotted) and goals
(dashed) for each individual ant (b). A simulation with 20 ants executing the recovered, low-complexity motion description lan-
guages (c).

(a) (b)

(c)
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As an example, consider the problem of constructing mode

sequences from data produced by a biological system, such as

ten ants (Aphaenogaster cockerelli) moving in a tank with a

camera mounted on top, as seen in Figure 4(a). Based on

models of the ants’ dynamics and perception regions, the

video data can be translated into input-output strings, as seen

in Figure 4(b). Following this, low-complexity mode strings

can be recovered and redeployed on simulated ants with dif-

ferent initial conditions. A result of applying this methodolo-

gy is shown in Figure 4(c).

As for the more philosophical question “What are the ants

doing?” this method provides the answer in terms of mode

strings rather than qualitative descriptions of ant behaviors. In

fact, the driving motivation behind this line of inquiry is to

come up with executable programs, i.e., strings of control laws

and interrupt conditions that can be operated by robotic

devices to produce ant-like behaviors rather than to produce

insights into the lives of ants. However, a closer inspection of

the recovered mode strings reveals that the most frequently

occurring modes are qualitatively generating behaviors like

“go straight slowly if no obstacles or goals are visible” or “go

fast, turning left/right when an obstacle is to the right/left

and/or the goal is to the left/right.”

Now, given that we have a measure of complexity as well

as a method for constructing the mode set, one can ask

whether or not the recovered mode set is rich enough for the

set of robotic missions that one might wish to undertake. This

relates to the classic tradeoff between complexity and expres-

siveness. Given that the underlying objective of the multi-

modal control design is to generate as rich a set of trajectories

as possible, one can tie the issue of expressiveness directly to

an optimal control problem. Suppose for example that the

behavior one wants the system to exhibit can be characterized

by x̃( t), while the state of the system is xσ ( t). Then, given a

mode set � , one can define the tracking error as

J(σ, x̃) = ‖xσ − x̃‖ (in some appropriate functional norm),

with σ ∈ �⋆.

The problem of minimizing J with respect to σ can be

(locally) solved using tools from hybrid optimal control. This

problem can moreover be extended in order to investigate the

expressiveness (E ) of the mode set by solving the differential

game, max-min problem

E = max
x̃∈X̃

{

min
σ∈�⋆

{ J(σ, x̃)}

}

,

where x̃ encodes the set of all desired trajectories. Unfortu-

nately, solving this problem is by no means simple, and as

such, effective computational methods for obtaining the

expressiveness of a given mode set remains one of the many

challenges in the subarea of symbolic control that we have

termed control-driven discretizations.

Multirobot systems
In multiagent mobile systems, it is believed that local commu-

nication and control strategies inspired from natural systems

such as flocks of birds or schools of fish can lead to useful and

predictable global behaviors. Alternatively, such communica-

tion and control protocols can be achieved through the use of

embedded graph grammars [9], which we briefly review in

the rest of this section.

In this formalism, robots are represented by vertices in a

graph. The edges in the graph represent coordination or com-

munication. Labels on the vertices or edges represent internal

states, which can be used, for example, by the communication

protocol. A grammatical rule is a rewrite schema of the form

L ⇀ R where L and R are small graphs. We interpret a rule

as follows: If a subgraph of the global state graph matches L ,

we update that subgraph to match R, thereby arriving at a

Figure 5. (a) Simple graph grammar. (b) Sample trajectory admitted by the graph grammar. 
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(nondeterministic) sequence of graphs representing a trajecto-

ry: G 0 → G 1 → G 2 → G 3 . . . Figure 5 shows an example.

To associate motion controllers with each robot requires

more machinery. First, we associate a workspace position to

each vertex in the graph that denotes the position of the cor-

responding robot (i.e., we embed the graph into the work-

space). Second, we associate a continuous guard to each

grammatical rule that states what condition on, for example,

the locations of the robots must hold for the rule to be applic-

able. Third, we associate a motion controller with each sym-

bol. This results in an embedded graph grammar (EGG) [10].

An EGG rule essentially allows for statements like “If there are

robots i , j and k in the embedded graph such that

||x i − xk|| ≈ r and the communication subgraph for i, j and

k matches the left hand side of the rule, then change the sub-

graph according to the right-hand side.”

Graph grammars have been implemented directly with a

variety of distributed robot systems. The advantage of the

approach is that each robot in the network can simply be a

graph grammar interpreter. Low level communication proto-

cols can be separated from the task definition (via a graph

grammar) by a layer of abstraction. This has also been accom-

plished with a stochastic version of graph grammars where

rules can be thought of as programmable chemical reactions.

In both of these cases, the level of abstraction afforded by the

graph grammar view has enabled straightforward specification

and implementation of complex multivehicle tasks.

Conclusion
We have illustrated different research trends that use symbolic

techniques for robot motion planning and control. As it often

happens in new research areas, contributions to this topic started

at about the same time by different groups with different empha-

sis, approaches, and notation. In this article, we tried to describe

a framework in which many of the current methods and ideas

can be placed and to provide a coherent picture of what we

want to do, what have we got so far, and what the main missing

pieces are. Generally speaking, the aim of symbolic control as we

envision it is to enable the usage of methods of formal logic, lan-

guages, and automata theory for solving effectively complex

planning problems for robots and teams of robots.

An example of the grand challenges we have in mind is to

enable a naive user to specify the daily chores of her/his

domestic robotic appliances in plain natural language—tidy up

rooms in the house daily and collect garments to do the laun-

dry every Tuesday, only after kids have left for school—and

automatically translate this in device-independent programs,

to be downloaded and executed on robots, so as to obtain a

dependable performance of the task in spite of the complexity

and unpredictability of the environment.

The results presented in this article can be divided in two

groups: top-down approaches, whereby formal logic tools are

employed on rather abstract models of robots; and bottom up

approaches, whose aim is to provide means by which such

abstractions are possible and effective. The two ends do not

quite tie as yet, and much work remains to be done in both

directions to obtain generally applicable methods. However,

the prospects of symbolic control of robots are definitely

promising, and the challenging nature of problems to be solved

warrants for the interest of a wide community of researchers.
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