
Symbolic Prefetching in Transactional
Distributed Shared Memory

Alokika Dash
Electrical Engineering and Computer Science

University of California, Irvine
adash@uci.edu

Brian Demsky
Electrical Engineering and Computer Science

University of California, Irvine
bdemsky@uci.edu

Abstract
We present a static analysis for the automatic generation of sym-
bolic prefetches in a transactional distributed shared memory. A
symbolic prefetch specifies the first object to be prefetched fol-
lowed by a list of field offsets or array indices that define a path
through the heap. We also provide an object caching framework
and language extensions to support our approach. To our knowl-
edge, this is the first prefetching approach that can prefetch objects
whose addresses have not been computed or predicted.

Our approach makes aggressive use of both prefetching and
caching of remote objects to hide network latency. It relies on the
transaction commit mechanism to preserve the simple transactional
consistency model that we present to the developer. We have eval-
uated this approach on several shared memory parallel benchmarks
and a distributed gaming benchmark to observe speedups due to
prefetching and caching.

Categories and Subject Descriptors D.1.3 [PROGRAMMING
TECHNIQUES]: Distributed Programming

General Terms Design, Algorithms

Keywords Symbolic prefetching, Transactional memory, Dis-
tributed shared memory

1. Introduction
Developing software that makes efficient use of clustered comput-
ing while managing program complexity can be challenging. While
previous generations of high-performance computers commonly
provided developers with a shared memory, modern clusters typ-
ically do not provide shared memory. Instead, the underlying hard-
ware supports communication between processing nodes through
message passing primitives.

Researchers have developed software distributed shared mem-
ories to provide developers with the illusion of a simple shared
memory abstraction on message passing machines. A straightfor-
ward implementation of a distributed shared memory can pro-
vide developers with a simple memory model to program. One
of the primary challenges in designing object-based distributed
shared memory systems is hiding the latency of accessing remote
objects. Previous work on transactional distributed shared mem-
ory primarily focused on providing transactional guarantees and
largely overlooked a promising opportunity for utilizing the trans-
action commit mechanism to safely enable optimizations. Also,
many traditional approaches to prefetching [Speight et al.2002,

Copyright is held by the author/owner(s).
PPoPP’10, January 9–14, 2010, Bangalore, India.
ACM 978-1-60558-708-0/10/01.

Joseph et al.1997] have had limited success hiding the latency of
remote object accesses in the distributed environment because they
require to compute an object’s address or accurately predict an
object’s address before issuing a prefetch for that object. Our ap-
proach describes prefetches in terms of objects through the heap
enabling it to prefetch objects whose addresses are not yet known.

We present a static analysis to generate prefetches for a dis-
tributed shared memory that is based on the transactional mem-
ory model [Harris et al.2006, Bocchino et al.2008]. This new uni-
fied compile-time analysis allows for software prefetching of arrays
and linked structures for our transactional distributed system that
aids in system performance. We have focused on small clusters of
servers interconnected with ethernet networks.

2. Prefetch Design
Transactional distributed shared memory creates a new opportu-
nity to safely and speculatively prefetch and cache remote objects
without concern for memory coherency — the transaction commit
process ensures that only transactions that access the latest versions
of objects can commit. Many traditional address-based prefetching
approaches were largely designed for hiding the latency to access
local memory — such prefetching incurs large latencies when ac-
cessing remote linked data structures because the computation must
wait to compute an object’s address before prefetching the object.
In effect this requires waiting for a round trip communication for
each object to be accessed in a remote linked data structure.

We introduce a new approach to prefetching objects in the dis-
tributed environment that leverages the computational capabilities
of the remote processors. Our approach communicates symbolic
prefetches, which describe a path through the heap that traverses
the objects to be prefetched. Symbolic prefetches have the form:

symbolic prefetch := base object identifier(.field | [integer])∗

The base object identifier component of the symbolic prefetch
gives the object identifier of the first object to be prefetched. The
list of field offsets and array indices describe a path through heap
from the first object. We present a compiler analysis that enables
our implementation to efficiently generate prefetches for complex
linked data structures.

Our prefetching scheme enables prefetching multiple objects
even multiple references away with a single round-trip network
communication. The roundtrip network latency on a gigabit LAN
between commodity workstations is approximately 100 µS. On a
modern 3 GHz processor, this corresponds to waiting 300,000 clock
cycles. Therefore, the guiding principle for our design is to avoid
waiting on network responses whenever possible.

Let us consider the following example segment:

1 LinkedList search(int key) {
2 LinkedList ptr=head;
3 while (ptr!=null&&ptr.key!=key)
4 ptr=ptr.next;



5 return ptr;
6 }

Without prefetching, completely searching a remote linked list of
length n requires making n consecutive round-trip message ex-
changes. If we add a prefetch for ptr.next.next.next.next.next
between lines 3 and 4, the runtime will have prefetch requests in
flight for the next linked list node and the subsequent four nodes
that follow that node1. The example prefetch enables the search
method to potentially execute five times faster. Longer symbolic
prefetches can further increase the potential speedup.
2.1 Prefetch Analysis
Our analysis is an intraprocedural static analysis that uses a sim-
ple probabilistic model to generate prefetches that a program may
access with probabilities that tell how likely the objects , repre-
sented by a path in the heap, will be accessed. It is a backward
flow analysis that computes a set of tuples containing a symbolic
prefetch and a corresponding probability for each program point.
The probabilistic model is naive — it makes assumptions of inde-
pendence that are not true in general. However, the results need not
be precise, but simply provide a rough approximation of the real
program’s data access patterns.

Our analysis associates a probability with each conditional
branch. By default, we assume that loop branches take the true
branch with an 80% probability and other branches take the true
branch with a 50% probability. We ensure the termination of the
analysis by introducing a minimum symbolic prefetch probabil-
ity µ. If a symbolic prefetch has has a probability less that µ at a
program point, the analysis drops that symbolic prefetch.
2.2 Prefetch Placement
There is a trade-off between placing prefetches early to minimize
the time that the application waits for data and waiting long enough
to make sure the program is likely to use the prefetched data. This
trade off can depend on the specific architecture of the machine
and the application — bandwidth constraints can be satisfied by
delaying prefetches, while latency constraints can be satisfied by
moving prefetches earlier in the execution.

We instrument the analysis in the previous section to record the
mapping which maps the symbolic prefetch at the source of the
edge to the corresponding symbolic prefetch at the target of the
edge. Prefetches are placed on edges where the probability of us-
ing the objects specified by a symbolic prefetch crosses the devel-
oper specified threshold. In order to avoid redundant prefetches we
check whether the symbolic prefetch has already been prefetched
by using a set at each program point. This set is the intersection
of the set of prefetched symbolic prefetches along each incoming
edge to a node. We use a fixed point algorithm to compute these
sets for all program points. At each edge, our prefetch placement
algorithm places prefetches for the set of symbolic prefetches that
cross the threshold but have not already been prefetched.
2.3 Prefetch Runtime Mechanism
Our analysis places prefetch calls which take as input an array of
base object identifiers for each prefetch, and an array of unsigned
shorts that stores a sequence of the combination of field offsets and
array indices for every prefetch at that site. The runtime maintains
a prefetch queue. The main execution thread enqueues prefetch
requests into this queue – each prefetch of the prefetch call is
translated into a prefetch request. The runtime maintains a separate
thread called prefetch thread that processes the prefetch requests
from the prefetch queue. The prefetch thread processes as much of
the prefetch request as possible locally before sending the request

1 The prefetch look-ahead distance is not fixed. Instead it depends on the
analysis’s estimation of how likely the prefetched values are to be used.

to the remote machines. The local processing starts by looking up
the base object identifier component of the prefetch request in both
the local heap and the object cache – in many cases the local heap
and cache may already contain many of the objects in the request.
If the object is found locally, the local runtime system uses the
field offset (or array index) to look up the object identifier of the
next object in the path and remove the first offset value from the
symbolic prefetch. The runtime repeats this procedure to process
the components of the prefetch request that are available locally.

The runtime then prunes the local component from the prefetch
request to generate a new prefetch request with the first non-locally
available object as its base object identifier. The local machine next
sends the prefetch requests to the remote machines. Each request
contains the machine identifier that should receive the response.

When the remote machine receives a prefetch request it begins
by looking up the base object identifier in its local heap and then
(optionally) if necessary in its object cache. Once it finds the object,
it looks up the next object identifier by using the field offset or array
index from the symbolic prefetch. It repeats this process until it
has served the complete request. While serving the request it keeps
sending the copies of the objects to the original machine.

3. Conclusion

 0

 5

 10

 15

 20

 25

2Dconv Moldyn MatrixMultiply SOR 2DFFT Game

S
pe

ed
up

 P
er

ce
nt

Benchmarks

Figure 1. Speedup % due to prefetching
We have presented an analysis to generate symbolic prefetches

for objects. Using this analysis we are able to generate useful
prefetches successfully for our benchmarks. We observe gains upto
22% for our benchmarks as shown in Figure 1 and upto 99% hits
in the cache due to prefetching.

References
[Harris et al.2006] Harris, T., Plesko, M., Shinnar, A., and Tarditi, D. 2006.

Optimizing memory transactions. SIGPLAN Not. 41, 6 (Jun. 2006),
14-25. DOI= http://doi.acm.org/10.1145/1133255.1133984

[Bocchino et al.2008] Bocchino, R. L., Adve, V. S., and Chamberlain,
B. L. 2008. Software transactional memory for large scale clusters. In
Proceedings of the 13th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (Salt Lake City, UT, USA, February
20 - 23, 2008). PPoPP ’08. ACM, New York, NY, 247-258. DOI=
http://doi.acm.org/10.1145/1345206.1345242

[Speight et al.2002] Speight, E., Burtscher, M.: Delphi: Prediction-Based
Page Prefetching to Improve the Performance of Shared Virtual
Memory Systems. In: Intl. Conf. on Parallel and Distributed Processing
Techniques and Applications, Las Vegas, NV, pp. 49.55 (June 2002)

[Joseph et al.1997] Joseph, D. and Grunwald, D. 1997. Prefetching using
Markov predictors. In Proceedings of the 24th Annual international
Symposium on Computer Architecture (Denver, Colorado, United
States, June 01 - 04, 1997). ISCA ’97. ACM, New York, NY, 252-263.
DOI= http://doi.acm.org/10.1145/264107.264207


