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SYMBOLIC PROGRAM ANALYSIS IN ALMOST-LINEAR TIME

JOHN H. REIFf aND ROBERT E. TARJAN:

Abstract, This paper describes an algorithm to construct, for each expression in a given program text, a
symbolic expression whose value is equal to the value of the text expression for all executions of the program.
We call such a mapping from text expressions to symbolic expressions a cover. Covers are useful in such
program optimization techniques as constant propagation and code motion. The particular cover constructed
by our methods is in general weaker than the covers obtainable by the methods of [Ki], [FKU], [RL], [R2] but
our method has the advantage of being very efficient. It requires O(ma (m, n) + 1) operations if extended bit
vector operations have unit cost, where # is the number of vertices in the control flow graph of the program, m
is the number of edges, [ is the length of the program text, and « is related to a functional inverse of
Ackermann'’s function [T2]. Our method does not require that the program be well-structured nor that the
flow graph be reducible.

Key words. code movement, code optimization, constant propagation, data flow analysis, symbolic
evaluation.

1. Introduction. Let & be an expression which appears somewhere in a computer
program. If & evaluates to a constant independent of the particular execution of the
program, then the program can be improved by substituting the appropriate constant
for € in the program text. The systematic application of this technique is called constant
propagation. Another kind of improvement is possible if € occurs within a loop but has
the same value for every execution of the loop; in this case the program may be
improved by moving the computation of & outside the loop. (Note that this is not an
improvement if the loop is executed less than twice.) Constant propagation and code
motion require for their application a mapping from text expressions to symbolic
expressions such that in any program execution every symbolic expression has the same
value as its corresponding text expression. We call such a mapping a cover. We desire a
cover which is as simple as possible in some appropriately defined sense, but even
determining whether a given text expression always evaluates to a constant is an
undecidable problem. In this paper we describe an algorithm for efficiently computing a
reasonably good cover.

In order to address this problem, we need some definitions. We represent the flow
of control through a program 7 by a flow graph' G =(V, E, r) where each vertex v
represents a consecutive block of assignment statements and each edge (4, v)e E
specifies a possible flow of control caused by a branch from a test statement. An
execution of s induces a path in G beginning at the start vertex r. We shall denote the
number of vertices in G by n and the number of edges in G by m.

Let 2={X,Y,Z, -} be the set of program variables occurring within =. A
program variable X € X is defined at ve V if X occurs on the left-hand side of an
assignment statment of v. For each program variable X € X and vertex v € V, we let the
entry variable X* denote the value of X on entry to v.
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 Department of Computer Science, Stanford University, Stanford, California 94305. Present address:
Bell Laboratories, 600 Mountain Ave., Murray Hill, New Jersey 07974. The work of this author was
supported by National Science Foundation grant MCS-75-22870 A02, by Office of Naval Research contract
N00014-76-C-0330, by a Guggenheim fellowship, and by Bell Laboratories.

! The appendix contains the graph-theoretic terminology we employ.

81

Preprint of paper appearing in SIAM Journal on Computing, Vol.
11, No. 1, February 1982, pp. 81-93.



82 J. H. REIF AND R. E. TARJAN

Let 6 be the set of function signs occurring in the program. For simplicity, we
assume a domain D such that every k-ary function represented by a sign in 8 has the
same domain D". Let C be a set of constant signs containing a unique sign for every
element in D. Let EXP be the set of expressions built from entry variables, constant
signs in C, and function signs in 6. To each expression & € EXP corresponds a unique
reduced expression €r formed by repeatedly substituting the appropriate constant sign
for each subexpression of & consisting of a function sign applied to constant signs.

For any expression & € EXP and any execution of the program ar, the value of € on
exit from a vertex v is defined as follows: If &€ contains an entry variable X “ such that
control has never entered u, then the value of & is undefined. Otherwise the value of & is
computed by substituting for each entry variable X* the value of X when control last
entered u, and evaluating the resulting expression.

For each vertex v € V and program variable X € X defined at v, the exit expression
Z(X, v)e EXP is formed as follows. Begin by letting the expression & be X. Process
each assignment statement of v, starting from the last assignment defining X and
working backwards to the first assignment in v. To process an assignment Y:=%&’,
replace each occurrence of Y in & by &'. After all assignments are processed, reduce &
and replace each occurrence of a variable Y by the corresponding entry variable Y.
The resulting exit expression & (X, v) represents the value of X on exit from v in terms
of constants and values of variables on entry to v. For example, &(Z, v,)=
Z%+ (X" % Y") represents the value of Z on exit from vertex v, in the flow graph of
Fig. 1.

A text expression is any subexpression of an exit expression € (X, v) (including the
expression itself); we say the text expression occurs at v. An expression &€ € EXP covers
a text expression ¢ occurring at v if for any execution of program 7, & and ¢ have the

F1G. 1. A program flow graph.
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same value on any exit from v. See Fig. 1. This definition implies that if X appears in &
then 4 dominates v. Thus there is a unique vertex v which is minimal (i.e., closest to the
start vertex) with respect to the dominator relation and such that for all entry variables
X" in &, u dominates v. We call such a vertex the origin of € it is the earliest pointin the
program at which & can be computed.

A cover of 7 is a mapping ¥ from all text expressions to reduced expressions in
EXP, such that, for each text expression ¢, ¥(¢) covers t. We would like to construct a
cover whose origins are minimal with respect to the dominator relation. We can use
such a cover for constant propagation: if a constant sign ¢ covers a text expression ¢, we
may substitute ¢ in line in the program text for the computation associated with c.

We can also use a cover in code motion. If we define the birthpoint of a text
expression ¢ to be the minimal vertex to which the computation of  may be moved, then
the birthpoint of ¢ is precisely the origin of a minimal cover of t. For example, in Fig. 1
the birthpoint of text expression t=X"% Y is vy; X' * (X +Y") covers ¢t. Code

Text expression Covering expressions
X2 X"

Y*®? X' +Y"

Zl)2 ZU]

E(Z,0)=Z"+ (X2 Y™ | ZU"+ (X"« (X"+Y™)
F1G. 2. Symbolic analysis of the program in Fig. 1.

motion requires approximations to birthpoints (i.e., vertices which are dominated by
the true birthpoints) and other knowledge including knowledge of the cycle structure of
the flow graph of 7. (We may not wish to move code as far as the birthpoint since the
birthpoint may be contained in control cycles avoiding the original location of the code.)
[R1] presents efficient algorithms which utilize approximate birthpoints for code
motion optimization. See [AU], [CA], [E], [G] for further discussion of code motion
optimizations. Other practical uses of covers have been made by [FK] in their
optimizing Pascal compiler.

Unfortunately, for programs which manipulate the natural numbers using ordinary
arithmetic the problem of computing a minimal cover is recursively unsolvable [R2].
The usual approach in program optimization is to trade accuracy for speed; [FKU], [Ki],
[RL], [R2] present fast algorithms which compute reasonably good covers whose
origins yield approximate birthpoints. The fastest of these [RL], [R2] has a time bound
almost linear in m - |2|+ I, where [ is the length of the program text.

In this paper we describe a very fast algorithm for computing a rather weak cover.
This simple cover can be used directly for code optimization, or it can serve as input to a
more powerful method for symbolic evaluation presented in [RL], [R2]. From a data
structure called a global value graph (which is related to the use-definition chains of
[AU], [Sc] used to represent the flow of values through a program), the algorithm
of [RL], [R2] constructs a cover which yields better approximate birthpoints than does
the simple cover. This algorithm runs in time almost linear in the size of the input global
value graph, which is very compact when constructed from the simple cover [RL], [R2].

In order to define the simple cover we need one more concept. A variable X is
definition-free between distinct vertices u and v if no u-avoiding path from a successor
of u to a predecessor of v contains a definition of X. By convention any program
variable X is definition-free between v and v for any vertex v. For any entry variable X°
which is a text expression, the simple origin of X" is the minimal vertex u (with respect
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to the dominator relation) such that X is definition-free between u and v. In the
example of Fig. 1, X2 has a simple origin r, and Y “>and Z “> have simple origin v,. If X*
has simple origin u # v, then on any execution of 7 the program variable X has the same
value on entry to v as it did after the most recent execution of u; we take the simple
origin as an approximation to the birthpoint of X°.

We recursively define the simple cover ¥ using simple origins. If # contains no entry
variables then W(z) =t Otherwise we form ¥(¢) from ¢ by applying the following
transformation.

(i) Repeat the following step for all entry variables X ° occurring in ¢: Let u be the

simple origin of X*. If u=v do nothing. Otherwise replace X° in ¢ by
W(&(X, u)) if X is defined at u or by X* if X is not defined at u.

(ii) Reduce the resulting expression.

Our algorithm for computing the simple cover consists of three parts, described in
§§ 24 of this paper. First, we determine for each vertex v the set of program variables
defined between the immediate dominator of v and v itself. We call this set of variables
idef (v). The idef computation can be regarded as a path problem of the kind studied in
[GW], [T3], but another approach is more fruitful: a straightforward modification of the
dominator-finding algorithm of [LT] computes idef in O(ma(m, n)+ 1) time, assum-
ing that logical bit vector operations on vectors of length |E| have unit cost, where
[ is the length of the program text and « is related to an inverse of Ackermann’s
function [T2].

Second, we use idef to compute the simple origins of all entry variables appearing
as text expressions. This computation requires a variable-length shift operation on bit
vectors (shift left to the first nonzero bit) and requires O(n + [) time. Third, we construct
a directed acyclic graph representing the simple cover (we save space by combining
common subexpressions). This algorithm also requires O(n + /) time but uses no bit
vector operations. The total running time of our algorithm is thus O (ma(m, n)+1) if
extended bit vector operations require constant time.

2. An algorithm for computing idef based on finding dominators. In this section
we shall describe an algorithm for computing idef (v) for all vertices v € V in the flow
graph G=(V,E,r) of a computer program. We obtain the algorithm by adding
appropriate extra steps to the dominators algorithm of [LT], and we shall assume that
the reader is familiar with [LT]. Our algorithm requires def (w) = {X|X is defined at w}
for each vertex w € V as input and uses set union as a basic operation. If each subset of X
is represented as a bit vector of length |2/, then a set union is equivalent to an “or”
operation on bit vectors; we shall assume each set union requires constant time.
Construction of def (w) for all vertices w is easy and requires time proportional to the
length of the program text.

Properties of idef. For any vertex w # r, letidom (w) be the immediate dominator of
w in G. For w # r, we define idef(w) = U {def (v)| there is a nonempty path from v to w
which avoids idom (w)}. Note that def (w) is a term in the union defining idef (w) if and
only if there is a cycle containing w but avoiding idom(w). To compute idom and idef,
we first perform a depth-first search on G, starting from vertex r and numbering the
vertices from 1 to n as they are reached during the search. The search generates a
spanning tree T rooted at r, with vertices numbered in preorder [T1]. For convenience
in stating our results, we shall assume in this subsection that all vertices are identified by
number, and we shall use -, -’-';, 5 to denote ancestor-descendant relationships in T
(see the appendix).
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F1G. 3. Depth-first search of the flow graph given in Fig. 1. Solid edges denote tree edges and dotted edges denote
nontree edges. The depth-first search number is given to the right of each vertex.

vertex number idom sdom def idef sdef
r 1 —_— — 1] —— —
vy 2 r r {v} {y, z} {Y, z}
vy 3 01 vy {z} (%) %]
v3 4 r r 6] {Y, Z} %]
122 3 r Uy {x} {y, z} %]
Us 6 U1 U1 %) %] %]

F1G. 4. Tabulation of information calculated for the program flow graph given in Fig. 1.

The following paths lemma is an important property of depth-first search and is
crucial to the correctness of our algorithm.

LemMA 2.1[T1]. Ifvandw are vertices of G such thatv = w, then any path from v to
w must contain a common ancestor of v and w in T.

As an intermediate step, the dominators algorithm computes a value for each
vertex w # r called its semi-dominator, denoted sdom (w) and defined by

" sdom (w) = min {v|there is a path v = v, v1,* * *, Ve =W
such that v; >w for 1=i <k}.
We shall in addition compute a value sdef (w) for each vertex w # r defined by
sdef (w) = U {def (v)| there is a nonempty path v = v, v1,* -+, Lk =W
2) such that v; = w for 0=i =k}.
The following properties of semi-dominators and dominators justify the domina-
tors algorithm.

LEmMMA 2.2 [LT]. Let w # r. Then idom (w)3 sdom (w)>w.
THeEOREM 2.1 [LT]. For any vertex w #r,

sdom (w)=min ({v|(v, w) € E and v <w}

3) U{sdom (u)|u > w and there is an edge (v, w) such that u 3 v}).
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THEOREM 2.2 [LT]. Letw # rand let u be a vertex for which sdom (u) is minimum
among vertices u satisfying sdom (w)> u > w. Then

sdom (w) if sdom (w)=sdom (u),

) idom (w) = {idom () otherwise.

The dominators algorithm uses Theorem 2.1 to efficiently compute semi-domina-
tors and Theorem 2.2 to efficiently compute immediate dominators. We shall use two
analogous results to efficiently compute sdef and idef.

THEOREM 2.3. Letw # r and let

adef (w) = {def (u) Usdef (u)|u>w .
and there is an edge (v, w) such that ->v}.

Then

5) sdef (w) = {def (w)U adef (w) ifthere.is an edge (v, w) such thatw 5 v,
adef (w) otherwise.

Proof. First we show that the right side of (5) contains sdef (w). Let v =
Vo, U1, * * *, Ux = w be a nonempty path such that v; = w for 0=i = k. We can assume
without loss of generality that the path v, vy, *, v,_; is simple and v; #w for
1=i=k—1. Let j be minimum such that v;5 v, _;. By Lemma 2.1, v; > v, for 0=i =
j—1. We consider three cases. If j # 0, then v; # w, and def (v) < sdef (v;) < adef (w). If
j=0and v # w, then def (v) < adef (w). If j =0 and v = w, then the edge (vx-1, w) must
satisfy w % v,_;, and the right side of (5) explicitly contains def (v). Thus in any case the
right side of (5) contains def (v). Since this is true for any appropriate v, the right side of
(5) contains sdef (w).

Now we show that sdef (w) contains the right side of (5). Suppose there is an edge
(v, w) such that w 3 v. Then the path consisting of the tree path from w to v followed by
the edge (v, w) contains no vertices smaller than w, and def (w) = sdef (w). Let u be a
vertex such that u > w and there is an edge (v, w) such that u 5 v. Let x be any vertex for
which there is a nonempty path x = vg, vy, * * *, vx =u such that v;=Zu for 0=i=k.
Then this path, followed by the tree path from u to v, followed by the edge (v, w),
contains no vertices smaller than w. Thus def (x) < sdef (w). Since this is true for any
such x, sdef (u) = sdef (w). Furthermore def («) < sdef (w). It follows that adef (w) <
sdef (w), and the theorem is true. 0O

THEOREM 2.4. Let w#r. Let u be a vertex for which sdom (u) is minimum
among vertices u satisfying sdom (W)>uSw. Let tdef(w)= U{def x)U
sdef (x)|sdom (w) > x > w}. Then

tdef (w) U sdef (w) if sdom (w) =sdom (u),
idef (u) U tdef (w)Usdef (w)  otherwise.

Proof. First we show that the right side of (6) contains idef (w). Let v =
Vo, U1, * * * , Ux = w be a nonempty path which avoids idom (w). Let v; be the minimum
vertex on this path such that i = k — 1. If v; = w, then def (v) < sdef (w) by the definition
of sdef.

Suppose on the other hand that v; <w. By Lemma 2.1, there is some j in the range
i =j =k such that v; is an ancestor of both v; and w. This means v; = v;. But by the
definition of v;, v; = v;. Thus, v; = v; and v; 5 w. We must consider three cases.

(i) Suppose sdom (w)=> v; and i = 0. Then def (v) = def (v;) < tdef.
(ii) Suppose sdom (w)> v; and i #0. Then def (v) < sdef (v;) < tdef.

(6) idef (w) ={
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(iii) Suppose v;>sdom (w). The path from r to w consisting of the tree path from r
to v; followed by the path v;, v;41, * - *, w must contain idom (w); thus idom (w)> v;. By
Theorem 2.2, sdom (w) # sdom (u) (which means the second half of (6) applies) and
idom (w) =idom («). The path from v to u consisting of v = vy, v1, * * +, v; followed by
the tree path from v; to u avoids idom (), which means def (v) < idef (u).

In all cases def (v) is contained in the right side of (6); since this is true for any
appropriate v, idef (w) is contained in the right side of (6) by the definition of idef.

It remains to show that idef (w) contains the right side of (6). Let x be any vertex
such that sdom (w)> x > w, and let v = vo, vy, * * *, Ux = x be any path such that v; = x
for 0=i =k. Since idom (w)3 sdom (w), the path from v to w consisting of the path
v =y, U1, " * ', U = x followed by the tree path from x to w avoids idom (w). It follows
that tdef < idef (w). Since idom (w)<w, it is immediate that sdef (w) < idef (w). If
sdom (w) # sdom (u), then idom (w) =idom (1) > u, and any idom (u)-avoiding path to
u can be extended to an idom (w)-avoiding path to w by adding the tree path from u to
w. Thus in this case idef (1) cidef (w) 0O

Details of the algorithm. The algorithm for computing immediate dominators and
idef consists of the following four steps.

Step 1. Carry out a depth-first search of the problem graph. Number the vertices
from 1 to n as they are reached during the search. Initialize the variables used in
succeeding steps.

Step 2. Compute the semi-dominators of all vertices by applying Theorem 2.1 and
the sdef values by applying Theorem 2.3. Carry out the computation vertex-by-vertex
in decreasing order by number.

Step 3. Implicitly define the immediate dominator of each vertex by applying
Theorem 2.2 and partially compute idef values by applying Theorem 2.4,

Step 4. Explicitly define the immediate dominator of each vertex and finish
computing idef. Carry out the computation vertex-by-vertex in increasing order by
number.

The dominators algorithm used the following arrays.

Input

succ (v): The set of vertices w such that (v, w) is an edge of the graph.
Computed
parent (w): The vertex which is the parent of vertex w in the spanning tree
generated by the search.
pred (w):  The set of vertices v such that (v, w) is an edge of the graph.
semi (w): A number defined as follows:
(i) Before vertex w is numbered, semi (v) = 0.
(ii) After w is numbered but before its semi-dominator is
computed, semi (w) is the number of w.
(iii) After the semi-dominator of w is computed, semi (w) is the
number of the semi-dominator of w.
vertex (i):  The vertex whose number is i.
bucket (w): A set of vertices whose semi-dominator is w.
dom (w): A vertex defined as follows:
(i) After Step 3, if the semi-dominator of w is its immediate
dominator, then dom (w) is the immediate dominator of w.
Otherwise dom (w) is a vertex v whose number is smaller
than that of w and whose immediate dominator is also the
immediate dominator of w.
(ii) After Step 4, dom (w) is the immediate dominator of w.
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In addition, our algorithm uses def (w) as input and computes sdef (w) and
idef (w).

Rather than converting vertex names to numbers during Step 1 and converting
numbers back to names at the end of the computation, the dominators algorithm refers
to vertices as much as possible by name. Arrays semi and vertex include all necessary
information about vertex numbers. Array semi serves a dual purpose, representing
(though not simultaneously) both the number of a vertex and its semi-dominator.

During Step 1, our algorithm initializes parent, pred, semi, vertex, and sdef. When
a vertex w receives a number i, the algorithm assigns semi (w) =i and vertex (i) = w.
Step 1 also initializes sdef (w) = & and updates sdef (w) = def (w) if it finds an edge
(v, w) such that w 5. Implementation of Step 1 is straightforward, and we omit the
details.

The algorithm carries out Steps 2 and 3 simultaneously, processing the vertices
w # r in decreasing order by number. During this computation the algorithm maintains
an auxiliary data structure that represents a forest contained in the depth-first spanning
tree. More precisely, the forest consists of vertex set V and edge set
{(parent (w), w)|vertex w has been processed}. The algorithm uses one procedure to
construct the forest and two procedures to extract information from it.

LINK (v, w): Add edge (v, w) to the forest.
EVAL (v): If v is the root of a tree in the forest, return v. Otherwise, let r
be the root of the tree in the forest which contains v. Return
any vertex u # r of minimum semi (#) on the path r 3 v.
EVALDETF (v): If v is a tree root, return . Otherwise, let r = vg=> v > 02>
« >y =v be the tree path from the root of the tree
containing v to v. Return U {def (v;) Usdef (v)|1 =i =k}.

Reference [LT] explains how to use EVAL to compute semi-dominators and
dominators; we shall describe how to use EVALDEF analogously to compute sdef and
idef. When a vertex w is processed, the algorithm examines each edge (v, w)€ E and
updates sdef by assigning sdef (w) := sdef (w) UEVALDEF (v). After w is processed,
sdef (w) has the proper value by Theorem 2.3. To verify this claim, consider any edge
(v, w)e E. If v is numbered no greater than w, then v is unprocessed when (v, w) is
examined, which means v is the root of a tree in the forest and EVALDEF (v) returns
&. If v is numbered greater than w, then EVALDEF returns U{def (u)U
sdef (u)]u>w and u > *v}. Thus the algorithm computes sdef exactly as specified in
Theorem 2.3.

After processing w to compute semi (w) and sdef (w), the algorithm adds w to
bucket (vertex (semi(w))) and adds a new edge to the forest using LINK
(parent (w), w). This completes Step 2 for w. The algorithm then empties bucket
(parent (w)), carrying out Step 3 for each vertex v in the bucket. By applying EVAL (v),
the algorithm obtains a vertex u satisfying the condition in Theorem 2.2 and 2.4. Using
this u, the algorithm implicitly computes the immediate dominator of v. The-algorithm
also partially computes idef (v) by assigning idef (v):=sdef (v)UEVALDEF
(parent (v)). (EVALDEEF (parent (v)) = tdef (v) as defined in Theorem 2.4.) In Step 4,
the algorithm examines vertices in increasing order by number, filling in the immediate
dominators not explicitly computed by Step 3 and completing the computation of idef.
Here is an Algol-like version of Steps 2—4. The bracketed statements are those added to
the original dominators algorithm to compute sdef and idef.
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comment initialize variables;
fori = n by —1 until 2 do
w = vertex (i);
Step 2: for each v e pred (w) do
u = EVAL (v);
if semi (1) <semi (w) then semi (w):=semi (u) fi;
[sdef (w) := sdef (w) UEVALDEF (v)] od;
add w to bucket (vertex (semi (w)));
LINK (parent (w), w);
Step 3: for each v € bucket (parent (w)) do
delete v from bucket (parent (w));
u = EVAL (v);
dom (v) := if semi (1) <semi (v) then u
else parent (w) fi;
[idef (v) := sdef (v) UEVALDEEF (parent (v))] od od;
Step 4: fori = 2 until n do
w = vertex (i);
if dom (w) # vertex (semi (w)) then
[idef (w) = idef (dom) (w)) U idef (w);]
dom (w) = dom (dom (w)) fi od;

Reference [T2] offers two ways to implement LINK, EVAL, and EVALDEF. The
simpler method has an O(m log n) time bound and the more complicated one has an
O(ma(m, n)) time bound. Farrow [F] provides another O(ma(m, n)) method. If we
include the O(J) time required to construct def from the program text, then the entire
algorithm for computing idef requires O(ma(m, n)+1[) time, assuming that each set
union requires constant time.

3. Computing simple origins. Once we know def and idef, we can employ the
following theorem to compute simple origins. It is convenient for us to assume that
idef (r) = 2.

THEOREM 3.1. Let X° be an entry variable which is a text expression. Then

v if X eidef (v),
@) simple origin (X°) =1 u if X¢&idef (v) and u is the maximal proper dominator of
v such that X e def (u)Uidef (u).

Proof. Recall that X ° occurs at v. The theorem is immediate from the definitions of
simple origin, def, and idef, using the fact that idef (r)=3. O

In order to use Theorem 3.1 efficiently, we need to compute two additional subsets
of variables for each vertex. For any vertex v € V, text (v) is the set of variables X such
that X" is a text expression. We can compute text in O(/) time by scanning the program
text. For any vertex v € V, relevant (v) is the set of variables X such that, for some
vertex w properly dominated by v, X" is a text expression and X is definition-free
between v and w.

THEOREM 3.2. For any vertex v,

relevant (v) = U{(text (w)Urelevant (w))—idef (w)|w € V and idom (w)=1v}.

Proof. Immediate. O
We can compute relevant in O(n) time by carrying out a depth-first traversal of the
dominator tree and processing the vertices in postorder. Note that, for any vertex v, the
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setrelevant (v) (N (def (v) Uidef (v)) contains exactly the variables X such that, for some
vertex w, v is the simple origin of the text expression X",

Given text and relevant, we compute simple origins in another depth-first traversal
of the dominator tree. During the traversal, we maintain a stack for each variable X.
When the traversal reaches a vertex v # r, stack (X)) contains (in dominator order) all
proper dominators u of v such that X erelevant (u)N(def (u)Uidef (u)). These
vertices are all the candidates (other than v) for the simple origin of X°. If X e idef (v),
then the simple origin of X" is v; otherwise the simple origin of X is the top vertex on
stack (X) when v is reached during the traversal. The following algorithm computes
simple origins using this method.

procedure TRAVERSE (v);
begin
for each X ctest(v) do
simple origin (X") = if X eidef (v) then v
else top of stack (X) fi od;
for each X erelevant (v) (N (def (v) U (idef.(v)) do
push v on stack (X) od;
for each w in {w|idom (w) =0} do TRAVERSE (w) od;
for each X erelevant (v) N (def (v) Uidef (v)) do
pop v from stack (X) od
end TRAVERSE;
for each X €3 do stack (X)= & od;
TRAVERSE (r);

The correctness of the algorithm is immediate. To get the algorithm to run fast, we
need a method to convert a bit vector representing a set into a list of elements of the set.
We can do this in time proportional to the size of the set if we have a variable-length
shift operation which shifts a bit vector left to the first nonzero bit and returns the length
of the shift. Since such an operation is required to normalize floating-point numbers, it
is a machine-language instruction on many computers. Assuming that a variable-length
shift requires constant time, the time required to compute simple origins is

o(n + 3 (text (v)] + |relevant (v) N (def (v) Uidet (v))|)) —0(m+1)

veV

since each variable X € text (v) corresponds to an appearance of X in the program text
at vertex v, and each variable X e relevant (v) N (def (v) Uidef (v)) corresponds to a text
expression X" for which v is the simple origin.

4. Computing the simple cover and approximate birthpoints. From the simple
origins, it is easy to construct the simple cover ¥ and an approximate birthpoint for each
text expression. We begin by constructing a directed acyclic graph (dag) to represent all
text expressions in the program. We shall call the vertices in this dag nodes to distinguish
them from the vertices of the control flow graph. The dag has one node representing
each text expression. An expression which is a constant sign or an entry variable X° is
represented by a sink labeled by the appropriate constant sign or entry variable; an
expression of the form 6(E,, E», -+ -, E) is represented by a node labeled with 6
having k (ordered) successors representing the expressions E1, E,, * * - , Ex. An exam-
ple appears in Fig. 5. See [AU], [FKU] for further discussion of this representation. It is
easy to construct a dag representing the text expressions in O(/) time.

We convert the dag representing the text expressions into a dag representing the
simple cover as follows. We process the sinks of the dag labeled by entry variables X in
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t]

F1G. 5. Dags representing the text expression of the program in Fig. 1.

an order consistent with the dominator order; i.e., if v dominates w, we process sinks
labeled X" before sinks labeled X ™. We process sinks labeled X” as follows. Let u be
the simple origin of X°. If u = v we do nothing. If u # v and X is defined at u, we replace
all edges leading to sinks labeled X* by edges leading to the node corresponding to exit
expression & (X, u). (This node now represents W(Z(S, u)).) If u# v and X is not
defined at u, we replace the labels X° by labels X*“. This method requires O(/) time.

We apply two more steps to simplify the resulting dag. First we replace each node
all of whose successors represent constants by a sink representing an appropriate
constant. We repeat this transformation until it is no longer applicable. This requires
O(!) time and produces a dag representing a set of reduced expressions. Next, we merge

N

F1G. 6. Dag representing the simple cover of the program in Fig. 1.
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all nodes representing common subexpressions. This can be done in O(/) time using the
acyclic congruence closure algorithm described in [DST]. The result is a dag represent-
ing the simple cover. See Fig. 6.

We can compute an approximate birthpoint for each text expression by processing
the nodes of the dag representing the simple cover in reverse topological order. Each
sink labeled by a constant has approximate birthpoint ». Each sink labeled X’ has
approximate birthpoint v. Each node with successors has an approximate birthpoint
which is the maximal vertex (with respect to the dominator relation) of the approximate
birthpoints of its successors. The approximate birthpoint of a text expression is the
approximate birthpoint of the corresponding node in the simple cover dag. (Thus our
birthpoints are approximated in part by the simple origins which we computed in § 3.)
This computation also requires O(/) time, giving a total of O(/) time to compute both a
simple cover and approximate birthpoints.

By combining the algorithms of §§ 2, 3, and 4, we obtain a symbolic evaluation
method which requires O(ma(m, n)+ ) time if extended bit vector operations require
constant time.

Appendix. Graph-theoretic terminology. A directed graph G = (V, E) consists of
a finite set V of vertices and a set E of ordered pairs (v, w) of vertices, called edges. If
(v, w)is an edge, w is a successor of v and v is a predecessor of w. A sink is a vertex with
no successors. A graph G, = (V, E;) is a subgraph of G if Vi< V and E; < E. A pathp
of length k from v to w in G is a sequence of vertices p = (v = vg, 1, * * *, Ux = W) such
that (v;, vi+1)€ E for 0=i <k. The path is simple if vo, ', v, are distinct (except
possibly vo = vy ) and the path is a cycle if vo = v;. By convention there is a path of no
edges from every vertex to itself but a cycle must contain at least one edge. If
p1==uo, U1, +,up=v)isapathfromu tov and p.=(v =09, 01, *, 0y=w)isa
path from v to w, the path p; followed by p, is p=(u=uo, U1, "+, U =0 = o,
vy, '+, 0 =w). A directed graph is acyclic if it contains no cycles. A topological order
on an acyclic graph is a total ordering of the vertices such that, for each edge (v, w), v is
ordered before w.

A flow graph G =(V, E, r) is a directed graph (V, E) with a distinguished start
vertex r such that for any vertex v € V there is a path from r to v. A (directed, rooted) tree
T =(V, E, r) is a flow graph such that |[E| =|V|—1. The start vertex r is the root of the
tree. Any tree is acyclic, and if v is any vertex in a tree T, there is a unique path from r to
v. If v and w are vertices in a tree T and there is a tree path from v to w, then v is an
ancestor of w and w is a descendant of v (denoted by v > w). If in addition v # w, then v
is a proper ancestor of w and w is a proper descendant of v (denoted by v > w). If v 5w
and (v, w)is an edge of T (denoted by v - w), then v is the parent of w and w is a child of
v. In a tree each vertex has a unique parent (except the root, which has no parent). If
G=(V,E)isagraphand T =(V’, E', r) is a tree such that (V', E’) is a subgraph of G
and V' =V, then T is a spanning tree of G.

<IN,
/N

F1G. 7. Dominator tree of the flow graph given in Fig. 1. The symbol = leads from idom (v) to vertex v.
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If G =(V, E, r)is aflow graph and u, v € V, then u dominates v if all paths from r to
v contain u. The dominator relation is a partial ordering with minimal element r. If u
dominates v and u # v, then u properly dominates v. It can be shown that, for each vertex
v # r, there is a unique vertex u called the immediate dominator of v which properly
dominates v and is dominated by all other dominators of v. We denote the immediate
dominator of v by idom (v). The tree T = (V, E’, r) with E' = {(idom (v), v)|v # r} is the
dominator tree of G.

[AU]
[CA]
[DST]

[E]
(F]

[FK]

[FKU]

[G]
[GW]

[HU]
[Ki]

[LT]

[R1]
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