

82 J. H. REIF AND R. E. TARJAN

Let 0 be the set of function signs occurring in the program. For simplicity, we
assume a domain D such that every k-ary function represented by a sign in 0 has the
same domain Z) k. Let C be a set of constant signs containing a unique sign for every
element in D. Let EXP be the set of expressions built from entry variables, constant
signs in C, and function signs in 0. To each expression g’ e EXP corresponds a unique
reduced expression R formed by repeatedly substituting the appropriate constant sign
for each subexpression of g’ consisting of a function sign applied to constant signs.

For any expression g" EXP and any execution of the program r, the value of g" on
exit from a vertex v is defined as follows’ If f(contains an entry variable X" such that
control has never entered u, then the value of g’ is undefined. Otherwise the value of g’ is
computed by substituting for each entry variable X" the value of X when control last
entered u, and evaluating the resulting expression.

For each vertex v V and program variableX Y_, defined at v, the exit expression

g’(X, v)e EXP is formed as follows. Begin by letting the expression g" be X. Process
each assignment statement of v, starting from the last assignment defining X and

working backwards to the first assignment in v. To process an assignment Y:-g",
replace each occurrence of Y in g’ by g". After all assignments are processed, reduce g’

and replace each occurrence of a variable Y by the corresponding entry variable Y.
The resulting exit expression g’(X, v) represents the value ofX on exit from v in terms

of constants and values of variables on entry to v. For example, g’(Z, v2)
Z2 + (X2 Y:) represents the value of Z on exit from vertex/-)2 in the flow graph of

Fig. 1.
A text expression is any subexpression of an exit expression g’(X, v) (including the

expression itself); we say the text expression occurs at v. An expression g’ EXP covers
a text expression occurring at v if for any execution of program r, g" and have the

Y:=X+Y

Z:: Z+(X*Y)

X:--Z

FIG. 1. A program flow graph.

SYMBOLIC PROGRAM ANALYSIS IN ALMOST-LINEAR TIME 83

same value on any exit from v. See Fig. 1. This definition implies that ifX appears in
then u dominates v. Thus there is a unique vertex v which is minimal (i.e., closest to the
start vertex) with respect to the dominator relation and such that for all entry variables
X in q, u dominates v. We call such a vertex the origin of ; it is the earliest point.in the
program at which can be computed.

A cover of 7r is a mapping from all text expressions to reduced expressions in
EXP, such that, for each text expression t, (t) covers t. We would like to construct a
cover whose origins are minimal with respect to the dominator relation. We can use
such a cover for constant propagation" if a constant sign c covers a text expression t, we
may substitute c in line in the program text for the computation associated with c.

We can also use a cover in code motion. If we define the birthpoint of a text
expression to be the minimal vertex to which the computation of may be moved, then
the birthpoint of is precisely the origin of a minimal cover of t. For example, in Fig. 1
the birthpoint of text expression X v2 yv2 is v,; X (X + yvl) covers t. Code

Text expression

yv2

g(z, v2) Z2 + (x Y)

Covering expressions

X
X + y,
ZU
Z ’, + (X , (X + Y’,))

FIG. 2. Symbolic analysis of the progra’m in Fig. 1.

motion requires approximations to.birthpoints (i.e., vertices which are dominated by
the true birthpoints) and other knowledge including knowledge of the cycle structure of

the flow graph of 7r. (We may not wish to move code as far as the birthpoint since the

birthpoint may be contained in control cycles avoiding the original location of the c.ode.)
[R1] presents efficient algorithms which utilize approximate birthpoints for code
motion optimization. See [AU], [CA], [E], [G] for further discussion of code motion

optimizations. Other practical uses of covers have been made by [FK] in their

optimizing Pascal compiler.
Unfortunately, for programs which manipulate the natural numbers using ordinary

arithmetic the problem of computing a minimal cover is recursively unsolvable JR2].
The usual approach in program optimization is to trade accuracy for speed; [FKU], [Ki],
[RL], JR2] present fast algorithms which compute reasonably good covers whose

origins yield approximate birthpoints. The fastest of these [RL], JR2] has a time bound
almost linear in m. lY_,I + l, where is the length of the program text.

In this paper we describe a very fast algorithm for computing a rather weak cover.

This simple cover can be used directly for code optimization, or it can serve as input to a

more powerful method for symbolic evaluation presented in [RL], [R2]. From a data
structure called a global value graph (which is related to the use-definition chains of

[AU], [Sc] used to represent the flow of values through a program), the algorithm
of [RL], JR2] constructs a cover which yields better approximate birthpoints than does
the simple cover. This algorithm runs in time almost linear in the size of the input global
value graph, which is very compact when constructed from the simple cover [RL], [R2].

In order to define the simple cover we need one more concept. A variable X is

definition-free between distinct vertices u and v if no u-avoiding path from a successor
of u to a predecessor of v contains a definition of X. By convention any program
variableX is definition-free between v and v for any vertex v. For any entry variableX
which is a text expression, the simple origin ofX is the minimal vertex u (with respect

84 J. H. REIF AND R. E. TARJAN

to the dominator relation) such that X is definition-free between u and v. In the

example of Fig. 1,X2 has a simple origin r, and Yo2 andZ: have simple origin Vl. IfX
has simple origin u v, then on any execution of rr the program variableX has the same
value on entry to v as it did after the most recent execution of u; we take the simple
origin as an approximation to the birthpoint ofX.

We recursively define the simple cover using simple origins. If contains no entry
variables then (t)= t. Otherwise we form (t) from by applying the following
transformation.

(i) Repeat the following step for all entry variablesX occurring in t: Let u be the

simple origin of X. If u v do nothing. Otherwise replace X in by
((X, u)) if X is defined at u or by X if X is not defined at u.

(ii) Reduce the resulting expression.
Our algorithm for computing the simple cover consists of three parts, described in

2-4 of this paper. First, we determine for each vertex v the set of program variables
defined between the immediate dominator of v and v itself. We call this set of variables
idef (v). The idef computation can be regarded as a path problem of the kind studied in

[GW], IT3], but another approach is more fruitful: a straightforward modification of the

dominator-finding algorithm of [LT] computes idef in O(ma(m, n)+ l) time, assum-

ing that logical bit vector operations on vectors of length IEI have unit cost, where

is the length of the program text and a is related to an inverse of Ackermann’s

function IT2].
Second, we use idef to compute the simple origins of all entry variables appearing

as text expressions. This computation requires a variable-length shift operation on bit
vectors (shift left to the first nonzero bit) and requires O(n + l) time. Third, we construct
a directed acyclic graph representing the simple cover (we save space by combining
common subexpressions). This algorithm also requires O(n + l) time but uses no bit
vector operations. The total running time of our algorithm is thus O(ma(m, n) + l) if
extended bit vector operations require constant time.

2. An algorithm for computing idef based on finding dominators. In this section
we shall describe an algorithm for computing idef (v) for all vertices v V in the flow

graph G (V, E, r) of a computer program. We obtain the algorithm by adding
appropriate extra steps to the dominators algorithm of [LT], and we shall assume that
the reader is familiar with [LT]. Our algorithm requires def (w) {XIX is defined at w}
for each vertex w V as input and uses set union as a basic operation. If each subset of
is represented as a bit vector of length]l, then a set union is equivalent to an "or"
operation on bit vectors; we shall assume each set union requires constant time.
Construction of def (w) for all vertices w is easy and requires time proportional to the
length of the program text.

Properties of idef. For any vertex w r, let idom (w) be the immediate dominator of
w in G. For w r, we define idef(w) {def (v)l there is a nonempty path from v to w
which avoids idom (w)}. Note that def (w) is a term in the union defining idef (w) if and
only if there is a cycle containing w but avoiding idom(w). To compute idom and idef,
we first perform a depth-first search on G, starting from vertex r and numbering the
vertices from 1 to n as they are reached during the search. The search generates a

spanning tree T rooted at r, with vertices numbered in preorder IT1]. For convenience
in stating our results, we shall assume in this subsection that all vertices are identified by

: +
number, and we shall use -->, , --> to denote ancestor-descendant relationships in T
(see the appendix).

SYMBOLIC PROGRAM ANALYSIS IN ALMOST-LINEAR TIME 85

FIG. 3. Depth-first search of theflow graph given in Fig. 1. Solid edges denote tree edges and dotted edges denote
nontree edges. The depth-first search number is given to the right of each vertex.

vertex number idom sdom def idef sdef

vl 2 {Y} {Y,Z} {Y,Z}
v2 3 vl Vx {Z} Q

v3 4 Y, Z} 3
v4 5 vt {X} {Y,Z}
vs 6 v v 3

FIG. 4. Tabulation of information calculated]’or the program flow graph given in Fig. 1.

The following paths lemma is an important property of depth-first search and is

crucial to the correctness of our algorithm.
LEMMA 2.1 [T1]. Ifv and w are vertices ofG such that v <- w, then any pathfrom v to

w must contain a common ancestor of v and w in T.
As an intermediate step, the dominators algorithm computes a value for each

vertex w # r called its semi-dominator, denoted sdom (w) and defined by

()

(2)

sdom (w) min {vlthere is a path v Vo, vl, , vk w

such that vi > w for 1 -< < k}.

We shall in addition compute a value sdef (w) for each vertex w # r defined by

sdef (w) U {def (v)[there is a nonempty path v v0, vl,. , vk w

such that vi >= w for 0 <- <= k}.

The following properties of semi-dominators and dominators justify the domina-
tors algorithm.

q-

LEMMA 2.2 [LT]. Let w r. Then idom (w)*-> sdom (w)--> w.
THEOREM 2.1 [LT]. For any vertex w r,

(3)

sdom (w) min ({vl(v, w) E and v < w}

U {sdom (u)lu > w and there is an edge (v, w) such thatu v}).

86 J.H. REIF AND R. E. TARJAN

THEOREM 2.2 [LT]. Let w r and let u be a vertex]:or which sdom (u is minimum
among vertices u satisfying sdom (w)L u w. Then

sdom (w) ifsdom (w)=sdom (u),
(4) idom (w)=

tidom (u) otherwise.

The dominators algorithm uses Theorem 2.1 to efficiently compute semi-domina-
tors and Theorem 2.2 to efficiently compute immediate dominators. We shall use two

analogous results to efficiently compute sdef and idef.
THEOREM 2.3. Let w r and let

adef (w) {def (u) sdef (u)[u > w
and there is an edge (v, w) such that v}.

Then

def (w) U adef (w)
sdef (w)

adef (w)
i] there is an edge (v, w) such that w v,

otherwise.

Proof. First we show that the right side of (5) contains sdef (w). Let v
Vo, Vl, , vk w be a nonempty path such that vi >= w for 0 =< =< k. We can assume
without loss of generality that the path Vo, Vl,’", Vk-1 is simple and vi w for
1 -< <- k 1. Let j be minimum such that v. Vk-1. By Lemma 2.1, vi > v. for 0 =< -<_

j- 1. We consider three cases. If j 0, then vj w, and def (v)
_
sdef (v.)

_
adef (w). If

j 0 and v w, then def (v)
_
adef (w). If j 0 and v w, then the edge (vk-1, w) must

satisfy w Vk-1, and the right side of (5) explicitly contains def (v). Thus in any case the
right side of (5) contains def (v). Since this is true for any appropriate v, the right side of
(5) contains sdef (w).

Now we show that sde (w) contains the right side of (5). Suppose there is an edge
(v, w) such that w v. Then the path consisting of the tree path from w to v followed by
the edge (v, w) contains no vertices smaller than w, and def (w)_ sdef (w). Let u be a
vertex such that u > w and there is an edge (v, w) such that u v. Let x be any vertex for
which there is a nonempty path x Vo, Vl,""", Vk "--U such that Vi U for 0_--< <= k.
Then this path, followed by the tree path from u to v, followed by the edge (v, w),
contains no vertices smaller than w. Thus def (x) sdef (w). Since this is true for any
such x, sdef (u)_ sdef (w). Furthermore def (u)_sdef (w). It follows that adef (w)_
sdef (w), and the theorem is true. 71

THEOREM 2.4. Let w r. Let u be a vertex for which sdom (u) is minimum
among vertices u satisfying sdom (w) + *u- w. Let tdef (w)= U{def (x)(.J
sdef (x)lsdom (w) x - w}. Then

tdef w U sdef w i]" sdom w sdom (u),
(6) idef (w)=

idef (u)(.Jtdef (w)Usdef (w) otherwise.

Proof. First we show that the right side of (6) contains idef(w). Let v=
v0, v l, ., vg w be a nonempty path which avoids idom (w). Let vi be the minimum
vertex on this path such that -< k 1. If vi >= w, then def (v)

_
sdef (w) by the definition

of sdef.
Suppose on the other hand that vi < w. By Lemma 2.1, there is some/" in the range

=</’-< k such that v. is an ancestor of both v; and w. This means vi <= vi. But by the
definition of vi, vi <= vi. Thus, vi vi and vi- w. We must consider three cases.

(i) Suppose sdom (w)- vi and =0. Then def (v) def (v/)_ tdef.
(ii) Suppose sdom (w)- vi and 0. Then def (v)

_
sdef (re) tdef.

SYMBOLIC PROGRAM ANALYSIS IN ALMOST-LINEAR TIME 87

(iii) Suppose vi sdom (w). The path from r to w consisting of the tree path from r
to v,. followed bythe path vi, Vi+l, , w must contain idom (w); thus idom (w) vi. By
Theorem 2.2, sdom (w) sdom (u) (which means the second half of (6) applies) and
idom (w) idom (u). The path from v to u consisting of v Vo, vl, , vi followed by
the tree path from vi to u avoids idom (u), which means def (v)_ idef (u).

In all cases def (v) is contained in the right side of (6); since this is true for any
appropriate v, idef (w) is contained in the right side of (6) by the definition of idef.

It remains to show that idef (w) contains the right side of (6). Let x be any vertex
such that sdom (w)

+
x w, and let v v0, Vl, l)k X be any path such that /)i X

for 0--< =< k. Since idom (w) sdom (w), the path from v to w consisting of the path
v Vo, Vl, , Vk X followed by the tree path from x to w avoids idom (w). It follows
that tdef

idef (w). Since idom (w) < w, it is immediate that sdef (w)

idef (w). If

sdom (w) sdom (u), then idom (w)= idom (u) u, and any idom (u)- avoiding path to
u can be extended to an idom (w)-avoiding path to w by adding the tree path from u to
w. Thus in this case idef (u)_ idef (w) [q

Details of the algorithm. The algorithm for computing immediate dominators and
idef consists of the following four steps.

Step 1. Carry out a depth-first search of the problem graph. Number the vertices
from 1 to n as they are reached during the search. Initialize the variables used in
succeeding steps.

Step 2. Compute the semi-dominators of all vertices by applying Theorem 2.1 and
the sdef values by applying Theorem 2.3. Carry out the computation vertex-by-vertex
in decreasing order by number.

Step 3. Implicitly define the immediate dominator of each vertex by applying
Theorem 2.2 and partially compute idef values by applying Theorem 2.4.

Step 4. Explicitly define the immediate dominator of each vertex and finish

computing idef. Carry out the computation vertex-by-vertex in increasing order by
number.

The dominators algorithm used the following arrays.
Input

succ (v)" The set of vertices w such that (v, w) is an edge of the graph.
Computed

parent (w)’ The vertex which is the parent of vertex w in the spanning tree

generated by the search.
pred (w)" The set of vertices v such that (v, w) is an edge of the graph.
semi (w)" A number defined as follows"

(i) Before vertex w is numbered, semi (v)= 0.

(ii) After w is numbered but before its semi-dominator is

computed, semi (w) is the number of w.

(iii) After the semi-dominator of w is computed, semi (w) is the
number of the semi-dominator of w.

vertex (i)" The vertex whose number is i.

bucket (w)" A set of vertices whose semi-dominator is w.

dom (w)" A vertex defined as follows:

(i) After Step 3, if the semi-dominator of w is its immediate

dominator, then dom (w) is the immediate dominator of w.

Otherwise dom (w) is a vertex v whose number is smaller
than that of w and whose immediate dominator is also the

immediate dominator of w.

(ii) After Step 4, dom (w) is the immediate dominator of w.

88 J. H. REIF AND R. E. TARJAN

In addition, our algorithm uses def (w) as input and computes sdef (w) and

idef (w).
Rather than converting vertex names to numbers during Step 1 and converting

numbers back to names at the end of the computation, the dominators algorithm refers
to vertices as much as possible by name. Arrays semi and vertex include all necessary
information about vertex numbers. Array semi serves a dual purpose, representing
(though not simultaneously) both the number of a vertex and its semi-dominator.

During Step 1, our algorithm initializes parent, pred, semi, vertex, and sdef. When
a vertex w receives a number i, the algorithm assigns semi (w)- and vertex (i)- w.

Step 1 also initializes sdef (w)- and updates sdef (w)= def (w) if it finds an edge
(v, w) such that w v. Implementation of Step 1 is straightforward, and we omit the

details.
The algorithm carries out Steps 2 and 3 simultaneously, processing the vertices

w r in decreasing order by number. During this computation the algorithm maintains
an auxiliary data structure that represents a forest contained in the depth-first spanning
tree. More precisely, the forest consists of vertex set V and edge set

{(parent (w), w)lvertex w has been processed}. The algorithm uses one procedure to

construct the forest and two procedures to extract information from it.

LINK (v, w):
EVAL (v):

EVALDEF (v):

Add edge (v, w) to the forest.
If v is the root of a tree in the forest, return v. Otherwise, let r

be the root of the tree in the forest which contains v. Return
any vertex u r of minimum semi (u) on the path r v.

If v is a tree root, return . Otherwise, let r Vo Vl v2-

Vk =V be the tree path from the root of the tree

containing v to v. Return U{def (vi) U sdef (v)ll -<i -<k}.

Reference [LT] explains how to use EVAL to compute semi-dominators and

dominators; we shall describe how to use EVALDEF analogously to compute sdef and

idef. When a vertex w is processed, the algorithm examines each edge (v, w)eE and

updates sdef by assigning sdef (w) := sdef (w)U EVALDEF (v). After w is processed,

sdef (w) has the proper value by Theorem 2.3. To verify this claim, consider any edge

(v, w)e E. If v is numbered no greater than w, then v is unprocessed when (v, w) is

examined, which means v is the root of a tree in the forest and EVALDEF (v) returns. If v is numbered greater than w, then EVALDEF returns Ll{def(u)U
sdef (u)lu > w and u *v}. Thus the algorithm computes sdef exactly as specified in

Theorem 2.3.
After processing w to compute semi (w) and sdef (w), the algorithm adds w to

bucket (vertex (semi(w))) and adds a new edge to the forest using LINK

(parent (w), w). This completes Step 2 for w. The algorithm then empties bucket

(parent (w)), carrying out Step 3 for each vertex v in the bucket. By applyingEVAL (v),
the algorithm obtains a vertex u satisfying the condition in Theorem 2.2 and 2.4. Using

this u, the algorithm implicitly computes the immediate dominator of v. The-algorithm

also partially computes idef(v) by assigning idef(v):=sdef(v)LIEVALDEF
(parent (v)). (EVALDEF (parent (v)) tdef (v) as defined in Theorem 2.4.) In Step 4,
the algorithm examines vertices in increasing order by number, filling in the immediate

dominators not explicitly computed by Step 3 and completing the computation of idef.

Here is an Algol-like version of Steps 2-4. The bracketed statements are those added to

the original dominators algorithm to compute sdef and idef.

SYMBOLIC PROGRAM ANALYSIS IN ALMOST-LINEAR TIME 89

Step 2:

Step 3:

Step 4:

comment initialize variables;
for := n by- 1 until 2 do

w := vertex (i);
for each v s pred (w) do

u := EVAL (v);
if semi (u) <semi (w) then semi (w):= semi (u) fi;
[sdef (w):= sdef (w) [_JEVALDEF (v)] od;

add w to bucket (vertex (semi (w)));
LINK (parent (w), w);
for each v s bucket (parent (w)) do

delete v from bucket (parent (w));
u := EVAL (v);
dom (v):= if semi (u) < semi (v)then u

else parent (w) fi;
[idef (v) := sdef (v) (.J EVALDEF (parent (v))] od od;

for := 2 until n do
w := vertex (i);
if dom (w) vertex (semi (w)) then

[idef (w):= idef (dom) (w))(_J idef (w);]
dom (w):= dom (dom (w))li od;

Reference IT2] offers two ways to implement LINK, EVAL, and EVALDEF. The

simpler method has an O(m log n) time bound and the more complicated one has an

O(ma(m, n)) time bound. Farrow IF] provides another O(ma(m, n)) method. If we
include the O(l) time required to construct def from the program text, then the entire

algorithm for computing idef requires O(ma(m, n)+ l) time, assuming that each set
union requires constant time.

3. Computing simple origins. Once we know def and idef, we can employ the
following theorem to compute simple origins. It is convenient for us to assume that
idef (r) .

THEOREM 3.1. LetX be an entry variable which is a text expression. Then

(7)
[v if X idef (v),

simple origin (X) u if X_ idef (v) and u is the maximal proper dominator of
v such thatX def (u)LI idef (u).

Proof. Recall thatX occurs at v. The theorem is immediate from the definitions of

simple origin, def, and idef, using the fact that idef (r) . [3

In order to use Theorem 3.1 efficiently, we need to compute two additional subsets
of variables for each vertex. For any vertex v V, text (v) is the set of variablesX such
thatX is a text expression. We can compute text in O (1) time by scanning the program
text. For any vertex v V, relevant (v) is the set of variables X such that, for some

vertex w properly dominated by v, X is a text expression and X is definition-free

between v and w.

THEOREM 3.2. For any vertex v,

relevant (v)= U {(text (w) Llrelevant (w))-idef (w)lw V and idom (w)= v}.

Proof. Immediate. [3

We can compute relevant in O(n) time by carrying out a depth-first traversal of the
dominator tree and processing the vertices in postorder. Note that, for any vertex v, the

90 J. H. REIF AND R. E. TARJAN

set relevant (v) f3 (def (v) (_J idef (v)) contains exactly the variablesX such that, for some
vertex w, v is the simple origin of the text expression X w.

Given text and relevant, we compute simple origins in another depth-first traversal
of the dominator tree. During the traversal, we maintain a stack for each variable X.
When the traversal reaches a vertex v r, stack (X) contains (in dominator order) all

proper dominators u of v such that Xrelevant (u)f’l(def(u)Uidef(u)). These
vertices are all the candidates (other than v) for the simple origin ofX v. IfX e idef (v),
then the simple origin ofX is v; otherwise the simple origin ofX is the top vertex on
stack (X) when v is reached during the traversal. The following algorithm computes
simple origins using this method.

procedure TRAVERSE (v);
begin

for each X test(v) do
simple origin (X) := ifX idef (v) then v

else top of stack (X) fi od;
for each X relevant (v) (-I (def (v) (idef.(v)) do

push v on stack (X)od;
for each w in {w[idom (w) v} do TRAVERSE (w) od;
for each X relevant (v)(-I (def (v) idef (v))do

pop v from stack (X) od
end TRAVERSE;

for each X do stack (X) od;
TRAVERSE (r);

The correctness of the algorithm is immediate. To get the algorithm to run fast, we
need a method to convert a bit vector representing a set into a list of elements of the set.
We can do this in time proportional to the size of the set if we have a variable-length
shift operation which shifts a bit vector left to the first nonzero bit and returns the length
of the shift. Since such an operation is required to normalize floating-point numbers, it
is a machine-language instruction on many computers. Assuming that a variable-length
shift requires constant time, the time required to compute simple origins is

O(n + Y, ([text (v)[+ [relevant (v)(-I (def (v)I,.Jidef (v))[)] O(n + l)
\ /

since each variableX e text (v) corresponds to an appearance ofX in the program text

at vertex v, and each variableX e relevant (v) f’l (def (v) Uidef (v)) corresponds to a text

expression X for which v is the simple origin.

4. Computing the simple cover and approximate birthpoints. From the simple
origins, it is easy to construct the simple cover and an approximate birthpoint for each
text expression. We begin by constructing a directed acyclic graph (dag) to represent all

text expressions in the program. We shall call the vertices in this dag nodes to distinguish
them from the vertices of the control flow graph. The dag has one node representing
each text expression. An expression which is a constant sign or an entry variableX is

represented by a sink labeled by the appropriate constant sign or entry variable; an

expression of the form O(E1, E2,’", Ek) is represented by a node labeled with 0

having k (ordered) successors representing the expressions El, E2,’ , Ek. An exam-

ple appears in Fig. 5. See [AU], [FKU] for further discussion of this representation. It is

easy to construct a dag representing the text expressions in O(1) time.

We convert the dag representing the text expressions into a dag representing the

simple cover as follows. We process the sinks of the dag labeled by entry variablesX in

SYMBOLIC PROGRAM ANALYSIS IN ALMOST-LINEAR TIME 91

t2

t4

t tt9

FIG. 5. Dags representing the text expression of the program in Fig. 1.

an order consistent with the dominator order; i.e., if v dominates w, we process sinks

labeled X before sinks labeledX TM. We process sinks labeledX as follows. Let u be
the simple origin ofX. If u v we do nothing. Ifu # v andX is defined at u, we replace
all edges leading to sinks labeledX by edges leading to the node corresponding to exit

expression (X, u). (This node now represents ((S, u)).) If u # v and X is not

defined at u, we replace the labels X by labels X". This method requires O(l) time.

We apply two more steps to simplify the resulting dag. First we replace each node
all of whose successors represent constants by a sink representing an appropriate
Constant. We repeat this transformation until it is no longer applicable. This requires
O(1) time and produces a dag representing a set of reduced expressions. Next, we merge

,t8

FIG. 6. Dag representing the simple cover of the program in Fig. 1.

92 J. H. REIF AND R. E. TARJAN

all nodes representing common subexpressions. This can be done in O(l) time using the

acyclic congruence closure algorithm described in [DST]. The result is a dag represent-
ing the simple cover. See Fig. 6.

We can compute an approximate birthpoint for each text expression by processing
the nodes of the dag representing the simple cover in reverse topological order. Each
sink labeled by a constant has approximate birthpoint r. Each sink labeled X has
approximate birthpoint v. Each node with successors has an approximate birthpoint
which is the maximal vertex (with respect to the dominator relation) of the approximate
birthpoints of its successors. The approximate birthpoint of a text expression is the

approximate birthpoint of the corresponding node in the simple cover dag. (Thus our
birthpoints are approximated in part by the simple origins which we computed in 3.)
This computation also requires O(1) time, giving a total of O(1) time to compute both a

simple cover and approximate birthpoints.
By combining the algorithms of 2, 3, and 4, we obtain a symbolic evaluation

method which requires O(ma(m, n)+ l) time if extended bit vector operations require
constant time.

Appendix. Graph-theoretic terminology. A directed graph G V, E) consists of
a finite set V of vertices and a set E of ordered pairs (v, w) of vertices, called edges. If
(v, w) is an edge, w is a successor of v and v is a predecessor of w. A sink is a vertex with
no successors. A graph G1 (V1, El) is a subgraph of G if V1 V and E1

_
E. A path p

of length k from v to w in G is a sequence of vertices p (v Vo, Vl, , Vk W) such
that (vi, Vi/l)E for 0<=i <k. The path is simple if Vo,’", vk are distinct (except
possibly Vo Vk) and the path is a cycle if v0 Vk. By convention there is a path of no

edges from every vertex to itself but a cycle must contain at least one edge. If

pl (u Uo, Ul, , Uk V) is a path from u to v andp2 (v Vo, vl, , vt w) is a

path from v to w, the path pl followed by p2 is p=(u Uo, ux,..., uk =v Vo,

v 1," ", Vl w). A directed graph is acyclic’ if it contains no cycles. A topological order
on an acyclic graph is a total ordering of the vertices such that, for each edge (v, w), v is

ordered before w.
A flow graph G (V, E, r) is a directed graph (V, E) with a distinguished start

vertex r such that for any vertex v V there is a path from r to v. A (directed, rooted) tree

T (V, E, r) is a flow graph such that IEI Vl- 1. The start vertex r is the root of the
tree. Any tree is acyclic, and if v is any vertex in a tree T, there is a unique path from r to

v. If v and w are vertices in a tree T and there is a tree path from v to w, then v is an
ancestor of w and w is a descendant of v (denoted by v w). If in addition v # w, then v
is a proper ancestor of w and w is a proper descendant of v (denoted by v - w). If v w

and (v, w) is an edge of T (denoted by v w), then v is the parent of w and w is a child of
v. In a tree each vertex has a unique parent (except the root, which has no parent). If
G (V, E) is a graph and T (V’, E’, r) is a tree such that (V’, E’) is a subgraph of G
and V’= V, then T is a spanning tree of G.

FIG. 7. Dominator tree o]: the [tow graph given in Fig. 1. The symbol : leads [rom idom (v) to vertex v.

SYMBOLIC PROGRAM ANALYSIS IN ALMOST-LINEAR TIME 93

If G V, E, r) is a flow graph and u, v e V, then u dominates v if all paths from r to

v contain u. The dominator relation is a partial ordering with minimal element r. If u

dominates v and u # v, then u properly dominates v. It can be shown that, for each vertex
v # r, there is a unique vertex u called the immediate dominator of v which properly
dominates v and is dominated by all other dominators of v. We denote the immediate

dominator of v by idom (v). The tree T (V, E’, r) with E’ {(idom (v), v)lv r} is the
dominator tree of G.

[AU]

[CA]

[DST]

[E]
IF]

[FK]

[FKU]

[G]

[GW]

[HU]
[Ki]

[LT]

[R1]
[R2]

[RL]

[Sc]

[T1]
IT2]

IT3]

REFERENCES

A. V. AHO AND J. D. ULLMAN, Introduction to CompilerDesign, Addison-Wesley, Reading, MA,
1977, pp. 441-477.

J. COCKE AND F. E. ALLEN, A catalogue of optimization transformations, Design and Optimiza-

tion of Computers, R. Rustin, ed., Prentice-Hall, Englewood Cliffs, NJ, 1971, pp. 1-31.

P. J. DOWNEY, R. SETHI AND R. E. TARJAN, Variations on the common subexpression problem, J.
Assoc. Comput. Mach., 27 (1980), pp. 758-771.

C. EARNEST, Some topics in code optimization, J. Assoc. Comput. Mach., 21 (1974), pp. 76-102.

R. FARROW, Efficient variants of path compression in unbalanced trees, unpublished manuscript

(1978).
R. N. FAIMAN AND A. A. KORTESOJA, An optimizing Pascal compiler, IEEE Trans. Software

Engineering, SE-6 (1980), pp. 512-519.

E. A. FONG, J. B. KAM AND J. D. ULLMAN, Application of lattice algebra to loop optimization,

Conf. Record Second ACM Symposium on Principles of Programming Languages,
January, 1975, pp. 1-9.

C. M. GESCHKE, Global program optimizations, Ph.D. thesis, Computer Science Dept., Carnegie-

Mellon University, Pittsburgh, PA, 1972.

S. GRAHAM AND M. WEGMAN, A fast and usually linear algorithm for global flow analysis, J.
Assoc. Comput. Mach., 23 (1976), pp. 172-202.

M. S. HECHTAND J. D. ULLMAN, FIow graph reducibility, this Journal, 2 (1972), pp. 188-202.
G. A. KILDALL, A unified approach to global prod,ram optimization, Proc. ACM Symposium on

Principles of Programming Languages, Boston, 1973, pp. 194-206.
R. LENGAUER AND R. E. TARJAN, A fast algorithm forfinding dominators in a flow graph, ACM

Trans. Programming Languages and Systems, (1979), pp. 121-141.

J. H. REIF, Code motion, this Journal, 9 (1980), pp. 375-395.
, Combinatorial aspects ofsymbolic program analysis, Ph.D. thesis, Division of Engineering

and Applied Physics, Harvard University, Cambridge, MA, 1977.

J. H. REIF AND H. R. LEWIS, Symbolic evaluation and the global value graph, Proc. 4th ACM
Symposium on Principles of Programming Languages, 1977.

J. T. SCHWARTZ, Optimization of very high level languages--value transmission and its corollaries,
Computer Languages, (1975), pp. 161-194.

R. E. TARJAN, Depth-first search and linear graph algorithms, this Journal, (1972), pp. 146-160.

Applications of path compression on balanced trees, J. Assoc. Comput. Mach., 26 (1979),
pp. 690-715.

A unified approach to path problems, J. Assoc. Comput. Mach., 22 (1981), to appear.

