
Symbolic Reachable Set Computation of Piecewise
Affine Hybrid Automata and its Application to

Biological Modelling: Delta-Notch Protein Signalling

Ronojoy Ghosh Claire Tomlin

Department of Aeronautics and Astronautics,

Stanford University, Stanford 94305, CA.

E-mail: ronojoy@stanford.edu, tomlin@stanford.edu

Abstract

Hybrid automata are an eminently suitable modelling framework for biological pro-
tein regulatory networks, as the protein concentration dynamics inside each biological
cell are modelled using linear differential equations; inputs activate or deactivate these
continuous dynamics through discrete switches, which themselves are controlled by
protein concentrations reaching given thresholds. This paper proposes an iterative re-
finement algorithm for computing discrete abstractions of a class of hybrid automata
with piecewise affine continuous dynamics and forced discrete transitions, defined com-
pletely in terms of symbolic variables and parameters. Furthermore, these discrete ab-
stractions are utilized to compute symbolic parametric backward reachable sets from
the equilibria of the hybrid automata, that are guaranteed to be exact or conservative
under-approximations. The algorithm is then implemented using MATLAB and QEP-
CAD, to compute reachable sets for the biologically observed equilibria of multiple cell
Delta-Notch protein signalling automaton with symbolic parameters. The results are
analysed to show that novel, non-intuitive, and biologically interesting properties can
be deduced from the reachability computation, thus demonstrating the utility of the
algorithm.

1 Introduction

Biological cell networks exhibit complex combinations of both discrete and continuous be-
haviours; the dynamics that govern the spatial and temporal increase or decrease of protein
concentration or activity inside a single cell are continuous differential equations, while the ac-
tivation or deactivation of these continuous dynamics are triggered by switches which encode
protein concentrations reaching given thresholds. Hybrid automata theory presents an ideal
framework to model and analyse these processes, with the goal of generating predictions that
can be experimentally verified. Formally, a hybrid automaton is a dynamical system with
temporal evolution of continuous state variables governed by differential equations whose
parameters change due to discrete input or event driven discrete state transitions. Their
modularity and compositionality can be utilized to construct complex networked automata,

1

Claire Tomlin

Claire Tomlin
Accepted to appear in IEE Systems Biology

Claire Tomlin

thus increasing their value as a tool for modelling and analysing the vast field of biological
regulatory systems.
One specific analysis problem is the focus of this paper; the computation of sets of points or
regions of the state space “backward reachable” from a particular equilibrium or steady state
of the hybrid automaton, which means there are trajectories that lead from those regions
to the steady state. In the context of biological networks, the backward reachable sets
from the equilibria of the automaton are of considerable interest, because they contain the
initial conditions from which a particular biologically significant steady state is attainable.
In addition, if the reachability analysis is performed on a model with symbolic parameters
and rate constants, the computed reachable sets will not depend on numerical instantiations
of those parameters. This is particularly important in biological systems, where the exact
values of switching thresholds and chemical reaction rates might be unknown, but a range of
possible values, usually expressed in terms of other symbolic constants, can be inferred. This
in turn may be used to “reverse engineer” parts of a biological circuit model, by attaining
through analysis parameters which are difficult or impossible to obtain experimentally.
Computing reachable sets for hybrid automata is difficult in general, due to the difficulty of
representing and propagating sets in high dimensional continuous spaces. There has been a
recent research focus on techniques which use approximations of various types to make the
problem of computing reachable sets tractable; these include approximating the dynamics
using linear hybrid automata [1, 2], and methods approximating the reachable set such
as polyhedral representations [3, 4], piecewise affine systems [5], ellipsoidal approximations
[6], and projections of convergent approximations [7, 8]. An interesting approach utilizing
optimal control techniques has been developed by [9], which can analyse high dimensional
constrained linear and piecewise affine systems. Recently, qualitative simulation models [10,
11] have been proposed to abstract continuous phase portraits of hybrid automata to simpler
transition graphs, on which reachability analysis can be performed. Predicate abstraction [12,
13] and quantifier elimination [14] have been proposed for computing discrete abstractions of
hybrid automata. Most of these methods suffer from one or both of two disadvantages; (a)
the complexity of the computations on the hybrid automaton restricts its dimensionality, and
more importantly, (b) symbolic computations are not possible. In previous work, quantifier
elimination techniques have been used by the authors to compute over-approximations of the
symbolic backward reachable sets for various Delta-Notch protein signalling automata [15].
In this paper, a novel algorithm is proposed that iteratively partitions the state space of a
piecewise affine hybrid automaton with symbolic parameters and rate constants, to produce
an abstracted discrete transition system. The proposed abstraction algorithm uses a system-
atic way of computing transitions and exact symbolic solutions of the continuous differential
equations to iteratively refine the partitions. An under-approximate backward reachable set
from the equilibria of the automaton is then computed on the discrete abstraction. Impor-
tant differences between the algorithm presented here and the previous reachability analysis
performed [15] are: (a) The partitioning polynomials are solutions of the continuous dynam-
ics of the hybrid automaton, and (b) the resulting reachable set is under-approximate. The
biological focus of this paper is a particular mechanism of intercellular signalling known as
the Delta-Notch signalling pathway, which is used in the differentiation of cell fate during
embryonic development, through lateral inhibition. The objective is to present a multi-stable
hybrid automaton model with symbolic parameters, that faithfully replicates the biological
dynamics of lateral inhibition in a planar cell network, and then discuss the novel algorithm

2

to symbolically compute the regions of attraction of the steady states. The key attribute
of this research effort is that both modelling and analysis is completely symbolic, i.e. none
of the parameters such as protein production/activation and decay constants or switching
thresholds are numerically instantiated. Rather, by doing symbolic analysis, predictions are
generated that involve ratios of symbolic kinetic parameters (for example, the relative rates
of production of two different proteins), resulting in a model with valid parameter ranges
given in the form of constraints.
Section 2.1 describes the formal definitions of the piecewise affine hybrid automaton utilized
in modelling, and the discrete transition system that it is abstracted to. In Section 2.2, the
hybrid model of the Delta-Notch network is presented and its key properties summarized. In
Section 3, the concepts associated with reachable set computation are defined, and in Sec-
tion 4 the abstraction algorithm is described in detail. Finally, the reachable sets computed
for the one, two and four cell models are presented in Section 5.

2 Model Development

2.1 Hybrid Automata and Transition Systems

This section formally defines a restricted class of hybrid automata that is used in the Delta-
Notch model development, and for which the abstraction algorithm has been developed. This
is followed by the definition of a discrete transition system that represents an abstraction of
the hybrid automaton. A more general discussion related to abstractions of hybrid automata
and their decidability can be found in [16].

Definition 1 A piecewise affine hybrid automaton, H = (Q,X,Σ, Init, f, Inv, R), is defined
such that

1. Q = {q1, q2, . . . , qm} is the set of discrete states, or modes;

2. X ⊂ RRn is the set of continuous state variables;

3. Σ = {σ1, σ2, . . . , σm} is the set of discrete inputs;

4. Init = Q0 ×X0 is the set of initial conditions;

5. f(q, x) = Aqx + bq is the continuous vector field associated with each discrete state,
where Aq ∈ RRn×n is a diagonal matrix, and bq ∈ RRn;

6. Inv(q) = (
∧
i(pi < 0)) ∧ (

∧
j(pj = 0)) ∧ (

∧
k(pk > 0)) ∧ (

∧
l(pl ≤ 0)) ∧ (

∧
m(pm ≥ 0)),

where pi ∈ Plt(q), pj ∈ Peq(q), pk ∈ Pgt(q), pl ∈ Ple(q), pm ∈ Pge(q), is the invariant
defining each discrete state. p() : X → RR is a polynomial;

7. R : Q×X × Σ → 2Q×X is the transition map.

For this class of hybrid automata, the state transition matrix Aq is restricted to be diagonal
with real eigenvalues. However, the elements of Aq are free to be symbolic, i.e. the eigenval-
ues, λ1, λ2, . . . λn, of Aq need not be numerically instantiated. The elements of vector bq are
also free to be symbolic. Constraints may be imposed on these symbolic constants to restrict

3

the behaviour of the model. The polynomials defining the invariant of each mode, can be
separated into five classes: Plt(q), Peq(q), Pgt(q), Ple(q), and Pge(q), according to their signs
in the state. For example, all polynomials pi ∈ Plt(q) are negative, or less than (lt) zero, in
state q, and similar definitions hold for the other classes Peq(q), etc. Plt(q), Peq(q), . . . , Pge(q)
are mutually disjoint, and ∀q, Plt(q)∪Peq(q)∪Pgt(q)∪Ple(q)∪Pge(q) is invariant. This implies
that the polynomials defining each state are identical, their sign alone varies from state to
state. These classes are used to determine adjacency, i.e. whether two states are geometrical
neighbours in state space, in several different steps of the abstraction algorithm presented
in Section 4. It should be noted that, as the abstraction procedure progresses, additional
polynomials are added to the modal invariants to partition the modes. This may give rise to
redundancies in the polynomials defining the modal invariants. The redundant constraints
can be removed from the invariant using a decision procedure such as QEPCAD at every
partitioning step. However, this is unnecessary because the adjacency check performed dur-
ing transition computation will ensure that there are no transitions between non-adjacent
modes, thus taking care of the redundant constraints in the invariant. In the transition map,
transitions caused by the continuous flow of the automata crossing switching boundaries
defined by the state invariant are called forced transitions. When a network of automata
is built by composing several of them together, their discrete inputs, Σ are coupled to the
internal state variables of other automata in the network, as will be seen in the multiple
cell Delta-Notch network model in Section 2.2. In that case, the entire network behaves as
an autonomous hybrid automaton, as a whole. If the assumption of zero boundary condi-
tions, i.e. no influence from outside the network, is made then the state transitions in that
automaton are all forced.
Example
To illustrate the definition of the invariant, consider the example of a hybrid automaton
with two continuous state variables, x1 and x2, and two discrete states (or modes), q1 and
q2. The state space of this automaton is two dimensional and the geometrical interpretation
of modal invariants can be visualized directly (Figure 1).
Discrete states q1 and q2 are defined by assigning signs to the polynomials x1 + aix2 + bi, i =
1 . . . 5, i.e. the invariant defining q1 is x1+a1x2+b1 < 0∧x1+a2x2+b2 ≥ 0∧x1+a3x2+b3 <
0 ∧ x1 + a4x2 + b4 < 0 ∧ x1 + a5x2 + b5 ≥ 0. Each of the sets Plt(q1), Peq(q1), . . . , Pge(q1)
are lists that can now be populated by polynomial expressions according to what sign they
had in the invariant of q1. Therefore, it can be seen that Plt(q1) = {x1 + a1x2 + b1, x1 +
a3x2 + b3, x1 + a4x2 + b4} and Pge(q1) = {x1 + a2x2 + b2, x1 + a5x2 + b5}, and the others are
empty, Peq(q1) = Pgt(q1) = Ple(q1) = ∅. Similarly, for state q2, the lists of polynomials are
Plt(q2) = {x1+a1x2+b1, x1+a4x2+b4}, Pge(q2) = {x1+a2x2+b2, x1+a3x2+b3, x1+a5x2+b5},
and Peq(q2) = Pgt(q2) = Ple(q2) = ∅. As previously mentioned, these lists are used to
determine whether two discrete states are geometrically next to each other in continuous
state space. In the example, the polynomial expression x1 + a3x2 + b3 has different signs in
the two states, it is an element of Plt(q1), but is also a member of Pge(q2). This implies that
the sign change occurs at the boundary x1 + a3x2 + b3 = 0, which is part of q2 and that
the two discrete states q1 and q2 are geometrically contiguous or adjacent, as can be seen
in Figure 1. This test can be performed automatically and efficiently for high dimensional
hybrid automata to check adjacency.

Definition 2 A finite discrete transition system, T = (Q,Σ,→, Q0, QF), is defined such

4

x1 + a2x2 + b2

x1 + a3x2 + b3

x2 State q1

State q2

x1 + a4x2 + b4

x1

x1 + a1x2 + b1

x1 + a5x2 + b5

Figure 1: Continuous state space with geometrical representations of polynomial modal
invariants of a two dimensional hybrid automaton.

that

1. Q = {q1, q2, . . . , qn} is a set of states;

2. Σ = {σ1, σ2, . . . , σN} is a set of events;

3. →⊆ Q× Σ×Q is a transition relation;

4. Q0 ⊆ Q is the set of initial states;

5. QF ⊆ Q is the set of final states.

The transition system T can be thought of as a graph with directed edges denoting transitions
between nodes that are representations of the states q ∈ Q. The transition system is finite
if the cardinality of Q is finite, and it is deadlock free if for every state q ∈ Q, there exists a
state q′ ∈ Q and an event sigma ∈ Σ such that q

σ→ q′. Additionally, the transition system is
live if for each state q ∈ Q, transition q

σ→ q′ is eventually taken. A dual representation of a
finite transition system is an adjacency matrix A ∈ {0, 1}n×n, where i ∈ 1, 2, . . . , n represents
a discrete state. In the adjacency matrix, ai,j ∈ A : a = 1 means that a transition qi → qj
exists, and ai,j = 0 means no transition exists from qi to qj . Note that the event σ, which
triggers a transition, is not relevant here and has been dropped from the transition relation.
The final states, q ∈ QF , of the transition system are states that have no transitions out of
them, i.e. in the adjacency matrix, ∀j, afinal state,j = 0.
The hybrid automaton H can be abstracted to the discrete transition system T by removing
the temporal evolution of continuous state variables within each discrete state, but preserving
the transitions from one discrete state to another. The set of events Σ of the transition system
T then correspond to transitions relations encoded in the transition map R of the hybrid
automaton H .

5

Nondeterminism
The piecewise affine hybrid automaton defined in this section is deterministic, in the sense
that given an initial condition, the numerical value of the constants in the modal invariants
and differential equations in each mode, and the values of the discrete inputs, the exact
trajectory of the continuous state variables, as well as the sequence of mode transitions, is
unique. However, for computing the evolution of regions of the continuous states space, for
example, finding all initial conditions that converge to a specific steady state, it is compu-
tationally more attractive to study the hybrid automaton as an abstracted discrete state
transition system. The temporal evolution of the continuous state variables is abstracted
away, resulting in a transition system with discrete states (that are the same as the discrete
states of the hybrid automaton) connected by transitions triggered by the set of events Σ.
The abstraction of the piecewise affine hybrid automaton described above may give rise to
nondeterminism in the abstracted discrete transition system. This is because the discrete
states of the hybrid automaton are regions in state space, inside which trajectories starting
from different points may exit the state through different boundaries. Therefore, the discrete
states may have more than one transition out of them. The abstraction algorithm proposed
in this paper attempts to eliminate, or at least reduce, the nondeterminism in the abstracted
system by iteratively partitioning the discrete states such that each new discrete state has
exactly one transition out of it.
An important quantity that will be used extensively in the abstraction algorithm is the Lie
derivative of a scalar quantity along the flow of a vector field. This is formally defined as
follows:

Definition 3 The Lie derivative a smooth scalar function V : RRn → RR, with respect to a
smooth vector field f : RRn → RRn, is defined as LfV = ∂V

∂x
f(x).

The sign of the Lie derivative is useful in determining the direction of flow of the vector field
f , a property that is used in computing transitions in the abstraction algorithm in Section 4.

2.2 Hybrid Automaton Model for Delta-Notch Signaling

The Delta-Notch protein signaling mechanism has been identified as a key player in several
different development processes, including pattern formation due to lateral inhibition [17],
and is conserved across a broad spectrum of organisms. To model the regulation of intracel-
lular Delta and Notch protein concentrations through the feedback network, experimentally
observed rules governing the biological phenomenon have to be implemented. First, cells
have to be in direct contact for Delta-Notch signaling to occur. This implies that a cell is
directly affected by, and directly affects in turn, only immediate neighbours. Second, Notch
production is turned on by high Delta levels in the immediate neighbourhood of the cell and
Delta production is switched on by low Notch concentrations in the same cell. Third, at
steady state, a cell with high Delta levels must have low Notch level and vice versa. Finally,
both Delta and Notch protein concentrations decay exponentially. In the model, the cells
are assumed to be hexagonal close packed, i.e. each cell has six neighbours in contact with it
(Figure 2(a)). An influence diagram showing the signaling network is shown in Figure 2(b).

Each biological cell is modelled as a four state piecewise affine hybrid automaton. The four
states capture the property that Notch and Delta protein production can be individually

6

Hexagonal close-packed lattice

Delta

Notch Notch

NotchNotch

Notch Notch

Notch

Delta

Delta

DeltaDelta

Delta

Delta

(a) (b)

Figure 2: (a) Hexagonal close-packed layout scheme for cells in two dimensional arrays.
(b) Influence diagram for Delta-Notch protein signaling network.

switched on or off at any given time. It is assumed that there is no command-actuation
delay in the mode switching. The formal definition of the hybrid automaton is given by:

Hone cell = (Q,X,Σ, Init, f, Inv, R)

Q = {q1, q2, q3, q4}
X = (x1, x2)

T ∈ RR2

Σ =

{
uN =

6∑
i=1

xDelta,i

}

Init = Q×
{
X ⊂ RR2 : x1, x2 > 0

}

f(q, x) =

[−λDx1;−λNx2]
T if q = q1

[RD − λDx1;−λNx2]
T if q = q2

[−λDx1;RN − λNx2]
T if q = q3

[RD − λDx1;RN − λNx2]
T if q = q4

Inv = {q1, {−x2 < hD, uN < hN}} ∪ {q2, {−x2 ≥ hD, uN < hN}}
∪ {q3, {−x2 < hD, uN ≥ hN}} ∪ {q4, {−x2 ≥ hD, uN ≥ hN}}

where, x1 and x2: Delta and Notch protein concentrations, respectively, in a cell; xDelta,i:

Delta protein concentration in ith neighbouring cell; λD and λN : Delta and Notch protein
decay constants respectively; RD and RN : constant Delta and Notch protein production
rates, respectively; hD and hN : switching thresholds for Delta and Notch protein production,
respectively. The switching thresholds hD and hN are unknown and possible ranges for them
have been derived by the authors [18] using equilibrium analysis.
In the single cell, xDelta,i = 0, ∀i ∈ {1, . . . 6}, as there are no neighbours whose Delta protein
levels can be sensed. The inputs uD and uN are the physical realization of the protein
regulatory properties in the model outlined before. The two cell hybrid automaton Htwo cell

is the composition of two single cell automata, to form a model with four continuous states
(x1, . . . , x4) and sixteen discrete modes. Here, uN �= 0 for each of the two cells, and thus
the Delta level of each cell is communicated to its neighbour to control Notch production.
Modeling the full two dimensional layer of cells involves composing several single cell hybrid
automata, with the coupling through the input functions as described above. It should be

7

noted that the multiple cell models developed above fall in the class of restricted hybrid
automata defined in Section 2.1.

2.3 Equilibrium Analysis

The hybrid automata models described in the previous section have, in general, multiple
steady states. The continuous dynamics in each discrete state, described by a system of
differential equations, has a locally stable equilibrium point. However, not all the possible
equilibria are compatible with biologically observed steady state lateral inhibitory patterning
phenotypes, which follow the following rules:

1. No two cells with high Delta protein concentrations can lie next to each other.

2. A cell with high Notch protein concentration must have at least one neighbour with
high Delta protein concentration.

3. A cell with high Delta protein concentration has low Notch protein concentration and
vice versa.

This implies that the model parameters have to be systematically constrained so that a
network of arbitrary size has only the biologically observed steady states and none others.
This is achieved through equilibrium analysis, i.e. by examining the conditions necessary
for a particular equilibrium in a discrete state to exist. Both the single and two cell hybrid
automata have been analysed by the authors [18], to obtain constraints on the ranges of
the protein kinetic parameters and switching thresholds for biologically feasible equilibria to
exist, given by:

hD, hN : −RN
λN

< hN ≤ 0 ∧ 0 < hN ≤ RD
λD

The constraints are the same for both the single and two cell automata, and similar con-
straints have been computed for larger cell networks. It leads to the conclusion that those
constraints depend only on the number of neighbours a cell has. Since the maximum number
of neighbours that it can have in a hexagonal close packed planar network is six, therefore
the constraints are network size independent for networks larger than nine cells. In summary,
the important properties of the hybrid automaton model of Delta-Notch protein signaling
are:

1. The continuous dynamics in each discrete mode is given by a diagonal state transi-
tion matrix (corresponding to the protein constitutive decay), and a constant input
vector (corresponding to the constant protein productions). The modal invariants are
simple polynomial functions of the continuous state variables, and the automaton is
deterministic.

2. Discrete state transitions are only triggered by the continuous flow crossing a switching
hyperplane, i.e. there are no discrete transitions accompanied by a continuous state
reset, and no discrete jumps out from the interior of a mode. Hence the trajectories of
the system are continuous, though not necessarily smooth.

8

3. The number of discrete states that contain equilibria are finite and enumerable, and
the equilibria are in the interior of each state. Moreover, equilibrium analysis [18]
has shown that additional constraints on the system parameters (rate constants and
switching thresholds) can restrict the existence of equilibria to biologically feasible
modes.

4. The system is live, i.e. forced transitions exist for all states that do not contain
equilibria.

3 Reachability

The fundamental goal of this work is to find initial conditions on the cellular protein concen-
tration or activity, from which a particular biological steady state is achievable. In control
theoretic terms, this is equivalent to identifying exact regions of attraction of the multiple
stable equilibria of the hybrid automaton model. Since computing symbolically on that
model directly is infeasible, the abstraction process proposed in this paper converts the hy-
brid automaton into a discrete transition system that preserves the transition structure while
abstracting away the continuous dynamics. To better understand the computation of the
region of attraction, the concept of reachability is now introduced. All notation regarding
sets and variables refer to the hybrid automaton and transition system defined in Section 2.1.

Definition 4 A state q̂ ∈ Q, of a transition system (that may be a hybrid automaton H or
a discrete transition system T), is said to be reachable from another state q if there exists a
finite sequence of transitions q

σ1→ q1
σ2→ · · · σN→ q̂, from initial state q to state q̂. The state q

is said to be backward reachable from the state q̂.

Extending this definition to sets of states, a region P ⊆ Q of the hybrid automaton H
or discrete transition system T , is backward reachable from a state q ∈ Q, if there exist
sequences of transitions leading from P to q. It can be shown that, for a piecewise affine
hybrid automaton H with diagonal state transition matrices that conforms to the definition
in Section 2.1, continuous flow in the discrete states containing stable equilibria does not cross
the boundaries of the state and exit the state. This means that the equilibria-containing
states have no forced transitions out of them, i.e. once the automaton has entered one
of those states it will stay in that state and converge to the stable equilibrium contained
within. If the hybrid automaton H is abstracted to the discrete transition system T , these
equilibrium-containing states are then abstracted to the states in the set of final states QF ,
which, by definition, have no transitions out of them.
For a final state q ∈ QF , the region P is uniquely backward reachable from state q if all
sequences of transitions from P terminate only in the state q. The regions of attraction of
the steady states of the hybrid automaton therefore correspond to the uniquely backward
reachable sets for the final states of the abstracted discrete transition system. Hence, the
problem of computing the regions of attraction of the hybrid automaton is transformed to
the problem of computing uniquely backward reachable sets for the abstracted transition
system.
It follows that the accuracy of the computed backward reachable set depends critically on
the granularity of the abstraction. The finer the abstraction, the better the accuracy of

9

the reachable set. If the abstraction algorithm results in a completely deterministic discrete
transition system then the computed uniquely backward reachable set is exactly equal to the
region of attraction for a particular steady state. Even when such a fine partition cannot
be computed, because of decidability issues, using the proposed algorithm in this paper,
it is possible to construct a “best possible” abstraction that is partially deterministic and
partially nondeterministic, from which an under-approximation of the backward reachable
sets from the equilibria can be determined.

4 Algorithm

This section describes, in detail, the partitioning algorithm developed to iteratively refine
an initial coarse partition of the state space of a hybrid automaton. This algorithm is
applicable to the restricted class of hybrid automata defined in Section 2.1, and the multiple
cell Delta-Notch model developed in Section 2.2 is a perfect candidate for its application. The
novelty of this algorithm lies in that it uses the concept of Lie derivatives to systematically
compute transitions between the refined partitions and then iteratively computes subdividing
partitions that are solutions of the governing differential equations in a discrete state of the
hybrid automaton.
Algorithm 1: Partitioning Algorithm

Input: A hybrid automaton H = (Q,X, Σ, Init, f, Inv,R), with restrictions
Output: A discrete transition system T = (QT , ΣT ,→, QT,0, QT,F)
Step 1
foreach q ∈ Q, such that Ple(q) �= ∅ or Pge(q) �= ∅

define q1, q2, such that f(q1, x) = f(q2, x) = f(q, x), and
Inv(q1) : Plt(q1) = Plt(q)∪Ple(q), Peq(q1) = Peq(q), Pgt(q1) = Pgt(q)∪Pge(q), Ple(q1) =
Pge(q1) = ∅
Inv(q2) : Plt(q2) = Plt(q), Peq(q2) = Peq(q)∪Ple(q)∪Pge(q), Pgt(q2) = Pgt(q), Ple(q2) =
Pge(q2) = ∅
refine Q = (Q\{q}) ∪ {q1, q2}

Step 1 The initial partition of the hybrid automaton is the partition induced by the switch-
ing surfaces and modal invariants of the system. The first step of the algorithm is to
separate the interiors of the partitioned states from the boundaries, thus dividing the
states into two classes, those that are defined by strict inequalities (i.e., interiors) and
those that are defined by at least one equality (i.e., boundaries).

The initial separation of boundary and interior states is useful because it immediately
returns a list of all the states adjacent to a particular state. In terms of implementation,
this is useful because it allows transition checking only between adjacent states. This
is possible because, for the type of automata under study, all transitions occur through
the boundaries as a result of the continuous vector flow. Therefore, ensuring that
transitions occur only between adjacent states is crucial. Figure 3(a) shows an example
of a two dimensional hybrid automaton with the invariants defining the discrete states
and appropriate continuous vector fields in each discrete state. In Figure 3(b), each
discrete state is further partitioned into an interior and several boundaries.

10

x1 + a2x2 + b2
x1 + a3x2 + b3

x2 State q1

State q2

x1 + a4x2 + b4

x1

x1 + a1x2 + b1

x1 + a5x2 + b5

x2

x1

q1

q2

q3

q4

q5

q6
q7

q8

q9

q10
q11

q12

q13

q14

(a) (b)

Figure 3: (a) Phase portrait of a hybrid automaton showing system dynamics and discrete
state partitions. (b) States partitioned into boundary (switching surface) and interior.

Step 2
foreach q, q1 ∈ Q, such that Peq(q) = ∅, Peq(q1) �= ∅, and (Plt(q) ∩ Pgt(q1)) =
(Pgt(q) ∩ Plt(q1)) = ∅

if ∀pi ∈ (Plt(q)∩Peq(q1)), Lq(pi)|Inv(q1) > 0 and ∀pj ∈ (Pgt(q)∩Peq(q1)), Lq(pj)|Inv(q1) <
0, where Lq(p())|Inv(q1) is the Lie derivative of p(), w.r.t. f(q, x), evaluated on
Inv(q1) then R(q) → q1

foreach q, q1 ∈ Q : q �= q1, such that Peq(q) �= ∅, (Peq(q) ⊂ Peq(q1)) ∨ (Peq(q1) ⊂
Peq(q)), and (Plt(q) ∩ Pgt(q1)) = (Pgt(q) ∩ Plt(q1)) = ∅

if ∀pi ∈ (Peq(q)∩Peq(q1)), Lq(pi)|Inv(q) = 0 and ∀pj ∈ (Peq(q)∩Pgt(q1)), Lq(pj)|Inv(q) >
0 and ∀pk ∈ (Peq(q)∩Plt(q1)), Lq(pk)|Inv(q) < 0 and ∀pl ∈ (Plt(q)∩Peq(q1)), Lq(pl)|Inv(q1) >
0 and ∀pm ∈ (Pgt(q) ∩ Peq(q1)), Lq(pm)|Inv(q1) < 0 then R(q) → q1

Step 2 The next step is to compute transitions between the partitioned states, based on the
vector field of the continuous dynamics in each partition. Adjacency is checked strictly,
since the automaton is restricted to have only forced transitions. The procedure for
finding transitions is different for interior and boundary states. For interior states, the
Lie derivatives, under the vector field in the partition, of each boundary polynomial is
computed. Next, the sign of each Lie derivative is evaluated on the boundary itself.
Depending on the sign of the boundary polynomial inside the partition and the sign
of its Lie derivative, the direction of the flow from the interior to the boundary can
be determined. For boundary states, the sign of the Lie derivatives of the polynomial
equalities defining it have to be evaluated first; if these Lie derivatives are non-zero
(i.e. positive or negative), then the trajectories have to exit the state through those
surfaces. If the Lie derivatives are zero then the other boundary polynomials are
checked for exit transitions, as in the case of interior states. A boundary, given by a
polynomial p = 0, of a state appears as an invariant for that state, as p < 0 or p > 0.
For an exit transition to exist through that boundary p = 0, the Lie derivative L(p)
has to be of the appropriate sign, i.e. if p < 0 in the state, then L(p) > 0, and if p > 0
then L(p) < 0 will ensure that a transition exists between the state and the adjacent
boundary with p = 0.

11

An interesting property of the Delta-Notch automaton, and the class of automata it
belongs to, is that sign changes of the Lie derivative along a particular boundary do
not occur, which makes it easier to partition. Also, if the boundary and the dynamics
are linear, then the sign of the Lie derivative is always computable using a decision
procedure. In general, if finite-connectedness between the partitions can be assumed,
then the transition generation step also always terminates. The vector field associated
with each discrete state utilized in computing Lie derivatives is shown in Figure 4(a),
and the transitions, computed from the sign of the Lie derivatives, between the states
can be seen in Figure 4(b).

x2

x1

q3

q4

q5

q6
q7

q8

q9

q10
q11

q12

q13

q14
q1

q2

x2

x1

q3

q4

q5

q6
q7

q8

q9

q10
q11

q12

q13

q14
q1

q2

(a) (b)

Figure 4: (a) The vector field in each discrete state is used to compute Lie derivatives that
determine discrete state transitions. (b) Transitions computed between the discrete states,
by abstracting the vector field. Note that there may be several transitions out of one discrete
state (for example, state q1).

Steps 3,4
while ∃q ∈ Q, such that |R(q)| > 1

if ∃q1 ∈ Q, such that R(q) → q1 and |Peq(q1)| − |Peq(q)| = 2, if several possible
q1 exist, choose one at random

compute partitioning surface g(x), such that g(x) satisfies ẋ = f(q, x) and
Inv(q1)
define q2, q3, q4, such that f(q2) = f(q3) = f(q4) = f(q), and
Inv(q2) = Inv(q) ∧ g(x) < 0 and R(q2) = R(q)\{→ qi}, where q2, qi are not
adjacent
Inv(q3) = Inv(q) ∧ g(x) = 0 and R(q3) = R(q)\{→ qi}, where q3, qi are not
adjacent
Inv(q4) = Inv(q) ∧ g(x) > 0 and R(q4) = R(q)\{→ qi}, where q4, qi are not
adjacent
if ∃qj : R(qj) → q then R(qj) = (R(qj)\{→ q})

⋃
i{→ qi}, where qi, qj are

adjacent
refine Q = (Q\{q}) ∪ {q2, q3, q4}

else if ∃q1 ∈ Q, such that R(q) → q1 and ∃pi ∈ Peq(q1) : pi /∈ (Plt(q) ∪ Peq(q) ∪
Pgt(q))

12

define q2, q3, q4, such that f(q2) = f(q3) = f(q4) = f(q), and
Inv(q2) = Inv(q) ∧ pi < 0 and R(q2) = R(q)\{→ qi}, where q2, qi are not
adjacent
Inv(q3) = Inv(q) ∧ pi = 0 and R(q3) = R(q)\{→ qi}, where q3, qi are not
adjacent
Inv(q4) = Inv(q) ∧ pi > 0 and R(q4) = R(q)\{→ qi}, where q4, qi are not
adjacent
if ∃qj : R(qj) → q then R(qj) = (R(qj)\{→ q})

⋃
i{→ qi}, where qi, qj are

adjacent
refine Q = (Q\{q}) ∪ {q2, q3, q4}

set QT = Q, ΣT = ∅,→= R,QT,0 = Q0

return T = (QT , ΣT ,→, QT,0)

Step 3 Once a coarse partition with an associated transition map is computed for the hybrid
automaton, a sub-partitioning step is applied to the states in the abstraction that have
more than one exit transition. The sub-partitioning step divides the state into several
subsets, each of which have exactly one exit transition, i.e. exactly one successor
state. This step is non-trivial, as each new partitioning surface is a fully symbolic
analytical solution to the continuous differential equations for the state. The sub-
partitioning procedure is the most complex and in general, the most computationally
intractable. Multiple transitions out of a state occur when the vector flow encounters
the intersection of two or more boundaries of the state. The sub-partitioning surface
is a set of trajectories that are exact solutions of the differential equations associated
with that state, and that begins at the intersection of the boundaries (Figure 5(a)).
Computing analytic time-independent solutions to these sub-partitioning surfaces is
not always possible because of the symbolic coefficients and indices. If the computation
fails then this step will not yield a finer partition. However, for a large number of
states, at least for hybrid automata with diagonal state transition matrices, this sub-
partitioning is achievable.

Step 4 When a state is sub-partitioned as above, into several new states, its original prede-
cessor state will now have multiple transitions and thus the partitioning algorithm will
have to be iteratively applied to the predecessor states (Figure 5(b)). The iteration
has to be continued till all states in the partition have exactly one successor state, or
none, in the case of partitions containing equilibria. This final partition, if computable,
results in a discrete abstraction that is completely deterministic.

Computation of Partitioning Surfaces The refinement procedure in step 3, of the al-
gorithm, depends upon the ability to compute analytic time-independent solutions to the
symbolic differential equations in a discrete state. The solution also has to satisfy the bound-
ary condition generated by the intersection of two or more boundaries of the state through
which the forced transitions occur. This is computationally intractable in general. However,
from computing the abstraction for Delta-Notch automata using the proposed algorithm, it
is the authors’ experience that a majority of states either need no refinement (i.e., they have
exactly one exit transition, even after their successor states have been partitioned), or have
computable refining partitions. The observed properties that make the computation more
tractable are:

13

x2

x1

q3

q4

q5

q6
q7

q8

q9

q10
q11

q12

q13

q14

q2q15

q16

q17 x2

x1

q3

q4

q5

q6
q7

q8

q9

q10
q11

q12

q13

q2q15

q19

q20

q18
q16

q17

(a) (b)

Figure 5: (a) Subdivision of state q1 with multiple transitions, into states with one transition
each. The dividing polynomial is an exact solution of the differential equations governing
continuous flow in q1 (b) Iterative application of the refinement procedure to predecessor
states of q1.

1. The continuous dynamics in each discrete state are governed by ordinary differential
equations with diagonal state transition matrices Aq. This implies that the time-
dependent symbolic solution to the differential equations can always be found and is
given by the transcendental equation x(t) = x(0)eAqt. The boundary condition, i.e.
intersection of boundaries of the discrete state, supplies the vector x(0) and time t
then has to be eliminated to give the closed form time-independent solution to the
partitioning surface.

2. The polynomials that define the boundaries of the discrete states are linear. This is
important because the intersection of the boundaries gives the boundary condition that
the partitioning surface must satisfy. In addition, if the boundaries are also linearly
independent, then the boundary condition will be simpler and it is easier to eliminate
time t from the system of transcendental equations.

3. The discrete states have boundaries that are orthogonal to each other. If the boundaries
are orthogonal, the computation of the intersection of the partitioning polynomial and
the other boundaries is simplified. If, from property 2, the boundaries are linear and
also linearly independent, computation of the intersection in this case simply reduces
to the conjunction of the boundary and the new partitioning surface.

Example
An example of the partition refinement computation illustrates the properties enumerated
above. To demonstrate the sub-partitioning step, consider a state from the two cell Delta-
Notch automaton Htwo cell, defined as:

q10 : Inv(q10) = −x2−hD < 0∧x3−hN < 0∧−x4−hD < 0∧x1−hN > 0∧x4−x2 < 0∧x3−x1 < 0

with continuous dynamics, f(q10, x) = [−λDx1;−λNx2;−λDx3;RN − λNx4]
T . The polyno-

14

mials defining the invariant are linear and the solution to the continuous dynamics is:

x1 = x1(0)e
−λDt

x2 = x2(0)e
−λN t

x3 = x3(0)e
−λDt

x4 = RN

λN
+ x4(0)λN−RN

λN
e−λN t

State q10 has three exit transitions, R(q10) → {q11, q13, q14}, where the successor states are
defined as:

q11 : Inv(q11) = −x2 − hD < 0 ∧ x3 − hN < 0 ∧−x4 − hD < 0 ∧ x1 − hN > 0 ∧ x4 − x2 = 0 ∧ x3 − x1 < 0
q13 : Inv(q13) = −x2 − hD < 0 ∧ x3 − hN < 0 ∧−x4 − hD < 0 ∧ x1 − hN = 0 ∧ x4 − x2 < 0 ∧ x3 − x1 < 0
q14 : Inv(q14) = −x2 − hD < 0 ∧ x3 − hN < 0 ∧−x4 − hD < 0 ∧ x1 − hN = 0 ∧ x4 − x2 = 0 ∧ x3 − x1 < 0

Note that state q14 is the intersection of two boundaries x1 − hN = 0 ∧ x4 − x2 = 0, shown
in the x1 − hN , x4 − x2 projection plane in Figure 6. Therefore, the partitioning polynomial
for q10 will be the solution to d(x4−x2)

d(x1−hN)

∣∣∣
f(q10,x)

that satisfies x1 − hN = 0 ∧ x4 − x2 = 0. From

the solution to the continuous dynamics, it is easy to derive:

x4 − x2 =
RN
λN

+
(x4(0)− x2(0))λN −RN

λN
e−λN t

Substituting the boundary conditions x4(0)−x2(0) = 0 and x1−hN = 0, the time-dependent

0
24

=− xx

0
1

=− Nhx

() 01
1

24
=

−

−−

ND

NN

N

h

x
xx

R

λλ
λ

11
: qState14

: qState

13
: qState

10
: qState ′

10
: qState ′′

10
: qState ′′′

Figure 6: Generation of sub-partitioning surfaces for iterative refinement of partitions. This
diagram shows the projection of the sub-partitioning surface of state q10 of a two cell Delta-
Notch hybrid automaton.

solution for the partitioning surface is obtained:

x1 = hNe
−λDt

x4 − x2 = RN

λN
(1− e−λN t)

By eliminating time t from the two transcendental equations, the time-independent equation
of the partitioning surface p is obtained:

p =

(
1− λN

RN
(x4 − x2)

)λD

−
(
x1

hN

)λN

= 0

15

This subdivides q10 into three states q
′
10, q

′′
10, q

′′′
10, such that:

q′10 : Inv(q
′
10) = Inv(q10) ∧

(
1− λN

RN
(x4 − x2)

)λD −
(
x1

hN

)λN

< 0 and R(q′10) → q11

q′′10 : Inv(q
′′
10) = Inv(q10) ∧

(
1− λN

RN
(x4 − x2)

)λD −
(
x1

hN

)λN
= 0 and R(q′′10) → q14

q′′′10 : Inv(q
′′′
10) = Inv(q10) ∧

(
1− λN

RN
(x4 − x2)

)λD −
(
x1

hN

)λN
> 0 and R(q′′′10) → q13

The intersections of the partitioning surface p with the other boundaries of state q10 are easy
to compute because they are linearly independent from p. For example, the intersection of
p = 0 and the boundary x3 − hN = 0 is simply the hyperplane p = 0 ∧ x3 − hN = 0. The
intersection of p = 0 and another boundary −x4 −hD = 0 is given by substituting x4 = −hD
in p = 0: (

1− λN
RN

(−hD − x2)

)λD

−
(
x1

hN

)λN

= 0

Therefore for certain parts of the state space, the exact partition will have been found, even
though other parts may be unresolvable due to computability issues. This has profound
implications for computing reachability from an equilibrium state, which is the primary
motivation for the abstraction. It should also be mentioned that, if the symbolic constants
in the model such as the thresholds hD, hN and the parameters λN , RD are instantiated using
integers, the computability issues may be ameliorated and the partition could be decidable.
However, for the purposes of biological systems modelling, it is preferable to work in terms
of symbolic constants, as it is difficult to obtain their correct numerical values.

x2

x1

(a) (b)

Figure 7: (a) An example of reachability computation using the abstracted transition system,
the gray shaded area is completely reachable from the final state. (b) Schematic state
transition diagram showing approximate backward reachable sets from final states.

To understand the nature of the partition produced by the algorithm, its important proper-
ties are summarized here; the coarsest partition that will be produced is the one induced by

16

the invariants of the hybrid automaton itself, without further refinement, and whose states
won’t have unique successor states, in general. When the refinement procedure is computable
for a state, each subdivision will have an unique successor. If the iteration reaches a fixed
point where all states have unique successors, then the abstraction is complete. Using the ad-
jacency matrix of the deterministic transition system thus produced, an exact and uniquely
backward reachable set of states can be computed from the equilibria of the automata.
Unfortunately, not all sub-partitions are computable. In that case, determinism for those
states or their predecessor states up the sequence of transitions cannot be guaranteed. How-
ever, if the automaton has one or more discrete states containing an equilibrium, and those
have diagonal state transition matrices, it can be shown that those states will not have exit
transition, i.e. they are final states of the automaton. The predecessor states of the final
states, if they transition only into the final state, will not have to be sub-partitioned, and
so on iteratively for their predecessors. If chains of such states terminating in a final state
emerge from the algorithm, a local fixed-point of the partition, i.e. a “partial” determin-
istic abstraction, will have been computed. Since the system is live, i.e. for all non-final
states, a forced transition exists, the union of these states will give an under-approximation
of the uniquely backward reachable state from that equilibrium, because all points in those
states are guaranteed to reach that final state and only that final state. It is an under-
approximation because there might be other regions of state-space which converge to the
final state of interest, however the refinement step fails to delineate them exactly, because of
computability or decidability issues. Hence, in that case, the “best” possible partition, under
the circumstances, will have been achieved (Figure 7(b)). Of course, in the worst case, there
might not exist even a single predecessor state of the final state that can be sub-partitioned,
and the approximate reachable set reduces to the final state itself. However, in the class
of Delta-Notch automata that have been studied by the authors, large portions of the state
space have been identified that are uniquely and exactly reachable from one equilibrium or
the other, as will be shown in Section 5.
The computational complexity of the algorithm restricts the size of the problem (i.e., the
number of variables and parameters it can have). In terms of time-complexity, the most
restrictive component is the symbolic decision procedure used to compute transitions across
boundaries, which is doubly exponential in the number of variables and symbolic parameters,
and polynomial in the number of polynomials defining each discrete state. Storage require-
ments rise exponentially in the number of discrete states, but that is manageable given the
advances in computer memories and hard drive storage capacities. Some optimization has
been performed in the transition checking portion of the algorithm in the implementation,
which is, however, outside the scope of this paper.

5 Results

The algorithm has been implemented for one, two, and four cell Delta-Notch automata. The
discrete abstraction of the one cell automaton is exact and the initial conditions converging
to the equilibrium can be determined exactly. The computation for the two cell automaton
is more interesting, as behavioural complexities arise from putting the two cells together in
a simple network. Note that the number of discrete states mentioned in the introduction
to each network is the initial number of states in the problem specification. The iterative

17

refinement procedure greatly increases the number of discrete states in the final partition.

5.1 One Cell Delta-Notch Automaton

For the one cell Delta-Notch automaton, the partitioning algorithm is decidable and returns
an exact discrete abstraction. The state space is divided into three states (note that hD is
constrained to be negative):
q1 : Inv(q1) = x1 > 0 ∧ x2 + hD > 0 and q1 → q2
q2 : Inv(q2) = x1 > 0 ∧ x2 + hD = 0 and q2 → q3
q3 : Inv(q2) = x1 > 0 ∧ x2 + hD < 0 and q3 → ∅ : contains equilibrium

Delta protein Delta protein

N
o
tc

h
 p

ro
te

in

N
o
tc

h
 p

ro
te

in

Dhxx −>∧>
21

0

Dhxx −<∧>
21

0

Dhxx −=∧>
21

0

Equilibrium

Figure 8: Exact discrete abstraction for a single cell Delta-Notch automaton.

Computing the backward reachable set from the equilibrium state q3, it can be seen that
Reach(q3) = q1∪q2∪q3, which is the entire state space x1 > 0∧x2 > 0. The abstracted state
space is shown, along with the actual phase portrait of Hone cell in Figure 8. Biologically,
the reach set implies that, in vacuo, each cell will converge to a steady state where it has a
high level of Delta protein and a low level of Notch protein.

5.2 Two Cell Delta-Notch Automaton

The partitioning algorithm was applied to the two cell hybrid automaton Htwo cell, which has
four continuous states x1, x2, x3, x4, representing the Delta and Notch protein levels in cells
1 and 2 respectively and sixteen discrete states in which each protein’s production is either
turned on or off. Even though the vector flow in each state is relatively simple, being given by
a piecewise affine differential equation with a diagonal state transition matrix, the switching
between states make the behaviour of this system quite complex. After the algorithm had
converged and no further partitions could be refined, the backward reachable sets from the
two biologically observed equilibria were computed. The resulting reachable sets are given
as:
Equilibrium 1:

(
x1 = 0, x2 =

RN

λN
, x3 =

RD

λD
, x4 = 0

)
(x3 − x1 ≥ 0 ∧ x4 − x2 ≤ 0 ∧ ((x3 − x1 > 0 ∧ hD + x4 ≥ 0) ∨ (x3 − x1 > 0 ∧ hD + x2 ≤ 0)∨
(x4 − x2 < 0 ∧ hN − x3 ≥ 0) ∨ (x4 − x2 < 0 ∧ hN − x1 ≤ 0))) ∨ (x3 − x1 < 0 ∧ x4 − x2 < 0∧
((−x2 − hD < 0 ∧ x1 − hN ≤ 0 ∧−x4 − hD > 0 ∧ (1− λD

RD
(x3 − x1))

λN ≤ (x2

−hD
)λD)∨

18

(−x2 − hD ≤ 0 ∧ x3 − hN ≥ 0 ∧ −x4 − hD > 0 ∧ (1− λD

RD
(x3 − x1))

λN ≤ (RN−λNx4

RN+λNhD
)λD))∨

(x3 − x1 > 0 ∧ x4 − x2 > 0 ∧ ((−x2 − hD < 0 ∧ x3 − hN > 0 ∧ x1 − hN ≤ 0 ∧ x4 − x2 ≤
−RN

λN
(1− (x3

hN
)

λN
λD))∨

(x3 − hN ≥ 0 ∧−x4 − hD ≥ 0 ∧ x1 − hN < 0 ∧ x4 − x2 ≤ −RN

λN
(1− (x1

hN
)

λN
λD)))

Equilibrium 2:
(
x1 =

RD

λD
, x2 = 0, x3 = 0, x4 =

RN

λN

)
(x3− x1 ≤ 0 ∧ x4 − x2 ≥ 0 ∧ ((x3 − x1 < 0 ∧ hD + x2 ≥ 0) ∨ (x3 − x1 < 0 ∧ hD + x4 ≤ 0)∨
(x4 − x2 > 0 ∧ hN − x1 ≥ 0) ∨ (x4 − x2 > 0 ∧ hN − x3 ≤ 0))) ∨ (x3 − x1 < 0 ∧ x4 − x2 < 0∧
((x3 − hN ≤ 0 ∧−x4 − hD < 0 ∧ x1 − hN > 0 ∧ (1− λN

RN
(x4 − x2))

λD ≤ (x1

hN
)λN)∨

(−x2 − hD ≥ 0 ∧ x3 − hN < 0 ∧ x1 − hN ≥ 0 ∧ (1− λN

RN
(x4 − x2))

λD ≤ (RD−λDx3

RD−λDhN
)λN))∨

(x3 − x1 > 0 ∧ x4 − x2 > 0 ∧ (−x2 − hD ≥ 0 ∧ x3 − hN < 0 ∧ x1 − hN < 0 ∧ x3 − x1 ≤
−RD

λD
(1− (x4

−hD
)

λD
λN))∨

(x3 − hN > 0 ∧ −x4 − hD ≤ 0 ∧ x1 − hN ≥ 0 ∧ x3 − x1 ≤ −RD

λD
(1− (x2

−hD
)

λD
λN)))

Since the state space is four dimensional, it is difficult to visualize the reachable sets. One
visualization technique we use, is to draw projections on to three dimensional space, as in
Figure 9. In all the projection diagrams, the cyan and green sets are under-approximations
of the backwards reachable sets from equilibrium 1 and 2, respectively. The two pictures
in the top row of Figure 9 are two different views of the reachable sets projected onto the
x3 − x1, x4 − x2, x3 space, to show their structure. The curved surface of the green reach set
is actually a projection of one of the partitioning polynomials generated by the algorithm.
The pictures on the bottom row are views of the projection on the x1, x3, x4 − x2 plane and
show the spatial complexities of the refined partition.
Biological Significance
The two cell Delta-Notch system is a competitive network, and it tends to amplify differences
in initial protein concentrations between the two cells. From the computed reachable sets, the
following patterns of behaviour of the system can be discerned: (a) The network essentially
amplifies the difference between the initial Delta protein concentrations of both cells and
initial Notch concentrations between the two cells. (b) The backward reachable sets indicate
that there are certain sets of initial conditions, for both equilibria, where the system behaves
non-intuitively: The initial difference in protein concentration between cells is not amplified.
The reason that such behaviour is possible, is because the kinetic parameters for protein
production and decay, and the switching thresholds, may be different for both proteins.
By not instantiating them, and allowing them to vary, sets of initial conditions are obtained
where the initial concentration of some proteins are such that they can suppress, or promote,
the production of other proteins long enough for the initial difference in concentrations
between the two cells to be reduced or even reversed. This prediction of potential mutant
behaviour would be very interesting to test in a biological experiment.

5.3 Four Cell Delta-Notch Automaton

The largest network that has been analysed comprises four cells. The four cell Delta-Notch
hybrid model has eight continuous state variables x1, x2, . . . , x8, and two hundred and fifty six
discrete states. The variables x1, x3, x5 and x7 denote the Delta protein levels and x2, x4, x6

and x8 represent the Notch protein levels in cells 1, 2, 3 and 4, respectively (Figure 10(a)).

19

Figure 9: Projections showing computed backward reachable set from the equilibria for the
two cell Delta-Notch automaton. The cyan set represents the reachable set for equilibrium
1, and the green one for equilibrium 2.

The four cell network has three possible steady states that are biologically feasible, as shown
in Figure 10(b). Equilibria 1 and 2 are the cases where a single cell (cell 3 and cell 2,
respectively) has a high level of Delta protein and a low level of Notch protein concentration
and its three neighbours have low Delta protein and high Notch concentration. Equilibrium
3 represents a different steady state condition; two of the four cells, cells 1 and 4, have a
high concentration of Delta protein and the other two cells have a low Delta and high Notch
concentration.
The reachability computation for the four cell network results in the following three under-
approximations of the backward reachable set from each of the three equilibria:
Equilibrium 1:

(
x1 = 0, x2 =

RN

λN
, x3 = 0, x4 =

RN

λN
, x5 =

RD

λD
, x6 = 0, x7 = 0, x8 =

RN

λN

)
(hD+x6 ≤ 0∧hD+x4 ≥ 0∧hD+x2 ≥ 0∧hD+x8 ≥ 0∧hN−x7−x5−x1 ≤ 0∧hN−x5−x3 ≤ 0∧
hN−x7−x3−x1 ≥ 0∧((x5−x3 > 0∧x7−x3+x1 ≤ 0∧hD+x4 ≤ 0∧hN−x7−x3−x1 > 0)∨
(x5 − x3 > 0 ∧ x7 − x3 + x1 ≤ 0 ∧ hD + x6 ≥ 0 ∧ hN − x7 − x3 − x1 > 0) ∨ (x5 − x3 >
0 ∧ x7 − x3 + x1 ≤ 0∧

20

Cell 1
(x1, x2)

Cell 2
(x3, x4)

Cell 3
(x5, x6)

Cell 4
(x7, x8)

(a) (b)

Figure 10: (a) Layout of four cell Delta-Notch network showing the variables associated
with each cell. b) Biologically consistent steady states of the four cell network, a shaded cell
represents a high steady state concentration of Delta protein and low level of Notch protein,
and an unshaded cell has low Delta protein and high Notch protein at steady state. From
left to right, equilibrium 1 has cell 3 with high Delta level and the rest with high Notch,
equilibrium 2 has cell 2 with high Delta concentration and the others with high Notch, and
equilibrium 3 has cells 1 and 4 with high Delta and the others with high Notch levels.

hN −x7 −x5 −x1 ≥ 0)∨ (x5 −x3 > 0∧x7 −x3 +x1 ≤ 0∧hD +x8 ≤ 0∧hN −x7 −x3 −x1 >
0) ∨ (hD + x2 ≤ 0∧
hD + x8 > 0 ∧ hN − x7 − x3 − x1 > 0) ∨ (x7 − x3 + x1 ≥ 0 ∧ x7 − x5 + x1 < 0 ∧ hD + x4 ≤
0 ∧ hN − x7 − x3 − x1 > 0)∨
(x7 −x3 +x1 ≥ 0∧x7 −x5 +x1 < 0∧hD+x6 ≥ 0∧hN −x7 −x3 −x1 > 0)∨ (x7 −x3 +x1 ≥
0 ∧ x7 − x5 + x1 < 0∧
hN−x5−x3 ≥ 0)∨(hD+x6 < 0∧hD+x4 > 0∧hD+x2 > 0∧hD+x8 > 0∧hN−x7−x3−x1 ≤ 0)∨
(x7 − x3 + x1 ≥ 0 ∧ x7 − x5 + x1 < 0 ∧ hD + x8 ≤ 0 ∧ hN − x7 − x3 − x1 > 0)))

Equilibrium 2:
(
x1 = 0, x2 =

RN

λN
, x3 =

RD

λD
, x4 = 0, x5 = 0, x6 =

RN

λN
, x7 = 0, x8 =

RN

λN

)
(hD+x4 ≤ 0∧hD+x6 ≥ 0∧hD+x2 ≥ 0∧hD+x8 ≥ 0∧hN−x7−x5−x1 ≥ 0∧hN−x5−x3 ≤ 0∧
hN −x7 −x3 −x1 ≤ 0∧ ((x5 −x3 < 0∧x7 −x5 +x1 ≤ 0∧hD +x6 ≤ 0∧hN −x7 −x5 −x1 >
0) ∨ (x5 − x3 < 0∧
x7 − x5 + x1 ≤ 0 ∧ hD + x4 ≥ 0 ∧ hN − x7 − x5 − x1 > 0) ∨ (x5 − x3 < 0 ∧ x7 − x5 + x1 ≤
0 ∧ hN − x7 − x3 − x1 ≥ 0)∨
(x5 − x3 < 0 ∧ x7 − x5 + x1 ≤ 0 ∧ hD + x8 ≤ 0 ∧ hN − x7 − x5 − x1 > 0) ∨ (hD + x4 <
0 ∧ hD + x2 ≤ 0 ∧ hD + x8 > 0∧
hN−x7−x5−x1 > 0)∨(x7−x5+x1 ≥ 0∧x7−x3+x1 < 0∧hD+x6 ≤ 0∧hN−x7−x5−x1 > 0)∨
(x7 −x5 +x1 ≥ 0∧x7 −x3 +x1 < 0∧hD+x4 ≥ 0∧hN −x7 −x5 −x1 > 0)∨ (x7 −x5 +x1 ≥
0 ∧ x7 − x3 + x1 < 0∧
hN−x5−x3 ≥ 0)∨(hD+x4 < 0∧hD+x6 > 0∧hD+x2 > 0∧hD+x8 > 0∧hN−x7−x5−x1 ≤ 0)∨
(x7 − x5 + x1 ≥ 0 ∧ x7 − x3 + x1 < 0 ∧ hD + x8 ≤ 0 ∧ hN − x7 − x5 − x1 > 0)))

Equilibrium 3:
(
x1 =

RD

λD
, x2 = 0, x3 = 0, x4 =

RN

λN
, x5 = 0, x6 =

RN

λN
, x7 =

RD

λD
, x8 = 0

)
(hD+x4 ≥ 0∧hD +x6 ≥ 0∧hN −x5 −x3 ≥ 0∧hN −x7 −x5 −x1 ≤ 0∧hN −x7 −x3 −x1 ≤
0 ∧ ((hD + x4 > 0∧
hD+x6 > 0∧hD+x2 ≥ 0∧hD+x8 < 0)∨(hD+x2 ≤ 0∧hN−x5−x3 > 0∧hN−x7−x3−x1 ≥ 0)∨
(hD+x2 ≤ 0∧hN−x5−x3 > 0∧hN−x7−x5−x1 ≥ 0)∨(hD+x4 > 0∧hD+x6 > 0∧hD+x2 < 0∧
hN − x5 − x3 ≤ 0) ∨ (x7 − x3 + x1 > 0 ∧ x7 − x5 + x1 > 0 ∧ hD + x4 ≤ 0 ∧ hD + x8 ≤
0 ∧ hN − x5 − x3 > 0)∨
(x7 − x3 + x1 > 0 ∧ x7 − x5 + x1 > 0 ∧ hD + x8 = 0 ∧ hN − x5 − x3 > 0) ∨ (x7 − x3 + x1 >
0 ∧ x7 − x5 + x1 > 0∧

21

hD+x6 ≤ 0∧hD+x8 ≤ 0∧hN−x5−x3 > 0)∨(hD+x2 ≤ 0∧hD+x8 ≥ 0∧hN−x5−x3 > 0)))
Biological Significance
The results from the four cell computation are more difficult to interpret because of the
larger number of inequalities describing the reachable sets and the higher dimension of the
state space. By studying the reachable sets, the following inferences may be drawn: (a) The
backward reachable sets from equilibria 1 and 2 strongly show the amplification of initial
differences property of lateral inhibition. However, initial differences alone, in Delta and
Notch protein concentrations between cells 2 and 3, do not ensure convergence to those two
equilibria. The Delta and Notch proteins in cells 1 and 4 must also have appropriate initial
concentrations to ensure convergence. The reason behind such strict conditions is that cells
2 and 3 are each in contact with all three other cells, thus even a low Delta concentration in
each of the three neighbours sum up to a strong inhibitory signal. Hence initial conditions
in all the cells strongly affect the steady state Delta concentration in those two cells. (b)
The third equilibrium has a larger backward reachable set, primarily because cells 1 and 4
are in contact with only two cells and therefore the external signal has a relatively milder
effect on their Delta production. In some cases the initial Notch concentration in cell 1 or
cell 4 do not matter at all, provided certain other conditions are met.

6 Conclusion

This paper documents an ongoing effort to utilize a mathematical modelling framework,
hybrid automata theory, to model and analyse interesting biological signalling networks and
deduce constraints on the symbolic parameters of the system that may be experimentally
verifiable. Predictions are also made regarding the various initial conditions necessary for the
model to reach one biologically observed steady state or the other. Moreover, the relation
between biology and computation is symbiotic, in the sense that new mathematical analysis
tools had to be developed to analyse the signalling network under study. The paper describes
the development and implementation of a new partitioning algorithm, using Lie derivatives
and iterative refinement by exact solutions where computable, to obtain discrete abstractions
of piecewise affine autonomous hybrid automata with fully symbolic kinetic parameters. The
discrete abstraction provides a substrate for computing under-approximations of backward
reachable sets from the equilibria of these automata. The approximate reach set is then
used, in the biological model, to determine initial conditions from which specific biologically
observed steady states are reached.
The clear limitation of this approach is its computational complexity in the dimension of
the continuous state. In this paper, results have been shown for a four cell network (eight
continuous dimensions), and it is the authors’ belief that the methods in this paper will
be directly extensible to problems having twenty and higher dimensions in the continuous
state [9] (corresponding to ten to twelve cell networks). Such extensions will be possible, and
are reasonable, if the relatively inefficient QEPCAD [19] symbolic quantifier elimination tool
is replaced with a more directed algorithm, such as that in [20]. To directly analyse large
cell networks (thousands of cells), though, would require combining this type of smaller
network analysis with methods that would allow one to decompose a large network into
smaller, interacting units. In the Delta-Notch network, it has been noted that the number
of biologically feasible equilibrium patterns grows polynomially with the size of the network,

22

and it may be possible to reconstruct all regular equilibrium patterns in a large network of
cells by composing the possible equilibrium patterns for smaller (i.e. four, nine and sixteen)
cell networks. For large cell networks, interpretation of the results also becomes challenging.
The authors believe that this may be addressed using a query-based technique, i.e. instead
of presenting the overall reachable set, the computational result can be “queried” for truths.
From this analysis, new and interesting patterns of behaviour can emerge that would have
not been easy to discern for a model with instantiated parameters.
Acknowledgements
The research presented in this paper was supported by the DARPA Biocomp program (grant
number DAAD19-03-1-0373 from the Department of the Army).

References

[1] HENZINGER, T. A., HO, P. H. and WONG-TOI, H.: ‘Hytech: A model checker for
hybrid systems’, Software Tools Tech. Transfer , 1997, 1, pp. 110–122

[2] PREUSSIG, J. and WONG-TOI, H.: ‘A procedure for reachability analysis of rectan-
gular automata’. Proc. Amer. Control Conf., 2000, Chicago, USA, pp. 1674–1678

[3] ASARIN, E., DANG, T. and MALER, O.: ‘d/dt: A verification tool for hybrid systems’.
Proc. IEEE Conf. Decision Control, 2001, Orlando, USA, pp. 2893–2898

[4] CHUTINAN, A. and KROGH, B. H.: ‘Verification of infinite-state dynamic systems
using approximate quotient transition systems’, IEEE Trans. Autom. Control , 2001,
46(9), pp. 1401–1410

[5] BEMPORAD, A., TORRISI, F. D. and MORARI, M.: ‘Optimization-based verification
and stability characterization of piecewise affine and hybrid systems’, in KROGH, B.
and LYNCH, N. (Eds.), ‘Hybrid Systems: Computation and Control’ (Springer Verlag,
2000), LNCS 1790, pp. 45–59

[6] BOTCHKAREV, O. and TRIPAKIS, S.: ‘Verification of hybrid systems with linear
differential inclusions using ellipsoidal approximations’, in KROGH, B. and LYNCH,
N. (Eds.), ‘Hybrid Systems: Computation and Control’ (Springer Verlag, 2000), LNCS
1790, pp. 73–88

[7] MITCHELL, I.: ‘Application of level set methods to control and reachability problems
in continuous and hybrid systems’. Ph. D. thesis, Stanford University, 2002

[8] MITCHELL, I. and TOMLIN, C. J.: ‘Overapproximating reachable sets by Hamilton-
Jacobi projections’, J. Symbolic Comput., 2003, 19(1-3), pp. 323–346

[9] KVASNICA M., GRIEDER, P., BAOTIC, M. and MORARI, M.: ‘Multi-parametric
toolbox (MPT)’, in ALUR, R. and PAPPAS, G. J. (Eds.), ‘Hybrid Systems: Computa-
tion and Control’ (Springer Verlag, 2004), LNCS 2993, pp. 448–462

[10] DE JONG, H.: ‘Modeling and simulation of genetic regulatory systems: A literature
review’, J. Comput. Biol., 2002, 9(1), pp. 69–105

23

[11] KUIPERS, B. and RAMAMOORTHY, S.: ‘Qualitative modelling and heterogeneous
control of global systems behaviour’, in TOMLIN, C. J. and GREENSTREET, M.
(Eds.), ‘Hybrid Systems: Computation and Control’ (Springer Verlag, 2002), LNCS
2289, pp. 294–307

[12] ALUR, R., DANG, T. and IVANCIC, F.: ‘Reachability analysis of hybrid systems via
predicate abstraction’, in TOMLIN, C. J. and GREENSTREET, M. (Eds.), ‘Hybrid
Systems: Computation and Control’ (Springer Verlag, 2002), LNCS 2289, pp. 35–48

[13] GRAF, S. and H. SAÏDI: ‘Construction of abstract state graphs with PVS’. Proc. 9th
Int. Conf. Computer-Aided Verification, 1997, Haifa, Israel, LNCS 1254, pp. 72–83

[14] TIWARI, A. and KHANNA, G.: ‘Series of abstractions for hybrid automata’, in TOM-
LIN, C. J. and GREENSTREET, M. (Eds.), ‘Hybrid Systems: Computation and Con-
trol’ (Springer Verlag, 2002), LNCS 2289, pp. 465–478

[15] GHOSH, R., TIWARI, A. and TOMLIN, C.: ‘Automated symbolic reachability analysis;
with application to Delta-notch signaling automata’, in MALER, O. and PNUELI, A.
(Eds.), ‘Hybrid Systems: Computation and Control’ (Springer Verlag, 2003), LNCS
2623, pp. 233–248

[16] ALUR, R., HENZINGER, T., LAFFERRIERE, G. and PAPPAS, G. J.: ‘Discrete ab-
stractions of hybrid systems’, Proc. IEEE , 2000, 88(7), pp. 971–984

[17] MARNELLOS, G., DEBLANDRE, G. A., MJOLSNESS, E. and KINTNER, C.: ‘Delta-
notch lateral inhibitory patterning in the emergence of ciliated cells in Xenopus: Exper-
imental observations and a gene network model’. Pacific Symp. Biocomp., 2000, Oahu,
Hawaii, pp. 326–337

[18] GHOSH, R. and TOMLIN, C. J.: ‘Lateral inhibition through Delta-notch signaling:
A piecewise affine hybrid model’, in BENEDETTO, M. D. D. and SANGIOVANNI-
VINCENTELLI, A. (Eds.), ‘Hybrid Systems: Computation and Control’ (Springer Ver-
lag, 2001), LNCS 2034, pp. 232–246

[19] HONG, H.: ‘An improvement of the projection operator in cylindrical algebraic de-
composition’. Proc. Int. Symp. Symbolic Algebraic Comp., 1990, Tokyo, Japan, pp.
261–264

[20] CANNY, J.: ‘Computing roadmaps of general semi-algebraic sets’, Comput. J., 1993,
36(5), pp. 504–514

A Implementation

The model abstraction software has been implemented in MATLAB and the symbolic and
string manipulations are also done in MATLAB. Each state of the current partition itera-
tion is stored in a data structure that stores the signs of the invariant polynomials defining
the state, the continuous vector flow associated with the state, and a list of the predeces-
sor and the successor states. However, since MATLAB does not have a decision procedure

24

subroutine, the decision procedure on the polynomials while checking transitions is done
using QEPCAD[19]. To reduce computational load, MATLAB and QEPCAD run on sep-
arate computers and MATLAB communicates with QEPCAD through a TCP/IP socket
every time a decision procedure run is required. The MATLAB program takes a canonical
description of a hybrid system and parses it into states, invariants and associated contin-
uous dynamics. For the first iteration, the program automatically computes the transition
graph for the coarse initial partition. However, the iterative refinement procedure requires
some manual analysis, as the MATLAB symbolic solver cannot always solve the differential
equations for the new partitioning surface, which has to be done by hand. Then, the new
states are added to the state vector and transitions are checked, if computable. Otherwise,
the state cannot be partitioned farther, and is stored as is. Given below is an example of
the input to the program, a portion of the definition of the hybrid automaton describing a
two cell Delta-Notch system:

% Delta-Notch Signaling Hybrid Automaton

% Number of cells: 1x2

% Number of state variables: 4

% Number of discrete states: 16

Inv: -x2-hD < 0 /\ x3-hN < 0 /\ -x4-hD < 0 /\ x1-hN < 0

x1dot = -lD*x1

x2dot = -lN*x2

x3dot = -lD*x3

x4dot = -lN*x4,

Inv: -x2-hD < 0 /\ x3-hN < 0 /\ -x4-hD < 0 /\ x1-hN >= 0

x1dot = -lD*x1

x2dot = -lN*x2

x3dot = -lD*x3

x4dot = RN-lN*x4,

.

.

.

.

.

Inv: -x2-hD >= 0 /\ x3-hN >= 0 /\ -x4-hD < 0/\ x1-hN >= 0

x1dot = RD-lD*x1

x2dot = RN-lN*x2

x3dot = -lD*x3

x4dot = RN-lN*x4,

Inv: -x2-hD >= 0 /\ x3-hN >= 0 /\ -x4-hD >= 0 /\ x1-hN < 0

x1dot = RD-lD*x1

x2dot = RN-lN*x2

x3dot = RD-lD*x3

x4dot = -lN*x4,

Inv: -x2-hD >= 0 /\ x3-hN >= 0 /\ -x4-hD >= 0 /\ x1-hN >= 0

x1dot = RD-lD*x1

x2dot = RN-lN*x2

x3dot = RD-lD*x3

x4dot = RN-lN*x4,

Each mode of the hybrid automaton is defined using invariant inequalities and the associated
differential equations. For the two cell automaton abstraction, the algorithm starts with a
coarse partition with 14 out 81 states that have more than one exit transition, and at the
final iteration has 18 out 169 states that are unpartitionable. As shown in the histograms
of Figure 11, the number of states with multiple transitions rises slightly, however, as a

25

percentage of the total number of states, it drops from around 18 per cent to around 10 per
cent.

−2 0 2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

Number of transitions

N
um

be
r

of
 s

ta
te

s

First Iteration

−2 0 2 4 6 8 10 12 14 16
0

50

100

150

Number of transitions

N
um

be
r

of
 s

ta
te

s

Last Iteration

(a) (b)

Figure 11: Histograms showing number of states with a certain number of exit transitions.

The reachability computation is also done using MATLAB, on the adjacency matrix of
the final abstraction using a post processing tool. The post processing tool can plot the
connectivity graph of the discrete abstraction, as shown in Figure 12(a), at some iteration
stage. The adjacency matrix, displayed in Figure 12(b), is utilized to compute the backward
reachable states from an equilibrium state. Notice the sparsity of the adjacency matrix, this
implies that the partition is at a stage where most states are finely refined, and have only a
single exit transition. The states with multiple exit transitions show up as rows with dots
in multiple columns in Figure 12(b), and further refinement may not be possible.

Connectivity Graph

0 20 40 60 80 100 120 140 160

0

20

40

60

80

100

120

140

160

Adjacency Matrix

State

S
ta

te

(a) (b)

Figure 12: (a)The connectivity network graph of the discrete abstraction, each circle on the
circumference represents a state. (b) The adjacency matrix of the same discrete abstraction,
each dot in position (i, j) represents a transition from state qi to qj.

26

Claire Tomlin

