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ABSTRACT

In symbolic regression, the search for analytic models is typically

driven purely by the prediction error observed on the training data

samples. However, when the data samples do not su�ciently cover

the input space, the prediction error does not provide su�cient

guidance toward desiredmodels. Standard symbolic regression tech-

niques then yield models that are partially incorrect, for instance,

in terms of their steady-state characteristics or local behavior. If

these properties were considered already during the search process,

more accurate and relevant models could be produced. We propose

a multi-objective symbolic regression approach that is driven by

both the training data and the prior knowledge of the properties

the desired model should manifest. The properties given in the

form of formal constraints are internally represented by a set of dis-

crete data samples on which candidate models are exactly checked.

The proposed approach was experimentally evaluated on three test

problems with results clearly demonstrating its capability to evolve

realistic models that �t the training data well while complying with

the prior knowledge of the desired model characteristics at the

same time. It outperforms standard symbolic regression by several

orders of magnitude in terms of the mean squared deviation from a

reference model.

CCS CONCEPTS

• Computing methodologies → Genetic algorithms; Model

development and analysis; • Theory of computation → De-

sign and analysis of algorithms; Genetic programming; • Applied

computing → Multi-criterion optimization and decision-making;
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1 INTRODUCTION

Many model-learning approaches have been described in the litera-

ture: time-varying linear models [20, 22], Gaussian processes and

other probabilistic models [7, 11], deep neural networks [9, 21] or

local linear regression [14]. All these approaches su�er from draw-

backs induced by the use of the speci�c approximation technique,

such as a large number of parameters (deep neural networks), local

nature of the approximator (local linear regression), computational

complexity (Gaussian process), etc. Symbolic regression (SR) is an

approach that generates models in the form of analytic equations

that can be constructed by using even very small training data sets.

SR has been used in nonlinear data-driven modeling with quite

impressive results [1, 2, 12, 13, 23, 25, 26].

In standard SR, the search for analytic models is driven purely by

the prediction error observed on the training data samples. However,

the training data may not provide a su�cient guidance towards

desired models, for instance, when the data set does not su�ciently

cover the input space or evenwhen some parts of the input space are

completely omitted in the data set. SR techniques then yield models

that are partially incorrect, for instance, in terms of their steady-

state characteristics or local behavior. On the other hand, some

information about the desired properties of the modelled system is

often available. If these properties were considered already during

the search process, more accurate and relevant models could be

produced.

There are very few SR approaches in the literature that take

into account information about the model sought other than just

the minimum training error. Perhaps the most promising and the

most relevant is the Counterexample-Driven Symbolic Regression

[6], where Counterexample-Driven Genetic Programming [17] is

used to synthesize regression models that not only comply with
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the training data set, but also meet formal constraints imposed on

the model. A Satis�ability Modulo Theories (SMT) solver is used to

verify whether a given model meets the formal speci�cation. How-

ever, this method su�ers from several de�ciencies. Queries to the

SMT solver are computationally very costly. Only a limited function

set {+,−, ∗, /} can be used since transcendental functions are not

fully supported by contemporary SMT solvers. There are also SMT

solvers that can handle functions like sine and log, however, they

are very computationally expensive for larger models. Moreover,

general nonlinear inequalities over the real numbers represent a

non-decidable problem, therefore, delta-decidability is used instead.

This means, one has to supply the solvers with a proper value of

the delta precision parameter. In the end, the solver can return both

false positive and false negative answers.

In this paper, we propose a multi-objective SR approach that is

driven by the training data as well as by the prior knowledge on

the desired properties the model should exhibit. Various types of

constraints can be used such as the monotonicity of the model’s

output on a given interval, odd symmetry of the model, symmetry

w.r.t. the input variables, steady-state characteristics of the model,

etc. The properties, given in the form of formal constraints, are

internally represented by a set of discrete constraint samples on

which the validity of candidate models is checked. Both aspects

of model performance are treated with equal importance. Conse-

quently, the method produces models that �t the training data as

well as possible while complying with the prior knowledge of the

desired model characteristics at the same time.

We use a variant of Single Node Genetic Programming (SNGP)

[16, 19] that generates models in the form of a linear combination

of possibly nonlinear features. It has been shown that SR methods

producing such compound models outperform SR methods gener-

ating single tree models [3, 4, 18, 24]. In the standard version of the

SNGP algorithm, the coe�cients of the linear model are estimated

using least squares. In the proposed multi-objective SNGP, this may

not be the most e�cient way since the estimation of the coe�cients

is biased in the direction of models �tting well the training data.

So, we propose an alternative way to derive the coe�cients using a

multi-objective local search procedure.

The paper is organized as follows. Section 2 de�nes the problem.

Section 3 describes the proposed method. In Section 4, the method

is experimentally evaluated on three test problems. Section 5 con-

cludes the paper and suggests topics for future research.

2 PROBLEM DEFINITION

We solve the problem of constructing an optimal analytic model

f :X → R operating in the input space X ⊂ R
n given two opti-

mization goals:

• The model �ts the training data as accurately as possible.

• The model is consistent with the constraints imposed on the

model that capture the desired model’s properties.

Two data sets are used to search for the model, standard training

data set and constraint data set.

Standard training data set D = {d1, . . . ,dm }. Each training sam-

ple di is a tuple

di = ⟨xi ,yi ⟩, (1)

where xi ∈ X is a particular input vector and yi ∈ R is the corre-

sponding desired target value.

Constraints and constraint data set. We assume that all constraints

can be written as nonlinear inequality and equality constraints.

Inequality constraints are:

д
f
i (x) ≤ 0, i = 1, . . . ,p (2)

where function дi has a speci�c form for each particular type of

inequality constraint and in general may have more arguments:

дi (x1, x2, . . .). For instance, to specify a monotonically increasing

function, we can de�ne д
f
i (x1, x2) = f (x1) − f (x2) and then, when

checking whether the constraint is satis�ed, evaluate it for any pair

of data points x1 ≤ x2, x1, x2 ∈ X. In the sequel, to avoid notational

clutter we will write дi with a single argument as in (2). Inequality

constraint violation for model f is calculated as follows:

E
f
д =

p∑

i=1

∑

∀xℓ ∈X
д
i

(max(д
f
i (xℓ), 0))

2 (3)

whereX
д
i is a set of data points on which the violation of constraint

дi is calculated. Analogously, equality constraints have the form:

h
f
j (x) = 0, j = 1, . . . ,q (4)

where function hj is speci�c to the particular type of equality con-

straint. Also this function may have more arguments. Equality

constraint violation for model f is calculated as follows:

E
f

h
=

q∑

j=1

∑

∀xℓ ∈X
h
j

(h
f
j (xℓ))

2 (5)

The constraint data set is given byC = Xд∪Xh , withXд
=

⋃p
i=1 X

д
i

and Xh
=

⋃q
j=1 X

h
j .

The two aforementioned optimization goals are formally de�ned

as follows:

• Ct – minimize the mean-squared error calculated for model

f on the training data set D

Ct =
1

m

m∑

i=1

(f (di ) − yi )
2. (6)

• Cc – minimize the mean-squared error calculated for model

f on the constraint data set C

Cc =
E
f
д + E

f

h

|C |
. (7)

Importantly, both aspects of the model’s performance – i.e., its

accuracy as well as its formal validity – are treated as equally

important through the optimization process.

3 METHOD

In this section, the proposed multi-model SR method based on the

SNGP algorithm is described. Firstly, the base SNGP algorithm and

its population structure for storing and operating with a single an-

alytic model are brie�y described. Then, we introduce an extended

population structure that allows for operating with multiple inde-

pendent models. Finally, the algorithm itself is described with the

focus on the multi-objective aspect of the search process.
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3.1 Base SNGP

The idea of the proposedmulti-objective symbolic regressionmethod

is applicable to any population-based approach. Here, we adopt a

variant of SNGP [16] and particularly the variant proposed in [19].

In the following text we use the term “base SNGP” to refer to this

algorithm.

Standard SNGP is a tree-based genetic programming (GP) tech-

nique that evolves a population of individuals, i.e. program nodes,

organized in an ordered linear array structure. The nodes are inter-

connected in the left-to-right manner, meaning that a node can act

as an input operand only of those nodes which are positioned to its

right in the population. Thus, the population of nodes represents a

whole set of tree-based programs rooted in its individual nodes. In

the context of SR, the population starts with constant nodes and

variables followed by general function nodes chosen from a set F

of elementary functions de�ned by the user for the problem at hand,

see Figure 1a. The expression trees rooted in function nodes provide

a capacity to represent complex and possibly non-linear analytic

functions. The population is evolved through a �rst-improvement

iterative local search procedure using a mutation operator that

varies the input links of the function nodes.

An important property of the base SNGP is that it evolves linear-

in-parameters nonlinear analytic models of the form

f (x) = β0 +

nf∑

i=1

βiφi (x) (8)

where the nonlinear functions φi (x) are features constructed by

means of GP operations using a prede�ned set of elementary func-

tions F . The coe�cients βi are not evolved using genetic operators.

Instead, they are estimated using some multiple regression tech-

nique, e.g. the least squares one. Importantly, the whole population

represents a single analytic model whose features, φi (x), are rooted

in so-called identity nodes, where each identity node just refers to

some non-constant-output node in the population, see Figure 1a.

The complexity of evolved analytic models is constrained by two

user-de�ned parameters: nf is the maximum number of features

the analytic model can be composed of, and δ is the maximal depth

of the feature’s tree representation.

We chose for this variant of GP since it has recently been shown

in [3, 4, 18, 24] that GP methods evolving this kind of compound

regression models outperform conventional GP evolving a single-

tree structure representing the whole model. In particular, the base

SNGP has been successfully used for several SR tasks from the rein-

forcement learning and robotics domains [1, 2, 12, 13]. A detailed

description of the base SNGP is beyond the scope of this paper. For

more details please refer to [19].

3.2 Multi-objective SNGP

We propose a multi-objective variant of SNGP for the bi-objective

SR that simultaneously optimizes both optimization criteria, Ct
and Cc . First, we adapt the population architecture to allow for

operating with a set of M independent models. For this purpose,

we use a set of base SNGP populations, each representing a unique

model, see Figure 1b. From now on, we will use the term population

in the sense of the population of models.

(a)

(b)

Figure 1: (a) Structure of the base SNGP populationwith a set

of identity nodes de�ning features of a singlemodel. (b) Pop-

ulation of models, each represented by a unique base SNGP

population.

The proposed algorithm is based on the NSGA-II algorithm [10]

that uses the following domination principle: A solution x
(1) is said

to dominate another solution x
(2), if x(1) is not worse than x

(2) in

any objective and x
(1) is strictly better than x

(2) in at least one

objective.

The outline of the multi-objective SNGP algorithm is shown in

Algorithm 1. It starts with a random initialization of the population

of models, population. Each model is �rst assigned its coe�cients β .

In the original base SNGP, these are estimated using least squares.

However, this might not be the best choice when solving multi-

objective SR as will be discussed later in this section. Complete

models are evaluated on both data sets D and C .

The algorithm then iterates through a speci�ed number of gener-

ations, lines 7–26. In each generation, an intermediate population of

models, interPop, is created from models of the current population,

lines 10–23. First, a parent model is selected from thepopulation and

its copy is assigned as the initial value to the o�spring model, child .

A standard tournament selection uses the crowded-comparison op-

erator [10] to choose parental models to be mutated. The crowded-

comparison operator takes two models and returns the one that

is from the better non-dominated front or if both are from the

same non-dominated front the more unique one is returned. Thus,

well-performing and unique models are preferred.

The child then undergoes a prede�ned number of optimization

iterations, lines 14–22. In each iteration, the child is mutated and

its coe�cients β are recalculated. The mutated model temp is then

evaluated and it becomes the child for the next iteration if it is not

dominated by the current version of child nor by the parent model,

lines 21–22. Final version of the child is added to interPop.

Once interPop has been completed, it is merged with the current

population resulting in a new version of thepopulation. This is done

using the NSGA-II replacement strategy that again prefers non-

dominated solutions to the dominated ones and among solutions of

the same non-dominated front the more unique ones are preferred.

For more details refer to [10]. In the end of the generation, the C

data set can optionally be updated, see Section 3.4.
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Algorithm 1: Multi-objective SNGP algorithm

Input: M . . . size of the population of models
C . . . set of constraint samples
D . . . training data set
MAXGENS . . . maximum number of generations
MAX IT ERS . . . maximum number of iterations

carried out to produce an o�spring model from the parent one
PERIOD . . . number of generations between updates

of C
Output: S . . . set of �nal models

1 init(population)

2 for ∀model ∈ population do
3 model .calculateBetaCoeffs()

4 model .calculateC_train(D)

5 model .calculateC_constraint(C)

6 дeneration← 0

7 while дeneration < MAXGENS do
8 дeneration← дeneration + 1

9 inter Pop ← {}

10 while inter Pop .size() < M do
11 parent ← selectModel(population)

12 child ← parent .clone()

13 i ← 0

14 while i < MAX IT ERS do
15 i ← i + 1

16 temp ← child .clone()

17 temp .applyMutations()

18 temp .calculateBetaCoeffs()

19 temp .calculateC_train(D)

20 temp .calculateC_constraint(C)

21 if !parent .dominates(temp) ∧

!child .dominates(temp) then
22 child ← temp

23 inter Pop .add(child)

24 population← NSGAII_merge(population, inter Pop)

25 if дeneration % PERIOD == 0 then
26 C .update()

27 S ← population.getNondominatedModels()

28 return S

Finally, a set of �nal models is selected as the output of the run.

Since this is amulti-objective optimization approach, the population

contains a whole set of non-dominated solutions in the end. So,

the question is how to choose the best solutions to be returned as

the output of the run? De�nitely, the extreme model with the best

value of Cc should be in the �nal set of solutions. However, this

may not necessarily be the most interesting one as it can do poorly

in the other objective. We will demonstrate this in Section 4. On

the other hand, it is very likely that the model with the best value

of Ct does not belong to the most useful ones unless it coincides

with the extreme model. The rationale for it is that such a model

probably over-�ts the training data while ignoring the constraints

imposed on the model’s properties, which is not what we want to

get. So, we need to take into consideration also the high-quality

trade-o� solutions. Here, we take the whole set of non-dominated

solutions of the �nal population.

3.3 Alternative way to estimate coe�cients β

As mentioned above, the coe�cients β weighting the model’s fea-

tures in (8) are �tted using the least squares method. In particular,

the coe�cients are found such that the �nal model minimizes the

sum of squared residuals over the training data set D. Thus, just

the Ct objective is considered at that moment, the Cc is ignored.

This means, there is no pressure towards coe�cients that would

make the model better in terms of Cc , even if it was attainable

with the given set of features. Clearly, this may adversely a�ect the

performance of the whole method. In order to remedy this issue,

we propose an alternative way to calculate the coe�cients so that

both objectives are optimized simultaneously.

We adopt a simple local search method to tune the coe�cients

β . It initializes the coe�cients with values uniformly sampled from

interval (−1, 1) and the performance measures of the initial model,

Ct andCc , are calculated. Then, it iterates for the speci�ed number

of iterations. In each iteration, the vector β is perturbed by adding

values sampled from the normal distribution according to

β ′ ← β +N(0, 0.1).

The new vector of coe�cients β ′ is accepted if the model using

it dominates the model with the current values β . Otherwise, the

current vector β remains for the next iteration.

3.4 Constraint Data Set Management

The content of the constraint sample set C is crucial for the suc-

cess of the method. Initial constraint samples, i.e., the points x of

the input space where the constraint will be checked, are drawn

randomly with a uniform distribution from the whole input space

X. Similarly, new constraint samples that are added to C during

the optimization process are generated at random. Note that even

such a simple method can be bene�cial for the optimization pro-

cess as the newly added constraint samples can alter the ranking

of models in the population. Such an intervention can boost the

exploration towards di�erent regions of the search space and can

help to prevent the population from stagnating.

Obviously, more sophisticated sampling strategies could improve

the performance of this method. However, this is out of the scope

of this paper. We leave this for the future research.

4 EXPERIMENTS

Three methods were compared:

• baseSNGP – base SNGP minimizing only the mean squared

error on the training data set as described in Section 3.1,

• mSNGP – the proposed multi-objective SNGP using the least

squares method to estimate coe�cients β ,

• mSNGP-ls – the proposed multi-objective SNGP using the

local search procedure to estimate coe�cients β .

The methods were experimentally evaluated on three problems:

• resistance2 – This is a test problem originally proposed

in [6]. It uses a sparse set of noisy samples derived using

the equivalent resistance of two resistors in parallel, r =

r1r2/(r1 + r2), denoted as a reference model. The goal is to

�nd such a model f (r1, r2) that �ts the training data and has

the same properties as the reference model. For the sake of a

uni�ed notation, we de�ne x = (r1, r2) and y = r = f (x1, x2).
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• magman – The magnetic manipulation system consists of

an iron ball moving along a rail and an electromagnet at a

static position under the rail. The goal is to �nd a model

of the nonlinear magnetic force a�ecting the ball, f (x), as

a function of the horizontal distance, x , between the iron

ball and the activated coil given a constant current through

the coil, i . We use data measured on a real system and an

empirical model f̃ (x) = −ic1x/(x
2
+ c2)

3 proposed in the

literature [15] as the reference model. Parameters c1 and c2
were found empirically for the given system and this model

was used to design well-performing nonlinear controllers in

[1, 8]. For this example, we de�ne y = f (x).

• pressure – In this problem, highly nonlinear pressure dy-

namics in a laboratory fermenter is modelled. The process

under consideration is a 40 l laboratory fermenter which

contains 25 l of water. At the bottom of the fermenter, air

is fed into the water at a speci�ed �ow rate which is kept

at a desired value by a local mass-�ow controller. The air

pressure p in the head space can be controlled by opening

or closing an outlet valve u at the top of the fermenter. The

goal is to �nd a dynamic model pk+1 = f (pk ,uk ). The ex-

act form of the nonlinear target function is unknown. For

more details, please refer to [5]. For this example, we de�ne

x = (pk ,uk ) and y = f (x1, x2).

We chose these three problems since we possess detailed knowl-

edge of the data and they have a potential to demonstrate advan-

tages of the proposed approach. For all the problems, the training

data set D is either very sparse or its samples are unevenly dis-

tributed in the input space. Standard symbolic regression has a very

small chance of converging to an acceptable model as it is likely to

over-�t the data. In addition, it is easy to visualize the models.

Fifty independent runs were carried out with each method on

each problem. In order to assess statistical signi�cance of the dif-

ferences among the algorithms we used the Wilcoxon rank sum

test, which rejects the null hypothesis that the two compared sets

are sampled from continuous distributions with equal medians at

the 1% signi�cance level. In the tables, two cases are highlighted –

whether baseSNGP is signi�cantly better or worse than both new

methods and whether mSNGP performance is signi�cantly di�erent

from that of mSNGP-ls.

The algorithms were tested with the following parameter setting:

• Population size of each base SNGP population: 400

• Maximum number of features:

– resistance2: nf = 3

– magman, pressure: nf = 5

• Maximum feature’s depth:

– resistance2: δ = 5

– magman, pressure: δ = 7

• Elementary functions:

– resistance2: F = {+, −, ∗, /}

– magman, pressure:F = {+, −, ∗, square, cube, sine, tanh}

• Population size:M = 50

• Tournament size: 3

• Maximum number of generations:MAXGENS = 40

• Maximum number of iterations:MAXITERS = 50

• Number of local search iterations: LS_ITERS = 50

• Number of generations between C updates: PERIOD = 2

• Total number of �tness evaluations in baseSNGP:

M ×MAXGENS ×MAXITERS = 10
5.

For the resistance2 problem, just elementary arithmetic op-

erators are used and rather low-complexity models are allowed.

However, such a con�guration is not su�cient for more di�cult

problems like magman and pressure. Thus, a richer set of elemen-

tary functions as well as parameters allowing for more complex

models were used for these two problems.

4.1 Resistance2

4.1.1 Training data. We use the data set with 10 training sam-

ples that was used in [6]. The values of x1 and x2 are sampled

uniformly from the interval [0.0001, 20], see Figure 2. The variables

as well as the target value of each training sample are disturbed with

a noise randomly generated with a normal distributionN(0, 0.1σX ),

where X is a given variable. Such a noisy training data set is gener-

ated anew for each independent symbolic regression run.

4.1.2 Constraints. We used the following three constraints as

de�ned in [6]:

• symmetry with respect to arguments: f (x1, x2) = f (x2, x1),

• domain-speci�c constraint: x1 = x2 =⇒ f (x1, x2) =
x1
2
,

• domain-speci�c constraint: f (x1, x2) ≤ x1, f (x1, x2) ≤ x2.

The initial set C contained 60 constraint samples.

4.1.3 Performance evaluation. We use a two-phase procedure

to evaluate the obtained models. First, a model is checked whether

it is “reasonably” close to the reference model r (·). For this purpose,

a high-resolution grid of 200× 200 validation points sampled in the

input space [0.0001, 20]2 was generated. The response values of the

model on all grid points are calculated. If the maximum absolute

deviation, MAD, of the model’s response f (·) from the reference

model r (·) is less than ϵ = 0.1σy over all validation points then

the model is considered as acceptable. From each run of the multi-

objective SNGP algorithm, only the acceptable model with the least

MAD value is selected to the set of acceptable models.

Then, the following four performance measures are de�ned:

• succ – the number of runs, which yielded an acceptable

model.

• MSEtrain – median Ct value over the set of acceptable mod-

els.

• MSEref – median of the mean squared error between the

model’s output and the reference model on the validation

points calculated over the set of acceptable models.

• violation – median Cc value over the set of acceptable

models.

4.1.4 Results. The results achieved on this problem are pre-

sented in Table 1. The reference model and examples of the models

obtained are in Figure 2.

4.2 Magman

4.2.1 Training data. The portion of the input space of interest

spans over the interval −0.075m ≤ x ≤ 0.075m. However, only its

small part, [-0.027m, 0.027m], is covered by the 858 data samples

collected for this task, see Figure 3. The data were measured on
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Table 1: Comparison on resistance2 problem. Since the

baseSNGP algorithm did not �nd any acceptable model, its

MSEtrain MSEref and violation values are calculated over all

�fty resultingmodels. MSEtrain values shown in the brackets

are the medianCt values achieved by the reference model on

the training data sets used in the runs where the acceptable

models were produced. Bold values indicate that baseSNGP is

signi�cantly better or worse than both mSNGP and mSNGP-ls.

baseSNGP mSNGP mSNGP-ls

succ 0 / 50 8 / 50 16 / 50

MSEtrain 3.6 × 10
−3 0.078 (0.11) 0.14 (0.15)

MSEref 1.5 × 10
3

1.7 × 10−3 1.6 × 10−4

violation 2.3 × 10
3

4.5 × 10−4 1.1 × 10−6

a real system [8]. The whole data set was split into the training

and test data sets, D and Dtest , in the ratio 7:3. Properties of the

model sought outside the sampled interval are speci�ed purely by

the additional constraints.

4.2.2 Constraints. The following constraints were de�ned for

the magman problem. The model sought is an odd function that

is positive on the interval [−0.075, 0] and negative on the inter-

val [0, 0.075]. Furthermore, it is monotonically increasing on the

intervals [−0.075,−0.008] and [0.008, 0.075] and monotonically de-

creasing on the interval [−0.008, 0.008]. Finally, we de�ne the ex-

act output value f (0) = 0 and two exact output values at the

boundary points of the input space as f (−0.075) = 1 × 10−3 and

f (0.075) = −1 × 10−3.

The initial setC contained 90 constraint samples. An example of

a constraint sample of the decreasing monotonicity constraint is

x = ⟨x1, x2⟩, x1, x2 ∈ [−0.01, 0.01] ∧ 0 < x2 − x1 < η,

and the constraint violation is calculated according to (5) as

max(f (x2) − f (x1), 0)
2
.

This means, two distance values, y1 and y2, are sampled from a

narrow interval of size η. Here, η = 0.0001 was used.

4.2.3 Performance evaluation. Similarly to the resistance2

problem, the models are evaluated in two steps. First, we use 30000

validation points evenly sampled from the whole input domain

[-0.075m, 0.075m] to check whether the model output lies within

a tolerance margin around the reference model, see Figure 3. If so,

the model is considered acceptable and its mean squared deviation

MSD from the reference model is calculated. From each run of the

multi-objective SNGP algorithm, only the acceptable model with

the least MSD value is selected to the set of acceptable models.

Then, the succ, MSEtrain, MSEref and violation performance val-

ues are calculated in the same way as for resistance2 problem.

In addition, a MSEtest performance measure is calculated as a me-

dian of the mean squared error on Dtest over the set of acceptable

models. Note, the scope of the model’s validation on the Dtest is

limited since it applies only to the portion of the input space that

was covered by the data.

4.2.4 Results. The results achieved on this problem are pre-

sented in Table 2. Figure 3 shows an example of a trivial model that

perfectly satis�es the constraints, but poorly �ts the training data

and an example of an overall well-performing model.

(a)

(b)

(c)

Figure 2: Models for resistance2 problem. (a) The refer-

ence model r (r1, r2) = r1r2/(r1 + r2), from which the train-

ing data were sampled. (b) An example of a model evolved

with baseSNGP that perfectly �ts D, but violates the physical

law. (c) An example of a high-quality model evolved with

mSNGP-ls.
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Table 2: Comparison on magman problem. The values pre-

sented in column baseSNGP are calculated over all �fty re-

sulting models. Bold values in the �rst column indicate that

baseSNGP is signi�cantly better or worse than both mSNGP and

mSNGP-ls. Bold values in the second and third column indi-

cate that the respective method is signi�cantly better than

the other proposed method.

baseSNGP mSNGP mSNGP-ls

succ 0 / 50 15 / 50 27 / 50

MSEtrain 2.78 × 10
−3

2.80 × 10
−3

2.84 × 10−3

MSEtest 3.14 × 10−3 3.14 × 10
−3

3.22 × 10−3

MSEref 12.8 1.38 × 10−4 1.03 × 10
−4

violation 5.6 7.3 × 10−6 2.7 × 10
−9

(a)

(b)

Figure 3: Models for magman problem. (a) A trivial model per-

fectly satisfying constraints, but poorly �tting the training

data. (b) An example of well-performing model.

4.3 Pressure

4.3.1 Training data. A set of 756 data samples unevenly dis-

tributed in the input space [1, 2] × [0, 100] were measured on the

real system, see Figure 4. The data were split into the training and

test data sets, D and Dtest , in the ratio 7:3.

Table 3: Comparison on pressure problem. The bold value

in the �rst column indicates that baseSNGP is signi�cantly

better than both mSNGP and mSNGP-ls. Bold values in the sec-

ond column indicate that mSNGP is signi�cantly better than

mSNGP-ls.

baseSNGP mSNGP mSNGP-ls

succ 13 / 50 42 / 50 49 / 50

MSEtrain 4.43 × 10
−6

4.51 × 10
−6

7.28 × 10−6

MSEtest 8.83 × 10−6 7.83 × 10
−6

1.28 × 10−5

4.3.2 Constraints. Two types of constraints were de�ned for

this problem. The model sought is monotonically increasing w.r.t.

both inputs on the whole input space domain. The model’s output

is bounded in the interval [1, 2.2]. The initial set C contained 80

constraint samples.

4.3.3 Performance evaluation. In this case, we use a grid of 200×

200 validation points evenly sampled from the input space [1, 2] ×

[0, 100]. Models that have zero violation on all of those validation

points are considered acceptable. For each run, the model with

the least Ct is chosen. Only succ, MSEtrain and MSEtest values are

calculated since violation is by de�nition zero for all acceptable

models and MSEref can not be calculated since we do not have any

reference model, neither theoretical nor empirical one.

4.3.4 Results. The results achieved on this problem are pre-

sented in Table 3. Figure 4 shows an example of a trivial model that

perfectly satis�es the constraints, but poorly �ts the training data

and an example of an overall well-performing model.

4.4 Discussion

4.4.1 resistance2. baseSNGP was not able to �nd any accept-

able model in the �fty independent runs. The models it produces �t

the training data very well, but they largely violate the constraints,

as illustrated in Figure 2b. The proposed multi-objective method al-

ready �nds acceptable models, an example is in Figure 2c. However,

none of the acceptable models found has zero violation, none of

them is an identical version of the reference model. Our hypothesis

is that SNGP searches the space of excessively complex models and

misses the simpler ones. Among these models, it is hard to �nd

those that perfectly satisfy the equality constraints. This issue can

be resolved adjusting the algorithm to search for models of varying

complexity. We leave this for the future work.

In addition, both mSNGP and mSNGP-ls outperform baseSNGP by

six orders of magnitude in terms of the MSEref. Interestingly, both

mSNGP and mSNGP-ls, achieve better Ct than the reference model

as illustrated for one particular run in Figures 2a and 2c. In 14 out

of the 16 cases mSNGP-ls found an acceptable model with the Ct
value better than that of the reference model.

An important observation is that mSNGP-ls outperforms mSNGP

in terms of all four performance indicators, though the p-values

ranging from 0.022 to 0.071 returned by the rank sum test do not

suggest that the observed di�erences are statistically signi�cant.

This can be attributed to very small size of tested samples, 8 and 16.

964



GECCO ’20, July 8ś12, 2020, Cancún, Mexico Jiří Kubalík, Erik Derner, and Robert Babuška

(a)

(b)

Figure 4: Models for pressure problem. (a) Trivialmodel per-

fectly satisfying constraints, but poorly �tting the training

data. (b) An example of an overall well-performing model.

4.4.2 magman. The baseSNGP method �nds the most precise

models w.r.t. Ct , but they are e�ectively useless due to large con-

straint violation. It generated no acceptable model. The proposed

methods can �nd acceptable models, mSNGP-ls is better than mSNGP.

Both mSNGP and mSNGP-ls outperform baseSNGP by �ve orders of

magnitude in terms of the MSEref. Similarly to resistance2, it is

hard to �nd a model perfectly satisfying the constraints de�ned

for this problem. Again, the small constraint violations of the ac-

ceptable models are due to the equality constraints, which is no

problem, as the purpose of these constraints is to force the function

asymptotically approach zero, rather than attain an exact value.

Interestingly, the acceptable models are very close to the empirical

one in the regions of the input space where only the constraints

were speci�ed, see Figure 3b.

As mentioned in Section 3.2, all non-dominated models are con-

sidered as the output of the mSNGP and mSNGP-ls run. The reason is

that the models with the best Ct or Cc are often useless. A typical

example of the model with zero constraint violation is in Figure 3a.

Clearly, the model is bad as it does not �t the training data well.

4.4.3 pressure. This is the only problem where the baseSNGP

method succeeded in �nding acceptable models. Again, both vari-

ants of the proposed approach �nd an acceptablemodel signi�cantly

more frequently than baseSNGP, with mSNGP-ls having higher suc-

cess rate than mSNGP.

4.4.4 Constraint samples. One thing that still remains an open

issue is that even when a model successfully passes all constraint

samples, the model may not necessarily be valid on the whole con-

straint domain. To increase the e�cacy of the validity checks, the

right constraint samples, i.e., the most informative ones, should

be used during the whole run. In general, the ability to continu-

ously generate arbitrary constraint samples has a great potential

to direct the search to better models on the �y and it is something

that should e�ectively be utilized. Various strategies can be used to

attain this goal. For example, new samples of a given constraint can

be generated in the vicinity of the sample that has been found hard

to be satis�ed by models in the current population. Similarly, a set

of candidate constraint samples can be randomly generated and

the one with the highest fail ratio over the models in the current

population is chosen. This is in accordance with the observation

presented in [6] that counterexamples are more bene�cial for evolv-

ing correct models than just random samples. New samples can

also be generated so that the coverage of the constraint domain

increases as much as possible.

5 CONCLUSIONS

We proposed a new multi-objective symbolic regression method

where both aspects of the model performance, the model’s accuracy

as well as its formal validity, are treated equally. This is a general

approach that is applicable whenever some information about the

desired properties of the modelled system in the form of explicit

samples is available. The results achieved through experiments on

three test problems clearly demonstrate its capability to evolve

realistic models that �t well the training data while complying with

the prior knowledge of the desired model characteristics at the

same time. We also proposed an alternative method for estimating

coe�cients of the linear model. This simple yet e�ective local search

method proved to be better than the least squares method.

An advantage of the proposed method over the validation meth-

ods based on the use of SMT solvers is that it checks the model

validity on discrete samples, which is fast (even for large models)

and exact. Moreover, arbitrary functions can be used to build the

models. However, the selection of constraint samples is an open

issue. We will investigate various strategies to maintain the most

relevant constraint samples during the whole run. Here, we intend

to take an inspiration from the �eld of active learning.

When evaluating the validity of a candidate model, its cumula-

tive constraint violation is calculated over all constraint samples.

Note, the violations can be of a very di�erent scale for the di�erent

constraints. Consequently, some constraints can dominate the oth-

ers within the constraint violation objective. The normalization of

the constraint violations is another future research line.
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