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ABSTRACT Reinforcement learning algorithms can be used to optimally solve dynamic decision-making
and control problems. With continuous-valued state and input variables, reinforcement learning algorithms
must rely on function approximators to represent the value function and policy mappings. Commonly used
numerical approximators, such as neural networks or basis function expansions, have two main drawbacks:
they are black-box models offering no insight in the mappings learned, and they require significant trial and
error tuning of their meta-parameters. In this paper, we propose a new approach to constructing smooth value
functions in the form of analytic expressions by means of symbolic regression. We introduce three off-line
methods for finding value functions based on a state transition model: symbolic value iteration, symbolic
policy iteration, and a direct solution of the Bellman equation. The methods are illustrated on four nonlinear
control problems: velocity control under friction, one-link and two-link pendulum swing-up, and magnetic
manipulation. The results show that the value functions not only yield well-performing policies, but also
are compact, mathematically tractable and easy to plug into other algorithms. This makes them potentially
suitable for further analysis of the closed-loop system. A comparison with an alternative approach using
neural networks shows that our method outperforms the neural network-based one.

INDEX TERMS Reinforcement learning, value iteration, policy iteration, symbolic regression, genetic
programming, nonlinear optimal control.

I. INTRODUCTION

R
EINFORCEMENT learning (RL) in continuous-valued
state and input spaces relies on function approximators.

Various types of numerical approximators have been used to
represent the value function and policy mappings: expansions
with fixed or adaptive basis functions [1], [2], regression trees
[3], local linear regression [4], [5], and deep neural networks
[6]–[10].

The choice of a suitable approximator, in terms of its struc-
ture (number, type and distribution of the basis functions,
number and size of layers in a neural network, etc.), is an
ad hoc step which requires significant trial and error tuning.
There are no guidelines on how to design good value function
approximator and, as a consequence, a large amount of expert
knowledge and haphazard tuning is required when applying
RL techniques to continuous-valued problems. In addition,

these approximators are black box, yielding no insight and
little possibility for analysis. Moreover, approaches based on
deep neural networks often suffer from the lack of repro-
ducibility, caused in large part by nondeterminism during the
training process [11]. Finally, the interpolation properties of
numerical function approximators may adversely affect the
control performance and result in chattering control signals
and steady-state errors [12]. In practice, this makes RL
inferior to alternative control design methods, despite the
theoretic potential of RL to produce optimal control policies
[13].

To overcome these limitations, we propose a novel ap-
proach which uses symbolic regression (SR) to automatically
construct an analytic representation of the value function.
Symbolic regression has been used in nonlinear data-driven
modeling with quite impressive results [14]–[17]. To our
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best knowledge, there have been no reports in the literature
on the use of symbolic regression for constructing value
functions. The closest related research is the use of genetic
programming for fitting already available value functions (V-
functions) [18], [19], which, however, is completely differ-
ent from our approach. In [18], authors use GP to find an
algebraic expression that fits the sample points of the optimal
value function, obtained via value iteration. Contrary to [18],
in [19] they use the fact that the so called threshold policy for
the solved MDP is known a priori and they use GP to find
a description of this threshold policy in terms of the MDP
parameters. In both cases, the task solved is to fit an algebraic
expression to a set of data sampled from some known value
or policy function. In our case, the task is to construct the
V-function in the form of analytic expressions based on raw
data sampled using the state transition model.

The paper is organized as follows. Section II describes the
reinforcement learning framework considered in this work.
Section III presents the proposed symbolic methods: sym-
bolic value iteration, symbolic policy iteration, and a direct
solution of the Bellman equation. In Section IV, we present
the experimental results obtained with the proposed methods
on four nonlinear control problems: velocity control under
nonlinear friction, one-link and two-link pendulum swing-up
and magnetic manipulation. Performance of the methods and
other related aspects are discussed in Section V. Section VI
concludes the paper.

II. RL FRAMEWORK
The dynamic system of interest is described by the state
transition function

xk+1 = f(xk, uk) (1)

with xk, xk+1 ∈ X ⊂ R
n and uk ∈ U ⊂ R

m, where sub-
script k denotes discrete time instants. Function f is assumed
to be given, but it does not have to be stated by explicit
equations; it can be, for instance, a generative model given
by a numerical simulation of complex differential equations.
The control goal is specified through a reward function which
assigns a scalar reward rk+1 ∈ R to each state transition from
xk to xk+1:

rk+1 = ρ(xk, uk, xk+1) . (2)

This function is defined by the user and typically calculates
the reward based on the distance of the current state from
a given reference (goal) state xr to be attained. The state
transition model and the associated reward function form the
Markov decision process (MDP).

The goal of RL is to find an optimal control policy π :
X → U such that in each state it selects a control action so
that the cumulative discounted reward over time, called the
return, is maximized:

Rπ = E
{ ∞∑

k=0

γkρ
(
xk, π(xk), xk+1

)}

. (3)

Here γ ∈ (0, 1) is a discount factor and the initial state x0 is
drawn uniformly from the state space domain X or its subset.
The return is approximated by the value function V π : X →
R defined as:

V π(x) = E
{ ∞∑

k=0

γkρ
(
xk, π(xk), xk+1

)
∣
∣
∣x0 = x

}

. (4)

An approximation of the optimal V-function, denoted by
V̂ ∗(x), can be computed by solving the Bellman optimality
equation

V̂ ∗(x) = max
u∈U

[

ρ
(
x, u, f(x, u)

)
+ γV̂ ∗

(
f(x, u)

)]

. (5)

To simplify the notation, in the sequel, we drop the hat
and the star superscript: V (x) will therefore denote the ap-
proximately optimal V-function. Based on V (x), the optimal
control action in any given state x is found as the one that
maximizes the right-hand side of (5):

π(x) = argmax
u∈U

[
ρ
(
x, u, f(x, u)

)
+ γV

(
f(x, u)

)]
(6)

for all x ∈ X .
In this paper, we use a RL framework based on V-

functions. However, the proposed methods can be applied
to Q-functions as well, where the Qπ(x, u) is the return
obtained when first taking action u in state x and then
following policy π until the end of the episode.

III. SOLVING BELLMAN EQUATION BY SYMBOLIC
REGRESSION
We employ symbolic regression to construct an analytic
approximation of the value function. Symbolic regression is
a technique based on genetic programming and its purpose
is to find an analytic equation describing given data. Our
specific objective is to find an analytic equation for the value
function that satisfies the Bellman optimality equation (5).
Symbolic regression is a suitable technique for this task, as it
does not rely on any prior knowledge on the form of the value
function, which is generally unknown, and it has the potential
to provide more compact representations than, for instance,
deep neural networks or basis function expansion models.
In this work, we employ two different symbolic regression
methods: a variant of Single Node Genetic Programming
[20]–[23] and a variant of Multi-Gene Genetic Programming
[24]–[26].

A. SYMBOLIC REGRESSION

Symbolic regression methods were reported to perform better
when using a linear combination of nonlinear functions found
by means of genetic algorithms [27], [28]. Following this
approach, we define the class of symbolic models as:

V (x) = β0 +

nf∑

i=1

βiϕi(x) . (7)

The nonlinear functions ϕi(x), called features, are con-
structed by means of genetic programming using a predefined
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set of elementary functions F provided by the user. These
functions can be nested and the SR algorithm evolves their
combinations by using standard evolutionary operations such
as mutation. The complexity of the symbolic models is
constrained by two user-defined parameters: the maximum
number of features in the symbolic model and the maximum
depth of expression trees of the features. The coefficients β
are estimated by least squares, with or without regularization.

B. DATA SET

To apply symbolic regression, we first generate a set of nx

states sampled from X :

X = {x1, . . . , xnx
} ⊂ X ,

and a set of nu control inputs sampled from U :

U = {u1, . . . , unu
} ⊂ U .

The generic training data set for symbolic regression is then
given by:

D = {d1, . . . , dnx
} (8)

with each training sample di being the tuple:

di = 〈xi, xi,1, ri,1, . . . , xi,nu
, ri,nu

〉

consisting of the state xi ∈ X , all the next states xi,j

obtained by applying in xi all the control inputs uj ∈ U
to the system model (1), and the corresponding rewards
ri,j = ρ

(
xi, uj , f(xi, uj)

)
.

In the sequel, V denotes the symbolic representation of the
value function, generated by symbolic regression applied to
data set D. We present three possible approaches to solving
the Bellman equation by using symbolic regression.

C. DIRECT SYMBOLIC SOLUTION OF BELLMAN

EQUATION

This approach (direct) directly evolves the symbolic value
function so that it satisfies (5). The optimization criterion
(fitness function) is the mean-squared error between the left-
hand side and right-hand side of the Bellman equation, i.e.,
the Bellman error over all the training samples in D:

J direct =
1

nx

nx∑

i=1

[

max
j

(
ri,j + γ V (xi,j)

︸ ︷︷ ︸

evolved

)
− V (xi)
︸ ︷︷ ︸

evolved

]2

. (9)

Unfortunately, the problem formulated in this way proved too
hard to be solved by symbolic regression, as illustrated later
in Sections IV-A and IV. We hypothesize that this difficulty
stems from the fact that the fitness of the value function to be
evolved is evaluated through the complex implicit relation
in (9), which is not a standard regression problem. This
means, there is no strict target defined to which the value
function should be fitted. By modifying symbolic regression,
the problem might be rendered feasible, but in this paper
we successfully adopt an iterative approach, leading to the
symbolic value iteration and symbolic policy iteration, as
described below. In the above equation and equations to

follow, evolved means that the approximator of the given
function is constructed by means of symbolic regression (i.e.
evolved using genetic programming).

D. SYMBOLIC VALUE ITERATION

In symbolic value iteration (SVI), the optimal value function
is found iteratively, just like in standard value iteration [29].
In each iteration ℓ, the value function Vℓ−1 from the previous
iteration is used to compute the target for improving the value
function Vℓ in the current iteration. For each state xi ∈ X , the
target ti,ℓ ∈ R is calculated by evaluating the right-hand-side
of (5):

ti,ℓ = max
u∈U

(

ρ(xi, u, f(xi, u)) + γVℓ−1

(
f(xi, u)

))

. (10)

Here, the maximization is carried out over the predefined
discrete control action set U . Note that virtually all control
systems use discrete control actions – either as the result
of digital-to-analog conversion or due to the nature of the
actuator itself, e.g., a stepping motor. As the sensitivity of the
control loop to discrete control action is low (approximately
the reciprocal of the loop gain), most control loops tolerate
even a small number of control actions, as long as the action
corresponding to the desired goal state is included in the
control action set. In principle, it would also be possible
to use numerical or even symbolic optimization over the
original continuous set U . However, this is computationally
more expensive, as the optimization problem would have to
be solved nx times at the beginning of each iteration. For this
reason, we prefer the maximization over U , as stated in (10).
In addition, as the next states and rewards are pre-computed
and provided to the SVI algorithm in the data set D (8),
we can replace (10) by its computationally more efficient
equivalent:

ti,ℓ = max
j

(
ri,j + γVℓ−1(xi,j)

)
. (11)

Given the target ti,ℓ, an improved value function Vℓ is con-
structed by applying symbolic regression with the following
fitness function:

J SVI
ℓ =

1

nx

nx∑

i=1

[

ti,ℓ
︸︷︷︸

target

−Vℓ(xi)
︸ ︷︷ ︸

evolved

]2

. (12)

This fitness function is again the mean-squared Bellman
error. However, as opposed to (9), the above criterion (12)
defines a true regression problem: the target to be fitted is
fixed as it is based on Vℓ−1 from the previous iteration. In the
first iteration, V0 can be initialized either by some suitable
function, or as V0(x) = 0 for all x ∈ X , in the absence of
better initial value. In the latter case, the first target becomes
the largest reward over all the next states.

In each iteration, the training data set for symbolic regres-
sion is composed as follows:

DSVI
ℓ = {d1, . . . , dnx

} with di = 〈xi, ti,ℓ〉

i.e., each sample contains the state xi, and the corresponding
target ti,ℓ computed by (11).
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FIGURE 1. Symbolic value iteration loop. In each iteration, the target data for
symbolic regression are computed using the Bellman equation right-hand side.
Symbolic regression then improves the value function and the process repeats.

The SVI procedure terminates once a predefined max-
imum number of iterations ni has been reached. Other
stopping criteria can be employed, such as terminating the
iteration when the following condition is satisfied:

max
i
|Vℓ(xi)− Vℓ−1(xi)| ≤ ǫ (13)

with ǫ a user-defined convergence threshold. The resulting
symbolic value iteration algorithm is given in Algorithm 1
and depicted in Figure 1. In each iteration, the symbolic
regression algorithm is run for ng generations.

Algorithm 1: Symbolic value iteration (SVI)

Input: training data set D, ni

ℓ← 0, V0(x) = 0, ∀x ∈ X
while ℓ < ni do

ℓ← ℓ+ 1
∀xi ∈ X compute ti,ℓ by using (11)
DSVI

ℓ ← {d1, . . . , dnx
} with di = 〈xi, ti,ℓ〉

Vℓ ← SymbolicRegression(DSVI
ℓ , J SVI

ℓ )
end

V ← Vℓ

Output: Symbolic value function V

E. SYMBOLIC POLICY ITERATION

Also the symbolic policy iteration (SPI) algorithm itera-
tively improves the V-function estimate. However, rather than
using Vℓ−1 to compute the target in each iteration, we derive
from Vℓ−1 the currently optimal policy and plug it into the
Bellman equation, so eliminating the maximum operator.

Given the value function Vℓ−1 from the previous iteration,
for each state xi ∈ X , the corresponding currently optimal
control action u∗

i is computed by:

u∗
i = argmax

u∈U

(

ρ(xi, u, f(xi, u)) + γVℓ−1

(
f(xi, u)

))

,

(14)

∀xi ∈ X . Again, the maximization can be carried out over
the original continuous set U , rather than the discrete set U ,
which would incur higher computational costs.

Now, for each state xi and the corresponding optimal
control action u∗

i , the optimal next state x∗
i and the respective

reward r∗i can be computed:

x∗
i = f(xi, u

∗
i ), r∗i = ρ(xi, u

∗
i , x

∗
i ) . (15)

As the next states and rewards are provided to the SPI

algorithm in the data set D (8), we can replace (14) by its
computationally more efficient equivalent. The index j∗ of
the optimal control action selected from U is found by

j∗ = argmax
j

(
ri,j + γVℓ−1(xi,j)

)
, (16)

x∗
i = xi,j∗ , r∗i = ri,j∗ (17)

with xi,j∗ and ri,j∗ selected from D. Given these samples,
we can now construct the training data set for SR as follows:

DSPI
ℓ = {d1, . . . , dnx

} with di = 〈xi, x
∗
i , r

∗
i 〉 .

This means that each sample di contains the state xi, the
currently optimal next state x∗

i and the respective reward r∗i .
In each iteration ℓ of SPI, an improved approximation Vℓ is
sought by means of symbolic regression with the following
fitness function:

J SPI
ℓ =

1

nx

nx∑

i=1

(
r∗i
︸︷︷︸

target

−[Vℓ(xi)
︸ ︷︷ ︸

evolved

−γ Vℓ(x
∗
i )

︸ ︷︷ ︸

evolved

]
)2

. (18)

The fitness is again the mean-squared Bellman error, where
only the currently optimal reward serves as the target for
the difference Vℓ(xi) − γVℓ(x

∗
i ), with Vℓ evolved by SR.

The resulting symbolic policy iteration algorithm is given in
Algorithm 2.

Algorithm 2: Symbolic policy iteration (SPI)

Input: training data set D, ni

ℓ← 0, V0(x) = 0, ∀x ∈ X
while ℓ < ni do

ℓ← ℓ+ 1
∀xi ∈ X select x∗

i and r∗i from D by (16) and (17)
DSPI

ℓ ← {d1, . . . , dnx
} with di = 〈xi, x

∗
i , r

∗
i 〉

Vℓ ← SymbolicRegression(DSPI
ℓ , J SPI

ℓ )
end

V ← Vℓ

Output: Symbolic value function V

F. PERFORMANCE MEASURES FOR EVALUATING

VALUE FUNCTIONS

Note that the convergence of the iterative algorithms is
not necessarily monotonic, similarly to other approximate
solutions, like the fitted Q-iteration algorithm [3]. Therefore,
it is not meaningful to retain only the last solution. Instead,
we store the intermediate solutions from all iterations and
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use a posteriori analysis to select the best value function
according to the performance measures described below.

Root mean squared Bellman error (BE) is calculated over
all nx state samples in the training data set D according to

BE =

√
√
√
√

1

nx

nx∑

i=1

[

max
j

(
ri,j + γV (xi,j)

)
− V (xi)

]2

.

In the optimal case, the Bellman error is equal to zero.

The following two measures are calculated based on
closed-loop control simulations with the state transition
model (1). The simulations start from ns different initial
states in the set Xinit (ns = |Xinit|) and run for a fixed amount
of time Tsim. In each simulation time step, the optimal control
action is computed according to the argmax policy (6).

Mean discounted return (Rγ) is calculated over the simula-
tions from all the initial states in Xinit:

Rγ =
1

ns

ns∑

s=1

Tsim/Ts∑

k=0

γkρ
(
x
(s)
k , π(x

(s)
k ), x

(s)
k+1

)

where (s) denotes the index of the simulation, x(s)
0 ∈ Xinit

and Ts is the sampling period. Larger values of Rγ indicate a
better performance.

Percentage of successful simulations (S) within all ns sim-
ulations defined as

S = 100
nsucc

ns
% ,

where nsucc is the number of successful simulations. A
simulation is considered successful if the state x stays within
a predefined neighborhood of the goal state for the last
Tend seconds of the simulation. Generally, the neighborhood
N(xr) of the goal state in n-dimensional state space is
defined using a neighborhood size parameter ε ∈ R

n as
follows:

N(xr) = {x : |xr,i − xi| ≤ εi, for i = 1 . . . n}.

Larger values of S correspond to a better performance.

G. EXPERIMENTAL EVALUATION SCHEME

Each of the three proposed approaches (direct, SVI, and
SPI) was implemented in two variants, one using the Single
Node Genetic Programming (SNGP) algorithm and the other
one using the Multi-Gene Genetic Programming (MGGP)
algorithm. A detailed explanation of the SR algorithms and
their parameters is beyond the scope of this paper and we
refer the interested reader for more details on the implemen-
tation of SNGP to [23] and for MGGP to [26]. Both SR
methods use linear combinations of original input variables.
In SNGP, the weights assigned to the variables are tuned
purely by means of mutation operators, while in MGGP

the weights are tuned using a gradient method based on
back-propagation algorithm. A specific feature of the SNGP
implementation is that it adds to the raw fitness function
(i.e., (9), (12), and (18)) a penalty for a wrong position of
the maximum of the V-function model. In particular, the raw
fitness value is multiplied by a penalty factor (1+d), where d
grows linearly with the distance of the actual position of the
V-model’s maximum and the desired position of the sought
V-function, which is at the goal state of the given problem.

There are six algorithms in total to be tested:
direct-SNGP, direct-MGGP, SPI-SNGP, SPI-MGGP,
SVI-SNGP and SVI-MGGP. Note, however, that our goal
is not to compare the two symbolic regression algorithms.
Instead, we want to demonstrate that the proposed symbolic
RL methods are general and can be implemented by using
more than one specific symbolic regression algorithm.

Each of the algorithms was run nr = 30 times with the
same parameters, but with a different randomization seed.
Each run delivers three winning V-functions, which are the
best ones with respect to Rγ , BE and S, respectively. Statis-
tics such as the median, min, and max calculated over the set
of nr respective winner V-functions are used as performance
measures of the particular method (SVI, SPI and direct)
and the SR algorithm (SNGP, MGGP). For instance, the
median of S is calculated as

med
r=1..nr

( max
i=1..ni

(Sr,i)) (19)

where Sr,i denotes the percentage of successful simulations
in iteration i of run r. For the direct method, the above
maximum is calculated over all generations of the SR run.

For comparison purposes, we have calculated a baseline
solution, which is a numerical V-function approximation
calculated by the fuzzy V-iteration algorithm [13] with tri-
angular basis functions.

IV. EXPERIMENTS
In this section, experiments are reported for four non-linear
control problems: friction compensation, 1-DOF and 2-DOF
pendulum swing-up, and magnetic manipulation. In the end
of this section, experiments with neural network-based ap-
proximators (NN approximators) used in the place of the
symbolic models in the SVI method are described.

While the chosen test problems have low-dimensional
input and state spaces, they are representative of challenging
control problems as none of them can be solved by linear con-
trol methods. Moreover, they are challenging even for neural
network-based reinforcement learning methods as shown in
our experiments as well as in the literature, see for example
[30].

The parameters of the experiments are listed in Table 8.
The symbolic regression methods worked with the following
setting. The number of iterations, ni, was 50 and 30 for
SVI and SPI, respectively. It was smaller for SPI as this
method converges faster and needs fewer iterations. The
direct method ran for 50 000 generations (the method
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does not iterate in the sense the SPI and SVI meth-
ods do). We used the same set of elementary functions,
F = {∗, +, −, square, cube, bent identity1}, for all meth-
ods. The maximum number of features in the model was set
to 10 and the maximum depth of features was set to 7. The
remaining parameters of the experiment are listed in Table 8.

A. FRICTION COMPENSATION

We start by illustrating the working of the proposed meth-
ods on a practically relevant first-order, nonlinear motion-
control problem. Many applications require high-precision
position and velocity control, which is often hampered by the
presence of friction. Without proper nonlinear compensation,
friction causes significant tracking errors, stick-slip motion
and limit cycles. To address these problems, we design a
nonlinear velocity controller for a DC motor with friction by
using the proposed symbolic methods.

The continuous-time system dynamics are given by:

Iv̇(t) + (b+
K2

R
)v(t) + Fc

(
v(t), u(t), c

)
=

K

R
u(t) (20)

with v(t) and v̇(t) the angular velocity and acceleration,
respectively. The angular velocity varies in the interval
[−10, 10] rad·s−1. The control input u ∈ [−4, 4]V is the
voltage applied to the DC motor and the parameters of the
system are: moment of inertia I = 1.8×10−4 kg·m2, viscous
friction coefficient b = 1.9 × 10−5 N·m·s·rad−1, motor con-
stant K = 0.0536N·m·A−1, armature resistance R = 9.5Ω,
and Coulomb friction coefficient c = 8.5× 10−3 N·m.

The Coulomb friction force Fc is modeled as [31]:

Fc

(
v(t), u(t), c

)
=







c if v(t) > 0 or v(t)=0 and u(t)>cR
K

−c if v(t) < 0 or v(t)=0 and u(t)<−cR
K

K
R u(t) if v(t) = 0 and

∣
∣K
R u(t)

∣
∣≤c

The discrete-time transitions are obtained by numerically
integrating the continuous-time dynamics using the fourth-
order Runge-Kutta method and a sampling period Ts =
0.001 s. The state is the velocity, x = v, and the reward
function is defined as:

rk+1 = ρ(xk, uk, xk+1) = −
√

|xr − xk| (21)

with xr = 7 rad·s−1 the desired velocity (goal state).
In each of the 30 runs, we selected the best V-function with

respect to S. Figure 2 shows the median values of S calculated
for the V-functions over all 30 runs according to (19). The
SVI method is consistently the best one, followed by SPI

and direct.
The performance measures Rγ , BE and S are listed in

Table 1. For the S measure, the first two numbers in the
square brackets are the minimum and maximum value and
the number in parentheses is the frequency of the maximum
value. Interestingly, we found that low BE does not necessar-
ily correlate with high performance of the V-function in the
control task.

1https://en.wikipedia.org/wiki/Bent_function

TABLE 1. Performance of the symbolic methods on the friction compensation
problem. The performance of the baseline V-function is Rγ = −42.158,
BE = 1.7 × 10−5, S = 100 %.

SNGP direct SPI SVI

Rγ [–] −48.184 −42.563 −42.339
BE [–] 0.301 0.0212 2.571
S [%] 0 100 100

[0, 100 (11)] [0, 100 (22)] [100, 100 (30)]
MGGP direct SPI SVI

Rγ [–] −48.184 −42.565 −42.274
BE [–] 0.719 1.552 2.619
S [%] 0 100 100

[0, 0 (30)] [0, 100 (28)] [100, 100 (30)]
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FIGURE 2. Performance on the friction compensation problem: (a) median
percentage of successful simulations S, (b) the number of runs in which a
V-function with S=100 % was found.
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FIGURE 3. Examples of typical well-performing V-functions found for the
friction compensation problem. Left: the symbolic V-function compared to the
baseline. Right: the Bellman error.
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FIGURE 4. Simulations of the friction compensation problem with the baseline
V-function (left) and the symbolic V-function (right) presented in Figure 3b).
The upper plots show the state trajectory from x0 = −10 rad·s−1. The lower
plots show the corresponding control inputs. Only the first 0.2 s of the
simulation are shown as the variables remain constant afterwards.

Figure 3 shows examples of well-performing symbolic V-
functions found through symbolic regression, compared to
a baseline V-function calculated using the numerical approxi-
mator [13]. A closed-loop simulation is presented in Figure 4.
Both the symbolic and baseline V-function yield optimal
performance. The proposed symbolic methods reliably find
well-performing V-functions for the friction compensation
problem. Interestingly, even the direct approach can solve
this problem when using the SNGP algorithm. However, it
finds a well-performing V-function with respect to S only in
approximately one third of the runs.

B. 1-DOF PENDULUM SWING-UP

The inverted pendulum (denoted as 1DOF) consists of a
weight of mass m attached to an actuated link that rotates
in a vertical plane. The available torque is insufficient to
push the pendulum up in a single rotation from many initial
states. Instead, from certain states (e.g., when the pendulum
is pointing down), it needs to be swung back and forth to
gather energy, prior to being pushed up and stabilized. The
continuous-time model of the pendulum dynamics is:

α̈ =
1

I
·

[

mgl sin(α)− bα̇−
K2

R
α̇+

K

R
u

]

(22)

where I = 1.91 × 10−4 kg·m2, m = 0.055 kg, g =
9.81m·s−2, l = 0.042m, b = 3 × 10−6 N·m·s·rad−1,
K = 0.0536N·m·A−1, R = 9.5Ω. The angle α varies in the
interval [0, 2π] rad, with α = π rad pointing up, and ‘wraps
around’ so that e.g., a rotation of 5π/2 rad corresponds to
α = π/2 rad. The state vector is x = [α, α̇]⊤. The sampling
period is Ts = 0.05 s, and the discrete-time transitions are
obtained by numerically integrating the continuous-time dy-
namics (22) by using the fourth-order Runge-Kutta method.
The control input u is limited to [−2, 2]V, which is insuffi-
cient to push the pendulum up in one go.

TABLE 2. Performance of the symbolic methods on the 1DOF problem. The
performance of the baseline V-function is Rγ = −9.346, BE = 0.0174,
S = 100 %.

SNGP direct SPI SVI

Rγ [–] −26.083 −10.187 −10.013
BE [–] 0.478 0.242 0.615
S [%] 0 100 100

[0, 0 (30)] [81.3, 100 (27)] [93.8, 100 (28)]
MGGP direct SPI SVI

Rγ [–] −26.083 −10.487 −9.917
BE [–] 0.776 0.797 0.623
S [%] 0 100 100

[0, 6.25 (2)] [0, 100 (17)] [0, 100 (29)]
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FIGURE 5. Performance on the 1DOF problem: (a) median S, (b) the number
of runs in which a V-function with S=100 % was found.

The control goal is to stabilize the pendulum in an unstable
equilibrium defined by the goal state xr = [π, 0]⊤, which is
expressed by the following reward function:

ρ(x, u, f(x, u)) = −|xr − x|⊤Q (23)

with Q = [0.5, 0]⊤ a weighting vector to adjust the relative
importance of the angle and angular velocity.

The statistical results obtained from 30 independent runs
are presented in Figure 5 and Table 2.

Figure 5 shows that the SVI and SPI methods achieve
comparable performance, while the direct method fails.

An example of a well-performing symbolic V-function
found through symbolic regression, compared to a baseline
V-function calculated using the numerical approximator [13],
is shown in Figure 6.

The symbolic V-function is smoother than the numerical
baseline, which can be seen on the level curves and on the
state trajectory. The difference is particularly notable in the
vicinity of the goal state, which is a significant advantage of
the proposed method.

A simulation with the symbolic V-function, as well as an
experiment with the real system [5], is presented in Figure 7.
The trajectory of the control signal u on the real system
shows the typical bang-bang nature of optimal control, which
illustrates that symbolic regression found a near optimal
value function.

VOLUME xxx, 2021 7



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3119000, IEEE Access

Kubalík et al.: Symbolic Regression Methods for Reinforcement Learning

-15

0

-10

30

-5

2

baseline V-function

0

154 0
6 -15

8 -30

-15
0

-10

30

-5

2

symbolic V-function

0

154 0
6 -15

8 -30

0 1 2 3 4 5 6
-30

-20

-10

0

10

20

30

0 1 2 3 4 5 6
-30

-20

-10

0

10

20

30

FIGURE 6. Baseline and symbolic V-function produced by the SVI-SNGP method on the 1DOF problem. The symbolic V-function is smoother than the numerical
baseline V-function, which can be seen on the level curves and on the state trajectory, in particular near the goal state.

The symbolic V-function depicted in Figure 6, constructed
by the SVI-SNGP method, has the following form:

V (x) = 1.7 × 10
−5

(10x2 − 12x1 + 47)(4.3 × 10
−2

x2 − 3.5x1 + 11)
3

− 7.1 × 10
−4

x2 − 4.6x1 − 8.2 × 10
−6

(4.3 × 10
−2

x2 − 3.5x1

+ 11)
3
(0.2x1 + 0.3x2 − 0.5)

3
− 9.8 × 10

−3
(0.4x1 + 0.1x2 − 1.1)

6

+ 11(0.1x1 − 1.5)
3
+ 11((0.6x1 + 6.3 × 10

−2
x2 − 1.7)

2
+ 1)

0.5

+ 8.7 × 10
−6

((10x2 − 12x1 + 47)
2
(4.3 × 10

−2
x2 − 3.5x1 + 11)

6

+ 1)
0.5

+ 0.3((1.1x1 + 0.4x2 − 3.3)
2
+ 1)

0.5
+ (3.9 × 10

−3
(4.3×

× 10
−2

x2 − 3.5x1 + 11)
2
(0.2x1 + 0.3x2 − 0.5)

2
+ 1)

0.5
+ 6.5×

× 10
−5

((1.2x1 + 14x2 − 10)
2
(9.1 × 10

−2
x2 − 2.9x1 + 0.5((9.1×

× 10
−2

x2 − 2.9x1 + 8.3)
2
+ 1)

0.5
+ 7.8)

2
+ 1)

0.5
− 5.5 × 10

−2
(4.3×

× 10
−2

x2 − 3.5x1 + 11)(0.2x1 + 0.3x2 − 0.5) − 1.7((3.6x1 + 0.4x2−

− 11)
2
+ 1)

0.5
− 2((x1 − 3.1)

2
+ 1)

0.5
− 1.3 × 10

−4
(1.2x1 + 14x2−

− 10)(9.1 × 10
−2

x2 − 2.9x1 + 0.5((9.1 × 10
−2

x2 − 2.9x1 + 8.3)
2
+

+ 1)
0.5

+ 7.8) + 23 .
(24)

The example shows that symbolic V-functions are com-
pact, analytically tractable and easy to plug into other algo-
rithms. The number of parameters in the example is 100.

C. 2-DOF SWING-UP

The double pendulum (denoted as 2DOF) is described by the
following continuous-time fourth-order nonlinear model:

M(α)α̈+ C(α, α̇)α+G(α) = u (25)

with α = [α1, α2]
⊤ the angular positions of the two links,

u = [u1, u2]
⊤ the control input, which are the torques of the

0 1 2 3 4 5
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2
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0 1 2 3 4 5
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2

real experiment
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FIGURE 7. An example of a well-performing symbolic V-function found with
the SVI-SNGP method on the 1DOF problem, used in a simulation (left) and
on the real system (right). The performance of the SVI method is near-optimal
even in the real experiment.

two motors, M(α) the mass matrix, C(α, α̇) the Coriolis and
centrifugal forces matrix and G(α) the gravitational forces
vector. The state vector x contains the angles and angular
velocities and is defined by x = [α1, α̇1, α2, α̇2]

⊤. The
angles α1, α2 vary in the interval [−π, π) rad and wrap
around. The angular velocities α̇1, α̇2 are restricted to the
interval [−2π, 2π) rad·s−1 using saturation. Matrices M(α),
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TABLE 3. Double pendulum parameters.

Model parameter Symbol Value Unit
Link lengths l1, l2 0.4, 0.4 m
Link masses m1,m2 1.25, 0.8 kg
Link inertias I1, I2 0.0667, 0.0427 kg·m2

Center of mass coordinates c1, c2 0.2, 0.2 m
Damping in the joints b1, b2 0.08, 0.02 kg·s−1

Gravitational acceleration g 9.8 m·s−2

TABLE 4. Results obtained on the 2DOF problem. The performance of the
baseline V-function is Rγ = −80.884, BE = 8 × 10−6, S = 23 %.

SNGP direct SPI SVI

Rγ [–] −89.243 −85.607 −81.817
BE [–] 4.23 2.00 5.79
S [%] 15.4 38.5 53.8

[7.7, 23.1 (14)] [0, 100 (4)] [7.7, 100 (4)]
MGGP direct SPI SVI

Rγ [–] −84.739 −84.116 −82.662
BE [–] 5.19 1.98 3.29
S [%] 23.1 26.9 69.2

[0, 30.8 (1)] [0, 100 (5)] [7.7, 100 (2)]

C(α, α̇) and G(α) are defined by:

M(α) =

[
P1 + P2 + 2P3 cos(α2) P2 + P3 cos(α2)

P2 + P3 cos(α2) P2

]

,

C(α, α̇) =

[
b1 − P3α̇2 sin(α2) −P3(α̇1 + α̇2) sin(α2)

P3α̇1 sin(α2) b2

]

,

G(α) =

[
−F1 sin(α1)− F2 sin(α1 + α2)

−F2 sin(α1 + α2)

]

with P1 = m1c
2
1+m2l

2
1+I1, P2 = m2c

2
2+I2, P3 = m2l1c2,

F1 = (m1c1 + m2l2)g and F2 = m2c2g. The meaning
and values of the system parameters are given in Table 3.
The transition function f(x, u) is obtained by numerically
integrating (25) between discrete time samples using the
fourth-order Runge-Kutta method with the sampling period
Ts = 0.01 s.

The control goal is to stabilize the two links in the upper
equilibrium, which is expressed by the following quadratic
reward function:

ρ(x, u, f(x, u)) = −(xr − x)⊙ (xr − x)Q (26)

with the desired goal state xr = [0, 0, 0, 0] and Q =
[1, 0, 1.2, 0]⊤ a weighting vector to specify the relative im-
portance of the angles and angular velocities.

The statistical results obtained from 30 independent runs
are presented in Figure 8 and Table 4.

D. MAGNETIC MANIPULATION

The magnetic manipulation (denoted as Magman) has sev-
eral advantages compared to traditional robotic manipulation
approaches. It is contactless, which opens new possibilities
for actuation on a micro scale and in environments where
it is not possible to use traditional actuators. In addition,
magnetic manipulation is not constrained by the robot arm
morphology, and it is less constrained by obstacles.
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FIGURE 8. Performance on the 2DOF problem: a) median S, b) the number of
runs, out of 30, in which a V-function achieving S=100 % was found.
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FIGURE 9. Magman schematic.

A schematic of a magnetic manipulation setup [32] with
two coils is shown in Figure 9.

The two electromagnets are positioned at 0.025 m and
0.05 m. The current through the electromagnet coils is con-
trolled to dynamically shape the magnetic field above the
magnets and so to position a steel ball, which freely rolls on
a rail, accurately and quickly to the desired set point.

The horizontal acceleration of the ball is given by:

ÿ = −
b

m
ẏ +

1

m

2∑

i=1

g(y, i)ui (27)

with

g(y, i) =
−c1 (y − 0.025i)

(

(y − 0.025i)
2
+ c2

)3 . (28)

Here, y denotes the position of the ball, ẏ its velocity and ÿ
the acceleration. With ui the current through coil i, g(y, i)
is the nonlinear magnetic force equation, m the ball mass,
and b the viscous friction of the ball on the rail. The model
parameters are listed in Table 5.

State x is given by the position and velocity of the ball.
The control goal is to stabilize the ball at the goal state xr =
[0.01, 0]. The reward function is defined by:

ρ(x, u, f(x, u)) = −(xr − x)⊙ (xr − x)Q (29)

TABLE 5. Magnetic manipulation system parameters.

Model parameter Symbol Value Unit
Ball mass m 3.200× 10−2 kg
Viscous damping b 1.613× 10−2 N·s·m−1

Empirical parameter c1 5.520× 10−10 N·m5·A−1

Empirical parameter c2 1.750× 10−4 m2
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FIGURE 10. Baseline and symbolic V-function produced by the SVI-SNGP method on the Magman problem. The symbolic V-function is smoother than the
numerical baseline V-function and it performs the control task well. However, the way of approaching the goal state by using the symbolic V-function is inferior to the
trajectory generated with the baseline V-function. This example illustrates the trade-off between the complexity of the V-function and the ability of the algorithm to
find those intricate details on the V-function surface that matter for the performance.
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FIGURE 11. Simulations with the baseline V-function (left) and the symbolic
V-function (right) found with the SVI-SNGP method on the Magman problem.

TABLE 6. Results obtained on the Magman problem. The performance of the
baseline V-function is Rγ = −0.0097, BE = 1.87 × 10−4, S = 100 %.

SNGP direct SPI SVI

Rγ −9.917 −0.010 −0.011
BE 0.623 0.084 0.00298
S 100 100 100

[7.14, 100 (27)] [100, 100 (30)] [100, 100 (30)]
MGGP direct SPI SVI

Rγ −0.164 −0.010 −0.169
BE 0.004 15.74 0.061
S 14.3 100 0

[0, 100 (5)] [0, 100 (16)] [0, 100 (4)]

with the vector Q = [5, 0]⊤ specifying the relative impor-
tance of the ball’s position and velocity.

The statistical results obtained from 30 independent runs
are presented in Figure 12 and Table 6. An example of a well-
performing symbolic V-function found through symbolic re-
gression, compared to the baseline V-function calculated us-
ing the numerical approximator [13], is shown in Figure 10.
The symbolic V-function is smoother than the one of the
numerical approximator. It has only 77 parameters compared
to 729 parameters of the numerical approximator.

The course of the state and the control actions within
a simulation with the symbolic and baseline V-functions
from Figure 10 is presented in Figure 11. The symbolic one
performs well, however, the way it approaches the goal state

10 VOLUME xxx, 2021



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3119000, IEEE Access

Kubalík et al.: Symbolic Regression Methods for Reinforcement Learning

direct SPI SVI
0

20

40

60

80

100

m
ed

ia
n
 S

 [
%

]

SNGP

MGGP

(a)

direct SPI SVI
0

5

10

15

20

25

30

#
 o

f 
V

 f
u
n
ct

io
n
s 

w
it

h
 S

=
1
0
0
 %

 

SNGP

MGGP

(b)

FIGURE 12. Performance on the Magman problem: a) median S, b) the
number of runs, out of 30, in which a V-function achieving S=100 % was found.

is suboptimal. This result demonstrates the trade-off between
the complexity and the smoothness of the V-function.

E. VALUE ITERATION WITH NEURAL NETWORK

APPROXIMATOR

Other types of V-function representation than the symbolic
models and the numerical approximators can be used. Here,
we show an analysis of the neural network-based approxima-
tors when plugged into the V-iteration method. We used the
Matlab implementation of the feed-forward neural network,
the fitnet function.

Neural networks have many (hyper)parameters that must
be tuned for a particular problem to be solved. To provide
a reasonably fair analysis, we tested the neural networks
with various topologies and settings of two learning control
parameters. Four topologies with two hidden layers having
8, 12, 20, and 42 neurons in each of them were tested.
These topologies represent models of different complex-
ity with roughly 100, 200, 500, and 2000 parameters to
be tuned (we use W to denote the model’s complexity).
The other two control parameters are the maximum num-
ber of training epochs before the training is stopped, i.e.,
E ∈ {1000, 2000, 5000, 10000} and the maximum number
of validation checks before the training is stopped, i.e.,
F ∈ {20, 50}. In each SVI iteration, the training data set is
split into training and validation sets and the neural network
training stops when there was no improvement in the valida-
tion performance for the last F training epochs. The hidden
layers’ neurons used the hyperbolic tangent sigmoid activa-
tion function, which is a sigmoid function returning output
values in the interval (−1, 1). The output neuron calculated
the pure linear activation function. The gradient descent with
momentum and adaptive learning rate backpropagation, the
traingdx method, was used to train the network’s weights.

The NN approximators were tested with all |W |×|E|×|F |
configurations on all test problems and the results are sum-
marized in Table 7. Only the S performance metric, as the
most important one, is used to assess the NN approximators’
performance. Results for the best performing configuration
[E, F ] in terms of the number of runs that produced a
100 % correctly working model are presented for each NN
approximator’s complexity W .

V. DISCUSSION
A. PERFORMANCE OF METHODS

The SPI and SVI methods are able to produce V-functions
allowing to successfully solve the underlying control task
(indicated by the maximum value of S equal to 100 %) for
all the problems tested. They also clearly outperform the
direct method. The best performance was observed on
the 1DOF problem (SVI-SNGP and SVI-MGGP generate 28
and 29 models with S=100 %, respectively) and the Magman
(both SPI-SNGP and SVI-SNGP generate 30 models with
S=100 %). However, we observe the MGGP method is worse
than the SNGP one, particularly when used in SPI on both
1DOF and Magman problems and in SVI on Magman. This
can be attributed to the fact that MGGP does not penalize for
a misplacement of the maximum of the V-function model.
Note that a wrong position of the V-function’s maximum
might prevent reaching the goal state in the simulations.

The performance of all methods was significantly worse
on the 2DOF problem where the SR methods found a model
that works perfectly in simulations (i.e., S=100%) in 2 to 5
runs out of 30. The baseline numerical V-function exhibited
even worse performance as only 3 out of all simulations
started from 13 initial states successfully ended up in the
neighborhood of the goal state (i.e., S=23%). That is a much
smaller success rate than the median success rate obtained
with the SR methods. This can be attributed to the rather
sparse coverage of the state space since the approximator
was constructed using a regular grid of 11 × 11 × 11 × 11
triangular basis functions. Note, however, that sampling the
state space by using a coarse grid is often necessary for
higher-dimensional problems. The number of samples grows
exponentially with the state space dimension, leading to pro-
hibitive memory and computational demands for fine grids.
The results show that the SR methods are able to generate
reliable models even if only sparsely sampled training data
are available.

Interestingly, the direct method implemented with
SNGP was able to find several perfect V-functions with
respect to S on the Magman. On the contrary, it completely
failed to find such a V-function on the 2DOF and even on
the 1DOF problem. We observed that although the 1DOF
and Magman systems both had 2D state-space, the 1DOF
problem is harder for the symbolic methods in the sense that
the V-function has to be very precise at certain regions of
the state space in order to allow for successful closed-loop
control. This is not the case in the Magman problem, where
V-functions that only roughly approximate the optimal V-
function can perform well.

Overall, the two symbolic regression methods, SNGP and
MGGP, performed well, although SNGP was better on the
1DOF and Magman problem. Note, however, that a thorough
comparison of symbolic regression methods was not a pri-
mary goal of the experiments. We have also not tuned the
control parameters of the algorithms at all and it is quite
likely that if the parameters of the algorithms were optimized
their performance would improve.
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TABLE 7. Performance of neural network-based V-function approximators. The S performance metric is presented for the best neural network configuration [E, F ]
per approximator’s complexity W . For easier orientation, the results obtained with SNGP and MGGP are copied from Table 2, Table 4, and Table 6.

S: 1DOF S: 2DOF S: Magman
SNGP 100, [94, 100 (28)] SNGP 54, [8, 100 (4)] SNGP 100, [100, 100 (30)]
MGGP 100, [0, 100 (29)] MGGP 69, [8, 100 (2)] MGGP 0, [0, 100 (4)]

Neural network Neural network Neural network
W E F W E F W E F
100 1000 50 100, [0, 100 (25)] 100 2000 50 0, [0, 100 (2)] 100 2000 50 79, [0, 100 (11)]
200 1000 50 100, [63, 100 (27)] 200 10000 50 0, [0, 100 (3)] 200 5000 50 79, [0, 100 (8)]
500 1000 50 100, [13, 100 (26)] 500 10000 50 0, [0, 100 (3)] 500 5000 20 86, [0, 100 (5)]
2000 2000 50 100, [0, 100 (28)] 2000 10000 50 0, [0, 100 (3)] 2000 5000 50 46, [0, 100 (2)]

TABLE 8. Experiment parameters.

Problem Friction compensation 1-DOF 2-DOF Magman
n 1 2 4 2
X [−10, 10] [0, 2π] × [−30, 30] [−π, π]× [−2π, 2π] [0, 0.05]× [−0.4, 0.4]

× [−π, π] × [−2π, 2π]
xr 7 [π 0] [0 0 0 0] [0.01 0]
m 1 1 2 2
U [−4, 4] [−2, 2] [−3, 3]× [−1, 1] [0, 0.6]× [0, 0.6]
nu 41 11 9 25
U {−4,−3.8, {−2,−1.6, {−3, 0, 3} {0, 0.15, 0.3, 0.45, 0.6}

. . . , 4} . . . , 2} × {−1, 0, 1} ×{0, 0.15, 0.3, 0.45, 0.6}
nx 121 961 14641 729
γ 0.95 0.95 0.95 0.95
ns 7 16 13 14
Ts [s] 0.001 0.05 0.01 0.01
Tsim [s] 1 5 10 3
ε 0.05 [0.1, 1]⊤ [0.1, 1, 0.1, 1]⊤ [0.001, 1]⊤

Tend [s] 0.01 2 2 1

B. COMPARISON WITH NEURAL NETWORK-BASED

APPROXIMATORS

NN approximators worked best on the 1DOF problem, where
they achieved a performance comparable to the SR methods.
Here, larger networks worked slightly better than the smaller
ones as they exhibited more stable performance across all
possible configurations tested.

On the 2DOF problem, the most difficult one, the best NN
approximator was able to produce a model with S=100 % in
3 runs out of 30. Again, larger networks learning for a higher
number of epochs performed slightly better than the smaller
ones. However, the SR methods are significantly better than
the neural networks in the median S value, which is 54 %
for SNGP and 69 % for MGGP, compared to 0 % for the
neural networks. This means that the SR methods were able
to deliver models working correctly for more than 50 % of
the ns initial states in at least 15 runs. NN approximators
are much worse in this respect as only up to 10 runs ended
up with non-zero (mostly much smaller than 50 %) S metric
models. Interestingly, not even significantly larger network
topology with W = 2000 led to an improved performance.

On the Magman problem, the overall best neural network
performance was observed for W = 100. Here, the neural
networks worked comparably to the MGGP SR method as
both methods were much worse than the SNGP in the median
S value as well as in the number of runs producing 100 %
correct model. Interestingly, the larger NN topologies only
worsened the performance. Likewise the MGGP, the NN

approximator does not penalize models for an incorrectly
positioned maximum. In fact, it is even impossible to incor-
porate this kind of desired model’s property into the gradient-
based learning algorithm.

To conclude, this analysis shows that the SR methods,
especially SNGP, outperform the NN approximators. All the
more so, because the parameters of the NN approximators
were tuned for each individual problem, while the SR meth-
ods were run with the same setting on all test problems.

C. NUMBER OF PARAMETERS

One of the advantages of the proposed symbolic methods
is the compactness of the value functions, which can be
demonstrated, for instance, on the 1DOF problem. The sym-
bolic value function found by using the SVI-SNGP method
(Figure 6, right) has 100 free parameters, while the base-
line numerically approximated value function has 961 free
parameters.

D. EASE OF USE

The proposed methods do not require a large amount of
expert knowledge in order to be applied to the particular
problem at hand. The main parameters of the GP method are
the set of elementary functions that are sufficient for creating
diverse non-linear features and the maximum complexity of
the models. It is not difficult to choose these parameters. In
this work, we used a rather small function set consisting of
three simple arithmetical operators {∗, +, −} and three uni-
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variate functions {square, cube, bent identity}. Depending
on the problem, the function set can be arbitrarily enriched,
for example by adding trigonometric functions. Furthermore,
it is easy to use additional prior knowledge and constraints
in SR methods in order to generate models with desired
properties, see [33], [34].

The complexity of the models evolved is defined in terms
of the maximum number of features and their maximum
depth. We used the maximum feature’s depth of 7 and the
maximum number of features of 10. However, a heuristic
guideline for setting up these parameters is that if more
complex models are needed then this could be effectively
achieved by increasing the number of features rather than
by increasing the maximum feature’s depth. There are two
reasons for that, (1) the maximum depth of 7 is sufficient to
represent complex non-linear features and (2) keeping rather
small feature’s depth prevents from uncontrolled bloat of
evolved expressions that is a severe issue in genetic program-
ming [35].

Although the aforementioned heuristics can guide the set-
ting of the parameters to achieve better results, the meth-
ods’ performance is not particularly sensitive to the precise
choice of these parameters. Neither are the proposed methods
dependent on any particular symbolic regression algorithm.
This was demonstrated while testing the methods with two
different GP algorithms that are conceptually very different
and also have a different set of control parameters. Both GP
algorithms were run with rather standard parameter settings
inspired by works using these algorithms for other problems.
No parameter tuning was performed in this work. In princi-
ple, hyperparameter tuning algorithms can be applied to SR.
However, these approaches are extremely computationally
expensive.

E. POST-PROCESSING AND ANALYSIS

Symbolic models are black-box, however, they are better
suited for post-processing and analysis than other types of
numerical approximators. Models in the form of analytic ex-
pressions are more expressive than, for example, the weights
of neural networks and are amenable to further analyses. One
can verify properties of the model, such as a monotonic-
ity on a certain interval, positions of extremes, symmetry
w.r.t. input variables or other domain-specific properties.
Approaches based on satisfiability modulo theories solvers
are used for this kind of formal constraint verifications in the
literature [34].

Further, a contribution of the individual features to the
overall performance of the analytic approximation of the V-
function can be assessed and used to select the most signif-
icant features by using for example backward elimination.
Over-simplified models can be further refined by adding new
feature(s) in order to improve the current model’s accuracy.
This is hard to do with numerical approximators such as
neural networks or basis function expansions.

Moreover, given a moderate number of internal parame-
ters, it is possible to efficiently fine-tune them using global

optimization techniques such as the pattern search [36] and
evolution strategies [37], [38].

F. COMPUTATIONAL COMPLEXITY

The time needed for a single run of the SVI, SPI or direct
method ranges from several minutes for the illustrative exam-
ple to around 24 hours for the 2DOF problem on a standard
desktop PC. The running time of the algorithm increases
linearly with the size of the training data. However, the size
of the training data set may grow exponentially with the state
space dimension. In this article, we have generated the data
on a regular grid. The efficiency gain depends on the way the
data set is constructed. Other data generation methods are
part of our future research. For high-dimensional problems,
symbolic regression has the potential to be computationally
more efficient than numerical approximation methods such
as deep neural networks.

VI. CONCLUSIONS
We have proposed three methods based on symbolic re-
gression to construct an analytic approximation of the V-
function in a Markov decision process. The methods were
experimentally evaluated on four nonlinear control problems:
one first-order system, two second-order systems and one
fourth-order system.

The main advantage of the approach proposed is that it
produces smooth, compact V-functions, even if only sparsely
sampled training data are available. The models produced are
mathematically tractable and easy to analyse.

The number of their parameters is an order of magnitude
smaller than in the case of a basis function approximator.
The control performance in simulations and in experiments
on a real setup is excellent. Moreover, the approximator in
the form of a set of analytic expressions allows for easy post-
processing and fine-tuning. It can also be easily reused within
and plugged into other algorithms. For example, smooth
policy derivation methods exploit the analytic nature of the
symbolic V-function model.

No parameter tuning was used for the SR methods. We
consider it as an important advantage of SR methods that they
work well without any particular tuning. This is in contrast to
e.g. deep neural network methods that often require substan-
tial tuning before one gets them even to converge in a given
RL problem.

The most significant current limitation of the approach is
its high computational complexity. However, as the dimen-
sionality of the problem increases, numerical approximators
start to be limited by the computational power and memory
capacity of standard computers. Symbolic regression does
not suffer from such a limitation.

In our future work, we will evaluate the method on higher-
dimensional problems, where we expect a large benefit over
numerical approximators in terms of computational complex-
ity. In relation to that, we will investigate smart methods for
generating the training data. We will also investigate the use
of input–output models instead of state-space models and
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closed-loop stability analysis methods for symbolic value
functions. We will also develop techniques to incrementally
control the complexity of the symbolic value function de-
pending on its performance.
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