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Abstract: For a class of discrete weakly nonlinear state-dependent coefficient (SDC) control systems,
a suboptimal synthesis is constructed over a finite interval with a large number of steps. A one-
point matrix Padé approximation (PA) of the solution of the initial problem for the discrete matrix
Riccati equation is constructed based on the state-dependent Riccati equation (SDRE) approach and
the asymptotics by the small-step of the boundary layer functions method. The symmetric gain
coefficients matrix for Padé control synthesis is constructed based on the one-point PA. As a result,
the parametric closed-loop control is obtained. The results of numerical experiments illustrate, in
particular, the improved extrapolation properties of the constructed regulator, which makes the
algorithm applicable in control systems for a wider range of parameter variation.

Keywords: discrete control systems; weakly nonlinear systems; small step; the SDRE approach;
matrix discrete Riccati equation; the boundary layer functions method; Padé approximation; finite
time interval

1. Introduction

In the literature, much attention is paid to the construction of optimal control laws for
nonlinear systems and the corresponding approximate methods for their calculation. This
can be explained by several factors; on the one hand, the greater accuracy of the description
of dynamic systems in applications leads to the increase of their mathematical models’
dimension, and on the other hand, the calculations often need to be carried out in real time.
This is especially true for finding feedback laws in nonlinear control systems, where the
consideration of even weak nonlinearity in constructing synthesis laws based on linear
control laws can lead to a significant improvement in the value of the quality criterion.
For linear control systems, the Kalman algorithm is often used, which allows stabilizing
feedbacks to be built that, in addition to the asymptotic stability of closed systems, provide
the optimality by the quadratic quality criterion.

The application field of the Kalman algorithm has been expanded to nonlinear control
systems by the so-called state-dependent Riccati equation (SDRE) approach for continuous
(see [1–3]) and discrete (see [4–9]) cases, where the systems are formally represented as
linear systems in terms of state and control, the coefficients of the matrices are the functions
of the state vector (state-dependent coefficients (SDC) systems), and the quality criterion is
quadratic, but the quadratic forms matrices in the criterion can also be state-dependent.
In [1], the design procedure for the SDRE approach is described and its capabilities are
illustrated on a benchmark problem. Reference [2] contains a detailed review on SDRE: the
theory developed to date, characteristics, advantages, and open issues. In [4–6], the discrete
state-dependent Riccati equation (D-SDRE) approach is described, and the corresponding
control algorithms are presented and tested. In [3,7–9], the development of the SDRE
approach is proposed based on the asymptotic theory.

Often, the mathematical models in applied control problems contain parameters, the
variation of which generates a family of admissible controls and the corresponding trajecto-
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ries, which leads to new problems of their approximate analytical study and description.
An approximation is a procedure for choosing the optimal approximating function from a
certain class of functions, that describes the behavior of the given function. Approximation
allows the numerical characteristics and qualitative properties of an object to be studied,
reducing the problem into studying simpler or more convenient objects. Moreover, the
solution of these problems significantly reduces the time for rational control synthesis
and selection. Various methods of approximation theory including splines and fractional-
rational Padé approximations [10,11], where the latter are constructed using asymptotic
expansions by the corresponding small parameters, can be used for such problems. In
particular, in the works [10,11], the possibility of the construction of symbolic families of
stabilizing regulators for some classes of regularly and singularly perturbed nonlinear
continuous control systems are demonstrated by constructing Padé approximations (PA) of
the gain coefficients matrices [10,11], associated with asymptotic expansions of the matrix
algebraic Riccati equations solutions into regular series in integer powers of the correspond-
ing small parameter, both for the case of one-point and two-point PA, where the latter
uses not only the asymptotic expansions by integer powers of the parameter but also the
asymptotic expansions over the inverse powers of a positive small parameter. A regulator
is a closed-loop system, used to maintain the desired system output, usually, zero.

In this paper, discrete nonlinear control systems with a small step are considered within
the framework of the SDRE approach for continuous systems on a finite time interval [12].
It is shown that an approximate symbolic description of the family of gain matrices in
the feedback control loop using PA can be obtained if the step in the discrete system is
sufficiently small. Note that the optimal control problem for a discrete-time system with a
small step is singularly perturbed and that is why the zones of exponentially decreasing
boundary layers can arise near the boundary points in the trajectories and in the solution
of problems for finding gain coefficients in the feedback circuit. This happens because the
degenerate solution, for zero value of the parameter, does not account for the boundary
conditions and there is a large discrepancy from the exact solution near the boundary
points. The boundary functions (members of the boundary series) are significant in the
neighborhood of the boundary points and together with the members of the regular series,
describe the behavior of the solution in the boundary layer, and outside the boundary layer,
they rapidly decrease. The solution of the perturbed problem outside these boundary layer
zones is in a small neighborhood of the solution of degenerate (limiting) problems, one of
which, in this case, is the matrix algebraic Riccati equation of the corresponding discrete
linear-quadratic optimal control problem [13], where the coefficients of all the matrices may
be the functions of the state vector.

For the first time, the discrete problems with a small step were considered as singularly
perturbed by A.B. Vasil’eva with the help of the boundary layer functions method (BLFM)
(see [14,15]). The asymptotic methods and singular perturbations theory can also be
successfully applied to control problems, for example, see reviews [16,17]. The discrete
optimal control problem was first considered as singularly perturbed in [18] on the example
of a linear-quadratic control problem with a small step, where its asymptotics by BLFM
is constructed. The asymptotics of the solution of singularly perturbed discrete nonlinear
optimal control problems with a small step was constructed by BLFM in [19], using the
so-called direct scheme [20].

In this paper, the asymptotic solution of the corresponding initial singularly perturbed
problem for the discrete matrix Riccati equation with coefficients weakly dependent on the
state and the corresponding one-point PA regulator is constructed using the SDRE approach.
Only one asymptotic expansion of the matrix Riccati equation solution by a small parameter,
which equals the time step size and the multiplier in front of the non-linearities, is used
to construct the PA for the gain matrix in the feedback loop. PAs are constructed based
on asymptotic expansions and are actively used in applications since they often extend
the range of the parameter variation, where PAs approach the exact solutions with given
accuracy and reproduce the qualitative picture of the solutions. The use of a qualitative
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picture allows the approximate solutions with higher accuracy to be obtained by using
the results of the asymptotic analysis as an initial approximation for traditional nonlinear
programming algorithms to minimize the residuals of the equations.

The results of numerical experiments are presented, which demonstrate the possibility
of using this approach for the construction of stabilizing regulators for nonlinear discrete
systems, and also show that the proposed algorithm is applicable for discrete control
systems for a wider interval of the step value and the perturbation parameter variation.

The outline of the paper is as follows. In Section 2, we will describe the discrete
state-dependent Riccati equation approach (SDRE) for small step discrete pseudo-linear
control systems and construct the uniform second-order asymptotic approximation of the
solution of the singularly perturbed initial problem for the difference Riccati equation using
the boundary layer functions method (BLFM). In Section 3, we formulate the algorithm for
the discrete one-point Padé regulator design. In Section 4, we will review the numerical
experiments that demonstrate the work of the proposed control algorithms.

We start by listing definitions and notations: R := (−∞, ∞), Rn×n—vector space of
n-by-n matrices, T—the transpose operation, ⊗—the Kronecker product, En—the identity
matrix of size n× n, P—the regular series of P, ΠP—the boundary series of P, Pk—kth term
of the P series, ‖ ‖theL2 matrix norm.

2. An SDRE Approach for Small Step Discrete Control Systems
2.1. Asymptotic Expansion of the Discrete Riccati Equation Solution

Let’s consider an affine (linear in control) discrete system,

x(t + ε) =
_
A(x) + B(x)u, x(0) = x0, (1)

where x(t) is an n-dimensional state, u(t)—is an r-dimensional control,
t ∈ T = {t : t = kε, k = 0, 1, . . . , N − 1} ⊂ {t : 0 ≤ t ≤ 1}, N = T

ε , ε > 0, is a small time
step, used as a small parameter. Further, to transform the system into a formally linear form,
we use the method of “extended linearization” (see [1,21,22]), which gives a non-unique

representation in the vector case, by presenting
_
A(x) in the form

_
A(x) = A(x)x. By anal-

ogy, let us call the well-known heuristic technique for the introduction of a small parameter
in the system right-hand side the “extended perturbation” method. In the last case, a small
parameter is introduced in matrices A(x) and B(x) instead of a selected coefficient that
approximately equals 1.

Let’s demonstrate the last approach by transforming an arbitrary nonlinear function Θ(x), for
example, as follows: Θ(x) = Θ0 + 1 · (Θ(x)−Θ0) = Θ0 +

ε
δ · (Θ(x)−Θ0) = Θ0 + εΘ1(x),

where Θ1(x) = 1
δ · (Θ(x)−Θ0) and 1 ≡ ε

δ , but, at the same time, δ = ε, and now δ becomes
a constant independent of ε. So, this technique by analogy with the previous one will be
called the “extended” perturbation technique.

After application of these two approaches—“extended” linearization and “extended”
perturbation—system (1) may be presented in the form

x(t + ε) = A(x, ε)x + B(x, ε)u, x(0) = x0,
x(t) ∈ X ∈ Rn, u ∈ Rr, t = kε, k = 0, 1, . . . , N − 1, 0 < ε ≤ ε0,

(2)

where A(x, ε) = A0 + εA1(x), B(x, ε) = B0 + εB1(x), ε0 is a small enough positive number,
A0, B0 are constant matrices, A0, A1(x) ∈ Rn×n, B0, B1(x) ∈ Rn×r, ∀x ∈ X ⊂ Rn and X is
a certain fixed bounded state space subset. For sufficiently small values of ε, systems (2) are
called singularly perturbed and pseudo-linear in state and control with regularly perturbed
coefficients so that near the interval endpoints the solutions of (2) may have the boundary
layers behavior.
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Let’s consider a cost function that measures the system performance for different
controls in order to compare them and select the most favorable one;

J(u) =
1
2

xT(N)Fx(N) +
1
2

N−1

∑
k=0

(xT(kε)Q(x, ε)x(kε) + uT(kε)Ru(kε))→ min
u

, (3)

where Q(x, ε) = Q0 + εQ1(x) + ε2Q2(x) > 0, R > 0, Q0, R are constant matrices, Q0 > 0,
Q1(x) > 0, Q2(x) > 0 ∀x ∈ X, ε ∈ (0, ε0) and F > 0.

To construct a feedback control for discrete systems on a finite time interval, we
will use the necessary optimality conditions here, in contrast to [12], where a dynamic
programming scheme was used in the continuous case.

For problems (1) and (2), we introduce the Hamiltonian

H(x, u, ψ, t) = ψT(t)[A(x, ε)x(t) + B(x, ε)u(t)]− 1
2
[xT(t)Q(x, ε)x(t) + uT(t)R0u(t)]. (4)

Using the necessary optimality conditions, we have

x(t + ε) = A(x, ε)x + B(x, ε)u, (5)

ψ(t) = ∂H(x(t),u(t),ψ(t+ε),t)
∂x =

{
∂[A(x,ε)x(t)]

∂x + ∂[B(x,ε)u(t)]
∂x

}T
ψ(t + ε)−

− 1
2

∂[xT(t)Q(x,ε)x(t)]
∂x(t) =

{
(xT ⊗ En)n×n2

[
∂A(x,ε)

∂x

]
n2×n

+ A(x, ε)n×n + (uT ⊗ En)n×nr

[
∂B(x,ε)

∂x

]
nr×n

}T
ψ(t + ε)−

− 1
2 Q(x, ε)n×nx− 1

2

[
∂Q(x,ε)

∂x

]T

n×n2
(x⊗ En)n2×nx− 1

2 Q(x, ε)Tx

0 = ∂H(x(t),u,ψ(t+ε),t)
∂u = BT(x, ε)ψ(t + ε)− Ru,

(6)

where ⊗ stands for Kronecker matrix product and En is a n× n unity matrix.
From (6) we obtain the next expression for the control

u(t) = R−1BT(x, ε)ψ(t + ε). (7)

Using the representation ψ(t) = −Pε(x, t)x(t), we obtain the following expression
instead of (7):

u(x, t, ε) = −
{

R + BT(x, ε)P(x, t + ε)B(x, ε)
}−1

BT(x, ε)P(x, t + ε)A(x, ε)x(t) = K(x, ε, t + ε)x(t), (8)

where P(x, t, ε) must satisfy the discrete matrix Riccati-type equation with the zero-control
matrix and as a result the missing quadratic nonlinearity part

−P(x, t, ε) +

{
(xT ⊗ En)n×n2

[
∂A(x,ε)

∂x

]
n2×n

+ A(x, ε)n×n + (xTK(x, ε)T ⊗ En)n×nr

[
∂B(x,ε)

∂x

]
nr×n

}T
×

×P(x, t + ε, ε)×
×
{

E− B(x, ε)[R + BT(x, ε)P(x, t + ε, ε)B(x, ε)]
−1BT(x, ε)P(x, t + ε, ε)

}
A(x, ε)+

+Q(x, ε)n×n +
1
2

[
∂Q(x,ε)

∂x

]T

n×n2
(x⊗ En)n2×n = Φ(P, t, ε) = 0,

with the initial condition at the end of the interval P(x, T, ε) = F. The latter can be
represented as

Φ(P, t, ε) = −P(x, t, ε) + AT(x, ε)n×nP(x, t + ε, ε)A(x, ε)−
−AT(x, ε)n×nP(x, t + ε, ε)B(x, ε)[R + BT(x, ε)P(x, t + ε, ε)B(x, ε)]

−1×
×BT(x, ε)P(x, t + ε, ε)A(x, ε) + Q(x, ε)n×n + εΩ(P(x, t + ε), x, t + ε) =
= Ψ(P, t, ε) + εΩ(P(x, t + ε), x, t + ε) = 0, P(x, T, ε) = F,

(9)
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where Ψ(P, t, ε) is the usual discrete matrix Riccati operator and
K(x, ε) = −

{
R + BT(x, ε)P(x, t + ε, ε)B(x, ε)

}−1BT(x, ε)P(x, t + ε, ε)A(x, ε).
The difference from the regular discrete difference Riccati equation on a finite interval

lies in an additional, but cumbersome, term on the right-hand side with the function

Ω(P(x, t + ε), x, t + ε) =

=


(xT ⊗ En)n×n2

[
∂A1(x)

∂x

]
n2×n
−

−(xT
({

R + BT(x, ε)P(x, t + ε, ε)B(x, ε)
}−1BT(x, ε)P(x, t + ε, ε)A(x, ε)

)T
⊗ En)

n×nr
×

×
[

∂B1(x)
∂x

]
nr×n



T

×

×P(x, t + ε, ε)
{

E− B(x, ε)[R + BT(x, ε)P(x, t + ε, ε)B(x, ε)]
−1BT(x, ε)P(x, t + ε, ε)

}
A(x, ε)+

+ 1
2

[
∂(Q1(x)+εQ2(x))

∂x

]T

n×n2
(x⊗ En)n2×n.

Let’s denote the matrix of the closed-loop (cl) system for (1) as
Acl(x, ε) = (A(x, ε)− B(x, ε)R−1BT(x, ε)K(x, ε))x.

Taking into account the dependency of matrices Q(x, ε), A(x, ε), B(x, ε) on the small
parameter a uniform asymptotic approximation of the second order for the solution of the
singularly perturbed initial problem (9) is constructed using the boundary layer functions
method (BLFM) [14,15]. The solution is found in the reverse time in the following form:

P(x, t, ε) = P2(x, t, ε) + Π2P(x, τ, ε), τ = (t− T)/ε = −1,−2, . . . ,−N, N = T/ε,

where P2(x, t, ε) = P0 + εP1(x, t)+ ε2P2(x, t),
Π2P(x, τ, ε) = Π0P(x, τ) + εΠ1P(x, τ)) + ε2Π2P(x, τ)), are the second-order partial sums
of the regular and boundary power series by parameter ε, respectively.

Now the operator Φ is transformed in the following way:

Φ(P, t, ε) = Φ
(

P(x, t, ε), t, ε
)
+ Φ

(
P(x, τε + T, ε) + ΠP(x, τ, ε), τ, ε

)
−Φ

(
P(x, τε + T, ε), τε + T, ε

)
=

= Φ + ΠΦ,

where Φ(x, t, ε) = Φ(P(x, t, ε), t, ε) = Φ0(P0, t) + εΦ1(P0, t) + . . . , ΠΦ(x, τε + T, ε) =
Φ
(

P(x, τε + T, ε) + ΠP(x, τ, ε), τε + T, ε
)
− Φ

(
P(x, τε + T, ε), τε + T, ε

)
. Substituting the

representations for P2(x, t, ε), Π2P(x, τ, ε) into the equation and the initial condition in (9)
and equating the terms with the same powers of the small parameter, we obtain a discrete
algebraic Riccati equation (DARE) for the zero term of the regular series P0

A0
T P0 A0 − P0 − A0

T P0B0(R0 + B0
T P0B0)

−1
B0

T P0 A0 + Q0 = 0, (10)

and for the first term of the regular series P1(x), we obtain the matrix discrete algebraic
Lyapunov equation

A0
cl

T P1(x)A0
cl − P1(x) = −G1(x), (11)

where A0
cl = A0 + B0K0 = A0 − B0[R0 + B0

T P0B0]
−1B0

T P0 A0− is the matrix of the linear
closed-loop system (cl) and G1(x) = D0(x) + D1(x)− D2(x)− D3(x) + D4(x),

D0(x) =
{[

∂A1(x)
∂x

]T
(x⊗ En)−

[
∂B1(x)

∂x

]T
(
[(

R + B0
T P0B0)

−1B0
T P0 A0

]
x⊗ En

)}
P0[A0 − B0[R + B0

T P0B0]
−1B0

T P0 A0]+

+Q1(x) + 1
2

[
∂Q1(x)

∂x

]T

n×n2
(x⊗ En)n2×n,

D1(x) = A0
T P0 A1 + A1

T(x)P0 A0,

D2(x) = A0
T P0B1

[
R + B0

T P0B0]
−1B0

T P0 A0 + A0
T P0B0[R + B0

T P0B0]
−1B1

T P0 A0,

D3(x) = A0
T P0B0

[
R + B0

T P0B0]
−1B0

T P0 A1 + A1
T(x)P0B0[R + B0

T P0B0]
−1B0

T P0 A0,

D4(x) = A0
T P0B0

[
R + B0

T P0B0]
−1B0

T P0B1[R + B0
T P0B0]

−1B0
T P0 A0+

+A0
T P0B0

[
R + B0

T P0B0]
−1B1

T P0B0[R + B0
T P0B0]

−1B0
T P0 A0.
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For the second term of the regular series P2(x), the matrix discrete algebraic Lyapunov
equation has the same form as Equation (11) for P1(x),

A0
cl

T P2(x)A0
cl − P2(x) = −G2(x),

where G2(x) has a similar structure as G1(x) but it is a more complex function of the found
expansion terms and matrices of the system, and we omit its representation here.

For the zero term of the boundary series Π0P(τ), we obtain the difference initial
problem

Π0P(τ) = −P0 + A0
T(P0 + Π0P(τ + 1))A0 − A0

T(P0 + Π0P(τ + 1))B0×
×[R + B0

T(P0 + Π0P(τ + 1))B0]
−1B0

T(P0 + Π0P(τ + 1))A0 + Q0,
Π0P(0) = F− P0,

(12)

and for the first term of the boundary series Π1P(x, τ), we have the following discrete
problem:

Π1P(x, τ) = ζT(τ)Π1P(τ + 1)ζ(τ) + Π1G(x, τ),
Π1P(0) = −P1(x), τ = −1,−2, . . . ,

(13)

where ζ(τ) = A0 − B0[R + B0
T(P0 + Π0P(τ + 1))B0]

−1B0
T(P0 + Π0P(τ + 1))A0, and

Π1G(x, τ) has a complex structure

Π1G(x, τ) = A0
T(P0 + Π0P(τ + 1))B0(R0 + B0

T(P0 + Π0P(τ + 1))B0)
−1B0

T P1(x)B0×

×
(

R0 + B0
T(P0 + Π0P(τ + 1)

)
B0
)−1B0

T(P0 + Π0P(τ + 1)
)

A0−

−A0
T(P0 + Π0P(τ + 1))B0(R0 + B0

T(P0 + Π0P(τ + 1))B0)
−1B0

T P1(x)A0

+A0
T P1(x)A0 − B0(R0 + B0

T(P0 + Π0P(τ + 1))B0)
−1B0

T(P0 + Π0P(τ + 1))A0)+

−P1(x) + A0
T(P0 + Π0P(τ + 1)

)
A1(x)+

+A0
T(P0 + Π0P(τ + 1)

)
(−B0

(
R0 + B0

T(P0 + Π0P(τ + 1)
)

B0
)−1×

×
(

B1
T(x)

(
P0 + Π0P(τ + 1)

)
A0 + B0

T(P0 + Π0P(τ + 1)
)

A1(x)
)
+

+B0
(

R0 + B0
T(P0 + Π0P(τ + 1)

)
B0
)−1×

×
(

B1
T(x)

(
P0 + Π0P(τ + 1)

)
B0 + B0

T(P0 + Π0P(τ + 1)
)

B1(x)
)
×

×
(

R0 + B0
T(P0 + Π0P(τ + 1)

)
B0
)−1B0

T(P0 + Π0P(τ + 1)
)

A0−

−B1(x)
(

R0 + B0
T(P0 + Π0P(τ + 1)

)
B0
)−1B0

T(P0 + Π0P(τ + 1)
)

A0)+

+(
[

∂A1(x)
∂x

]T
(x⊗ En) + A1

T(x)−

−
[

∂B1(x)
∂x

]T(((
R0 + B0

T(P0 + Π0P(τ + 1)
)

B0
)−1B0

T(P0 + Π0P(τ + 1)
)

A0

)
x⊗ En

)
)×

×
(

P0 + Π0P(τ + 1)
)(

A0 − B0
(

R0 + B0
T(P0 + Π0P(τ + 1)

)
B0
)−1B0

T(P0 + Π0P(τ + 1)
)

A0

)
.

For Π2P(x, τ), we obtain a discrete initial problem similar to (12), but Π2G(x, τ) has
an even more cumbersome structure than Π1G(x, τ) and we omit this representation here.

Let us introduce the conditions:
I. Coefficients of matrices A1(x), B1(x), Q1(x), Q2(x) are continuous and bounded functions

on Х, g(0, ε) ≡ 0 (g(x, ε) = Acl(x(t), ε)x(t)) and the parameterεbelongs to a bounded interval
(0, ε0], the solution to problems (1) and (2) exists and is bounded for all admissible x0, ε, t;

II. The triple of matrices (A0, B0, Q0
1
2 )is controllable and observable.

By definition, a system is said to be controllable, if it is possible to transfer the system
state from any initial state to any desired state within a finite interval of time. A system is
said to be observable if every state can be completely identified by measurements of the
outputs at a finite time interval.

The following is true.
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Theorem 1. Under conditions I–II, there is a sufficiently small value of ε0 > 0, such that for all
x ∈ X, t ∈ [0, T], ε ∈ (0, ε0], τ = −1,−2, . . . ,−N, . . . the following statements hold:

1. All eigenvalues of the matrix A0
cl = A0 − B0[R0 + B0

T P0B0]
−1B0

T P0 A0 are inside the unit
circle, where P0 is a positive definite solution to Equation (10).

2. Solution of (9) exists, is unique and the following estimate for the remainder of the second-order
asymptotics is valid (the L2 norm is used):∥∥P(x, t, ε)− (P2(x, t, ε) + Π2P(x, τ, ε))

∥∥ = O(ε3)
x ∈ X, t ∈ [0, T], ε ∈ (0, ε0], τ = −1,−2, . . . ,−N, . . .

(14)

Proof of Theorem 1. The statements of the theorem for each x ∈ X follow from the
corresponding proof schemes of the statements in paragraph 2 of paper [18], where the
similar linear-quadratic problem is considered, but with time-dependent matrix coefficients.
The statements here generalize the similar results presented in [18] since in comparison
with [18] the initial problem (9) is additionally regularly perturbed with continuously
differentiable perturbation εΩ on the right-hand side of the matrix discrete Riccati equation.
Therefore, here we present only the new components of the proof.

As the associated system for the singularly perturbed problem (9) for ε = 0, Ω ≡ 0
coincides with the analogous one in [18], where it is shown that the positive definite
root P0 of the limiting algebraic discrete matrix Riccati equation is an asymptotically
stable equilibrium point of system (9) for τ → −∞ and matrix F belongs to the domain
of influence of this root. Further, in [18], the form of the main functional matrix Γ of the
associated system to problem (9) is established, which is calculated by setting ε = 0 in
the right-hand side and using the Kronecker product of matrices can be represented in
the form Γ = A0

cl
T ⊗ A0

cl . From the properties of the spectrum of the constant matrix A0
cl

(the matrix of the corresponding closed-loop system) under condition II, it follows that its
eigenvalues λi, i = 1, 2, . . . , n are inside the unit circle. Taking into account the properties
of the spectrum of the Kronecker product of matrices, we find that the eigenvalues of
matrix Γ are representable in the form λiλj, i, j = 1, 2, . . . , n. Thus, it is established that the
spectrum of the main functional matrix of the associated system has eigenvalues inside the
unit circle.

Because the presence of a disturbance εΩ will not fundamentally change the form of
inhomogeneities in the corresponding Riccati and Lyapunov equations, then, as in Theorem
2.1 from [18], it can be proved that there exist such α > 0, β > 0, that the corresponding
estimates for the boundary functions hold

‖ΠiP(τ)‖ ≤ α exp(βτ), τ ≤ 0, i = 0, 1, 2. (15)

Despite the presence of regular perturbations εΩ in Equation (9) the next estimate

for the residual term of the asymptotics η(x, t, τ, ε) = P(x, t, ε)−
2
∑

i=0
εi(Pi(x, t) + ΠiP(τ)),

τ = t−T
ε can be obtained using the scheme from [18],

‖η(x, t, τ, ε)‖ = O(ε3), (16)

for all x ∈ X, ε ∈ (0, ε0], t ∈ [0, T], τ = −1,−2, . . . ,−N.
Moreover, using the smoothness of all functions included in Φ, Ω and assuming

that the norm ‖P(x, t, ε)‖ is uniformly bounded for all x ∈ X, t ∈ [0, T], ε ∈ (0, ε0],
τ = −1,−2, . . . ,−N, . . ., here we can follow the proof as in Lemma 6.1 and Theorem 6.1
given in [14].

This, in turn, will lead to the fact that when choosing a sufficiently small ε0 > 0, one
can obtain the existence, as well as the uniqueness of the solution in the problem (9). The
last statements follow from the application of the principle of contractive mappings to the
equation for the residual term of asymptotics η(x, t, τ, ε). �
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2.2. Symmetrization

Since the matrix G1(x) may not be symmetric, we introduce the transposed equation,
and by adding the equation A0

cl
T P1(x)A0

cl − P1(x) = G1(x)A0
cl

T P1(x)A0
cl − P1(x) = G1(x)

to A0
cl

T P1
T(x)A0

cl − P1
T(x) = G1

T(x), we get

A0
cl

T(P1(x) + P1
T(x))A0

cl − (P1(x) + P1
T(x)) = G1(x) + G1

T(x).

Further, in this paper the next equations with “averaged” right-hand sides will be
used for the regular and the boundary layer terms of the first and second order (the terms
of the power series ε and ε2). For example, instead of Equation (11) the following equation
is introduced for a symmetric matrix P̃1(x)

A0
cl

T P̃1(x)A0
cl − P̃1(x) = G̃1(x), (17)

where G̃1(x) = 1
2
(
G1(x) + G1

T(x)
)
, P̃1(x, t) = 1

2 (P̃1(x) + P̃1
T(x)). A similar operation is

performed for the second approximation term.
In addition, Π̃1P(x, τ) is found in the form

Π̃1P(x, τ) = ζT(x, τ)Π̃1P(τ + 1)ζ(x, τ) + Π̃1G(x, τ),
Π̃1P(0) = −P1(x), τ = −1,−2, . . . ,

where Π̃1G(x) = 1
2
(
Π1G(x) + Π1GT(x)

)
, Π̃1P(x, τ) = 1

2 (Π1P(x, τ) + Π1PT(x, τ)).
A similar equation is obtained for Π̃2P(x, τ), where the inhomogeneity in the right-

hand side equals to Π̃2G(x) = 1
2
(
Π2G(x) + Π2GT(x)

)
.

3. Discrete One-Point Padé Regulator

The asymptotic analysis for small parameter values can lead to an acceptable quality
approximation of the exact solution, but with an increase of the small parameter value
the asymptotic representations can strongly deviate from the exact solutions and their use
in numerical analysis for larger values of the parameter is limited and at best they can
serve only to restore the qualitative nature of the solution behavior. PA often increases the
interval of parameter variation for which it can provide the approximation of the exact
solution and restore its qualitative picture in comparison with the asymptotics. Thus, PA
demonstrates better extrapolation properties [23].

In general, a particular system of algebraic equations, which, generally speaking, is in
a certain way selected from some redefined system, is solved to find the PA.

Here a one-point Padé regulator of an order [1/2] is constructed, which contains
two asymptotic approximations: the first order uniform asymptotic approximation in the
“numerator” of the PA—for reproducing the boundary layer in the general construction,
and the second-order approximation of some regular series in the “denominator”, i.e., the
proposed construction has the following form:

PA[1/2](x, t, τ, ε) = (M0(x) + εM1(x) + ΠM0(x, τ) + εΠM1(x, τ))×
×
(
E + εN1(x) + ε2N2(x)

)−1.
(18)

Note that the form of the “denominator” in (18) is less complex than the “numerator”
which makes it easier to overcome the “denominator” zeros problem, which is the main
reason for the quality decline of the approximations of the exact solution using PA.

So, we do not introduce the boundary functions in the “denominator” of PA. Decom-
posing the matrix in (18) in a series of integer powers of parameter ε and equating the
terms with the same powers of the parameter ε of the resulting decomposition and the
corresponding terms of the expansions φ and ΠΦ, separately for the terms dependent on t
and τ, we get an inhomogeneous linear system of six equations with matrix coefficients
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depending on x ∈ X, t ∈ [0, T], ε ∈ (0, ε0], τ = −1,−2, . . . ,−N for the six unknown
matrices, the coefficients of PA.

M0(x) = P0
ΠM0(x, τ) = Π0P(τ)
M1(x)− P0N1(x) = P1(x)
ΠM1(x, τ)−Π0P(τ)N1(x) = 0
P1(x)N1(x) + P0N2(x) = −P2(x)
Π1P(x, τ)N1(x) + Π0P(τ)N2(x) = −Π2P(x, τ).

(19)

The first matrices M0(x), ΠM0(x, τ) are immediately determined from the first two
equations, and for the remaining four matrices the following linear system is obtained:

En 0 −P0 0
0 En −Π0P(τ) 0
0 0 P1(x) P0
0 0 Π1P(x, τ) Π0P(τ)




M1(x)
ΠM1(x, τ)

N1(x)
N2(x)

 =


P1(x)

0
−P2(x)
−Π2P(x, τ)

, (20)

where En—is an identity matrix of the size n × n. Next by denoting the matrix of a

linear system (20) by Y =

(
Y11 Y12
Y21 Y22

)
, where the corresponding blocks are Y11 = E2n,

Y21 = 0, Y12 =

(
−P0 0

−Π0P(τ) 0

)
, Y22 =

(
P1(x) P0

Π1P(x, τ) Π0P(τ)

)
and by taking into

account that block Y11 = E2n is a nondegenerate (2n× 2n) identity matrix, we find that

for the existence of the matrix inverse Y−1 =

(
E −Y12Y22

−1

0 ∆−1

)
it is necessary and

sufficient [24] that matrix ∆ = Y22−Y21Y−1
11 Y12 is nondegenerate and ∆ = Y22 since Y21 ≡ 0.

Now the solution of the last two equations in (20) is explicitly defined by(
N1(x)
N2(x)

)
= ∆−1

(
−P2(x)
−Π2P(x, τ)

)
. (21)

As M1(x) and ΠM1(x, τ) are found from the first two equations in (20) and are the
functions of N1(x), where N1(x), N2(x) are determined from the last two equations in (20)
and take the form (21).

As some of the matrices in (18)–(20) that are the regular series terms in the asymp-
totic representation of P(x, t, ε) are positive definite, it is possible to make the other ma-
trices sign-definite to guarantee the solvability of (20) and positive definiteness of PA
on the entire interval, for example, by a special choice of criteria matrices F, Q0 > 0,
Q1(x) > 0, Q2(x) > 0, x ∈ X. In the latter case, we are dealing not with a problem of the
criterion (2) minimization along the trajectories of (1), but with a synthesis construction
problem using the SDRE algorithm.

Let us introduce a modified PA, defined as P̃A[1/2](x, t, τ, ε), for which the system of
equations is obtained from system (20) by replacing the elements of the first and second-
order terms of the approximation with their symmetric, “averaged” values.

En 0 −P0 0
0 En −Π0P(τ) 0
0 0 P̃1(x) P0
0 0 Π̃1P(x, τ) Π0P(τ)




M1(x)
ΠM1(x, τ)

N1(x)
N2(x)

 =


P̃1(x)

0
−P̃2(x)
−Π̃2P(x, τ)


.

(22)

By analogy with the study of system (20), the last two equations are firstly solved

and the following matrices are formally introduced, ∆̃ = Ỹ22 =

(
P̃1(x) P0

Π̃1P(x, τ) Π0P(τ)

)
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and Z = Π0P− Π̃1P(x, τ)P̃1(x)−1P0, L = P̃1(x)− P0Π0P(τ)−1Π̃1P(x, τ), which, in the
case of their non-degeneracy allow us to present the solution for the “denominator” ma-

trices in an explicit form
(

N1(x)
N2(x)

)
=

(
−L−1P̃2(x) + P̃1(x)−1P0Z−1Π̃2P(x, τ)

Z−1[Π̃1P(x, τ)P̃1(x)−1P̃2(x)− Π̃2P(x, τ)]

)
,

∆̃−1 =

(
K−1 −P̃1(x)−1P0H−1

−H−1Π̃1P(x, τ)P̃1(x)−1 H−1

)
.

For consistency with the Kalman regulator (the linear-quadratic regulator named after
R.E. Kalman who posed and solved the corresponding control problem for nonstationary
linear systems in 1960), which leads to stabilization and also to the optimal trajectory
according to the quadratic criterion in a closed-loop linear system on the semi-axis, the
following symmetric gain matrix is introduced to ensure the symmetry of the gain matrix
of the regulator based on the PA for P(x, t, ε):

K[1/2](x, τ, ε) =
1
2
(P̃A[1/2](x, τ, ε) + P̃A[1/2]

T(x, τ, ε)), (23)

which leads to a modified Padé regulator for the PA obtained from the system (22)

u(x, t, ε) = −
{

R + BT(x, ε)K[1/2](x, τ, ε)B(x, ε)
}−1

BT(x, ε)K[1/2](x, τ, ε)A(x, ε)x(t). (24)

Remark 1. In numerical experiments, it becomes possible to modify the proposed PA structure (18)
by the introduction of multipliers in front of the matrix coefficients in systems (19)–(20) and search
for the values of these multipliers.

The following conditions are additionally introduced
III. Matrices F, Q0 > 0, Q1(x) > 0, Q2(x) > 0 can be selected such that F − P0 > 0,

G̃1(x) > 0, G̃2(x) > 0, matrix ∆̃−1 exists and is uniformly bounded and Π0P(τ) > 0 for all
x ∈ X, t ∈ [0, T], ε ∈ (0, ε0], τ = −1,−2, . . . , 1− T.

IV. Matrix
(
E + εN1(x) + ε2N2(x)

)−1exists, where

N1(x) = −L−1P̃2(x) + P̃1(x)−1P0Z−1Π̃2P(x, τ),
N2(x) = Z−1[Π̃1P(x, τ)P̃1(x)−1P̃2(x)− Π̃2P(x, τ)],
Z = Π0P(τ)− Π̃1P(x, τ)P̃1(x)−1P0, L = P̃1(x)− P0Π0P(τ)−1Π̃1P(x, τ)

for all x ∈ X, t ∈ [0, T], ε ∈ (0, ε0], τ = −1,−2, . . . , 1− T.
For the construction of PA [1/2] and the solvability of the corresponding system for

the coefficients of PA an asymptotic expansion of the second order is required, where some
of the terms, in particular of the second order, can be found approximately.

The next statement takes place.

Theorem 2. If conditions I–IV are satisfied, then there is a sufficiently small ε0 > 0, such that
for all x ∈ X, t ∈ [0, T], ε ∈ (0, ε0], τ = −1,−2, . . . , 1− T there is a unique solution of the
matrix system of Equations (20) and the corresponding one-point matrix PA [1/2] of form (18) with
a symmetric matrix K[1/2](x, τ, ε) (23) exists.

Proof of Theorem 2. From condition II P0 > 0 we get M0(x) > 0, then by condition
III Π0P(τ) > 0 ∀τ and from here ΠM0(x, τ) > 0. Let us consider the discrete linear
Lyapunov Equation (17) for P̃1(x). It is known [24] that if G̃1(x) > 0 (condition III), the
solution P̃1(x) of this equation is positive definite. From condition III, G̃2(x) > 0 and
there exist P̃2(x) > 0. It is easy to show that ζ(x, τ), Π̃1G(x) are found from (13) and the
corresponding matrices Π̃1P(x, τ) are obtained as the solutions of difference Lyapunov
equations with the initial condition Π̃1P(0) = −P1(x), τ = −1,−2, . . .. By analogy, the
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Π̃2P(x, τ) term is found. By condition III, matrix ∆̃ =

(
P̃1(x) P0

Π̃1P(x, τ) Π0P(τ)

)
has an

inverse for all x ∈ X, t ∈ [0, T], ε ∈ (0, ε0], τ = −1,−2, . . . , 1− T and it follows that

Ỹ−1 =

(
E −Y12Y22

−1

0 ∆̃−1

)
exists and system (19), (20) is uniquely solvable with a solution

M1(x)
ΠM1(x, τ)

N1(x)
N2(x)

 = Ỹ−1


P1(x)

0
−P2(x)
−Π2P(x, τ)

.

Thus, the remaining coefficients of the Padé approximation M1(x), ΠM1(x, τ), N1(x),
N2(x) are found in the form(

N1
N2

)
= ∆̃−1

(
−P̃2(x)
−Π̃2P(x, τ)

)
,(

M1(x)
ΠM1(x, τ)

)
=

(
P̃1(x)

0

)
−
(

−P0 0
−Π0P(τ) 0

)
∆̃−1

(
−P̃2(x)
−Π̃2P(x, τ)

)
.

(25)

Under condition IV, there exists a corresponding one-point matrix PA [1/2] of form
(18), and the symmetric matrix of the gain coefficients of the regulator is found from (24).
�

4. Computational Experiments

One of the ways to concretize the coefficients of the system of linear equations for the
Padé approximation can be associated with the analysis of the coefficients of the system,
and the assumption that the Padé structures form a certain framework, within which the
coefficients can be improved from the point of view of the optimality criterion of the control
problem. This approach is illustrated below on an example of a simple pendulum [25].

t ∈ [0, 1], ε = 0.05, N = 20,

A(x) =

(
1 0.01

−10 sin(x1)
x1

1

)
, B(x) =

(
0.1
0.1

)
, A0 =

(
1 0.01
−10 1

)
, A1(x) = 1/ε

(
0 0

−10 sin(x1)
x1

+ 10 0

)
x0 = [0.1;−0.1]T

Q0 =

(
10 0
0 0.05

)
, Q1 =

(
300 + x2

1 0
0 300 + x2

2

)
, Q2 =

(
0 0
0 0

)
, R = 1, F =

[
300 0

0 300

]
.

Here, x1 denotes the pendulum angle, and x2 is the angular velocity.
Using this example, taking into account the fulfillment of the conditions for the

existence of matrices in the representations (18), we will demonstrate the Algorithm 1 for
discrete modified Padé regulator construction and the results of its work.

In Table 1, the criterion values for the regulators based on the uniform first-order
asymptotic approximation (P0, P̃1(x), M0P(τ), Π̃1P(x, τ)) and the modified Padé [1/2]
from (22) are presented. The comparison is made with the D-SDRE regulator which uses
the solution of Equation (9) by the algorithm from [5].

Table 1. Regulators comparison by criterion values for ε = 0.05.

D-SDRE Uniform First-Order Asymptotic
Approximation

Modified Padé [1/2]
Approximation

19.2226 16.3533 16.0882089921279
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Algorithm 1: Discrete modified Padé regulator construction.

1. The terms P0, P̃1(x), P̃2(x), Π0P(τ) are found based on the uniform asymptotic
approximation of the second order using formulas (10), (12), and (17).

2. The members of the boundary layer terms of the first and second order, Π̂1P(x, τ) and
Π̂2P(x, τ), are found approximately, for example, as matrix exponentials with the unknown
decay rates constants.

3. The terms of the modified Padé approximation of the solution of the Riccati equation are
found from the following system of equations with unknown parameters
λ1, λ2, λ3, λ4, λ5, λ6 which are the scalar multipliers of the asymptotic expansion terms and
are selected using the quality criterion optimization.

E 0 −λ5P0 0
0 E −λ6Π0P 0
0 0 λ1P̃1(x) λ2P0
0 0 λ3Π̂1P(x, τ) λ4Π0P(τ)




M1(x)
ΠM1(x, τ)

N1(x)
N2(x)

 =


P̃1(x)

0
−P̃2(x)
−Π̂2P(x, τ)

.

The introduction of multipliers allows us to correct the PA system matrix coefficients within
the obtained structure. Such a technique can be used as a basis for the correction of the
resulting Padé regulator if the result by the optimality criterion is better than the
corresponding results along the regulators using only the asymptotics and regulators built
based on the SDRE technique, which is demonstrated in the calculations given below. A
regulator built based on this approach will be called a modified Padé regulator.

4. The resultant modified Padé regulator gain is found from (23).

Table 2 shows that the modified Padé [1/2] regulator is closer to the D-SDRE solution
by optimality criterion values on a larger interval of parameter variation in comparison
with the regulator based on the uniform first-order asymptotic expansion, i.e., demonstrates
good quality approximation for larger values of the parameter and has better extrapolation
properties. In this example, the uniform first-order asymptotic approximation works only
for small parameter values and fails to stabilize the system when the value of the parameter
increases. Moreover, the Padé regulator is significantly better by criterion value than the D-
SDRE regulator. Thus, here the modified Padé regulator is sufficiently better by optimality
criterion than the two other control algorithms (D-SDRE, asymptotic approximation) in the
selected parameter variation interval from 0.05 to 0.25 and the asymptotic approximation
has a restricted area of application and provides worse quality of the approximation.

Table 2. Demonstration of extrapolation properties of the modified Padé regulator.

Parameter ε
Modified Padé [1/2]

Approximation

Uniform First-Order
Asymptotic

Approximation
D-SDRE

0.05 16.0882 16.3533 19.2226
0.1 31.7171 29.2683 38.2234

0.125 36.1462 38.6610 47.7203
0.2 64.6920 1630.8255 76.2066

0.25 76.3028 2576.7654 95.1958

The corresponding closed-loop trajectories are presented in Figure 1. It can be seen
that the Modified Padé [1/2] approximation brings the system to the neighborhood of the
zero-equilibrium point and the trajectories are similar to the D-SDRE solution.
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Figure 1. Closed-loop system trajectories: Modified Padé [1/2] approximation (red lines) and D-SDRE
(blue lines).

5. Conclusions

Using the SDRE approach, the asymptotics of the solution of the corresponding
initial singularly perturbed control problem for the matrix discrete Riccati equation with
coefficients weakly dependent on the state is constructed and the corresponding one-point
PA regulator is proposed, i.e., only one asymptotic approximation of the Riccati equation
solution is used to construct the PA for the feedback gain matrix of the regulator. The results
of numerical experiments illustrate, in particular, the improved extrapolation properties
of the constructed regulator, which makes the algorithm applicable in control systems for
a wider range of parameter variation. An approach for modified PA construction is also
demonstrated, which consists of the correction of the system of equations for finding the
PA coefficients taking into account the structure of the matrix of the original system and the
properties of the terms of the asymptotic approximation.
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