
Symbolic Search-Based Testing
Arthur Baars

Universidad Politécnica de Valencia
Valencia, Spain

abaars@pros.upv.es

Mark Harman
University College London

CREST Centre, London, U.K.
mark.harman@ucl.ac.uk

Youssef Hassoun
King’s College London

London, U.K.
youssef.hassoun@kcl.ac.uk

Kiran Lakhotia
University College London

CREST Centre, London, U.K.
k.lakhotia@ucl.ac.uk

Phil McMinn
University of Sheffield

Sheffield, U.K.
p.mcminn@sheffield.ac.uk

Paolo Tonella
Fondazione Bruno Kessler

Trento, Italy
tonella@fbk.eu

Tanja Vos
Universidad Politécnica de Valencia

Valencia, Spain
tvos@dsic.upv.es

Abstract—We present an algorithm for constructing fitness
functions that improve the efficiency of search-based testing when
trying to generate branch adequate test data. The algorithm
combines symbolic information with dynamic analysis and has
two key advantages: it does not require any change in the
underlying test data generation technique and it avoids many
problems traditionally associated with symbolic execution, in
particular the presence of loops. We have evaluated the algorithm
on industrial closed source and open source systems using both
local and global search-based testing techniques, demonstrating
that both are statistically significantly more efficient using our
approach. The test for significance was done using a one-
sided, paired Wilcoxon signed rank test. On average, the local
search requires 23.41% and the global search 7.78% fewer
fitness evaluations when using a symbolic execution based fitness
function generated by the algorithm.

Keywords-Search–Based Testing, Symbolic Execution, Fitness
Functions

I. INTRODUCTION

Automation is essential in software testing because the
process is very slow and consequently expensive if undertaken
manually. This need to automate software testing has provided
a rich set of challenging problems for the research community
for over thirty years. One approach to software test automation
that has achieved a great deal of recent attention is Search-
Based Software Testing (SBST). SBST uses meta-heuristic
algorithms to automate the generation of test inputs that meet
a test adequacy criterion. One of the most widely-studied test
adequacy criteria in SBST is branch coverage([1], [2], [3], [4],
[5], [6], [7]), the adequacy criterion considered in this paper.

Despite the large body of work in SBST focusing on branch
coverage, the state of the art fitness function definitions used
for branch adequate testing have changed little since the early
seminal work on the Daimler Automated Software Testing
System, which has been in use for more than a decade [7].
Though there have been many developments in SBST, these
focus on changing the search algorithms and the way in which
they are used, rather than the underlying fitness functions on
which all metaheuristic search relies.

This paper takes a different approach and proposes to use
static analysis. In particular, we use a form of partial symbolic

execution to statically collect information available at compile
time that can be used to define richer and more expressive
fitness functions. We do not perform a complete symbolic
execution, as this would be computationally expensive. Rather,
we compute smaller amounts of symbolic information that
can be used to imbue a fitness function with a much finer
characterisation of the true search landscape, which defines
the location of the global optima that represent the coverage
of individual branches.

Our aim in attacking the underlying fitness function is to
provide an approach that makes SBST more efficient (and
possibly more effective), regardless of the particular search
algorithm used to generate the test data. We present results for
two widely used approaches to demonstrate, empirically, that
our approach does indeed make SBST more efficient. There
are many search algorithms that we could have chosen to study
in our experimental work. A recent survey of Search-Based
Approaches in Software Engineering [8] listed 15 search-based
algorithms that have been used in SBST work. Clearly, it is
not possible to report results for all of them in this paper.

Rather than make an arbitrary choice of algorithms to study,
we choose to empirically study a local search (the widely
used Alternating Variable Method (AVM) of Korel [3]) and
a global search (the Genetic Algorithm approach used by
Wegener et al. [7] and widely followed by other subsequent
SBST research). Our reason for this choice was that these
two approaches characterise the two possible outcomes for
the primary choice of which algorithm to use; whether it
will be local or global. Most of the other algorithms used in
SBST are formed by a combination of local and global search.
Our results indicate that the partial symbolic information we
compute can indeed improve the efficiency of SBST, for both
real world production code and for open source. In the case
of a local search, the information also leads to improved
effectiveness of SBST.

The primary contributions of this paper are:
• We introduce an algorithm for improving SBST by en-

riching fitness functions with statically collected symbolic
information. Because our approach targets the fitness
function itself, it applies to any and every SBST technique

and can be incorporated without change to the search-
based algorithm that uses the enriched fitness function.

• We introduce an approach to overcome the problem of
loops in traditional symbolic execution that allows us
to approximate the impact of symbolic information on
fitness. We introduce a new metric called the approx-
imation level1 to account for uncertainty whenever we
cannot compute precise symbolic information, such as in
the presence of loops.

• We present the results of an empirical study on both open
and closed source code, the results of which indicate
that our enriched fitness functions are significantly more
efficient than their traditional counterparts.

The rest of the paper is organised as follows: the next section
provides an overview of the standard fitness function used in
SBST for branch coverage. Section III introduces our fitness
function enhancement approach, while Section IV introduces
the code analysis algorithm based on symbolic execution. Sec-
tion V presents the empirical study, with corresponding threats
to validity discussed in Section VI. Section VII describes
related work and Section VIII draws conclusions.

II. BACKGROUND

Meta-heuristic algorithms rely on a fitness function to guide
the search towards a global optimum, i.e., the desired test
data. For branch coverage, the state of the art fitness function
comprises two measures: a branch distance and an approach
level. When both these measures are 0 the desired test data
has been found. The approach level records how many of a
target branch’s control dependent nodes were not executed by a
particular input. The fewer control dependent nodes executed,
the ‘further away’ the input is from executing the target in
control flow terms. Consider the example from Figure 1 and
assume the target is the true branch of node (3). If an input
takes the false branch at node (1) then the approach level is 2,
and if an input takes the false branch at node (2), the approach
level is 1 and so forth.

Whenever an input misses the target branch, the branch
distance measure is used to compute how close the input was
to staying on a path leading to the target. It is computed
using the condition of the last (Control Flow Graph) node
in an input’s execution trace which holds a transitive control
dependence on the target, and where execution diverged from
the target. Resuming the example from Figure 1, if an input
takes the false branch at node (1), the branch distance is
computed through |x− 0|+K, where K is a failure constant
(K = 1 throughout this paper). Different branch distance
formulae exist depending on the relational predicate types used
within the condition of branching nodes on which the target
is control dependent. The interested reader is referred to the
work of Tracey et al. [9] for a complete list of branch distance
functions.

1Note that the definition of approximation level in this paper is not to be
confused with the approximation level defined in [7], which is equivalent to
the approach level metric described in Section II.

void foo(int x, int y, int z) {
1 if(x == 0)
2 if(y == z)
3 if(x == z) {
4 //TARGET

}
}

Fig. 1. Example C code used to demonstrate the standard fitness function
used in Search-Based Testing.

For a target branch t, an input vector v, and a node n
where execution diverged from t, the complete fitness value is
then computed by combining the branch distance and approach
level:

ff n(t, v) =
approach level(t, v) + norm(branch distance(t, v))

Note that the branch distance measure is normalized to a
value between [0, 1], using either of the following normaliza-
tion functions [10]:

norm(d) =

{
1− 1.001−d or,

d
(d+1) (used in this paper)

This fitness function can be inefficient when multiple, in-
terdependent conditions need to be satisfied as in the example
from Figure 1. For instance, when trying to cover the true
branch at node (3), the values chosen for the inputs x,y and
z that satisfy the first two conditions are unlikely to traverse
the true branch at node (3). This is because the probability of
the search optimizing both y and z to 0 is low.

In general, optimizing each condition in ‘isolation’, as is
the case with the standard fitness function, can be considered
sub-optimal. Symbolic execution on the other hand is able
to capture such constraints and interdependencies between
variables in the form of a path condition. For example, the
path condition describing the execution where all conditions
evaluate to true in Figure 1 would be 〈x = 0∧y = z∧x = z〉,
where x, y and z denote symbolic variables corresponding to
the three integer inputs x,y,z. For the purpose of testing,
a path condition can be fed to a constraint solver to obtain
concrete input values which can be used to execute the
program.

However, it is well known that static symbolic execution of a
program faces several challenges, arising from loops and code
constructs that cannot easily be symbolically executed such
as unknown (library) functions, complex pointer arithmetic
and functions pointers to name but a few. Loops in particular
are a common problem, because they can result in infinitely
many program paths and further, when trying to cover a target
branch, it may not be possible to determine the number of loop
iterations necessary to reach the target a priori.

The field of Dynamic Symbolic Execution (DSE), also
known as concolic testing, first introduced by Godefroid et
al. [11] tries to overcome some of the challenges faced
by static symbolic execution. In DSE, information obtained
through dynamic analysis is used to aid symbolic execution.
The work presented in this paper proposes to do the opposite,
i.e., use information gathered through symbolic execution to
aid SBST.

III. SYMBOLICALLY ENHANCED FITNESS FUNCTION

The hypothesis underlying the research work presented in
this paper assumes that incorporating information obtained
from symbolic execution into the fitness function for branch
coverage reduces the number of fitness evaluations required to
cover a branch. We call our approach fitness function enhance-
ment because the information collected along a program path
using symbolic execution is used in place of the traditional
approach level and branch distance measures.

Before the formal presentation of the fitness function en-
hancement algorithm we provide some initial intuition. We
propose to replace the branch distance measure introduced in
Section II with a path distance measure. Assume an input
follows the false branch at node (1) in Figure 1 and that our
target is the true branch of node (3). We start by computing a
path expression [12] representing all paths from node (1) to the
target. Let this path expression be abc (the edge labels a, b, c
refer to the sub-graph shown on the right in Figure 1). We
then symbolically execute this path expression to obtain a set
of (partial) path conditions. In our example this set denotes a
singleton of the form {〈x = 0∧y = z∧x = z〉} because there
is only one path from node (1) to the true branch of node (3).
Next we apply the branch distance measure from Section II
to each of the atomic conditions in the path condition (i.e.,
x = 0, y = z, x = z), and sum the results to form a path
distance. In case we have more than one path distance, we
choose the minimum for our fitness computation. The intuition
behind this choice is that the path condition with the smallest
path distance is the closest to being satisfied by an input.

It may not always be possible to symbolically execute a
path expression due to sources of uncertainty. To account for
this we introduce a second measure called the approximation
level. The approximation level will be defined as the number
of conditions that cannot be added to a path condition, and
are thus not considered in the path distance. For example, a
condition that uses variables whose definition originates from
a statement inside a loop will be dropped. This is because in
general we do not know how often a loop is executed, thus
we also do not know the final value of the variables that are
defined in a loop. Other sources of uncertainty can include
variables defined through system calls to which we do not
have access.

The next section will provide formal definitions of the ap-
proximation level and path distance, along with the algorithm
for computing the enhanced fitness function (eff).

void foo(int n, int a, int b) {
1 int s = 0;
2 if (n > 0) {
3 for (int i = 0 ; i < n ; i++)
4 s += i;
5 if (a == n) {
6 if (s == 10) {
7 if (b == s) {
8 // TARGET (t)

}
}

}
}

}

Fig. 2. Illustrative C code involving a loop with nested if-statements, used
to demonstrate the symbolically enhanced fitness function.

A. Definitions

Let p be the path expression representing all paths between
a start node n and a target node t. This path expression may
contain loops, represented as terms of the form A∗. For such
terms, we may opt for an arbitrary level of unrolling (e.g. k
times), but we cannot handle unbounded (potentially infinite)
unrollings. As a consequence, when the upper limit for the
number of unrollings is reached, we make the assumption
that variables defined in any successive loop iterations are
destroyed, since in general, we cannot determine the required
number of loop iterations. Such variables will be represented
by the term D[A]. The path expression involving loops (i.e.,
A∗) can thus be expanded as:

A∗ = 1 +A+A2 +A3 + . . .+AkD[A]

By replacing A∗ with A∗ = 1+A+A2+A3+. . .+AkD[A]
in the path expression p we obtain an approximated path
expression p′ which contains some destroy terms of the form
D[A]. In the path condition produced by symbolic execution
of p′, we drop any clauses involving variables whose definition
is inside a destroyed sub-path. Such destroyed clauses are
counted and their number defines the approximation level used
in the fitness function. Path conditions built by dropping one
or more conditions are said to be partial; the others are said
to be complete.

Definition 1. Branch distance: A quantification in the range
[0, 1] of a boolean branch condition, such that the value zero
is obtained iff the condition evaluates to true. Values close
to 1 indicate that the condition is far from being satisfied.
Intermediate values should be such as to smoothly guide the
search toward satisfying the condition.

Definition 2. Path distance: A quantification of the (partial
or complete) path condition, given by the sum of the branch
distances computed for the conditions appearing as non-
destroyed in the path condition for the approximated path
expression. It is zero when all conjuncts in the path condition
evaluate to true.

Whenever we build a partial path condition, we are dropping
a number of conditions which involve data dependencies
originating in a loop. The number of dropped conditions is
the approximation level.

Definition 3. Approximation level: The approximation level
along a path is the number of conditions that are dropped
from the path condition since they involve variables defined
inside loops that are used in the condition.

An approximated path expression p′ can always be normal-
ized into a sum of alternative paths. In fact, in p′, loops A∗

are replaced by alternative k-bounded loop iterations, hence p′

contains only sequence (multiplication) and alternative (sum)
operators, which can be normalized into a sum of products by
resorting to distribution of multiplication over sum.

Definition 4. Fitness function: Let the normalized approxi-
mated path expression p′ have the form p1 + p2 + . . . + ph,
the fitness function eff for a node n is defined as:

eff n = min{ff 1,ff 2, . . . ,ff h}

where ff 1,ff 2, . . . ,ff h are the fitness functions for the atomic
paths in p′, each being computed as the sum of approximation
level and path distance:

ff i = approximation level + path distance(pi)

Consider the example code in Figure 2 and assume our
target is the true branch at node (7). If an input traverses the
false branch at node (2), the path expression representing all
paths from node (2) to the target is a(bc)∗defg. We may
distinguish paths not entering the loop, (bc)∗, from paths
which enter it one or more times (i.e., k = 1). The first case
(not entering the loop) is described by the path expression
adefg. Symbolically executing this path expression yields the
following path condition: 〈n > 0 ∧ 0 ≥ n ∧ a = n ∧ s =
10 ∧ b = s〉. The path described by this path condition is
clearly infeasible, because the conditions n > 0 and 0 ≥ n
are mutually exclusive. Hence, we will not consider it any
further.

The second case (entering the loop one or more times) can
be described by the path expression abcD[bc]defg. The term
D[bc] indicates that all variable definitions occurring along the
path bc are to be treated as unknown, because the number of
iterations for the loop bc is unknown (it will be one or more).
For the example in Figure 2, two variables are defined inside
the loop bc; s and i. Since we do not know how often the
loop will be executed, we also do not know the final values
of s and i when we exit the loop. Therefore we drop any
conditions obtained by symbolically executing the sub-path
following the term D[bc] that involve such variables, i.e., we
do not add those conditions to the path condition.

The approximation level accounts for this by being in-
cremented for each condition that is dropped. Completing
our example, symbolically executing the path expression
abcD[bc]defg yields the path condition: 〈n > 0∧0 < n∧a =
n〉. Since we dropped three conditions (1 ≥ n, s = 10, b = s)

the approximation level is 3. Thus, the approximation level
allows us to distinguish an input reaching node (2) and taking
the false branch, from an input taking the true branch at
node (2) and thus getting closer to the target. Note that the
approximation level reaches 0 once we reach node (5).

IV. ALGORITHM TO COMPUTE SYMBOLICALLY
ENHANCED FITNESS FUNCTIONS

Algorithm 1 Compute symbolically enhanced fitness func-
tions
Input CFG: control flow graph of the program under test; t:

target edge to be covered
Output eff n: fitness function to be used by each test case

reaching node n, for each CFG node n holding a transitive
control dependency on t

1: for each CFG node n ∈ N |n holds a transitive control
dependency on t do

2: Compute the sub-graph subCFGn of CFG from n
to t, i.e., the intersection between nodes/edges forward
reachable from n and nodes/edges backward reachable
from t

3: Apply the node reduction algorithm [12] to determine
the path expression p for subCFGn

4: Compute the approximated path expression p′ from p
by approximating loops A∗ in the path expression p as
A∗ ≈ 1+A+A2+A3+ . . .+AkD[A], for some fixed
value of k

5: Normalize the approximated path expression p′ into a
sum of products: p′ = p1 + p2 + . . .+ ph

6: for each path pi in the normalized path expression p′

do
7: Perform a symbolic execution along pi, keeping

track of destroyed variables and annotating destroyed
conditions as D[c]; the result is path condition pci

8: Turn the path condition pci into a fitness function
ff i by replacing conditions with branch distances and
destroyed conditions with 1

9: end for
10: Define the fitness function eff n for node n as: eff n =

min{ff 1,ff 2, . . . ,ff h}
11: end for

Algorithm 1 shows the pseudo-code for the computation
of the enhanced fitness functions introduced in the previous
section. Input to the algorithm is a program, represented as its
Control Flow Graph (CFG), and a CFG edge t that represents
the current test target, i.e., the branch to be covered. The
output produced by the algorithm is a set of symbolically
enhanced fitness functions, one for each CFG node n that
holds a transitive control dependency on t. For each such node
that is part of the execution trace of an input, the corresponding
fitness function is evaluated, with the minimum value forming
the overall fitness for that input.

For all nodes n that hold a transitive control dependency on
the target branch, Algorithm 1 determines the path expression

p representing all paths from n to the target t (steps 2-3).
Then, loops are approximated (typically as A∗ ≈ 1+AD[A])
and an approximated path expression p′ is computed and
normalized into a sum of products (steps 4-5). For each nor-
malized approximated path expression pi composing the path
p′, symbolic execution is used to compute the corresponding
path condition pci (step 7). Whenever a destroyed sub-path
is encountered during the symbolic execution, all variables
defined inside the sub-path are collected among the destroyed
variables. Successively added conditions which make use of
destroyed variables are marked as destroyed conditions. In step
8, the path condition pci is converted into a fitness function
for pi by replacing conditions with branch distances, except
for destroyed conditions, which increase the approximation
level by one. The final fitness function for node n is the
minimum among the fitness function values computed along
the alternative paths appearing in the normalized approximated
path expression.

V. EMPIRICAL STUDY

The aim of the empirical study in this paper is to analyse
the impact of using the enhanced fitness function in SBST.
The two research questions to be addressed by the study are
as follows:

Research Question 1 - Effect of eff on branch coverage.
The level of branch coverage achieved, i.e., effectiveness of the
testing technique, is often the main focus when investigating
an automated test data generation approach. Our proposed
change in fitness function should not negatively affect the level
of coverage achieved by a test data generation technique. Does
this hypothesis hold?

Research Question 2 - Effect of eff on efficiency. Alongside
coverage, efficiency is also an important factor of any testing
technique. Does the enhanced fitness function make SBST
more efficient, and if so, what is the performance increase?

We selected two commonly used search algorithms for
evaluation; a form of hill climbing known as the Alternating
Variable Method (AVM), first introduced by Korel [3], and
a Genetic Algorithm (GA) based on the approach described
by Wegener et al. [7]. Details of the two algorithms can
be found in Section V-A and Section V-B respectively. The
search-based testing framework, IGUANA [13], was extended
to include the enhanced fitness function proposed in this paper
and subsequently used to perform the test data searches.

The study was performed on 338 branches, drawn from five
different C programs, two of which were provided by Daimler,
two are open source and one is the well-studied triangle
program. The input domain for each function is composed of
global variables and formal parameters. We chose not to use
any input domain reduction and defined the domain of each
variable according to its declared type. Details of the subjects
used in the empirical study can be found in Table I.

The programs f2 and defroster are industrial case
studies provided by Daimler and represent production code

for engine and rear window defroster control systems. The
code is machine generated from a design model of the desired
behaviour. To complement the industrial examples, two open-
source case studies were selected. tiff-3.8.2 is a library
for manipulating images in the Tag Image File Format (TIFF).
The functions tested comprise routines for placing images on
pages and for building ‘overview’ compressed sample images.
Finally, triangle is the well-known triangle classification pro-
gram, often used as a benchmark program in automated test
data generation studies.

Each search for test data was performed 30 times for
every combination of fitness function and search algorithm.
If test data was not found to cover a branch after 100, 000
fitness evaluations, the search was terminated. Serendipitous
coverage, i.e., branches covered by accident during the test
data generation process, was ignored, so that a distinct search
was carried out for every branch. The success or failure of
each search was recorded, along with the number of fitness
evaluations required to find the test data. From this, the ‘suc-
cess rate’ of each branch can be calculated – the percentage
of the 30 runs in which test data to execute the branch was
found. The 30 runs were performed using an identical list of
fixed seeds for random number generation, so as to provide
a basis for assessment with tests for statistical significance
using a one-sided, paired Wilcoxon signed rank test. Such tests
are necessary to provide robust results in the presence of the
inherently stochastic behaviour of the search algorithms.

To facilitate replication, we will now discuss the configura-
tion of the two search algorithms used in the study.

A. Alternating Variable Method Setup

The AVM is a simple but effective optimization tech-
nique [2]. It is a form of hill climbing and works by continu-
ously changing an input parameter to a function in isolation.

Initially all (arithmetic type) inputs are initialized with
random values. Then, so called exploratory moves are made
for each input in turn. These consist of adding or subtracting
a delta from the value of an input. For integral types the delta
starts off at 1, i.e., the smallest increment (decrement).

When a change leads to an improved fitness value, the
search tries to accelerate towards an optimum by increasing
the size of the neighbourhood move with every step. These
are known as pattern moves. The formula used to calculate
the delta added or subtracted from an input is: δ = 2it · dir ·
10−preci , where it is the repeat iteration of the current move
(for pattern moves), dir either −1 or 1, and preci the precision
of the ith input variable. The precision applies to floating point
variables only (i.e., it is 0 for integral types). It denotes a scale
factor for the size of a neighbourhood move. For example,
setting the precision (preci) of an input to 1 limits the smallest
possible move to ±0.1. Increasing the precision to 2 limits
the smallest possible move to ±0.01, and so forth. For all
experiments carried out in this paper, the precision for floating
point variables was fixed at 3.

Once no further improvements can be found for an input,
the search continues optimizing the next input parameter, and

TABLE I
DETAILS OF THE TEST SUBJECTS.THE LINES OF CODE COLUMN CONTAINS THE ansic OUTPUT OF THE SLOCCOUNT TOOL [14] USED IN ITS DEFAULT

SETTING AND APPLIED TO THE ROOT SOURCE DIRECTORY OF EACH PROGRAM.

Test Subject/ Lines of Number of Number of Approximate Domain
Function Code Branches Attempted Loops Size

bibclean 10,252
check ISBN 54 1 2112

check ISSN 54 1 2112

defroster 179
Defroster main 72 0 2137

f2 305
F2 46 0 2272

tiff-3.8.2 47,794
TIFF GetSourceSamples 32 2 2135

TIFF SetSample 28 0 21102

PlaceImage 24 0 28402

triangle 53
triangle 28 0 296

Total 58,583 338 4

may recommence with the first input if necessary. In case
the search stagnates, i.e., no move leads to an improvement,
the search restarts at another randomly chosen location in the
search-space. This is known as a random restart strategy and
is designed to overcome local optima and enable the AVM to
explore a wider region of the input domain for the function
under test.

B. Genetic Algorithm Setup

A GA is a global search algorithm first proposed by Holland
in the 1970s [15]. The configuration of the GA used in this
paper is based on the approach described by Wegener et al. [7]
who used GEATbx by Hartmut Pohlheim [16].

An overall population of 300 individuals is divided into six
competing sub-populations, which begin with 50 individuals
each. After evaluation, individuals in each sub-population are
sorted using a linear ranking method [17] with a selection
pressure of 1.7. Then, individuals are selected for reproduction
through Stochastic Universal Sampling (SUS) [18]. In SUS,
the probability of an individual being selected is propor-
tionate to its (rank-based) fitness value. Selected individuals
are recombined using a discrete recombination strategy [19],
whereby an offspring receives each gene from either parent
with an equal probability.

After recombination, offspring individuals are mutated ac-
cording to the breeder genetic algorithm mutation strat-
egy [19]. The mutation operator is applied with probability
1

len
, where len is the number of genes in an individual (i.e.,

the length of the input vector). For each gene to be mutated,
a mutation range ri = size · domi is defined, where domi

is the domain size of the ith input parameter and size is a
mutation step size. The mutation step size varies for each of
the six sub-populations and is defined as size = 10−pop with
1 ≤ pop ≤ 6. The mutated value of an input parameter can
thus be computed as vi = xi ± ri · η. Addition or subtraction
is chosen with an equal probability, and η =

∑15
x=0 αx · 2−x,

where αx is 1 with a probability of
1

16
and 0 otherwise.

After mutation, offspring are reinserted into a population using

an elitist reinsertion strategy. That is, the top 10% of the
current generation is retained and the remaining individuals
are replaced by fitter offspring.

A feature of the Wegener model is that the six sub-
populations of the GA compete with one another for the num-
ber of individuals each sub-population evolves. An average
fitness value is computed for each sub-population and this
value is used to linearly rank the sub-populations (again using
a selection pressure of 1.7). The rank-based fitness value rank
of a sub-population is then used to compute a progress value
prog for the population in generation g using the formula
progg+1 = 0.9 · progg + 0.1 · rank. Then, after every four
generations, the populations are ranked according to their
progress value prog, and the size of each sub-population is
updated, with weaker sub-populations transferring individuals
to stronger ones. However, no sub-population can lose its
last five individuals, preventing it from dying out. Finally, a
general migration of individuals takes place after every 20th

generation, where sub-populations randomly exchange 10% of
their individuals with one another.

C. Results

Research Question 1 - Effect of eff on branch coverage.
Figure 3 shows the coverage achieved by the AVM and the
GA for each test subject. A branch is counted as covered if
the search for test data succeeded in at least one out of the
thirty runs. As can be seen, using a symbolically enhanced
fitness function does not negatively affect the level of branch
coverage achieved by either local or global search. Instead, the
GA is able to cover a branch that it previously failed to cover.
Similarly, the local search is able to cover more branches when
using the enhanced fitness functions.

To gain a better understanding of how the proposed ap-
proach affects each search algorithm, we also computed the
success rate for each search target. Table II lists the branches
for which we observed a difference in success rate when using
the enhanced fitness function. The GA exhibits little variation.
For three branches, the success rate is slightly reduced when

using the enhanced fitness function. However, for five branches
the success rate increases.

Compared to the GA, the enhanced fitness function has a
bigger impact on the success rate of the AVM. For branches
where we observed a difference, the trend is in an increase in
success rate. Five branches stand out particularly because the
AVM failed to find test data for these using the standard fitness
function. With the enhanced fitness function, the search was
able to find the required test data in all of the 30 runs. The
effect of the enhanced fitness function is not always beneficial
though; for example branches in the function F2 from Daimler
are covered with a reduced success rate. This function is
interesting because some if statements check if a subtraction
operation (on operands of type short int) resulted in an
over- or underflow. For example, for one branch where the
enhanced fitness function performed worse than the standard
fitness function, the path distance measure is computed using
the path condition 〈V 11 ≥ 0 ∧ V 9 < 0 ∧ (V 11 − V 9) < 0〉.
The conjuncts of the path condition correspond to three nested
if statements in the original code. When the path distance
is computed, the first two conjuncts pull into the opposite
direction of the last conjunct. That is, as the branch distance
for the first two conjuncts converges towards 0, the branch
distance for the third conjunct increases until an overflow
occurs. The standard fitness function, which optimizes each
of the conjuncts in turn, does not appear to suffer from this
problem and is able to reliably find the required test data. All
cases where the enhanced fitness function did worse than the
standard fitness function for F2 were in code that checks for
over- or underflow errors.

Research Question 2 - Effect of eff on efficiency. The results
support the hypothesis that enhancing the fitness function with
information gathered from symbolic execution can reduce the
number of fitness evaluations required to cover a branch.
Details of the average number of fitness evaluations required
by each search technique are given in Table III.

The trend for the GA is to require fewer fitness evaluations
with the enhanced fitness function. This difference is partic-
ularly visible for three functions, where we observed more
than a 25% reduction in fitness computations. However, there
is again one case (PlaceImage from tiff-3.8.2) where
we see a small increase in the number of fitness evaluations.

As with the success rates, the AVM benefits more from the
enhanced fitness function than the GA. Four functions require
fewer than 50% of the fitness evaluations compared to the
standard fitness function. This is not surprising since all these
functions contain branches for which the AVM failed to find
test data using the standard fitness function, but for which
it achieved a 100% success rate using the enhanced fitness
function. Conversely, the AVM uses more fitness evaluations
with the enhanced fitness function for F2, because branches
are covered with a lower success rate, and each failed search
results in 100, 000 fitness evaluations.

To see if the differences in efficiency for the GA and the
AVM are statistically significant, we used the statistical tool

0

10

20

30

40

50

60

70

80

90

100

B
ra

n
c

h
 C

o
v

e
ra

g
e

 (
%

)

Std. FF

Enhanced FF

Branch coverage with the Genetic Algorithm

0

10

20

30

40

50

60

70

80

90

100

B
ra

n
c

h
 C

o
v

e
ra

g
e

 (
%

)

Std. FF

Enhanced FF

Branch coverage with the Alternating Variable Method

Fig. 3. This Figure shows the branch coverage achieved by the Genetic
Algorithm (top) and the Alternating Variable Method (bottom) when using the
standard and enhanced fitness functions. The graphs confirm that symbolically
enhanced fitness functions are equally or more effective than the standard
fitness functions.

R [20] to perform a paired, one-sided Wilcoxon signed rank
test with continuity correction and specified an alpha level
of 0.01. For both the GA and AVM we obtained a p value
of 2.2 × 10−16. This p value indicates that the difference
in the number of fitness evaluations required by each search
algorithm is statistically significant (p ≤ α).

Finally, we also recorded the time taken to perform the up-
front static analysis required by the enhanced fitness function.
To obtain a reasonable sample pool we repeated this analy-
sis 30 times for each function. The average analysis times,
alongside standard deviation are recorded in Table IV.

Loops often result in path explosion, even when only a
single loop unrolling is performed. Thus, the analysis takes
longer for functions containing one or more loops. Note that
the symbolic analysis is performed once per function and can
be re-used by a search algorithm for all branches contained
within that function. Therefore, compared to the overall exe-
cution time of the test data generation algorithms, we consider
the analysis times reported in this paper as acceptable. Future
work might investigate how we can make the static analysis

TABLE II
DIFFERENCE IN SUCCESS RATES WITH THE STANDARD FITNESS FUNCTION AND THE ENHANCED FITNESS FUNCTION. BRANCHES ARE ONLY LISTED IF

THERE IS A DIFFERENCE FOR EITHER THE AVM OR GA.

Test Subject/ AVM Standard/ GA Standard/
Function (Branch ID) Enhanced Enhanced

bibclean
check ISSN (53T) 0% / 0% (0%) 43.33% / 60.00% (+16.67%)
check ISSN (55T) 0% / 0% (0%) 16.67% / 66.67% (+50.00%)
check ISSN (58T) 0% / 0% (0%) 100% / 96.67% (-3.33%)
check ISSN (58F) 0% / 0% (0%) 100% / 76.67% (-23.33%)
f2
F2 (4T) 100% / 53.33% (-46.67%) 100% / 100% (0%)
F2 (15T) 100% / 46.67% (-53.33%) 100% / 100% (0%)
F2 (35T) 100% / 100% (0%) 100% / 96.67% (-3.33%)
F2 (43T) 3.33% / 3.33% (0%) 0% / 6.67% (+6.67%)
tiff-3.8.2
TIFF GetSourceSamples (14T) 6.67% / 100% (+93.33%) 100% / 100% (0%)
TIFF GetSourceSamples (17T) 0% / 100% (+100%) 100% / 100% (0%)
TIFF GetSourceSamples (20T) 10.00% / 100% (+90.00%) 100% / 100% (0%)
TIFF GetSourceSamples (23T) 10.00% / 100% (+90.00%) 100% / 100% (0%)
TIFF GetSourceSamples (26T) 13.33% / 100% (+86.67%) 100% / 100% (0%)
TIFF GetSourceSamples (29T) 16.67% / 100% (+83.33%) 100% / 100% (0%)
TIFF GetSourceSamples (32T) 23.33% / 100% (+76.67%) 100% / 100% (0%)
TIFF SetSample (2T) 13.33% / 100% (+86.67%) 100% / 100% (0%)
TIFF SetSample (5T) 13.33% / 100% (+86.67%) 100% / 100% (0%)
TIFF SetSample (8T) 13.33% / 100% (+86.67%) 100% / 100% (0%)
TIFF SetSample (11T) 26.67% / 100% (+73.33%) 100% / 100% (0%)
TIFF SetSample (14T) 13.33% / 100% (+86.67%) 100% / 100% (0%)
TIFF SetSample (17T) 20.00% / 100% (+80.00%) 100% / 100% (0%)
TIFF SetSample (20T) 23.33% / 100% (+76.67%) 100% / 100% (0%)
triangle
triangle (14T) 0% / 100% (+100%) 100% / 100% (0%)
triangle (15T) 0% / 93.33% (+93.33%) 100% / 100% (0%)
triangle (15F) 0% / 100% (+100%) 96.67% / 100% (+3.33%)
triangle (17T) 0% / 100% (+100%) 100% / 100% (0%)
triangle (17F) 0% / 100% (+100%) 96.67% / 100% (+3.33%)
triangle (19T) 0% / 96.67% (+96.67%) 100% / 100% (0%)
triangle (21T) 0% / 96.67% (+96.67%) 100% / 100% (0%)

TABLE III
NORMALIZED AVERAGE FITNESS EVALUATIONS REQUIRED BY THE GA AND AVM USING THE STANDARD AND ENHANCED FITNESS FUNCTIONS.

Test Subject/ AVM Standard/ GA Standard/
Function Enhanced Enhanced
bibclean
check ISBN 100% / 99.99% (-0.01%) 100% / 99.99% (-0.01%)
check ISSN 100% / 99.98% (-0.02%) 100% / 93.71% (-6.29%)
defroster
Defroster main 100% / 99.57% (-0.43%) 100% / 68.15% (-31.85%)
f2
F2 100% / 157.44% (+57.44%) 100% / 91.61% (-8.39%)
tiff-3.8.2
TIFF GetSourceSamples 100% / 12.41% (-87.59%) 100% / 73.05% (-26.95%)
TIFF SetSample 100% / 8.78% (-91.22%) 100% / 73.87% (-26.13%)
PlaceImage 100% / 99.17% (-0.83%) 100% / 100.53% (+0.53%)
triangle
triangle 100% / 35.35% (-64.65%) 100% / 98.79% (-1.21%)

more efficient, for example by re-using symbolic information
for nested branches.

VI. THREATS TO VALIDITY

Naturally there are threats to validity in any empirical study
such as this. The first issue to address is the threat to the
internal validity of the experiments, i.e., whether there has
been a bias in the experimental design that could affect the
obtained results.

One potential source of bias comes from the configuration of
the algorithms used in the test data generation tool IGUANA.
The settings for the GA and AVM were taken from previous
studies [1], [21] that looked at generating branch adequate test
data. Thus, they have been shown in the past to provide a good
trade-off between effectiveness and efficiency.

Another potential source of bias comes from the inherent
stochastic behaviour of the meta-heuristic search algorithms.
The most reliable (and widely used) technique for overcom-

TABLE IV
AVERAGE TIME (IN MILLISECONDS) TAKEN OVER 30 TRIALS TO PERFORM
THE UP-FRONT STATIC ANALYSIS REQUIRED BY THE ENHANCED FITNESS

FUNCTION. THE STANDARD DEVIATION IS SHOWN IN THE RIGHT MOST
COLUMN.

Test Subject/ Analysis Time(ms) (StdDev)
Function

bibclean
check ISBN 1,909,741.13 (2,172.47)
check ISSN 1,792,913.50 (2,827.38)
defroster
Defroster main 34,509.87 (345.55)
f2
F2 318,279.23 (431.68)
tiff-3.8.2
TIFF GetSourceSamples 516,514.23 (878.52)
TIFF SetSample 1,092.77 (12.22)
PlaceImage 956.43 (105.36)
triangle
triangle 716.03 (6.24)

ing this source of variability is to perform statistical tests
using a sufficiently large sample of result data. In order to
ensure a large sample size, experiments were repeated 30
times, providing a reasonable pool of data from which to
draw observations, and ensuring sample means were normally
distributed. To show that the enhanced fitness function is more
efficient than the standard fitness function used in SBST, a test
for a statistical significant difference in the sample means was
performed. We used a one-sided, paired Wilcoxon signed rank
test with the confidence level set at 99%.

A further source of bias includes the selection of the
functions used in the empirical study, which could potentially
affect its external validity, i.e., the extent to which it is possible
to generalize from the results obtained. The study draws
upon code from real world programs, both from industrial
production code and from open source. While we sampled a
variety of programming styles and sources, we only considered
functions from five programs. Therefore caution is required
before making any claims as to whether these results would
be observed on other functions. Instead, the results reported
herein should only be seen to provide some initial intuition and
a larger study is required to validate or refute our findings.

VII. RELATED WORK

The present paper is the first to develop an amended form
of symbolic execution for SBST. Previous work on developing
symbolic execution as a practical means of improving auto-
mated testing focussed on constraint based testing techniques,
leading to the development of the very active field now known
as ‘Dynamic Symbolic Execution’ (DSE). This field began
with the seminal work by Godefroid et al. [11] on Directed
Automated Random Testing (DART), which combined sym-
bolic execution with random testing. Since then a number
of authors have followed this approach, which is sometimes
referred to as ‘concolic testing’ [22] as well as DSE [23], [11],
[24].

DSE and SBST have developed as separate schools of
thought in automated software testing, each with their own

advantages and disadvantages. The introduction of Dynamic
Symbolic Execution creates a significant step forward in
the development of previous constraint based approaches to
automated test data generation, on which DSE builds.

Our introduction of partial symbolic execution as a means of
augmenting SBST seeks to provide a similar impetus to SBST
research. Like DSE, we augment an existing test automation
technique with a form of symbolic execution and like DSE,
we need to amend traditional symbolic execution to ameliorate
its problems. However, DSE performs a complete symbolic
execution, sometimes using concrete values in place of sym-
bolic values, whereas our approach does not use concrete
values, but retains the symbolic nature of symbolic execution.
Rather than performing a complete symbolic execution, we
perform a localised or ‘partial’ symbolic computation and use
approximation to overcome the problems of static symbolic
execution.

Majumdar and Sen [25] were the first to use random testing
as a means to increase code coverage when combined with
DSE. A random search is used to explore the state space of
a program, while DSE is used to provide a locally exhaustive
exploration from the points reached by the random search.

The first authors to propose a combination of SBST and
DSE were Inkumsah and Xie [26] with the EVACON frame-
work. Their framework targets test data generation for object
oriented code written in JAVA and uses two existing tools:
eToc [27], an evolutionary test data generation tool, and
jCUTE [28], a DSE tool. Method sequences putting the class
containing the method under test into specific states, are
constructed by eToc. Then, jCUTE is used to maximize code
coverage of a given method sequence by generating values for
the sequences’ input parameters. The method sequences with
optimized parameter values are then passed back to eToc for
further optimization.

More recently, Lakhotia et al. [29] investigated a combi-
nation of SBST and DSE in order to improve DSE’s ability
to handle constraints over floating point variables. Their work
integrated the AVM, also used in this paper, and Evolution
Strategies into Pex [24], a DSE tool for .NET.

Lakhotia et al. [30] also proposed a combination of sym-
bolic execution with search in order to improve SBST. Inspired
by the work on CUTE [22], they use symbolic execution to
extend and improve the AVM for pointer inputs.

The work presented in this paper differs from all previous
work in that it is the first to consider symbolic execution in
order to improve a fitness function used in SBST. A benefit
of this approach lies in its generality; it may be used with any
search algorithm. Furthermore, the enhanced fitness function
does not require a constraint solver, despite making use of
symbolic execution techniques. This is an advantage when
testing code that contains floating point computations or calls
to system libraries.

VIII. CONCLUSION

This paper has introduced and evaluated a symbolic search-
based software testing approach for the branch coverage test

adequacy criterion. We propose to replace the existing branch
distance and approach level measures with two new measures:
path distance and approximation level. The new metrics make
use of information gathered from symbolic execution. An
empirical study, performed on 338 branches, taken from a
mix of open source and industrial programs, confirmed our
hypothesis that a symbolically enhanced fitness function can
make search algorithms more efficient. The proposed approach
was evaluated with two commonly used algorithms in Search-
Based Software Testing: the Alternating Variable Method and
a Genetic Algorithm.

ACKNOWLEDGEMENT

Arthur Baars, Kiran Lakhotia, Paolo Tonella and Tanja Vos
are funded through the European Union project FITTEST
(ICT-2009.1.2 no 257574). Mark Harman is supported by
EPSRC Grants EP/G060525/1, EP/D050863, GR/S93684 &
GR/T22872 and also by the kind support of Daimler Berlin,
BMS and Vizuri Ltd., London. Phil McMinn is supported in
part by EPSRC grants EP/G009600/1 (Automated Discovery
of Emergent Misbehaviour) and EP/F065825/1 (REGI: Re-
verse Engineering State Machine Hierarchies by Grammar
Inference).

REFERENCES

[1] M. Harman, Y. Hassoun, K. Lakhotia, P. McMinn, and J. Wegener,
“The Impact of Input Domain Reduction on Search-Based Test Data
Generation,” in ESEC/SIGSOFT FSE, 2007, pp. 93–101.

[2] M. Harman and P. McMinn, “A theoretical and empirical study of search-
based testing: Local, global, and hybrid search,” IEEE Trans. Software
Eng, vol. 36, no. 2, pp. 226–247, 2010.

[3] B. Korel, “Automated software test data generation,” IEEE Transactions
on Software Engineering, vol. 16, no. 8, pp. 870–879, Aug. 1990.

[4] K. Lakhotia, P. McMinn, and M. Harman, “An empirical investigation
into branch coverage for C programs using CUTE and AUSTIN,” The
Journal of Systems and Software, vol. 83, no. 12, pp. 2379–2391, Dec.
2010.

[5] C. C. Michael, G. McGraw, and M. Schatz, “Generating software test
data by evolution,” IEEE Trans. Software Eng, vol. 27, no. 12, pp. 1085–
1110, 2001.

[6] R. P. Pargas, M. J. Harrold, and R. Peck, “Test-data generation using
genetic algorithms,” Softw. Test, Verif. Reliab, vol. 9, no. 4, pp. 263–282,
1999.

[7] J. Wegener, A. Baresel, and H. Sthamer, “Evolutionary test environment
for automatic structural testing,” Information & Software Technology,
vol. 43, no. 14, pp. 841–854, 2001.

[8] M. Harman, A. Mansouri, and Y. Zhang, “Search based software
engineering: A comprehensive analysis and review of trends techniques
and applications,” Department of Computer Science, King’s College
London, Tech. Rep. TR-09-03, April 2009.

[9] N. Tracey, J. A. Clark, K. Mander, and J. A. McDermid, “An automated
framework for structural test-data generation,” in ASE, 1998, pp. 285–
288.

[10] A. Arcuri, “It does matter how you normalise the branch distance in
search based software testing,” in ICST, 2010, pp. 205–214.

[11] P. Godefroid, N. Klarlund, and K. Sen, “DART: directed automated
random testing,” ACM SIGPLAN Notices, vol. 40, no. 6, pp. 213–223,
Jun. 2005.

[12] B. Beizer, Software Testing Techniques, 2nd edition. International
Thomson Computer Press, 1990.

[13] P. McMinn, “IGUANA: Input generation using automated novel algo-
rithms. A plug and play research tool.” University Of Sheffield, Tech.
Rep., 2007.

[14] D. A. Wheeler, “More than a gigabuck: Estimating GNU/Linux’s size,”
http://www.dwheeler.com/sloc/, Jun. 2001.

[15] J. H. Holland, “Genetic algorithms and the optimal allocation of trials,”
SIAM Journal of Computing, vol. 2, no. 2, pp. 88–105, Jun. 1973.

[16] H. Pohlheim, “Evolutionary algorithms: Overview, methods and oper-
ators.” documentation for: Genetic evolutionary algorithm toolbox for
use with matlab version: toolbox 1.92 documentation 1.92,” 1999.

[17] D. Whitley, “The GENITOR algorithm and selection pressure: Why
rank-based allocation of reproductive trials is best,” Computer Science
Dept., Colorado State University, Fort Collins, CO, Tech. Rep., 1989.

[18] J. E. Baker, “Reducing bias and inefficiency in the selection algorithm,”
in Genetic Algorithms and their Applications (ICGA’87), J. J. Grefen-
stette, Ed., 1987, pp. 14–21.

[19] H. Mühlenbein and D. Schlierkamp-Voosen, “Predictive models for
the breeder genetic algorithm, I: Continuous parameter optimization,”
Evolutionary Computation, vol. 1, no. 1, pp. 25–49, 1993.

[20] R Development Core Team, R: A Language and Environment
for Statistical Computing, R Foundation for Statistical Computing,
Vienna, Austria, 2011, ISBN 3-900051-07-0. [Online]. Available:
http://www.R-project.org

[21] M. Harman, K. Lakhotia, and P. McMinn, “A multi-objective approach
to search-based test data generation,” in GECCO, 2007, pp. 1098–1105.

[22] K. Sen, D. Marinov, and G. Agha, “CUTE: a concolic unit testing engine
for C,” in ESEC/SIGSOFT FSE, 2005, pp. 263–272.

[23] C. Cadar and D. R. Engler, “Execution generated test cases: How to
make systems code crash itself,” in Model Checking Software, 12th
International SPIN Workshop, vol. 3639, 2005, pp. 2–23.

[24] N. Tillmann and J. de Halleux, “Pex-white box test generation for.NET,”
in TAP, 2008, pp. 134–153.

[25] R. Majumdar and K. Sen, “Hybrid concolic testing,” in ICSE, 2007, pp.
416–426.

[26] K. Inkumsah and T. Xie, “Evacon: A framework for integrating evo-
lutionary and concolic testing for object-oriented programs,” in ASE,
November 2007, pp. 425–428.

[27] P. Tonella, “Evolutionary testing of classes,” in ISSTA, 2004, pp. 119–
128.

[28] K. Sen and G. Agha, “CUTE and jCUTE: Concolic unit testing and
explicit path model-checking tools,” in CAV, 2006, pp. 419–423.

[29] K. Lakhotia, N. Tillman, M. Harman, and J. de Halleux, “FloPSy -
Search-Based Floating Point Constraint Solving for Symbolic Execu-
tion,” in ICTSS, 2010, pp. 142–157.

[30] K. Lakhotia, M. Harman, and P. McMinn, “Handling dynamic data
structures in search based testing.” in GECCO, 2008, pp. 1759–1766.

