
Symbolic String Verification: An
Automata-based Approach?

Fang Yu, Tevfik Bultan, Marco Cova, and Oscar H. Ibarra

Department of Computer Science
University of California, Santa Barbara
{yuf, bultan, marco, ibarra}@cs.ucsb.edu

Abstract. We present an automata-based approach for the verification
of string operations in PHP programs based on symbolic string analysis.
String analysis is a static analysis technique that determines the values
that a string expression can take during program execution at a given
program point. This information can be used to verify that string values
are sanitized properly and to detect programming errors and security
vulnerabilities. In our string analysis approach, we encode the set of
string values that string variables can take as automata. We implement
all string functions using a symbolic automata representation (MBDD
representation from the MONA automata package) and leverage efficient
manipulations on MBDDs, e.g., determinization and minimization. Par-
ticularly, we propose a novel algorithm for language-based replacement.
Our replacement function takes three DFAs as arguments and outputs
a DFA. Finally, we apply a widening operator defined on automata to
approximate fixpoint computations. If this conservative approximation
does not include any bad patterns (specified as regular expressions), we
conclude that the program does not contain any errors or vulnerabilities.
Our experimental results demonstrate that our approach works quite well
in checking the correctness of sanitization operations in real-world PHP
applications.

1 Introduction

Unsanitized string variables are a common cause of security vulnerabilities in
Web applications. In typical interactive Web applications, user-provided input
strings are often used to query back-end databases. If the user input is not prop-
erly checked and filtered (i.e., sanitized), the input strings that contain hidden
destructive commands can be sent to back-end databases and cause damage.
Using the string analysis techniques proposed in this paper, it is possible to au-
tomatically verify that a string variable is properly sanitized at a program point,
showing that such attacks are not possible.

We present a string analysis technique that computes an over approximation
of possible values that a string expression can take at a given program point. We
use a deterministic finite automaton (DFA) to represent the set of values string
? This work is supported by NSF grants CCF-0614002 and CCF-0716095.

expressions can take. At each program point, each string variable is associated
with a DFA. The language accepted by the DFA corresponds to the values that
the corresponding string variable can take at that program point.

The string analysis technique we present is a forward reachability compu-
tation that uses DFA as a symbolic representation. We use the symbolic DFA
representation provided by the MONA DFA library [4], in which transition re-
lations of the DFA are represented as Multi-terminal Binary Decision Diagrams
(MBDDs). We iteratively compute an over approximation of the least fixpoint
that corresponds to the reachable values of the string expressions. In each iter-
ation, given the current state DFAs for all the variables, we compute the next
state DFAs. We present algorithms for next state computation for string oper-
ations such as concatenation and language-based replacement. Particularly, we
present an algorithm for the language-based replacement operation that com-
putes the DFA for Replace(M1, M2, M3) where M1, M2, and M3 are DFAs
that accept the set of original strings, the set of match strings, and the set of
replacement strings, respectively.

Our language-based replacement operation is essential to model various built-
in functions of PHP language that can be used to perform input validation. These
functions provide a general mechanism to scan a string for matches to a given
pattern, expressed as a regular expression, and to replace the matched text with
a replacement string. As an example of modeling these functions, consider the
following statement:

$username = ereg_replace("<script *>", "", $_GET[\"username\"]);

The expression GET["username"] returns the string entered by the user, the
ereg replace call replaces all matches of the search pattern with the empty
string, and the result is assigned to the variable username. This statement can
be modeled by our language-based replacement operation, where M1 accepts
arbitrary strings, M2 accepts the set of strings that start with <script followed
by zero or more spaces and terminated by the character >, and M3 accepts the
empty string.

We believe that we are the first to extend the MONA automata package to
analyze these complex string operations on real programs. In addition to comput-
ing the language-based replacement operation, another difficulty is implementing
these string operations without using the standard constructions based on the
ε-transitions, since the MBDD-based automata representation used by MONA
does not allow ε-transitions. We model non-determinism by extending the al-
phabet with extra bits and then project them away using the on-the-fly subset
construction algorithm provided by MONA. We apply the projection one bit at
a time, and after projecting each bit away, we use the MBDD-based automata
minimization to reduce the size of the resulting automaton.

Since DFAs can represent infinite sets of strings, the fixpoint computations
are not guaranteed to converge. To alleviate this problem, we use the automata
widening technique proposed by Bartzis and Bultan [3] to compute an over-
approximation of the least fixpoint. Briefly, we merge those states belonging to
the same equivalence class identified by certain conditions. This widening opera-
tor was originally proposed for automata representation of arithmetic constraints

but the intuition behind it is applicable to any symbolic fixpoint computation
that uses automata.

We implemented the proposed string analysis technique for PHP programs.
PHP is a scripting language which is widely used in implementing interactive
Web applications. Our experiments show that the proposed symbolic analysis
technique works quite well and can be used to prove the correctness of sanitiza-
tion in real-world PHP applications.

An Example: Consider the PHP program fragment below which demonstrates
a vulnerability from a guestbook application called PBLguestbook-1.32:
1: foreach ($_POST as $name => $value) {

2: if ($name != ’process’ && $name != ’password2’) {

3: $count++;

4: $result .= "‘$name‘ = ’$value’";

5: if ($count <= $numofparts)

6: $result .= ", ";

7: }

8: }

9: $query = "UPDATE ‘pblguestbook_config‘ SET $result";

10: mysql_query($query);

This program fragment traverses the input strings entered by the user (which
are stored in the POST array) in a loop (lines 1-8) and constructs a query string
by accumulating them (by concatenating them to the result variable). This
query is then sent to the back-end database (line 10).

This program shows an example of a SQL injection vulnerability. Input
strings are concatenated in the loop at lines 1-8 to form the string used to
query the application’s database. Since no sanitization is performed, an attacker
can modify the query, for example, by injecting a parameter with value ’; DROP

DATABASE #. In this case, the SQL string sent to the database will be UPDATE

‘pblguestbook config‘ SET ‘name‘ = ’’; DROP DATABASE #’. Note that the ‘;’
character separates distinct queries and the ‘#’ character starts a comment.
Therefore, if the database allows the execution of multiple queries, it will ex-
ecute the legitimate query intended by the developer and the injected query
that drops the entire database. The vulnerability can be fixed by adding a san-
itization step on the input parameters before the query string is formed.

A properly sanitized version of this program fragment would be:
1: foreach ($_POST as $name => $value) {

1.1: $name = preg_replace("/[^a-zA-Z0-9]/", "", $name);

1.2: $value = preg_replace("/’/", "", $value);

2: if ($name != ’process’ && $name != ’password2’) {

3: $count++;

4: $result .= "‘$name‘ = ’$value’";

5: if ($count <= $numofparts)

6: $result .= ", ";

7: }

8: }

9: $query = "UPDATE ‘pblguestbook_config‘ SET $result";

10: mysql_query($query);

The sanitization is achieved in lines 1.1 and 1.2 by deleting potentially prob-
lematic characters in the variables $name and $value, hence preventing the
presented SQL command injection attack. We analyzed both the vulnerable and
the sanitized versions of this program fragment using our string analysis tool.
Our string analysis tool constructed a DFA that gives an over-approximation
of the string values that the variable query can take at line 10. We wrote a
regular expression characterizing strings that can be used for SQL command
injection and converted it to a DFA. (Note that these types of attack DFAs can
be constructed once and stored in a library. They do not have to be specified
separately for each program that is being analyzed). Then, we checked if the
intersection of the language recognized by the DFA for the query variable at line
10, and the DFA characterizing the SQL command injection attack is empty.
When we applied our analysis to the vulnerable program fragment shown above,
our string analysis tool reported that the intersection is not empty, i.e., the pro-
gram fragment might be vulnerable. However, when we applied our analysis to
the sanitized version, our tool reported that the intersection is empty, proving
that the variables are properly sanitized.

It is worthwhile to note some of the challenges in analyzing the example given
above. First, in order to prove that the variables are properly sanitized, we need
to statically interpret the replacement function preg replace with reasonable
precision. Second, our fixpoint computation has to converge even though the
above program fragment contains a loop. We are able to handle both of these
challenges by 1) proposing and implementing a novel language-based replace-
ment operation and 2) using an automata widening operator. Note that, for
the sanitized program fragment, the fixpoint computation without widening will
not converge. Moreover, a naive over-approximation, that sets the values of the
variables that are updated in a loop to all possible strings, will not be a tight
enough approximation to verify the sanitized program fragment.

The rest of the paper is organized as follows. In Section 2, we describe our
symbolic string analysis algorithm. In Section 3, we describe the implementation
of the closure, concatenation and replacement operations. In Section 4, we discuss
the widening operation. In Section 5, we summarize our experiments. In Section
6, we discuss the related work, and, in Section 7, we conclude the paper.

2 Automata-based String Analysis

Most of the string manipulation operations performed in real-world applications
can be reduced to the following four operations:

– assignment : assigns the current string value of a variable to another variable
(the assignment operator in PHP is “=”);

– concatenation: concatenates two string variables and/or constants (the con-
catenation operation in PHP is “.”);

– replacement : replaces the parts of a string that match the given pattern
with the given replacement string (there are several string replacement func-

tions in PHP such as htmlspecialchars, tolower, toupper, str replace, trim,
preg replace and ereg replace, and they can all be converted to this form).

– restriction: restricts the value of a string variable based on a branch condi-
tion.

The first step of string analysis is to construct a control flow graph (CFG)
that only contains string variables and operations on string variables. We define
a CFG as a tuple (V, S, E) where V is the set of string variables, S is the set of
statements and E ⊆ S×S is the set of control flow edges. Each statement s ∈ S
could be one of the following operations: null, assign, concat, replace, restrict,
input. The null operation represents the statements that do not influence the
string variables and, hence, have been removed. We use assign to denote the
assignment of a string constant or a variable to a string variable. We use concat
to denote the assignment operations that assign the concatenation of two string
constants and/or variables to a string variable. We use replace to denote the
assignment of a string value computed by a replacement operation to a string
variable. We use restrict to denote the restriction of a string value in order to
model branch conditions. For instance, considering a branch condition v = e,
where e is a regular expression, we add restrict(v, e) at the beginning of the
truth branch and restrict(v, ē) at the beginning of the false branch where ē
indicates to restrict the string values of v to the complement set of e. A similar
idea has been discussed in [15]. Finally, we use input to denote a read operation,
where a string variable is assigned a value provided by a user.

Automata Operations: In order to implement the automata-based string
analysis, we implement the following operations:

– Construct(regexp e): Returns a DFA M , L(M) = {w | w ∈ L(e)}.
– Closure(DFA M1): Returns a DFA M , L(M) = {w1w2 . . . wk | k > 0,∀i, 1 ≤

i ≤ k, wi ∈ L(M1)}.
– Concat(DFA M1, DFA M2): Returns a DFA M , L(M) = {w1w2 | w1 ∈

L(M1), w2 ∈ L(M2)}.
– Replace(DFA M1, DFA M2, DFA M3): Returns a DFA M , L(M) =
{w1c1w2c2 . . . wkckwk+1 | k > 0, w1x1w2x2 . . . wkxkwk+1 ∈ L(M1),∀i, xi ∈
L(M2), wi does not contain any substring accepted by M2, ci ∈ L(M3)}.

– Union(DFA M1, DFA M2) : Returns a DFA M , L(M) = L(M1) ∪ L(M2).
– Intersect(DFA M1, DFA M2): Returns a DFA M, L(M) = L(M1)∩L(M2).
– Widening(DFA M1, DFA M2): Returns a DFA M, L(M) ⊇ L(M1)∪L(M2).
– EquCheck(DFA M1, DFA M2): Checks whether L(M1) = L(M2).
– EmpCheck(DFA M): Checks whether L(M) = ∅.
– Empty(): Returns a DFA which does not accept any string.
– Universal(): Returns a DFA which accepts all the strings.

String Analysis Algorithm: The string analysis algorithm, takes a CFG,
a program point, a string variable and an attack pattern as input. It computes
|V |×|S| DFAs, where the DFA (v, s) accepts the language that corresponds to all
the string values that the variable v can take at the program point s during any

Input: (V, S, E), attackpattern, statement, variable
DFA attack := Construct(attackpattern)
DFA old[1 . . . |V |][1 . . . |S|], new[1 . . . |V |][1 . . . |S|], temp[1 . . . |V |]
for each v ∈ V , s ∈ S, old[v][s] := Empty(), new[v][s] := Empty()
repeat

for each v ∈ V , s ∈ S, old[v][s] := new[v][s]
for each s ∈ S

for each v ∈ V , temp[v] := Empty()
for each (s′, s) ∈ E, temp[v] := Union(temp[v], old[v][s′])

for each v ∈ V , new[v][s] := temp[v]
switch s.type

case null skip
case read // v := get input

new[v][s] := Universal()
case assign // v := v1

new[v][s] := temp[v1]
case concat // v := concat(v1, v2)

new[v][s] := Concat(temp[v1],temp[v2])
case replace // v := replace(v1, e, c)

where e is a regular expression and c is a string.
DFA t1 := Construct(e), DFA t2 := Construct(c)
new[v][s] := Replace(temp[v1], t1, t2)

case restrict // restrict(v,e)
DFA t1 := Construct(e)
new[v][s] := Intersect(old[v][s],t1)

for each v ∈ V , s ∈ S, old[v][s] := Widening(old[v][s],new[v][s])
until (for all v, s, EquCheck(old[v][s], new[v][s]))
if (EmpCheck(Intersect(new[variable][statement], attack))) then ver else err

Fig. 1. String analysis algorithm

program execution. We compute these DFA using a least fixpoint computation
as shown in Figure 1. Since the lattice is infinite, it might not be possible to reach
the least fixpoint using an iterative algorithm. To tackle this problem, we apply
the automata widening operator in [3] to our analysis. Following Bartzis and
Bultan’s results, we characterize a set of languages that this widening operator
can result in the precise fixed point. Our string analysis algorithm returns ver
if it is not possible for the input variable to have a string value that matches the
attack pattern at the given program point; however, it may yield a false alarm
while it returns err.

Symbolic Automata Representation: We use the DFA library of MONA [4]
to implement the string operations listed above. In MONA, transition relations
of DFA are symbolically represented using Multi-terminal Binary Decision Dia-
grams (MBDDs). A MBDD is a BDD with multiple roots and multiple leaves.
In MONA’s DFA representation, each state of the DFA is a root and points to
a BDD node, and each leaf value is a state of the DFA. Given the current state
and a symbol a ∈ Bk, where Bk is alphabet of bit vectors of length k, one can

find the next state by following the BDD nodes according to the bit vector of
a from the BDD node pointed by the current state. We use a 7-bit vector, i.e.,
B7, as our alphabet representing the binary value of ASCII symbols, e.g., for
the ASCII symbol ‘a’, the ASCII code is 97 which is represented as ‘1100001’ in
our encoding.

The MONA DFA library provides efficient implementations of standard au-
tomata operations. These operations include product, project and determinize,
and minimize [4]. The product operation takes the Cartesian product of the
states of the two input automata. We use the product operation to implement
the intersection and union operations. The project and determinize operation,
denoted as Project(M, i), where 1 ≤ i ≤ k, converts a DFA M recognizing a
language L over the alphabet Bk, to a DFA M ′ recognizing a language L′ over
the alphabet Bk−1, where L′ is the language that results from applying the tuple
projection on the ith bit to each symbol of the alphabet. The process consists
of removing the ith track of the MBDD and determinizing the resulting MBDD
via on-the-fly subset construction.

3 String Operations on Automata

In this section, we describe how to implement the closure, concatenate and re-
place operations. Since we use MBDD representation for DFA, we are not able
to introduce ε-transitions. Instead, to avoid the non-determinism introduced by
these operations, we extend the alphabet by adding extra bits, and then use
projection to map the resulting DFA to the original alphabet.

A DFA M is a tuple 〈Q, q0, Σ, δ, F 〉 where Q is a finite set of states, q0 is the
initial state, Σ ⊆ Bk is the alphabet, where each symbol is encoded as a k-bit
string. F : Q → {−, +} is a mapping function from a state to its status. Given a
state q ∈ Q, q is an accepting state if F (q) = +. δ : Q×Σ → Q is the transition
relation. A state q of M is a sink state if ∀α ∈ Σ, δ(q, α) = q and F (q) = −.
In the following sections, we assume that for all unspecified pairs (q, α), δ(q, α)
goes to a sink state. In the constructions below, we also ignore the transitions
that lead to a sink state.

Given α ∈ Bk, we use α0 or α1 ∈ Bk+1 to denote the bit string that is α
appended with ‘0’ or ‘1’. For instance, if α is ‘110011’ then α0 is ‘1100110’.

Closure: The DFA M is a closure-DFA of the DFA M1, if L(M) = { w1w2 . . . wk

| ∃k > 0,∀1 ≤ i ≤ k,wi ∈ L(M1)}.
Given M1 = 〈Q1, q10, Σ, δ1, F1〉, its closure M can be constructed by first

constructing an intermediate DFA M
′
= 〈Q1, q10, Σ

′
, δ
′
, F1〉 as:

– Σ
′
= {α0 | α ∈ Σ} ∪ {α1 | α ∈ Σ}

– ∀q, q′ ∈ Q1, δ
′
(q, α0) = q′, if δ1(q, α) = q′.

– ∀q ∈ Q1, δ
′
(q, α1) = q′, if F1(q) = + and δ1(q10, α) = q′.

Then, M = Project(M
′
, k + 1) is the closure of M1.

Since M1 is a DFA, the project operation requires the subset construction
only when there exists q ∈ Q1, F1(q) = +, and ∃α, q′, q

′′
, α ∈ Σ, q′, q

′′ ∈ Q1, q
′ 6=

q
′′
, δ1(q, α) = q′, δ1(q10, α) = q

′′
.

Concatenation: The DFA M is a concatenation-DFA of the DFA M1 and M2,
if L(M) = {w1w2 | w1 ∈ L(M1), w2 ∈ L(M2)}.

Given M1 = 〈Q1, q10, Σ, δ1, F1〉 and M2 = 〈Q2, q20, Σ, δ2, F2〉, the
concatenation-DFA M can be constructed as follows. Without loss of gener-
ality, we assume that Q1 ∩Q2 is empty. We first construct an intermediate DFA
M

′
= 〈Q′

, q10, Σ
′
, δ
′
, F

′〉, where

– Q
′
= Q1 ∪Q2

– Σ
′
= {α0 | α ∈ Σ} ∪ {α1 | α ∈ Σ}

– ∀q, q′ ∈ Q1, δ
′
(q, α0) = q′, if δ1(q, α) = q′

– ∀q, q′ ∈ Q2, δ
′
(q, α0) = q′, if δ2(q, α) = q′

– ∀q ∈ Q1, δ
′
(q, α1) = q′, if F1(q) = + and ∃q′ ∈ Q2, δ2(q20, α) = q′

– ∀q ∈ Q1, F
′
(q) = +, if F1(q) = + and F2(q20) = +; F

′
(q) = −, o.w.

– ∀q ∈ Q2, F
′
(q) = F2(q).

Then, M = Project(M
′
, k + 1). Again, since both M1 and M2 are DFA,

the subset construction happens only when there exists q ∈ Q1, F1(q) = + such
that ∃α, q′, q

′′
, α ∈ Σ, q′ ∈ Q1, q

′′ ∈ Q2, δ1(q, α) = q′, δ2(q20, α) = q
′′
.

Replacement: A DFA M is a replaced-DFA of a DFA tuple (M1,M2,M3), if
and only if L(M) = {w | k > 0, w1x1w2 . . . wkxkwk+1 ∈ L(M1),
w = w1c1w2...wkckwk+1, ∀1 ≤ i ≤ k, xi ∈ L(M2), ci ∈ L(M3),∀1 ≤ i ≤
k + 1, wi 6∈ {w′1x′w′2 | x′ ∈ L(M2), w′1, w

′
2 ∈ Σ∗}}.

This definition requires that all occurrences of matching sub-strings in a
word are replaced. The intuition of the implementation of this language-based
replacement is that we first insert marks into automata, then identify matching
sub-strings by intersection of automata, and finally construct the final automaton
by replacing these matching sub-strings.

We consider a new alphabet Σ̄ = {ᾱ|α ∈ Σ}, and let x̄ denote a new string
in which we add bar to each character in x. Assume that M1,M2, M3 have the
same alphabet Σ, where]1,]2 6∈ Σ, and ∀α ∈ Σ, ᾱ 6∈ Σ. We define M

′
1, M2

′ and
M as follows, and claim that M accepts the same language as the replaced-DFA
of the tuple (M1,M2,M3).

– M
′
1, where L(M

′
1) = {w′ | k > 0, w = w1x1w2 . . . wkxkwk+1 ∈ L(M1), w′ =

w1]1x̄1]2w2 . . . wk]1x̄k]2wk+1}.
– M

′
2, where L(M

′
2) = {w′ | k > 0, w′ = w1]1x̄1]2w2 . . . wk]1x̄k]2wk+1,∀1 ≤

i ≤ k, xi ∈ L(M2), ∀1 ≤ i ≤ k + 1, wi ∈ L(Mh)} , where L(Mh) is the set of
strings which do not contain any substring in L(M2). The language L(Mh)
is defined as the complement set of {w1xw2 | x ∈ L(M2), w1, w2 ∈ Σ∗}.

– M , where L(M) = {w | k > 0, w1]1x̄1]2w2 . . . wk]1x̄k]2wk+1 ∈ L(M
′
1) ∩

L(M
′
2), w = w1c1w2 . . . wkckwk+1, ∀1 ≤ i ≤ k, ci ∈ L(M3)}.

To distinguish the original and bar alphabets, we append an extra bit to α so
that α is α0 and ᾱ is α1. Given M1 = 〈Q1, q10, Σ, δ1, F1〉, M2 = 〈Q2, q20, Σ, δ2, F2〉,
and M3 = 〈Q3, q30, Σ, δ3, F3〉, the process to construct a replaced-DFA M can
be decoupled into the following steps:

1. Construct M1
′ from M1,

2. Construct M
′
2 from M2,

3. Generate M
′
as the intersection of M

′
1 and M

′
2,

4. Construct M
′′

from M
′
where the strings that appear between]1 and]2 are

replaced by words in L(M3), and
5. Generate M from M

′′
by projection.

We formally describe the implementation of these steps below. As a run-
ning example, we use L(M1) = {baab}, L(M2) = a+ (M2 accepts the language
{a, aa, aaa, . . .}) and L(M3) = {c} or L(M3) = {ε}. Let |M | denote the num-
ber of states of M . An upper bound for each intermediate automaton before
projection and minimization is also described.

Step 1: M
′
1 = 〈Q′

1, q10, Σ
′
, δ
′
1, F

′
1〉 is constructed from M1, where

– Q
′
1 = Q1 ∪Q1′ , Q1′ is the duplicate of Q1. For all q ∈ Q1, there is a one to

one mapping q′ ∈ Q1′ .
– Σ

′
= {α0 | α ∈ Σ} ∪ {α1 | α ∈ Σ} ∪ {]1,]2}

– δ
′
1(q1, α0) = q2 and δ

′
1(q1′ , α1) = q2′ , if δ1(q1, α) = q2

– ∀q1 ∈ Q1, δ
′
1(q1,]1) = q1′ and δ

′
1(q1′ ,]2) = q1

– ∀q ∈ Q1, F
′
1(q) = F1(q) and ∀q ∈ Q1′ , F

′
1(q) = 0.

An example for constructing M
′
1 from M1, where L(M1) = {baab}, is given

in Fig 2. |M ′
1| is bounded by 2|M1|.

(a) M1 : {baab} (b) M
′
1

Fig. 2. Constructing M
′
1 from M1

Step 2: To construct M
′
2, we first construct Mh which accepts the com-

plement set of {w1xw2 | w1, w2 ∈ Σ∗, x ∈ L(M2)}. For instance, as shown in
Fig 3(b), for L(M2) = a+, Mh is the DFA that accepts (Σ \{a})∗. Let M∗ be the
DFA accepting Σ∗. Mh can be constructed by Negate(Concat(Concat(M∗,
M2), M∗)). We obtain the DFA in Fig 3(b) by applying this construction with
minimization.

Assume Mh = 〈Qh, qh0, Σ, δh, Fh〉, and M2 = 〈Q2, q20, Σ, δ2, F2〉. M
′
2 =

〈Q′
2, qh0, Σ

′
, δ
′
2, F

′
2〉 can then be constructed as:

– Q
′
2 = Qh ∪Q2

– Σ
′
= {α0 | ∀α ∈ Σ} ∪ {α1 | ∀α ∈ Σ} ∪ {]1,]2}

– ∀q, q′ ∈ Qh, δ
′
2(q, α0) = q′, if δh(q, α) = q′

– ∀q, q′ ∈ Q2, δ
′
2(q, α1) = q′, if δ2(q, α) = q′

– ∀q ∈ Qh, δ
′
2(q,]1) = q20 if Fh(q) = +

– ∀q ∈ Q2, δ
′
2(q,]2) = qh0 if F2(q) = +

– ∀q ∈ Qh, F
′
2(q) = Fh(q) and ∀q ∈ Q2, F

′
2(q) = −.

The corresponding M
′
2 for our example is shown in Fig 3(c). |M ′

2| is bounded
by |Mh|+ |M2|, where |Mh| is bounded by |M2|+ 2.

(a) M2 (b) Mh (c) M
′
2

Fig. 3. Constructing M
′
2 from M2 and Mh

Step 3: M
′
= 〈Q′

, q
′
0, Σ

′
, δ
′
, F

′〉 is generated as the intersection of M
′
1 and

M
′
2 based on production. The example M

′
is shown in Fig 4 (a). |M ′ | is bounded

by |M ′
1| × |M

′
2|.

Step 4: Before we construct M
′′

from M
′
, we first introduce a function

reach : Q
′ → 2Q

′
, which maps a state to all its]-reachable states in M

′
. We say

q′ is]-reachable from q if there exists a sequence q, q1, . . . , qn, q′ so that (1) n ≥ 1,
(2) δ

′
(q,]1) = q1, (3) δ

′
(qn,]2) = q′, and (4) ∀0 < i < n, δ

′
(qi, x) = qi+1, where

x ∈ {α1 | ∀α ∈ Σ}. For instance, in Fig 4 (a), one can find that reach(i) = {j, k}
and reach(j) = {k}. Intuitively, one can think that each pair (q, q′), where
q′ ∈ reach(q), identifies a word in L(M2).

Our goal is, for each q′ ∈ reach(q), inserting paths between q and q′ that
recognize all words in L(M3). If there exist q′, q

′′ ∈ reach(q) and q′ 6= q
′′
, this

insertion will cause nondeterminism. To tackle this problem, as we did in the
construction of closure and concatenation, we add extra bits to the alphabet
and later project them away. Assume n is the maximum size of reach(q) for all
q ∈ Q

′
. We need at most dlog(n + 1)e bits to be added to the alphabet so that

the construction can result in a DFA. Let P = {q | q ∈ Q
′
, reach(q) > 0}. Let

m = dlog(n + 1)e, where n is the maximum size of reach(q) for all q ∈ P . Let
mq be an m-bit string. For α ∈ Bk, αmq ∈ Bk+m is a string in which mq is
appended to α. Let m0 be an m-bit string of 0s. We assume ∀q,mq 6= m0, and
for any q ∈ P , m′

q 6= m′′
q if q′, q′′ ∈ reach(q).

The construction of M
′′

depends on L(M3). We consider the following three
cases: (1) M3 only accepts single characters, i.e., L(M3) ⊆ Σ, (2) M3 only accepts
words with more than one character, i.e., L(M3) ⊆ Σ+ \Σ, (3) M3 only accepts
the empty string, i.e., L(M3) = {ε}.

Case 1: ∀w ∈ L(M3), |w| = 1. M
′′

= 〈Q′
, q
′
0, Σ

′′
, δ
′′
, F

′〉 is constructed as:

– Σ
′′ ⊆ Bk+m

– ∀q ∈ Q
′
, δ
′′
(q, αm0) = q′, if δ

′
(q, α0) = q′

– ∀q ∈ P, ∀q′ ∈ reach(p), ∀α ∈ L(M3), δ
′′
(q, αmq′) = q′.

In Fig 4(a), P = {i, j}, reach(i) = {j, k} and reach(j) = k. Let L(M3) = {c}.
M

′′
of our example is shown in Fig 4(b). Each symbol is appended with two extra

bits, e.g., δ(i, c01) = j and δ(i, c10) = k. |M ′′ | is bounded by |M ′ |.

(a) M
′

(b) M
′′
: case 1 (c) M

′′
: case 3

Fig. 4. Constructing M
′′

from M
′
. M

′
is the intersection of M1

′ and M
′
2

Case 2: ∀w ∈ L(M3), |w| ≥ 2. For each p ∈ P , we construct a copy of M3

as Mp = 〈Qp, qp0, Σ, δp, Fp〉. M
′′

is constructed by inserting Mp between p and
reach(p).

M
′′

= 〈Q′′
, q
′
0, Σ

′′
, δ
′′
, F

′′〉, where

– Q
′′

= Q
′ ⋃

p∈P Qp

– Σ
′′ ⊆ Bk+m

– ∀q ∈ Q
′
, δ
′′
(q, αm0) = q′, if δ

′
(q, α0) = q′

– ∀p ∈ P,∀q ∈ Qp, δ
′′
(q, αm0) = q′, if δp(q, α) = q′.

– ∀p ∈ P, δ
′′
(p, αmq) = q, if δp(qp0, α) = q.

– ∀p ∈ P,∀q ∈ reach(p), δ
′′
(q′, αm0) = q, if δp(q′, α) = q

′′
and Fp(q

′′
) = +.

– ∀q ∈ Q
′
, F

′′
(q) = F

′
(q)

– ∀p ∈ P, q ∈ Qp, F
′′
(q) = −.

In this case, |M ′′ | is bounded by |M ′ |+ |M ′ | × |M ′ | × |M3|.
Case 3: ∀w ∈ L(M3), |w| = 0. We consider this case as deletion. Before we

start the construction, it is worth to know that for deletion, one may change the
argument M2 to N , where L(N) = L(M2)+ (Kleene plus closure) , and get the
same result. We specify this property as follows.

Property 1 Let M=Replace(M1, M2, M3), and M
′
=Replace(M1, N ,

M3), where L(N) = L(M2)+. L(M) = L(M
′
) if L(M3) = {ε}.

The correctness comes from the fact that, by construction, if there exists w ∈
L(N), then there exists k > 0, w = w1w2 . . . wk, where ∀1 ≤ i ≤ k,wi ∈ L(M2).
Since w or any wi will be deleted after the replacement, using N instead of M2

yields the same result.
Note that the]-reachable states of M ′ using N is actually the set of reachable

closure of the]-reachable states of M ′ using M2. This facilitates our construction

by taking all deleted pairs into account in one step. In the following construction,
without loss of the generality, we assume that the matching strings are accepted
by N . N can be constructed from the original M2 by our closure operation.

M
′′

can then be constructed as 〈Q′
, q
′
0, Σ

′′
, δ
′′
, F

′′〉, where

– Σ
′′ ⊆ Bk+m

– ∀q ∈ Q
′
, δ
′′
(q, αm0) = q′, if δ

′
(q, α0) = q′

– ∀p ∈ P,∀q ∈ reach(p), δ
′′
(p, αmq′) = q′, if δ

′
(q, α0) = q′.

– ∀p ∈ P, F
′′
(p) = +, if ∃q ∈ reach(p), F

′
(q) = +.

– F
′′
(q) = F

′
(q), o.w.

Let L(M3) = {ε}. The result of M
′′

is shown in Fig 4(c). Note that if M2 =
{a}, we would get the same result. |M ′′ | is bounded by |M ′ |.

Finally, consider M3 as a general DFA. Replace(M1, M2, M3) can be con-
structed as the union of the results of the following three operations:

– Replace(M1, M2, M31), where L(M31) = L(M3) ∩Σ

– Replace(M1, M2, M32), where L(M32) = L(M3) ∩ Σ+ \Σ

– Replace(M1, M2, M33), where L(M33) = L(M3) ∩ {ε}

Our replacement operation is defined in a general case in terms of M3. For
all replacement statements in PHP programs, such as str replace, preg replace,
and ereg replace, L(M3) is a constant string. In our implementation, we deter-
mine which type of construction to apply based on the length of this string.

Step 5: Finally, we get M over Σ by iteratively projecting away the extra
bits. The subset construction is only applied when needed.

The final DFA M =Replace(M1,M2,M3), where L(M1) = {baab}, L(M2) =
a+, and L(M3) = {c}, is shown in Fig 5. M accepts {bcb, bccb}.

In PHP programs, replacement operations such as ereg replace can use
different replacement semantics such as longest match or first match. Our re-
placement operation provides an over approximation of such more restricted
replace semantics. For the example above, in the longest match semantics, M
only accepts bcb, in which the longest match aa is replaced by c. In the first
match semantics, M only accepts bccb, in which two matches a and a are re-
placed with c. Both of these are included in the result obtained by our re-
placement operation. This over approximation works well for our benchmarks,
and does not raise false alarms. Indeed, we have observed that most statements
we encountered yield the same result in the first and longest match semantics,
e.g.,ereg replace("<script *>","",$ GET["username"]);, and are precisely
modelled by our language-based replacement operation.

4 Widening Automata

In this section, we describe the widening operator we use, which was originally
proposed for arithmetic automata by Bartzis and Bultan [3].

(a) M
′′
1 (b) M

Fig. 5. M
′′
1 is Project(M

′′
, k + 2), M is Project(M

′′
1 , k + 1)

Given two finite automata M = 〈Q, q0, Σ, δ, F 〉 and M ′ = 〈Q′, q′0, Σ, δ′, F ′〉,
we first define the binary relation ≡∇ on Q ∪ Q′ as follows. Given q ∈ Q and
q′ ∈ Q′, we say that q ≡∇ q′ and q′ ≡∇ q if and only if

∀w ∈ Σ∗. F (δ∗(q, w)) = + ⇔ F (δ′∗(q′, w)) = +. (1)

or q, q′ 6= sink ∧ ∃w ∈ Σ∗. δ∗(q0, w) = q ∧ δ′∗(q′0, w) = q′, (2)

where δ∗(q, w) is defined as the state that M reaches after consuming w starting
from state q. In other words, condition 1 states that q ≡∇ q′ if ∀w ∈ Σ∗, w
is accepted by M from q then w is accepted by M ′ from q′, and vice versa.
Condition 2 states that q ≡∇ q′ if ∃w ∈ σ, M reaches state q and M ′ reaches
state q′ after consuming w from its initial state. For q1 ∈ Q and q2 ∈ Q we say
that q1 ≡∇ q2 if and only if

∃q′ ∈ Q′. q1 ≡∇ q′ ∧ q2 ≡∇ q′ ∨ ∃q ∈ Q. q1 ≡∇ q ∧ q2 ≡∇ q (3)

Similarly we can define q′1 ≡∇ q′2 for q′1 ∈ Q′ and q′2 ∈ Q′.
It can be seen that ≡∇ is an equivalence relation. Let C be the set of equiv-

alence classes of ≡∇. We define M∇M ′ = 〈Q′′, q′′0 , Σ, δ′′, F ′′〉 by:

Q′′ = C

q′′0 = c s.t. q0 ∈ c ∧ q′0 ∈ c

δ′′(ci, σ) = cj s.t. (∀q ∈ ci ∩Q. δ(q, σ) ∈ cj ∨ δ(q, σ) = sink) ∧
(∀q′ ∈ ci ∩Q′. δ′(q′, σ) ∈ cj ∨ δ′(q′, σ) = sink)

F ′′(c) = + s.t. ∃q ∈ F ∪ F ′. q ∈ c. F ′′(c) = − o.w.

In other words, the set of states of M∇M ′ is the set C of equivalence classes of
≡∇. Transitions are defined from the transitions of M and M ′. The initial state
is the class containing the initial states q0 and q′0. The set of final states is the
set of classes that contain some of the final states in F and F ′. It can be shown
that, given two automata M and M ′, L(M) ∪ L(M ′) ⊆ L(M∇M ′) [3].

In Fig 6, we give an example for the widening operation. L(M) = {ε, ab}
and L(M ′) = {ε, ab, abab}. The set of equivalence classes is C = {q′′0 , q′′1}, where
q′′0 = {q0, q

′
0, q2, q

′
2, q

′
4} and q′′1 = {q1, q

′
1, q

′
3}. L(M∇M

′
) = (ab)∗.

As shown in Fig 1, we use this widening operator iteratively to compute an
over-approximation of the least fixpoint that corresponds to the reachable values
of string expressions. To simplify the discussion, let us assume a program with

(a) M (b) M ′ (c) M∇M ′

Fig. 6. Widening automata

a single string variable represented with one automaton M . Let Mi represent
the automaton computed at the ith iteration and let I denote the initial value
of the string variable. The fixpoint computation will compute a sequence M0,
M1, ..., Mi, ..., where M0 = I and Mi = Mi−1 ∪ post(Mi−1) where the post-
condition for different statements is computed as described in Fig 1. We reach
the least fixpoint Mj if at some iteration, Mj = Mj−1. Since we are dealing with
an infinite state system, the computation may not converge. In the following, we
use M∞ to denote the least fixpoint.

Given the widening operator, we actually compute an sequence M ′
0, M ′

1, ...,
M ′

i , ..., that over-approximates the fixpoint computation where M ′
i is defined as:

M ′
0 = M0, and for i > 0, M ′

i = M ′
i−1∇(M ′

i−1∪post(M ′
i−1)). Let M ′

∞ denote the
least fixpoint of this approximate sequence. Then we have the following result [3]:

Definition 1. M1 = 〈Q1, q01, Σ, δ1, F1〉 is simulated by M2 = 〈Q2, q02, Σ, δ2, F2〉
iff there exists a total function f : Q1 \ {sink} → Q2 such that δ1(q, σ) = sink
or f(δ1(q, σ)) = δ2(f(k), σ) for all q ∈ Q1 \ {sink} and σ ∈ Σ. Furthermore,
f(q01) = q02 and for all q ∈ F1, f(q) ∈ F2.

Definition 2. M = 〈Q, q0, Σ, δ, F 〉 is state-disjoint iff there is no state q ∈ Q
such that there exist α ∈ Σ and q′, q′′ ∈ Q, q′ 6= q′′, and δ(q′, α) = q and
δ(q′′, α) = q.
Theorem 1. If (1) M∞ exists, (2) M∞ is a state-disjoint automaton, and (3)
M0 is simulated by M∞, then (1) M ′

∞ exists and (2) M ′
∞ = M∞.

Consider a simple example where we start from an empty string and sim-
ply concatenate a substring ab at each iteration. The exact sequence M0, M1,
..., Mi, ... will never converge to the least fixpoint, where L(M0) = {ε} and
L(Mi) = {(ab)k | 1 ≤ k ≤ i} ∪ {ε}. However, M∞ exists and L(M∞) = (ab)∗.
In addition, M∞ is a state-disjoint automaton, and M0 is simulated by M∞.
Based on Theorem 1, these conditions imply that once the computation of the
approximate sequence reaches the fixpoint, the fixpoint is equal to M∞ and the
analysis is precise. Computation of the approximate sequence is shown in Fig 7.
M ′

i = M ′
i−1∇(M ′

i−1∪post(M ′
i−1, R)), where post(M) returns an automaton that

accepts {wab | w ∈ L(M)}. In this case, we reach the fixpoint at the 3rd iteration
and M ′

∞ = M∞ = M ′
3.

A more general case that we commonly encounter in real programs is that
we start from a set of initial strings (accepted by Minit), and concatenate an
arbitrary but fixed set of strings (accepted by Mtail) at each iteration. Based on
Theorem 1 one can conclude that if the DFA M that accepts L(Minit)L(Mtail)∗

is state-disjoint, then our analysis via widening will reach the precise least fix-
point when it terminates.

(a) M ′
0 (b) M ′

1 (c) M ′
2 (d) M ′

3

Fig. 7. An approximate sequence

5 Experiments

We experimented with our string analysis tool on a number of test cases ex-
tracted from a set of real-world, open source applications: MyEasyMarket-4.1 (a
shopping cart program), PBLguestbook-1.32 (a guestbook application),
Aphpkb-0.71 (a knowledge base management system), BloggIT-1.0 (a blog en-
gine), and proManager-0.72 (a project management system). We believe that
these programs are representative of how web applications use regular expression
based replacement functions to modify their input (in particular, in a security
context, to perform input sanitization), and, thus, are good test cases for our
technique. These vulnerable functions were identified and sanitized by Balzarotti
et al. in [1, 2].

Table 5 shows the results of applying our string analysis tool to these pro-
grams. The first column of Table 5 identifies the application, the function that
was analyzed and the line number for the vulnerable operation. For each test
case we analyzed the original version of the program (that contained the vulner-
ability) and a modified version which was modified with the intention of fixing
the vulnerability. Our analysis is quite efficient and takes a couple of seconds.
Since our string analysis tool is sound, it identifies the existing vulnerabilities
correctly in each case. However, since our conservative approximations can lead
to false positives, the fact that our tool identifies a possible vulnerability does
not mean that it is guaranteed to be a vulnerability.

The impressive part of our results is that for all the modified program seg-
ments our approach is able to prove that the sanitization is correct. This indicates
that the approximations we use work quite well in real-world applications.

We also experimented with Saner [1] to check these benchmarks. We discuss
this tool in related work. The results are shown in table 5. Our tool performs
slightly better than Saner in terms of time. It is interesting to note that there are
some conflicts on the verification results. Saner performs bounded verification
and approximates the value of out of bound computation as arbitrary strings.
This rough approximation raises a false alarm while checking the sanitized ver-
sion of PBLguestbook-1.32(1210). While checking BloggIT-1.0, Saner, in the de-
fault configuration, assumes that data from the database are sanitized; while we
assume that these data may be tainted and model them the same as data from
users. Saner raises an error for the sanitization routine in PBLguestbook-1.32(182)
since it does not support the syntax of the replace operator used in that routine.

6 Related Work

Due to its importance in security, string analysis has been widely studied. Chris-
tensen, Møller and Schwartzbach [7] proposed a grammar-based string analysis

Application Ver. Res. Final DFA Peak DFA Time Mem Saner Saner
File(line) state(bdd) state(bdd) user+sys(sec) (kb) n(type) Time(sec)

MyEasyMarket-4.1 o y 17(133) 17(148) 0.010+0.002 444 1(xss) 1.173
trans.php(218) m n 17(132) 17(147) 0.009+0.001 451 0 1.139

PBLguestbook-1.32 o y 42(329) 42(376) 0.019+0.001 490 1(sql) 1.264
pblguestbook.php(1210) m n 49(329) 42(376) 0.016+0.002 626 1(sql) 1.665

PBLguestbook-1.32 o y 842(6749) 842(7589) 2.57+0.061 13310 1(reg) 4.618
pblguestbook.php(182) m n 774(6192) 740(6674) 1.221+0.007 8184 1(reg) 4.331

Aphpkb-0.71 o y 27(219) 289(2637) 0.045+0.003 2436 1(xss) 1.220
saa.php(87) m n 18(157) 1324(15435) 0.177+0.009 11388 0 1.622
BloggIT 1.0 o y 79(633) 79(710) 0.499+0.002 3569 0 0.558

admin.php(23,25,27) o y 126(999) 126(1123)
o y 138(1095) 138(1231)
m n 79(637) 93(1026) 0.391+0.006 5820 0 0.559
m n 115(919) 127(1140)
m n 127(1015) 220(2000)

proManager-0.72 o y 387(3166) 2697(29907) 1.771+0.042 13900 1(xss) 6.980
message.php(91) m n 423(3470) 2697(29907) 2.091+0.051 19353 0 7.201

Table 1. Experimental results. Application: name of the application and the checked
program point. Version: o-original, m-modified. Res.: y-the intersection of attack strings
is not empty (vulnerable), n-the intersection of attack strings is empty (secure). Final
DFA is the minimized DFA at the checked program point, and Peak DFA is the largest
DFA observed during the fixpoint iteration. state: number of states. bdd: number of
bdd nodes. n: number of warnings raised by Saner. type:(1) xss - cross site scripting
vulnerablity, (2) sql - SQL injection vulnerability, (3) reg - regular expression error.

(implemented in a tool called JSA) to statically determine the values of string ex-
pressions in Java programs. They convert the flow graph into a context free gram-
mar where each string variable corresponds to a nonterminal, and each string
operation corresponds to a production rule. Then, they convert this grammar to
a regular language by computing an over-approximation. Gould et al. [11] use
this grammar-based string analysis technique to check for errors in dynamically
generated SQL query strings in Java-based web applications [7]. Christodorescu
et al. [8] present an implementation of the grammar-based string analysis tech-
nique for executable programs for the x86 architecture. Minamide [13] supports
string-based replacement operations by escaping replace operations to finite-
state transducers, and describes a string analysis similar to JSA to statically
detect cross-site scripting vulnerabilities and to validate pages generated by web
applications written in the PHP language. Wassermann et al. [18] proposed a
static analysis to detect SQL injections following Minamide [13]. There are some
other tools for string analysis [6, 9, 15, 19]. Shannon et al. [15] propose forward
bounded symbolic execution to perform string analysis on Java programs. Simi-
lar to our approach, automata are used to trace path constraints and encode the
values of string variables. They support trim and substring operations. Xie and
Aiken [19] support string assignment and validation operations. Fu et al. [9] and
Choi et al. [6] support string-based replacement (as opposed to language-based
replacement). None of the tools mentioned above addresses language-based re-
placement operations. This defect causes the approximations computed by these
tools to be too coarse for some input sanitization routines.

Language-based replacement has been discussed in computational linguis-
tics [10,12,14,17]. These algorithms are based on the composition of finite state
transducers. By composing specific transducers, constraints like longest match

and first match can be precisely modeled. However, each composition may result
in a quadratic size of non-deterministic automaton, and is more likely to blow-up
compared to our construction. The transducer-based replacement function [14]
has been implemented in Finite State Automata utilities (FSA) [16], where au-
tomata are stored and manipulated using an explicit representation. We use a
symbolic DFA representation based on MBDDs. This symbolic encoding enables
us to perform complex automata operations, such as closure, concatenation, re-
place, and widening, efficiently using the MBDDs.

Balzarotti et al. [1] combine both dynamic and static techniques to ver-
ify PHP programs. They support language-based replacement by incorporating
FSA [16], but they only support bounded computation for loops and approxi-
mate variables updated in a loop as arbitrary strings once the computation does
not converge within a fixed bound. We incorporate the widening operator in [3]
to tackle this problem and obtain a tighter approximation that enables us to
verify a larger set of programs.

Choi et al. [6] also investigates a widening method to analyze strings. The
widening operator is defined on strings and the widening of a set of strings is
achieved by applying the widening operator pairwise to each string pair. The
widening operator we use is defined on automata, and was originally proposed
for arithmetic constraints [3]. The intuition behind this widening operator is
applicable to any symbolic fixpoint computation that uses automata. In [3] it
is proved that for a restricted class of systems the widening operator computes
the precise fixpoint and we extend this result to our analysis. Moreover, in our
experiments, the over-approximation computed by this widening operator works
well to prove the properties we were interested in.

Finally, the use of automata as a symbolic representation for verification
has been investigated in other contexts (e.g., [5]). In this paper we focus on
verification of string manipulation operations in PHP programs.

7 Conclusion

We proposed a symbolic approach for string verification on PHP programs. Our
approach computes a conservative approximation of the set of values that a
string variable can take at a given program point. We use a symbolic automata
representation based on MBDDs and implement the string operations such as
concatenation and replacement on this symbolic representation. Our experiments
demonstrate that the proposed string analysis technique is capable of verifying
the correctness of string sanitization operations in real-world PHP programs.

References

1. D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda, C. Kruegel, and
G. Vigna. Saner: Composing Static and Dynamic Analysis to Validate Sanitization
in Web Applications. In Proc. Symposium on Security and Privacy, 2008.

2. D. Balzarotti, M. Cova, V. Felmetsger, and G. Vigna. Multi-module vulnerability
analysis of web-based applications. In Proc. 14th ACM conference on Computer
and communications security, pages 25–35, New York, NY, USA, 2007. ACM.

3. C. Bartzis and T. Bultan. Widening arithmetic automata. In Proc. 16th Interna-
tional Conference on Computer Aided Verification, pages 321–333, 2004.

4. M. Biehl, N. Klarlund, and T. Rauhe. Algorithms for guided tree automata. In
Proc. First International Workshop on Implementing Automata, WIA ’96, London,
Ontario, Canada, LNCS 1260. Springer Verlag, 1997.

5. A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular model checking. In
Proc. 12th International Conference on Computer Aided Verification, pages 403–
418, 2000.

6. T.-H. Choi, O. Lee, H. Kim, and K.-G. Doh. A practical string analyzer by the
widening approach. In APLAS, pages 374–388, 2006.

7. A. S. Christensen, A. Møller, and M. I. Schwartzbach. Precise analysis of string
expressions. In Proc. 10th International Static Analysis Symposium, SAS ’03,
volume 2694 of LNCS, pages 1–18. Springer-Verlag, June 2003.

8. M. Christodorescu, N. Kidd, and W.-H. Goh. String analysis for x86 binaries. In
Proc. 6th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software
Tools and Engineering (PASTE 2005). ACM Press, September 2005.

9. X. Fu, X. Lu, B. Peltsverger, S. Chen, K. Qian, and L. Tao. A static analysis
framework for detecting sql injection vulnerabilities. In Proc. 31st Annual Inter-
national Computer Software and Applications Conference - Vol. 1- (COMPSAC
2007), pages 87–96, Washington, DC, USA, 2007. IEEE Computer Society.

10. D. Gerdemann and G. van Noord. Transducers from rewrite rules with backref-
erences. In Proc. 9th Conference of the European Chapter of the Association for
Computational Linguistics, pages 126–133, 1999.

11. C. Gould, Z. Su, and P. Devanbu. Static checking of dynamically generated queries
in database applications. In Proc. 26th International Conference on Software En-
gineering, pages 645–654, 2004.

12. L. Karttunen. The replace operator. In Proc. 33rd annual meeting on Association
for Computational Linguistics, pages 16–23, 1995.

13. Y. Minamide. Static approximation of dynamically generated web pages. In Proc.
14th International World Wide Web Conference, pages 432–441, 2005.

14. M. Mohri and R. Sproat. An efficient compiler for weighted rewrite rules. In Proc.
34th annual meeting on Association for Computational Linguistics, pages 231–238.
Association for Computational Linguistics, 1996.

15. D. Shannon, S. Hajra, A. Lee, D. Zhan, and S. Khurshid. Abstracting symbolic
execution with string analysis. In Proc. Testing: Academic and Industrial Confer-
ence Practice and Research Techniques - MUTATION, pages 13–22, Washington,
DC, USA, 2007. IEEE Computer Society.

16. G. van Noord. FSA utilities toolbox. http://odur.let.rug.nl/ vannoord/Fsa/.
17. G. van Noord and D. Gerdemann. An extendible regular expression compiler for

finite-state approaches in natural language processing. In Proc. of the 4th Inter-
national Workshop on Implementing Automata (WIA), pages 122–139. Springer-
Verlag, July 1999.

18. G. Wassermann and Z. Su. Sound and precise analysis of web applications for in-
jection vulnerabilities. In Proc. ACM SIGPLAN 2007 Conference on Programming
Language Design and Implementation, pages 32–41, 2007.

19. Y. Xie and A. Aiken. Static detection of security vulnerabilities in scripting lan-
guages. In Proc. 15th conference on USENIX Security Symposium, pages 13–13,
Berkeley, CA, USA, 2006. USENIX Association.

