
Symbolic Techniques for Planning
with Extended Goals in Non-Deterministic Domains

Marco Pistore and Renato Bettin and Paolo Traverso
ITC-IRST

Via Sommarive 18, 38050 Povo, Trento, Italy

Abstract

Several real world applications require planners that deal with
non-deterministic domains and with temporally extended
goals. Recent research is addressing this planning problem.
However, the ability of dealing in practice with large state
spaces is still an open problem. In this paper we describe
a planning algorithm for extended goals that makes use of
BDD-based symbolic model checking techniques. We im-
plement the algorithm in the MBP planner, evaluate its ap-
plicability experimentally, and compare it with existing tools
and algorithms. The results show that, in spite of the diffi-
culty of the problem, MBP deals in practice with domains of
large size and with goals of a certain complexity.

Introduction
Research in classical planning has focused on the problem of
providing algorithms that can deal with large state spaces.
However, in some application domains (like robotics, con-
trol, and space applications) classical planners are diffi-
cult to apply, due to restrictive assumptions on the plan-
ning problem they are designed (and highly customized)
for. Restrictive assumptions that result from practical ex-
periences are, among others, the hypotheses about the de-
terminism of the planning domain and the fact that goals
are sets of final desired states (reachability goals). Sev-
eral recent works address either the problem of planning for
reachability goals in non-deterministic domains (see for in-
stance (Cimatti, Roveri, and Traverso 1998; Rintanen 1999;
Bonet and Geffner 2000; Jensen and Veloso 2000)), or the
problem of planning for temporally extended goals that
define conditions on the whole execution paths (see for
instance (de Giacomo and Vardi 1999; Bacchus and Ka-
banza 2000)). Very few works in planning relax both the
restrictions on deterministic domains and on reachability
goals, see, e.g., (Kabanza, Barbeau, and St-Denis 1997;
Pistore and Traverso 2001). These works show that plan-
ning for temporally extended goals in non-deterministic do-
mains is theoretically feasible in a rather general framework.
However, they leave open the problem of dealing in prac-
tice with the large state spaces that are a characteristic of
most real world applications. Indeed, the combination of the

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

two aspects of non-determinism and temporally extended
goals makes the problem of plan generation significantly
more difficult than considering one of the two aspects sepa-
rately. From the one side, planning for temporally extended
goals requires general synthesis algorithms that cannot be
customized and optimized to the special case of reachabil-
ity goals. From the other side, compared to planning for
extended goals in deterministic domains, the planner has
to take into account the fact that temporal properties must
be checked on all the execution paths that result from the
non-deterministic outcomes of actions. These two factors
make practical planning for extended goals in large non-
deterministic domains an open and challenging problem.

In this paper we address this problem. The starting
point is the work presented in (Pistore and Traverso 2001),
which provides a theoretical framework for planning in non-
deterministic domains. In (Pistore and Traverso 2001), goals
are formulas in the CTL temporal logic (Emerson 1990).
CTL provides the ability to express goals that take into ac-
count the fact that a plan may non-deterministically result
in many possible different executions and that some require-
ments can be enforced on all the possible executions, while
others may be enforced only on some executions. In order
to show that planning for CTL goals is feasible theoretically,
(Pistore and Traverso 2001) presents a planning algorithm
that searches through an explicit representation of the state-
space. This however limits its applicability to trivial exam-
ples. In this paper we describe in detail a novel planning
algorithm based on symbolic model checking techniques,
and evaluate it experimentally. The algorithm is a major de-
parture from that presented in (Pistore and Traverso 2001),
both theoretically and practically. Theoretically, while (Pi-
store and Traverso 2001) is an explicit-state depth-first for-
ward search, the algorithm presented here is formulated di-
rectly by using symbolic model checking techniques. Start-
ing from the goal formula, it builds an automaton that is then
used to control the symbolic search on sets of states. From
the practical point of view, the algorithm opens up the pos-
sibility to scale-up to large state spaces. We implement the
algorithm in the MBP planner (Bertoli et al. 2001), and pro-
vide an extensive experimental evaluation. The experiments
show that planning in such a general setting can still be done
in practice in domains of significant dimensions, e.g., do-
mains with more than 108 states, and with goals of a certain

166

Proceedings of the Sixth European Conference on Planning

complexity. We compare MBP with SIMPLAN (Kabanza,
Barbeau, and St-Denis 1997), a planner based on explicit-
state search, and show the significant benefits of planning
based on symbolic model checking w.r.t. explicit-state tech-
niques. We also compare the algorithm for extended goals
with the MBP algorithms presented in (Cimatti et al. 2001;
Cimatti, Roveri, and Traverso 1998), that have been cus-
tomized to deal with reachability goals. The general algo-
rithm for extended goals introduces a rather low overhead,
in spite of the fact that it deals with a much more general
problem.

The paper is structured as follows. We first present the
basic definitions on planning for extended goals in non-
deterministic domains. The core of the paper is the presenta-
tion of the planning algorithm, the description of its imple-
mentation in the MBP planner and the experimental eval-
uation. Finally, we draw some conclusions and discusses
related work.

Non-Deterministic Domains, Extended Goals
and Plans

In this section we recall briefly the basic definitions for plan-
ning with extended goals in non-deterministic domains. See
(Pistore and Traverso 2001) for examples and further expla-
nations.

Definition 1 A (non-deterministic) planning domain D is a
tuple (B,Q,A,→), whereB is the finite set of (basic) propo-
sitions, Q ⊆ 2B is the set of states, A is the finite set of ac-
tions, and → ⊆ Q × A × Q is the transition relation. We
write q a→ q′ for (q, a, q′) ∈ →.

The transition relation describes how an action leads from
one state to possibly many different states. We require that
relation→ is total, i.e., for every q ∈ Q there is some a ∈ A
and q′ ∈ Q such that q a→ q′. We denote with Act(q)

∆
= {a :

∃q′. q a→ q′} the set of the actions that can be performed
in state q, and with Exec(q, a)

∆
= {q′ : q

a→ q′} the set
of the states that can be reached from q performing action
a ∈ Act(q).

Definition 2 Let B be the set of basic propositions of a do-
main D and let b ∈ B. The syntax of an (extended) goal g
for D is the following:

g ::= > | ⊥ | b | ¬b | g ∧ g | g∨g | AX g | EX g |
A(gU g) | E(gU g) | A(gW g) | E(gW g).

We define the following abbreviations: AF g = A(>U g),
EF g = E(>U g), AG = A(gW⊥), EF = E(gW⊥).
Extended goals are expressed with CTL formulas. CTL
allows us to express goals that take into account non-
determinism. For instance, it is possible to express the dif-
ferent forms of reachability goals considered in (Cimatti et
al. 2001; Cimatti, Roveri, and Traverso 1998): the goal EF b
requires plans to have a chance of reaching a set of final de-
sired states where b holds (“weak” planning), AF b requires
plans that are guaranteed to achieve the goal (“strong” plan-
ning), and A(EF bW b) requires plans that try to achieve the

goal with iterative trial-and-error strategies (“strong-cyclic”
planning). We can express also different kinds of main-
tainability goals, e.g., AG g (“maintain g”), AG¬g (“avoid
g”), EG g (“try to maintain g”), EG¬g (“try to avoid g”),
and AGEF g (“always maintain a possibility to reach g”).
Moreover, reachability and maintainability requirements can
be combined, like in the cases of AFAG g (“reach a set
of states where g can be maintained”). See (Pistore and
Traverso 2001) for a larger set of examples of extended goals
that can be expressed in CTL.

In order to satisfy extended goals, we need to consider
plans that are strictly more expressive than plans that simply
map states of the world to actions to be executed, like uni-
versal plans (Schoppers 1987), memory-less policies (Bonet
and Geffner 2000), and state-action tables (Cimatti et al.
2001; Cimatti, Roveri, and Traverso 1998). In the case of
temporally extended goals, actions to be executed may also
depend on the “internal state” of the executor, which can
take into account, e.g., previous execution steps. More pre-
cisely, a plan can be defined in terms of an action function
that, given a state and an execution context encoding the in-
ternal state of the executor, specifies the action to be exe-
cuted, and in terms of a context function that, depending on
the action outcome, specifies the next execution context.
Definition 3 A plan for a domain D is a tuple π =
(C, c0, act, ctxt), where C is a set of (execution) contexts,
c0 ∈ C is the initial context, act : Q× C ⇀ A is the action
function, and ctxt : Q×C×Q⇀ C is the context function.
If we are in state q and in execution context c, then
act(q, c) returns the action to be executed by the plan, while
ctxt(q, c, q′) associates to each reached state q′ the new exe-
cution context. Functions act and ctxt may be partial, since
some state-context pairs are never reached in the execution
of the plan.

The execution of a plan results in a change in the cur-
rent state and in the current context. It can therefore be de-
scribed in terms of transitions between state-context pairs,
like (q, c)

a→ (q′, c′). Due to the non-determinism of the
domain, a plan may lead to an infinite number of different
executions. In (Pistore and Traverso 2001) a finite presen-
tation of all possible executions is obtained by defining an
execution structure. It is a Kripke structure (Emerson 1990)
whose set of states is the set state-context pairs, and whose
transitions are the transitions of the plan. According to (Pi-
store and Traverso 2001), a plan satisfies a goal g if CTL
formula g holds on the execution structure corresponding to
the plan.

The Symbolic Planning Algorithm
A planning problem requires to build a plan that satisfies
the goal and is compatible with the given domain (i.e., it is
executable). The algorithm we propose works by building
an automaton, called the control automaton that is used to
guide the search of a plan. The states of the control automa-
ton are the contexts of the plan that is being built, and the
transitions represent the possible evolutions of the contexts
when actions are executed. Control automata are strictly re-
lated to the tree automata proposed in (Kupferman and Vardi

167

1997) as the basic structure for performing CTL synthesis.
The outline of the symbolic planning algorithm is the fol-
lowing:

function symbolic-plan(g0) : Plan
aut := build-aut(g0)
assoc := build-assoc(aut)
plan := extract-plan(aut,assoc)
return plan

It works in three main steps. In the first step, build-aut
constructs the control automaton for the given goal. In the
second step, build-assoc exploits the control automaton to
guide the symbolic exploration of the domain, and asso-
ciates a set of states in the planning domain to each state
in the control automaton. Intuitively, these are the states for
which a plan exists from the given context. In the third step,
extract-plan constructs a plan by exploiting the information
on the states associated to the contexts.

Control automata. Control automata are the key element
for the definition of the planning algorithm.
Definition 4 A control automaton is a tuple A =
(C, c0, T,R), where:
• C is the set of control states (or contexts), and c0 ∈ C is

the initial control state.
• T : C → P(Prop(B)×P(C)×C) is the transition func-

tion, where Prop(B) is any propositional formula con-
structed from basic propositions b ∈ B.
• R = {B1, . . . , Bn}, with Bi ⊆ C, is the set of the red

blocks of the automaton.
The transitions in T (c) describe the different valid evolu-
tions from context c. For each (P,Es,A) ∈ T (c), compo-
nent P constrains the states where the transitions is appli-
cable, while components Es and A describe the contexts
that must hold in the next states, according to the transi-
tion. More precisely, each context E ∈ Es must hold for
“some” of the next states, while A defines the context that
must hold for “all the other” next states. The distinction be-
tween contexts Es and context A is necessary in the case
of non-deterministic domain, since it permits to distinguish
between behaviors that the plan should enforce on all next
states, or only on some of them.

Component R defines conditions on the valid infinite ex-
ecutions of a plan. These coincide with the so called “ac-
ceptance conditions” of automata theory (Kupferman, Vardi,
and Wolper 1994). Acceptance conditions are necessary to
distinguish the control states of a plan where the execution
can persist forever from the control states that should be left
eventually in order to allow for a progress in the fulfillment
of the goal. More precisely, a given red block B ∈ R is
used to represent all the control states in which the execu-
tion is trying to reach or achieve a given condition. If an
execution of a plan persists inside B, then the condition is
never reached, the execution is not accepted and the plan
is not valid. If a control state does not appear in any red
block, then it corresponds to a situation where only safety or
maintainability goals have to be fulfilled, so no progress is
required.

Construction of the control automata. We now define
how the control automaton is constructed from the goal.
Definition 5 The control automaton A = build-aut(g0) is
built according to rules:
• c0 = [g0] ∈ C.
• If [g1, . . . , gn] ∈ C then, for each (P,EX,AX) ∈

progr(g1 ∧ · · · ∧ gn) and for each partition
{EX1, . . . , EXn} of EX:

(P, {order-goals(AX ∪ EXi) : i = 1..n},
order-goals(AX)) ∈ T (c).

Moreover, order-goals(AX ∪ EXi) ∈ C for i = 1..n
and order-goals(AX) ∈ C.

• For each strong until subgoal g of g0, let Bg = {c ∈ C :
head(c) = g}; if Bg 6= ∅, then Bg ∈ R.

Each state of the control automaton corresponds to an or-
dered list of subgoals, representing those subgoals that the
executor should currently achieve. The order of the sub-
goals represents their priorities. Indeed, there are situa-
tions in which it is necessary to distinguish control states
that correspond to the same subgoals according to their pri-
orities. Consider for instance the case of goal gAG =
AG(AF p∧AF q), that requires to keep achieving both con-
dition p and condition q. Two different contexts generated
in the construction of the control automaton for this goal are
[AF p,AF q, gAG] and [AF q,AF p, gAG]. They have the
same subgoals, but the first one gives priority to goal AF p,
while the second one gives priority to goal AF q. By switch-
ing between the two contexts, the plan guarantees that both
the conditions p and q are achieved infinitely often. In gen-
eral, the first goal head(c) in a context c is the goal with the
highest priority, and it is the goal that the planning algorithm
is trying to achieve first.

In order to be able to define the priority of the sub-
goals we need to distinguish three categories of formulas:
the strong until goals (A(U) and E(U)), the weak un-
til goals (A(W) and E(W)), and the transient goals
(AX , EX , ∨ , and ∧). A transient goal is “resolved”
in one step, independently from their priority: prefixes AX
and EX , for instance, express conditions only on the next
execution step. Weak until goals are allowed to hold forever,
without being resolved. Therefore, we assign a low priority
to transient and weak until goals. Strong until goals must
be instead eventually resolved for the plan to be valid. We
assign a high priority to these goals, and, among the strong
until goals, we give priority to the goals that are active since
more steps. Namely, the longer a strong until goal stays ac-
tive and unresolved, the “more urgent” the goal becomes.
In Definition 5 the ordering of subgoals sg is performed by
function order-goals(sg, c). The input context c represents
the list of the subgoals in the old context; it is necessary to
determine the priority among the strong until goals that are
already active in the old context.

One of the key steps in the construction of the transition
function of a control automaton is the function progr. It as-
sociates to each goal g the conditions that g defines on the
current state and on the next states to be reached, accord-
ing to the CTL semantics. This is obtained by unrolling the

168

weak and strong until operators, as shown by the following
rules:

• progr(A(gUh)) = (progr(g)∧AXA(gUh))∨progr(h)
• progr(E(gUh)) = (progr(g)∧EXE(gUh))∨progr(h)
• progr(A(gW h)) = (progr(g) ∧ AXA(gW h)) ∨

progr(h)
• progr(E(gW h)) = (progr(g) ∧ EXE(gW h)) ∨

progr(h).
Function progr commutes with the other operators: e.g.,
progr(g ∧ h) = progr(g) ∧ progr(h). For instance,
progr(AG p) = p∧AXAG p, progr(EF q) = q∨EXEF p,
and progr(AG p ∧ EF q) = (p ∧ q ∧ AXAG p) ∨ (p ∧
AXAG p∧EXEF q). We can assume that formula progr(g)
is written in disjunctive normal form, as in the examples
above. Each disjunct corresponds to an alternative evolu-
tion of the domain, i.e., to alternative plans we can search
for. Each disjunct consists of the conjunction of three kinds
of formulas, the propositional ones b and ¬b, those of the
form EX f , and those of the form AXh. In the algorithm,
we make this structure explicit and represent progr(g) as a
set of triples

progr(g) = {(Pi, EXi, AXi) | i ∈ I}.

where p ∈ Pi are the propositional formulas of the i-th dis-
junct of progr(g), and f ∈ EXi (h ∈ AXi) if EX f (AXh)
belongs to the i-th disjunct.

In the case the componentEX of a disjunct (P,EX,AX)
contains more than one subgoal, the generation of the con-
trol automaton has to take into account that there are differ-
ent ways to distribute the subgoals in EX to the set of next
states. For instance, if set EX contains two subgoals, then
we can require that both the subgoals hold in the same next
state, or that they hold in two distinct next states. In the gen-
eral case, any partition EX1, . . . , EXn of the subgoals in
EX corresponds to a possible way to associate the goals to
the next states. Namely, for each i = 1..n, there must be
some next state where subgoals AX ∪ EXi hold. In all the
other states, subgoals in AX must hold.

A plan for a given goal is not valid if it allows for execu-
tions where a strong until goals becomes eventually active
and is then never resolved. In order to represent these unde-
sired behaviors, the construction of the automaton generates
a red block Bg for each set of contexts that share the same
“higher-priority” strong until goal g.

Associating states to contexts. Once the control automa-
ton for a goal g0 is built, the planning algorithm proceeds by
associating to each context in the automaton a set of states
in the planning domain. The association is built by function
build-assoc:

(1) function build-assoc(aut) : Assoc
(2) foreach c ∈ aut.C do assoc[c] := Q
(3) green-block := {c ∈ C : ∀B ∈ aut.R . c 6∈ B}
(4) blocks := aut.R ∪ {green-block}
(5) while (∃B ∈ blocks . need-refinement(B)) do
(6) if B ∈ aut.R then foreach c ∈ B do assoc[c] := ∅

(7) while (∃c ∈ B . need-update(c)) do
(8) assoc[c] := update-ctxt(aut,assoc, c)
(9) return assoc
The algorithm starts with an optimistic association, that as-
signs all the states Q in the domain to each context (line
2). The association is then iteratively refined. At every it-
eration of the loop (lines 5-8), a block of contexts is cho-
sen, and the corresponding associations are updated. Those
states are removed from the association, from which the al-
gorithm discovers that the goals in the context are not satis-
fiable. The algorithm terminates when a fixpoint is reached,
that is, whenever no further refinement of the association is
possible: in this case, function need-refinement(B) at line
5 evaluates to false for eachB ∈ blocks and the guard of the
while fails. The chosen block of contexts may be either one
of the red blocks, or the block of states that are not in any
red block (this is the “green” block of the automaton). In the
case of the green block, the refinement step must guarantee
only that all the states associated to the contexts are “safe”:
that is, they never lead to contexts where the goal cannot be
achieved anymore. This refinement (lines 7-8) is obtained
by choosing a context in the green block and by “refresh-
ing” the corresponding set of states (function update-ctxt).
Once the fixpoint is reached and all the refresh steps on the
states in B do not change the association (i.e., no context in
B needs updates), the loop at lines 7-8 is left, and another
block is chosen. In the case of a red block, not only does the
refinement guarantee that the states in the association are
“safe”, but also that the contexts in the red block are even-
tually left. Indeed, as we have seen, executions that persist
forever in the control states of a red block are not valid. To
this purpose, the sets of states associated to the red-block are
initially emptied (line 6). Then, iteratively, one of the con-
trol states in the red-block is chosen, and its association is
updated (lines 7-8). In this way, a least fixpoint is computed
for the states associated to the red block.

The core step of build-assoc is function
update-ctxt(aut,assoc, c). It takes as input the au-
tomaton, aut = (C, c0, T,R), the current association of
states assoc and a context c ∈ C, and returns the new set
of states to be associated to c.

update-ctxt(aut,assoc, c) ∆
=
{
q ∈ Q :

∃a ∈ A, ∃(P,Es,A) ∈ T (c) :
q ∈ states-of(P) ∧
(q, a) ∈ strong-preimage(assoc[A]) ∧
(q, a) ∈ multi-weak-preimage({assoc[E] : E ∈ Es})

}
.

For a state to be associated to the context, the next states
corresponding to the execution of some action a ∈ A
should satisfy the transition conditions of the automaton.
Let us consider an action a and an element (P,Es,A) ∈
T (c). Formula P describes conditions on the current states.
Only those states that satisfy property P are valid (condi-
tion q ∈ states-of(P)). A is the context that should be
reached for “all the other” next states, i.e., for all the next
states not associated with any context in Es. Since all the
contexts in Es contain a superset of the goals in context

169

A, we check, without loss of generality, that all the next
states are valid for context A. In order to satisfy this con-
straint, function strong-preimage is exploited on the set
assoc[A] of states that are associated to context A. Func-
tion strong-preimage(Q) returns the state-action pairs that
guarantee to reach states in Q:

strong-preimage(Q)
∆
=

{(q, a) : a ∈ Act(q) ∧ Exec(q, a) ⊆ Q}.
Set Es contains the contexts that must be reached for
some next states. To satisfy this constraint, function
multi-weak-preimage is called on the set {assoc[E] : E ∈
Es} whose elements are the sets of states that are associated
to the contexts in Es. Function multi-weak-preimage re-
turns the state-action pairs that guarantee to cover all the sets
of states received in input:

multi-weak-preimage(Qs)
∆
= {(q, a) : a ∈ Act(q) ∧

∃i : Qs 7→ Exec(q, a) . ∀Q ∈ Qs . i(Q) ∈ Q}.
This function can be seen as a generalization of function
weak-preimage(Q), that computes the state-action pairs
that may lead to a state in Q: weak-preimage(Q) =
{(q, a) : Exec(q, a) ∩ Q 6= ∅}. Indeed, in function
multi-weak-preimage(Qs) an injective map is required to
exist from the Qs to the next states obtained by the exe-
cution of the state-action pair. This map guarantees that
there is at least one next state in each set of states is Qs.
We remark that function update-ctxt is the critical step of
the algorithm, in terms of performance. Indeed, this is the
step where the domain is explored to compute preimages of
sets of states. BDD-based symbolic techniques (Burch et al.
1992) are exploited in this step to obtain a compact repre-
sentation of the sets of states associated to the contexts, and
to allow for an efficient exploration of the domain.

Extracting the plan. Once the association assoc from
contexts to sets of states is built for automaton aut, a plan
can be easily obtained. The set of contexts for the plan
coincides with the set of contexts of the control automa-
ton aut. The information necessary to define functions act
and ctxt is implicitly computed during the execution of the
function build-assoc. Indeed, functions update-ctxt and
multi-weak-preimage determine, respectively, the action
act(q, c) to be performed from a given state q in a given
context c, and the next execution context ctxt(q, c, q′) for
any possible next state q′. A plan can thus be obtained from
a given assignment by executing one more step of the refine-
ment function and by collecting these information.

Experimental Evaluation
We have implemented the planning algorithm inside the
MBP planner. MBP (Bertoli et al. 2001) is built on top of a
state-of-the-art symbolic model checker, NUSMV (Cimatti
et al. 1998). Further information on MBP can be found at
http://sra.itc.it/tools/mbp/.

The experimental evaluation is designed to test the scala-
bility of the approach, both in terms of the size of the do-
main and in terms of the complexity of the goal. In the

experiments we also draw a comparison with planning al-
gorithms for extended goals based on an explicit-state ex-
ploration of the domain, and in particular with SIMPLAN.
SIMPLAN (Kabanza, Barbeau, and St-Denis 1997) imple-
ments different approaches to planning in non-deterministic
domains. We focus on the logic-based planning compo-
nent, where extended goals can be expressed in (an exten-
sion of) Linear Temporal Logic (LTL). LTL formulas can
be used in SIMPLAN to describe user-defined, domain- and
goal-dependent control strategies, that can provide aggres-
sive pruning of the search space. In the experiments we test
the performance of SIMPLAN with and without strategies.
Another important comparison term are the algorithms pro-
vided by MBP for the specific case of reachability goals
(Cimatti et al. 2001; Cimatti, Roveri, and Traverso 1998).
Some of the experiments are designed to evaluate the over-
head of the general algorithm for extended goals w.r.t. the
optimized algorithms.

We consider the “robot delivery” planning domain, first
described in (Kabanza, Barbeau, and St-Denis 1997). This
domain describes a building, composed by 8 rooms con-
nected by 7 doors. A robot can move from room to room,
picking up and putting down objects. Some rooms in the
domain may be designed as “producer” and as “consumer”
rooms: an object of a certain type can disappear if positioned
in the corresponding consumer room, and can then reappear
in one of the producer rooms. Furthermore, in order to add
non-determinism to the system, some of the doors may be
designed to close without intervention of the robot: they
are called “kid-doors” in (Kabanza, Barbeau, and St-Denis
1997).

The experiments have been performed on a Pentium III
700 MHz with 4 Gb RAM of memory running Linux. The
time limit was set to 1 hour (3600 seconds). All the exper-
iments have been run on 5 random instances. In the tables,
we report the average time required to complete. In the case
of MBP, the reported times include also the pre-processing
time necessary in MBP to build the symbolic representation
of the planning domain. In the case only some of the in-
stances terminate in the time limit, we report the average on
the instances that terminate and the number t of terminated
instances as [t/5]. If all the instances of an experiment do
not terminate, the corresponding cell is left empty.

The first two experiments coincide with the experiments
proposed in (Kabanza, Barbeau, and St-Denis 1997). Ex-
periment 1 consists in moving objects into given rooms and
then maintain them there. No producer and consumer rooms
are present in this experiment. We fix the number of objects
present in the domain to 5. The number n of objects to be
moved ranges from 1 to 5, while the number k of kid-doors
ranges from 0 to 7. The CTL goal is the following:

AFAG(in(obj1, room1) ∧ · · · ∧ in(objn, roomn)).

Experiment 2 consists in reactively delivering produced ob-
jects to the corresponding consumer room. The number p of
producer and consumer rooms ranges 1 to 4, while the num-
ber k of kid-doors ranges form 0 to 7. The CTL goal is the
following:

AG
(∧

i=1..p
in(obji,prodi)→ AF (in(obji, consi))

)

170

MBP SIMPLAN with CS SIMPLAN w/o CS
n = 1 n = 2 n = 3 n = 4 n = 5 n = 1 n = 2 n = 3 n = 4 n = 5 n = 1 n = 2 n = 3

k = 0 0.7 3.4 22.1 143.9 1094.6 0.5 0.7 1.2 1.6 1.7 311.9 1145.8 -
[1/5]

k = 1 0.7 4.5 33.7 195.3 1219.6 1.0 1.9 6.3 4.8 9.1 106.5 0.5 -
[2/5] [1/5]

k = 2 0.8 5.0 38.9 275.1 1648.2 8.4 11.4 11.5 116.7 128.6 - - -
[4/5]

k = 3 0.8 6.4 41.2 276.9 2163.2 16.0 40.1 378.9 727.0 - - - -
[2/5] [4/5] [3/5] [3/5]

k = 4 1.0 5.6 45.7 336.9 2185.3 22.2 1478.5 275.7 - - - - -
[3/5] [3/5] [2/5]

k = 5 1.2 7.8 43.4 350.2 1866.1 680.5 352.8 420.1 - - - - -
[3/5] [2/5] [1/5]

k = 6 1.2 8.8 52.1 426.2 2505.1 1143.2 - - - - - - -
[3/5] [4/5]

k = 7 1.4 9.4 42.7 303.3 2886.1 - - - - - - - -
[2/5]

Table 1: Results of Experiment 1.

MBP SIMPLAN with CS SIMPLAN w/o CS
p = 1 p = 2 p = 3 p = 4 p = 1 p = 2 p = 3 p = 4 p = 1 p = 2 p = 3 p = 4

k = 0 0.0 6.4 124.6 2053.6 0.3 2.4 28.7 303.6 33.2 721.1 - -
[4/5] [1/5]

k = 1 0.0 6.1 137.6 2426.9 0.8 15.1 360.2 309.8 9.2 17.8 - -
[3/5] [2/5] [1/5]

k = 2 0.0 6.3 112.5 2684.1 15.0 63.0 918.0 - - - - -
[4/5] [1/5]

k = 3 0.0 5.6 123.1 2063.1 245.7 3289.8 - - - - - -
[1/5]

k = 4 0.1 12.8 130.6 2325.5 12.2 - - - - - - -
[3/5]

k = 5 0.1 11.3 140.6 2944.9 1386.9 - - - - - - -
[1/5]

k = 6 0.1 7.9 130.3 2940.2 1104.6 - - - - - - -
[3/5] [1/5]

k = 7 0.1 12.4 140.8 2703.2 1.8 - - - - - - -
[1/5]

Table 2: Results of Experiment 2.

The results of these two experiments are reported in Ta-
bles 1 and 2 for MBP, for SIMPLAN with control strate-
gies (SIMPLAN with CS), and for SIMPLAN without control
formulas (SIMPLAN w/o CS). MBP and SIMPLAN exhibit
complementary behaviors in these tests. The performance
of MBP is left rather unaffected when kid-doors are added,
but the time required to find a plan grows exponentially in
the number n of objects to be moved and in the number p
of producer rooms. SIMPLAN with control strategies scales
linearly with respect to the number n of objects, and behaves
better than MBP also when the number p of producer rooms
grows. SIMPLAN, however, suffers remarkably when kid-
doors are added to the domain.

Some remarks are in order on the different behaviors of
the two systems in the first experiment in the case the num-
ber n of objects to be moved grows. The number of steps
that the robot must perform grows linearly in the number of
objects, while the number of interesting states of the plan-

ning domain grows exponentially. MBP searches for a plan
for all the states in the domain. This explains its exponential
grow. The search control strategies in SIMPLAN, instead,
prune most of the search space, at least in the case no kid-
doors are present. The plan is therefore built in linear time
w.r.t. its length. When the search control strategies are disal-
lowed in SIMPLAN, a larger portion of the state space should
be explored, and the performance becomes much worse. In-
deed, plans are found in the time limit only for very small
values of parameters k, n, and p.

Experiment 3 is designed to compare the performance of
the general extended-goals planning algorithm of MBP with
the optimized algorithms provided by MBP for reachability
goals. In this case, the robot is required to reach a state
where a goal condition is satisfied. The goal conditions have
the following form:

p = in(obj1, room1) ∧ · · · ∧ in(objn, roomn).

We consider three optimized algorithms for reachability

171

goals. The first algorithm tries to build Strong plans, i.e.,
plans that reach condition p despite non-determinism. It
corresponds to temporally extended goal AF p. The other
algorithms try to build Strong-Cyclic plans by exploiting
two different approaches, the Global and the Local ap-
proach described in (Cimatti et al. 2001). We recall from
Section 2 that a strong-cyclic plan defines a trial-and-error
strategy, corresponding to the temporally extended goal
A(EF pW p). Strong-cyclic plans cannot be expressed in
SIMPLAN: indeed, SIMPLAN is not able to express those
goals that require a combination of universal and existential
path quantifiers.

Strong-cyclic plans are interesting in the cases where
strong plans do not exist due to the non-determinism in the
domain. In order to allow for such situations, in this exper-
iment we use a variant of the robot delivery domain, where
the robot may fail to open a kid-door. (In the original do-
main, the robot always succeeds in opening a door; kid can
close it again only from the next round.) If a kid-door is on
the route of the robot, no strong plan exists for that problem:
the robot can only try to open the door until it succeeds.

The results of this experiment are shown in Table 3. We
report only the case of 0 kid-doors (where strong plans al-
ways exist), and the case of 7 kid-doors (where strong plans
never exist). In all the cases, the number n of objects to
be moved ranges from 1 to 5. The upper part of the table
covers the “strong” reachability planning problem and com-
pares the optimized MBP algorithm (Strong), the general
algorithm on goal AF p, and, for completeness, SIMPLAN.
In the case k = 7, the times in Table 3 are those required by
MBP to report that no strong plan exists. The lower part of
the table considers the “strong-cyclic” reachability planning
problem and compares the two strong-cyclic algorithms of
MBP (SC-Global and SC-Local) and the general MBP al-
gorithm on goal A(EF pW p). The experiment shows that
the generic algorithm for temporally extended goals com-
pares quite well with respect to the optimized algorithms
provided by MBP. Indeed, the generic algorithm requires
about twice the time needed by the optimized algorithm in
the case of the strong plans and about 2.5× the time of
the optimized “global” algorithms for the strong-cyclic plan-
ning. The “local” algorithm behaves better than the generic
algorithm (and than the “global” one) in the case a strong
plan exists, i.e., k = 0; it behaves worse in the case no plan
exists, i.e., k = 7. This difference in the performances of
the MBP algorithms derives from the overhead introduced
in the generic algorithm by the need of managing generic
goals, and from the optimizations present in the specific al-
gorithms. For instance, the Strong and SC-Local algorithms
stop when a plan is found for all the initial states, while the
generic algorithm stops only when a fixpoint is reached.

Experiment 4 tests the scalability of the algorithm w.r.t.
the complexity of the goal. In particular, we consider the
case of sequential reachability goals in the modified domain
of Experiment 3. Given a sequence p1, . . . , pt of conditions
to be reached, with

pi = in(obji,1, roomi,1) ∧ · · · ∧ in(obji,n, roomi,n),

we consider the “strong” sequential reachability planning

problems

AF (p1 ∧AF (p2 ∧ · · ·AF (pt)))

and the “strong-cyclic” sequential reachability planning
problem

A(EF (p1 ∧ · ·A(EF pt W pt))W(p1∧··A(EF pt W pt))).

In Table 4 we present the outcomes of the experiment. In
the strong case, we present the results also for SIMPLAN. In
the strong-cyclic case a comparison is not possible, as SIM-
PLAN is not able to represent this kind of goals. The num-
ber n of objects is set to 3, while the nesting level t ranges
from 1 to 6. The cases of 0 and of 7 kid-doors are consid-
ered. The experiment shows that MBP scales about linearly
in the number of nested temporal operators, both in the case
of strong and in the case of strong-cyclic multiple reachabil-
ity. In the case of 0 kid-doors and strong reachability, also
SIMPLAN with search control strategies scales linearly, and
the performance is much better than MBP. Without search
strategies, SIMPLAN is not able to complete any of the tests
in this experiment.

The experimental evaluation shows that MBP is able to
deal with relatively large domains (some of the instances of
the considered experiments have more than 108 states) and
with high non-determinism, and that the performance scales
well with respect to the goal complexity. In terms of ex-
pressiveness, CTL turns out to be an interesting language
for temporally extended goals. With respect to LTL (used
by SIMPLAN), CTL can express goals that combine univer-
sal and existential path quantifiers: this is the case, for in-
stance, of the strong-cyclic reachability goals. On specific
planning problems, (e.g., reachability problems) the over-
head w.r.t. optimized state-of-the-art algorithms is accept-
able. The comparison with SIMPLAN shows that the algo-
rithms based on symbolic techniques outperform the explicit
planning algorithms in the case search control strategies are
not allowed. With search control strategies, SIMPLAN per-
forms better than MBP in the case of domains with a low
non-determinism. The possibility of enhancing the perfor-
mance of MBP with search strategies is an interesting topic
for future research.

Conclusions and Related Work
In this paper, we have described a planning algorithm based
on symbolic model checking techniques, which is able to
deal with non-deterministic domains and goals as CTL tem-
poral formulas. This work extends the theoretical results
presented in (Pistore and Traverso 2001) by developing a
symbolic algorithm that fully exploits the potentiality of
BDDs for the efficient exploration of huge state spaces. We
implement the algorithm in MBP, and perform a set of ex-
perimental evaluations to show that the approach is practi-
cal. We test the scalability of the planner depending on the
dimension of the domain, on the degree of non-determinism,
and on the length of the goal. The experimental evalua-
tion gives positive results, even in the case MBP is com-
pared with hand-tailored domain and goal dependent heuris-
tics (like those of SIMPLAN), or with algorithms optimized
to deal with reachability goals.

172

k = 0 k = 7
n = 1 n = 2 n = 3 n = 4 n = 5 n = 1 n = 2 n = 3 n = 4 n = 5

AF p 0.7 3.8 26.9 160.2 1316.3 0.3 0.3 0.4 0.4 0.4
Strong 0.4 2.3 16.1 139.5 766.8 0.3 0.3 0.3 0.4 0.4
SIMPLAN with CS 0.4 0.7 1.2 1.6 2.1 - - - - -
SIMPLAN w/o CS - - - - - - - - - -

A(EF pW p) 1.3 9.9 46.1 601.6 2547.3 2.3 12.9 75.0 589.8 -
SC-Global 0.6 3.6 26.0 266.6 1253.3 1.1 5.0 39.9 238.6 1880.6
SC-Local 0.2 1.3 9.3 111.1 615.1 2.1 15.3 152.8 1525.8 -

Table 3: Results of Experiment 3.

k = 0 k = 7
t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

AF 35.1 97.5 158.7 196.1 197.9 290.4 0.3 0.5 0.4 0.6 0.6 0.8
SIMPLAN with CS 1.2 2.9 4.2 6.8 7.8 11.5 - - - - - -
SIMPLAN w/o CS - - - - - - - - - - - -

A(EF W) 128.1 195.1 307.7 358.0 583.0 632.4 151.3 279.8 342.8 544.0 642.9 799.4

Table 4: Results of Experiment 4.

Besides SIMPLAN, very few attempts have been made
to build planners that work in practice in such a gen-
eral setting like the one we propose. The issue of “tem-
porally extended goals” is certainly not new. However,
most of the works in this direction restrict to determinis-
tic domains, see for instance (de Giacomo and Vardi 1999;
Bacchus and Kabanza 2000). Most of the planners able to
deal with non-deterministic domains, do not deal with tem-
porally extended goals (Cimatti, Roveri, and Traverso 1998;
Rintanen 1999; Bonet and Geffner 2000).

Planning for temporally extended goals is strongly related
to the “synthesis problem” (Kupferman and Vardi 1997). In-
deed, the planner has to synthesize a plan from the given
goal specification. We are currently investigating the appli-
cability of the proposed algorithm to synthesis problems.

In this paper we focus on the case of full observability. An
extension of the work to the case of planning for extended
goals under partial observability is one of the main objec-
tives for future research.

References
Bacchus, F., and Kabanza, F. 2000. Using temporal logic
to express search control knowledge for planning. Artificial
Intelligence 116(1-2):123–191.
Bertoli, P.; Cimatti, A.; Pistore, M.; Roveri, M.; and
Traverso, P. 2001. MBP: a Model Based Planner. In Proc.
of IJCAI’01 workshop on Planning under Uncertainty and
Incomplete Information.
Bonet, B., and Geffner, H. 2000. Planning with incomplete
information as heuristic search in belief space. In Proc. AIPS
2000.
Burch, J. R.; Clarke, E. M.; McMillan, K. L.; Dill, D. L.; and
Hwang, L. J. 1992. Symbolic Model Checking: 1020 States
and Beyond. Information and Computation 98(2):142–170.
Cimatti, A.; Clarke, E.; Giunchiglia, F.; and Roveri, M.

1998. NUSMV: a reimplementation of SMV. In Proc.
STTT’98, 25–31.
Cimatti, A.; Pistore, M.; Roveri, M.; and Traverso, P. 2001.
Weak, Strong, and Strong Cyclic Planning via Symbolic
Model Checking. Technical report, IRST, Trento, Italy.
Cimatti, A.; Roveri, M.; and Traverso, P. 1998. Auto-
matic OBDD-based Generation of Universal Plans in Non-
Deterministic Domains. In Proc. AAAI’98.
de Giacomo, G., and Vardi, M. 1999. Automata-theoretic
approach to planning with temporally extended goals. In
Proc. ECP’99.
Emerson, E. A. 1990. Temporal and modal logic. In van
Leeuwen, J., ed., Handbook of Theoretical Computer Sci-
ence, Volume B: Formal Models and Semantics. Elsevier.
chapter 16, 995–1072.
Jensen, R., and Veloso, M. 2000. OBBD-based universal
planning for synchronized agents in non-deterministic do-
mains. Journal of Artificial Intellegence Research 13:189–
226.
Kabanza, F.; Barbeau, M.; and St-Denis, R. 1997. Plan-
ning control rules for reactive agents. Artificial Intelligence
95(1):67–113.
Kupferman, O., and Vardi, M. 1997. Synthesis with incom-
plete informatio. In Proc. Int. Conf. on Temporal Logic.
Kupferman, O.; Vardi, M.; and Wolper, P. 1994.
An automata-theoretic approach to branching-time model
checking. In Proc. CAV’94.
Pistore, M., and Traverso, P. 2001. Planning as Model
Checking for Extended Goals in Non-deterministic Do-
mains. In Proc. IJCAI’01. AAAI Press.
Rintanen, J. 1999. Constructing conditional plans by a
theorem-prover. Journal of Artificial Intellegence Research
10:323–352.
Schoppers, M. J. 1987. Universal plans for Reactive Robots
in Unpredictable Environments. In Proc. IJCAI’87.

173

