
Symbolic User-Defined Periodicity in
Temporal Relational Databases

Paolo Terenziani

Abstract—Calendars and periodicity play a fundamental role in many applications. Recently, some commercial databases started to

support user-defined periodicity in the queries in order to provide “a human-friendly way of handling time” (see, e.g., TimeSeries in

Oracle 8). On the other hand, only few relational data models support user-defined periodicity in the data, mostly using “mathematical”

expressions to represent periodicity. In this paper, we propose a high-level “symbolic” language for representing user-defined

periodicity which seems to us more human-oriented than mathematical ones, and we use the domain of Gadia’s temporal elements in

order to define its properties and its extensional semantics. We then propose a temporal relational model which supports user-defined

“symbolic” periodicity (e.g., to express “on the second Monday of each month”) in the validity time of tuples and also copes with frame

times (e.g., “from 1/1/98 to 28/2/98”). We define the temporal counterpart of the standard operators of the relational algebra, and we

introduce new temporal operators and functions. We also prove that our temporal algebra is a consistent extension of the classical

(atemporal) one. Moreover, we define both a fully symbolic evaluation method for the operators on the periodicities in the validity times

of tuples, which is correct but not complete, and semisymbolic one, which is correct and complete, and study their computational

complexity.

Index Terms—Temporal relational model and algebra, user-defined symbolic periodicity in the validity time, high-level “symbolic”

language, symbolic (intensional) evaluation method, semisymbolic evaluation method, user-friendly treatment of periodicity, integration

and extension of artificial intelligence and temporal databases techniques.

�

1 INTRODUCTION

O ne challenge is for applications to provide a human-friendly
way of handling time. Standard relational data is very

different from the way people relate to time. People think in terms
of calendars and clock units presentation of Time Series
Cartridge in Oracle 8 (see www.oracle.com\databases\
timeseries.html).

Time plays a fundamental role in many real-world
applications; thus, many approaches extended relational
databases to deal with the transaction time and the validity
time [36] of tuple (see, e.g., [32], [39]). Moreover, many real-
world applications, including planning, scheduling, process
control, multimedia, active databases, banking, law, etc.,
need to deal with periodic events and the interest towards
the treatment of periodic events is rapidly increasing. Thus,
dealing with periodicity and user-defined calendars in the
data and/or in the queries is a very important task, which
has been faced by many approaches in the area of temporal
databases (consider, e.g., [4], [5], [6], [7], [18], [22], [23], [29],
[34], [45], [46], [49]). In particular, an implicit (i.e., not
extensional) treatment is advantageous since it allows one
to store data holding at periodic times in a compact way
instead of explicitly listing all the instances of the given
periodicity (e.g., all “days” in a possibly infinite frame of
time). Baudinet et al. [5] distinguished between the
approaches dealing in an implicit way with periodicity in
the data using deductive rules and those using constraints.

Regarding the approaches based on deductive rules,
consider, e.g., [15], [16], which dealt with periodicity via
the introduction of the successor function in Datalog.
Kabanza et al. proposed a very influential approach using
constraints [22], [23], that extended classical relational
databases to deal with periodic data by representing infinite
temporal information by generalized tuples defined by
linear repeating points (points of the form c1+c2*X) and
constraints on points (e.g., X1 � X2+c3). Kabanza also
defined a temporal algebra for this model and studied its
complexity. Toman et al. [45] extended Datalog with integer
periodic constraints. Tuzhilin and Clifford [46] proposed a
survey of many approaches.

Constraint-based approaches usually represent periodi-
city by mathematical formulae based on a granularity fixed
a priory. On the other hand, recently, many works have
pointed out the importance of dealing with different (user-
defined) granularities [7], [8], [18] and/or supporting multi-
ple user-defined calendric systems (see, e.g., [31], [38]). In the
meantime, many approaches (mainly in the area of artificial
intelligence) developed user-friendly, high-level “symbolic”
(i.e., not “mathematical,” as in constraint-based approaches)
languages to allow users to define calendars, periodicities,
and granularities (consider, e.g., [9], [17], [27], [34]). High-
level symbolic languages (like mathematical languages)
provide big advantages with respect to the extensional
approaches: Besides saving space, they may allow a more
efficient treatment of time (see, e.g., [34]). Even more
important, they provide a human-oriented way of handling
time, allowing users to define periodicity (and possibly
multiple calendars and granularities) in a natural, incre-
mental, and compositional way. These advantages have
been widely debated, e.g., in [27], [34]; in particular, the
user-friendliness of symbolic languages with respect to

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 2, MARCH/APRIL 2003 1

. The author is with the Dipartimento di Scienze e Tecnologie Avanzate,
Universitá del Piemonte Orientale "Amedeo Avogadro," Corso Borsalino
54, 15100 Alessandria, Italy. E-mail: terenz@di.unito.it.

Manuscript received 8 July 1999; revised 2 Nov. 2000; accepted 3 Apr. 2001.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number 110196.

1041-4347/03/$17.00 � 2003 IEEE

mathematical ones will be fully discussed in Section 8.2 of
this paper. However, no approach (except only [34], to the
best of our knowledge) supports user-defined “symbolic”
definitions of periodicity in the relational data. In this paper,
we propose an approach dealing with user-defined “sym-
bolic” periodicity in relational databases, both in the queries
and in the data, thus overcoming such a limitation.

2 OUTLINE OF OUR OVERALL APPROACH

The general outline of our work can be graphically
represented as in Fig. 1. In a bottom up way, the approach
presented in this paper can be summarized as follows:

1. We use Gadia’s temporal elements [20] and set-
operators (e.g., intersection \T) on them.

2. We define a “symbolic” high-level language to
describe user-defined periodicity. We give the
extensional semantics to the language in terms of
the domain of temporal elements, which is also used
to demonstrate the properties of the operators in the
language (e.g., intersection \C between periodicities).

3. We propose a relational temporal model in which
periodicity (expressed using the language in point 2
can be stored as the validity time of tuples. We also
define the temporal counterpart of standard alge-
braic operators (e.g., temporal Cartesian product �P)
and introduce new temporal operators and func-
tions. The properties of the resulting algebra are
based on the properties of the operators of the
symbolic language in point 2.1

4. We define a fully symbolic (intensional) and a
semisymbolic implementation (evaluation method)
of the operators in point 2. These evaluation
methods support an intensional (implicit) treatment
of user-defined periodicities in the validity time of
tuples (see point 3 above). We prove the correctness
and completeness of these methods on the basis of
the extensional semantics of the operators in 2, i.e., on
the domain of temporal elements. Notice, however,

that points 1, 2, and 3 are independent of the
evaluation method (e.g., fully symbolic vs. semisym-
bolic) one chooses to adopt.

The development of a temporal SQL based on the newly
defined temporal algebra is outside the goals of this paper,
as well as the definition of a Data Manipulation Language
to insert, delete, and modify tuples in the temporal
database.

The paper is organized as follows: Section 3 sketches the
domain of temporal elements, introduces our high-level
symbolic language to support user-defined periodicity
(which is mainly a revision of Leban’s language [27]), and
studies its expressive power. Sections 4, 5, and 6 introduce
our original approach to symbolic user-defined periodicity
in relational databases. In particular, Section 4 introduces
our temporal model, which allows one to express both the
frame-time (e.g., “from 1/1/1998 to 30/3/1998”) and the
user-defined periodicity (e.g., “on the second Monday of
each month”) in the validity time of tuples. Moreover,
Section 4 also presents a temporal relational algebra dealing
with periodicity in the tuples and discusses its properties
(equivalence and reduction to the standard atemporal
algebra). Section 5 presents a fully symbolic evaluation
method of the algebraic operators on periodicity, which is
correct but not simplification-complete and analyzes its
computational complexity. Section 6 briefly sketches a
semisymbolic evaluation method which is both correct and
simplification-complete. Section 7 shows some examples of
query answering. The discussion of related approaches in
the literature and comparisons are demanded to the last
section (Section 8). Moreover, Section 8 also presents some
final considerations, conclusions, and a sketch of our future
work. Proofs are reported in the technical report RT58-00
[41] (the postscript RT58-00.ps of the report can be get at the
URL: http://www.di.unito.it/~terenz/TECH-REP/).

3 A HIGH-LEVEL SYMBOLIC LANGUAGE FOR

REPRESENTING USER-DEFINED PERIODICITY

In this section, we define our high-level language to deal
with user-defined periodicities and study its properties.

3.1 The Domain of Temporal Elements

At the bottom level, we use Gadia’s temporal elements [20]

(henceforth called: TE). Adopting TE is a quite standard way

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 2, MARCH/APRIL 2003

Fig. 1. Outline of our symbolic approach to periodicity in temporal relational DataBases.

1. For example, in our approach, temporal Cartesian Product �P

determines the intersection \C between the periodicities in the validity

time of tuples. In turn, given two periodicities C1 and C2, C1 \C C2

corresponds (in the extensional semantics) to Gadia’s intersection \T
between the temporal elements [20] which constitute the extensions of C1

and C2, i.e., to ExtensionðC1Þ \T ExtensionðC2Þ.

of dealing with time within the DB community, for which

many implementations and optimizations have already been

developed (see, e.g., [35], [37]). Gadia’s definition of TE is

based on the following notions. First, in Gadia [20], time is a

linearly ordered set. For the sake of simplicity, in this paper,

we assume also that time is discrete. A TE is a finite union of

intervals i1 [. . . [in. In turn, time intervals are convex sets of

points between a starting and an ending point, and may be

closed, open to the left, and/or to the right. Gadia also

defined set-operators (i.e., \, [, :, and �) on TE’s, which are

basically standard set operators applied on the set of time

points denoted by TE’s. For example, given TE1¼½3; 5� [
½8; 12� and TE2¼½4; 6� [½15; 18�, we have, e.g., TE1 [TE2 ¼
½3; 6� [½8; 12� [½15; 18� and TE1 \ TE2 ¼ ½4; 5�. TE is closed

under these operators; TE with \, [, and : is a Boolean

algebra [20].

In the rest of the paper, we adopt the following

notational variants. As in many other approaches (see,

e.g., [32], [39]), we denote a TE i1 [. . . [in by a set

fi1; . . . ; ing. We denote by i� and iþ the starting and ending

points of an interval i ¼< i�; iþ > and indicate by \T, [T,

:T, and �T Gadia’s set operators.

3.2 Symbolic Language for User-Defined
Periodicity

In our approach, we aim at providing a “human-oriented”

(and, thus, “user-friendly”) way of dealing with time in

temporal relational databases. In our opinion, considering

the suggestions emerging from the analysis of natural

language is an important step towards such a goal. In the

linguistic analysis, several authors (see, e.g., Van Eynde

[47]) pointed out the importance of distinguishing between

the frame time in which the repeated event occurred (e.g.,

“from 1/1/98 to 31/3/98”) and its periodicity (e.g., “on each

Saturday”). We thus chose to represent a periodic event as a

pair << d1; d2 >; p > and defined it as follows: < d1; d2 >

is a time interval representing the frame time, and d1 and

d2 are two dates representing its starting and ending points

(or �1 and/or þ1 in case of infinite frame times); p

represents a user-defined symbolic expression (in the

language presented below) denoting a periodicity.

3.2.1 Semantics: Extension Function

As in [24], we choose to use the well-known and widely

exploited domain of TE [20] in order to define the

extensional semantics of periodicity definitions. We intro-

duce the extension function Ext, which, given an expression

C defining a periodicity, provides its extensional semantics

in terms of the set of time intervals which constitute the

extension of C. For example, if C is the definition of

Mondays using our language, Ext(C) is the TE representing

the set of all Mondays (each one represented by a time

interval). Given a frame time < x1; x2 > and a periodicity

C, the function BExt (Bounded EXTension) gives as output

the extensions of C in the interval < x1; x2 > (i.e., the

extension of the periodic event << x1; x2 >;C >), and is

defined by Definition 1 (notice that BExtðð�1;þ1Þ;CÞ is

equal to Ext(C)).

Definition 1. Let Ext be the extension function.

BExtð< x1; x2 >;CÞ
¼ fi 2 ExtðCÞnCut Intersectsði; < x1; x2 >g �;

where (in case i and < x1; x2 > are closed intervals)
Cut_Intersects gives as a result the interval ½i�; iþ� if i� �
x1 ^ iþ � x2; the interval ½i�; x2� if i� � x1 ^ iþ > x2 ^ i�
< x2; the interval ½x1; iþ� if i� < x1 ^ iþ � x2 ^ iþ > x1 and
� otherwise.

In some cases, the definition of a periodicity is such that
its extension is a TE covering the whole time-line. We call
these periodicities convex periodicities (which correspond,
e.g., to calendars in [27]). In the following, we describe the
operators of our symbolic language to define user-defined
periodicity, showing their extensional semantics on TE’s.

3.2.2 Convex Periodicity

The first step when defining a periodicity is the definition of
a basic periodicity (the basic granularity—tick—of the
system, e.g., “Days” in this section). Moreover, extensions
of a periodicity can be more easily represented as distances
from a given reference time point (e.g., 1/1/1998 in this
section; we express dates as day/month/year). The
approach we propose is independent of the basic periodi-
city and of the reference time point. In our approach, a
convex periodicity C can be built on the basis of another
convex periodicity C0 using the operator Convex_Cal,
whose type is the following:

P� CPer�N� . . .�N! CPer (N stands for natural

numbers and CPer for a convex periodicity).

(UC1) C ¼ Convex CalðX0;C0; ðg1; . . . ;gkÞÞ.
UC1 defines a new periodicity C on the basis of anchor

time point X0, of a convex periodicity C0, and of a set of
natural numbers g1; . . . ; gk, stating that C is obtained from
C0 by “merging together to form the smallest covering
interval” sets of g1; . . . ; gk consecutive extensions of C, using
the anchor time point X0 as a synchronization point for the
generation of extensions. For example, weeks and months2

can be defined as in (ex.1) and (ex.2); 5/1/1998 is the start of
a European week.

(ex.1) Weeks = Convex_Cal(5/1/1998; Days; (7))

(ex.2) Months = Convex_Cal(1/1/1998;Days;

(31,28,31,30,31,30,31,31,30,31,30,31,31,28,31,30,

31,30,31,31,30,31,30,31,31,29,31,30,31,30,31,31,

30,31,30,31,31,28,31,30,31,30,31,31,30,31,30,31))

(E1) shows the extension of Weeks in the time from 1/2/1998
to 30/3/1998; this extension is a TE (where, e.g., [0,0]
represents the first day of 1998 and [31,31] the first day of
February, giving the distance of its starting and its ending
points from the reference time):

TERENZIANI: SYMBOLIC USER-DEFINED PERIODICITY IN TEMPORAL RELATIONAL DATABASES 3

2. Notice that, if we considered that years multiple of 100 have 365 days
except multiple of 400 (which have 366 days), the list in the definition of
months should have 400*12 entries. To the best of our knowledge, this
limitation is shared by all the approaches to the definitions of periodicities
and calendars in the artificial intelligence and in the temporal databases
literature (of course, some syntactic sugar can be used to avoid the
repetition of identical patterns).

(E1) BExt([1/2/1998,30/3/1998],Weeks)
={[31,31],[32,38],[39,45],[46,52],[53,59],

[60,66],[67,73],[74,80],[81,87],[88,88]}

3.2.3 Nonconvex Periodicity

Nonconvex periodicities are periodicities whose extensions

have “holes” on the timeline. For example, the extension of

Mondays is a TE which is not convex. In our approach,

nonconvex periodicities can be defined as the Select_Periods

operator. The inputs of Select_Periods are a natural number

n, a relational operator rop, and two periodicities (convex or

not) C1 and C2, and the output is a new periodicity C. The

type of Select_Periods is the following: N� Per� Rop�
Per! Per (Per stands for a periodicity in our language and

Rop for a relational operator). In our approach, we consider

the relational operators Meets, Met-by, Starts, During, Equal,

Overlaps, Overlapped-by, and Finishes (as defined in Allen’s

Interval Algebra [3]) plus the operators Cut_Intersects above

and NSDur (acronym for Non Strict DURing, denoting strict

and nonstrict containment), which represent the following

Allen’s re lat ion: NSDurði; jÞ ¼ Startsði; jÞ, Duringði; jÞ,
Equalði; jÞ, or Finishesði; jÞ. From the syntactic point of view,

we represent an application of Select_Periods as in (UC2.1).

(UC2.1) C = n / C1 rop C2

For example, Select_Periods can be used in order to define

Mondays as the set of the first days of the (European) weeks

(see ex.3), and to define the second Mondays of each month

as shown in (ex.4):

(ex.3) Mondays = 1/ Days NSDur Weeks

(ex.4) 2nd Mondays-of-Months

= 2/ Mondays NSDur Months

The extensional semantics of the periodicities built using

Select_Periods can be always given in terms of TE’s. For

example,

(E2) BExt([1/2/1998,30/3/1998], Mondays)
= {[32,32], [39,39], . . ., [81,81], [88,88]} and

(E3) BExt([1/2/1998,30/3/1998],

2nd-Mondays-of-Months)= {[39,39], [67,67]}

We also introduce in our language other ways of

selecting periods. For example, (UC2.2) selects the nth

intervals starting from the last interval of each set Si (i.e., the

nth in the reverse order) and (UC2.3) allows to specify a

range of selections.

(UC2.2) C = -n / C1 rop C2 (where n is a natural

number)

(UC2.3) C = [n-m] / C1 rop C2 (where n and m are

natural numbers, and n � m)

For example, the first three days of each week (consider-

ing each week as a unique three-days-long time interval)

can be defined as in (ex.5) and the extensional semantics of

(ex.5) from 1/2/98 to 30/3/98 is the TE shown in (E4):

(ex.5) 1st3Days_of_Weeks =

[1-3] / Days NSDur Weeks

(E4) BExt([1/2/98,30/3/98],

1st3Days_of_Weeks) = {[32,34], [39,41],
[46,49],. . . , [81,84], [88,88]}

Finally, we introduce the set-operators of intersection \C ,
union [C , difference�C , and complement:C, which
perform the usual set-operations on periodicities and on
periodic events. We give their extensional semantics in
terms of union [T, intersection \T , difference�T , and
complement:T on TE’s [20]. For example, given two
periodic events P1 and P2, the extension of P1 \C P2 is
the intersection \T between the extension of P1 and the
extension of P2 (which are TE’s). Formally,

BExtðP1 \C P2Þ ¼ fBExtðP1Þ \T BExtðP2Þg
BExtðP1 [C P2Þ ¼ fBExtðP1Þ [T BExtðP2Þg
BExtð:CP1Þ ¼ f:TBExtðP1Þg
BExtðP1�C P2Þ ¼ fBExtðP1Þ �T BExtðP2Þg

The operators we introduced can be composed in order
to define complex user-defined periodic events/periodi-
cities. For example, one might incrementally define the set
of “Mondays and Wednesdays which are the first days of
the months in 1998” by defining Weeks (as in ex.1), Mondays
(as in ex.3) and Wednesdays (analogous to ex.3),
1stDays of Months ð1=Days NSDur Months >Þ and using
them in a definition like (ex.6).

(ex.6) 1stMon&Wed 1998 ¼ ðMondays [C WednesdaysÞ
\Cð½1=1=1998; 31=12=1998�1stDays of MonthsÞ

3.2.4 Properties

Property 1. Convex Cal, Select Periods, \C, [C, :C, and �C

operate (by definition) on periodicities/periodic events whose
extensions are TE’s and give as output periodicities/periodic
events whose extensions are still TE’s.

The semantics of \C, [C, :C, and �C is based on the
corresponding operators on TE’s (i.e., \T, [T, :T, and �T,
respectively). If we define ALL as the periodicity whose
extension is the TE fð�1;þ1Þg, and “Ø” as the periodicity
whose extension is {}, the algebraic properties of \T, [T, and
:T (see [20]) also hold for \C, [C, and :C.

Property 2. The following properties hold for \C, [C, and :C:
Commutativity of \C and [C; Associativity of \C and [C;
Distributivity of \C with respect to [C and vice-versa;
Absorption: E1 \C ðE1 [C E2Þ ¼ E1 and E1 [C ðE1 \C E2Þ
¼ E1; Existence of neutral elements 0 ¼ � and 1 ¼ ALL such
that E [C � ¼ E and E \C ALL ¼ E; Complementation:
E \C ð:CEÞ ¼ � and E [C ð:CEÞ ¼ ALL.

Property 2 trivially follows from the definition of \C, [C,
and :C and from the properties of Gadia’s set operators on
TE [20]. As regards the operator Select Periods, it is clearly
not commutative; on the other hand, Property 3 holds.

Property 3. The operator Select_Periods (applied using the
relational operator NSDur) is associative. Select Periods does
not distribute over Intersection \T and Union [T, which, in
turn, do not distribute over Select Periods.

3.3 Expressive Power

Let us call “Cal” our language for defining periodic events
(i.e., a pair << s; e >;C > —see Section 3.2). In order to

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 2, MARCH/APRIL 2003

evaluate Cal’s expressive power, we compare it with both a
standard reference approach to periodicity (namely, Pre-
sburger arithmetic) and a very recent approach proposed
within the DataBase community (see [8], [9]).

Presburger Arithmetic is the additive fragment of the
arithmetic over Natural numbers and is decidable by
quantifier elimination (see, e.g., [19]). Moreover, Enderton
proved Property 4:

Property 4 [19: Theorem 32F]. A set of natural numbers is
definable in (N, 0, S, <, +) (also called Presburger
Arithmetic) iff it is eventually periodic (where eventually
periodic numbers are defined in Definition 2).

Definition 2 [19]. A set D of natural numbers is periodic if for
some positive p, a number n is in D iff nþ p is in D; D is
eventually periodic iff there exist positive numbers M and p
such that for all n greater than M, n 2 D iff nþ p 2 D.

We draw the comparison between Cal and Presburger
arithmetic at the extensional level. We notice that each periodic
event in Cal has a temporal extent, which is a set of time
intervals. Moreover, since our time intervals are convex by
definition, they can be compactly represented by a pair
<start point, end point>. In turn, each time point can be
represented by a Natural number (see Definition 3). Thus, we
could compare the sets of pairs of Natural numbers defined by
Cal with those defined by Presburger arithmetic. Such a
comparison is carried on in a separate ongoing paper of
ours. On the other hand, in this paper, we show that, even
in case we restrict our attention to sets of Natural numbers,
the expressiveness of Cal (or, better, of Cal�; see below) and
of Presburger arithmetic is the same. First of all, since
Presburger arithmetic is over Natural numbers, we have to
restrict our approach to deal only with finite and right-
infinite periodic events. This can be obtained by restricting
Cal, imposing that the starting point of each frame time
cannot be less than the reference time point (RT, which is
assumed to have the value “0”). Let Cal� be the restricted
language. We can now introduce our notion of definability
for Cal� and state Property 5 (the proof is in [41]).

Definition 3. Let StartEndPointsð<< s; e >;C >Þ be the
function that returns the set of starting and ending points of
the time intervals that constitute the temporal extent of the
periodic event << s; e >;C > in Cal�. Moreover, given a set
of time points S, let NNum(S,RT,BP) be the function that
returns the set of Natural numbers obtained by evaluating the
distance of each point in S from the reference time point RT,
using the basic granularity BP (given a periodic event
<<s; e>;C> , the set of numbers NNumðStartEndPoints
ð<<s; e>;C >Þ;RT;BPÞ can be evaluated as shown in [41]).

Definition 4. A periodic event <<s; e>;C> expressed in Cal�

defines the set of natural numbers NNumðStartEndPoints
ð<< s; e >;C >Þ;RT;BPÞ.

Property 5. Given the Definition 4 above of definability for
Cal�, the expressions in Cal� define the eventually periodic
sets of natural numbers (i.e., the same set of numbers defined
by Presburger Arithmetic).

Recently, Bettini et al. [8] and Bettini and De Sibi [9]
proposed a mathematical characterization of granularity,

aiming at providing a standard reference in the area of
temporal databases. Since Bettini’s granularities are a
proper superset of periodic granularities (corresponding to
our periodic events), they constitute a natural reference to
evaluate the expressiveness of Cal. Bettini et al. [8] defined
granularities as mappings from integers to subsets of the
time domains. They defined periodical granularities (which
are those granularities which are periodical with respect to
the basic granularity) and classified them on the basis of
two main parameters: boundedness of the extensions and
convexity of the time intervals in the extensions [8], [9].
Finally, Bettini and De Sibi [9] extended Leban’s approach
to deal also with nonconvex (called gap) intervals. On the
basis of their definitions, Bettini and De Sibi showed that,
given a no-gap periodical granularity G, there is an equivalent
periodicity C expressed using Leban’s language, and vice-versa.
Since our language Cal is quite close to Leban’s one, we use
the same technique in order to prove that Cal covers no-gap
periodical granularities3 in [9], i.e., those periodical granula-
rities in which each granule is a convex time interval (i.e.,
no gap is allowed in a single granule). We first define
equivalence between a periodical granularity in [9] and a
periodic event in Cal and then we prove Property 6 (the proof
is in [41]).

Definition 5. A periodical granularity in [9] is equivalent to a
periodic event in Cal (see Section 3) if and only if they denote
the same subsets of the time domain.

Property 6. Given a no-gap periodical granularity G (defined as
in [9]), there is an equivalent periodic event << s; e >;C >
expressed using Cal, and vice-versa.

4 TEMPORAL MODEL AND ALGEBRA

In this section, we extend the relational model and algebra
to cope with periodic events.

4.1 Periodic Tables

In our approach, a temporal database consists of standard
atemporal tables, bitemporal tables [36], and also of periodic
tables, with a data part, a validity time T, and a transaction
time. Additional system tables store the definitions of user-
defined periodicities. The validity time T of each tuple in a
periodic table is a pair consisting of a time interval
(representing a frame time) and a symbolic expression
(defined in the language in Section 3) representing a
periodicity (e.g., < ½1=10=98 - 31=1=99�;Mon : 12-13 [C Wed :
10-12 > in the first tuple of COURSES in Fig. 2). In the
following, we focus only on periodic tables and, for the
sake of clarity and brevity, we do not consider the

TERENZIANI: SYMBOLIC USER-DEFINED PERIODICITY IN TEMPORAL RELATIONAL DATABASES 5

3. Notice that the fact that we only consider “no-gap” periodical
granularities does not mean that we only consider periodicities which cover
the whole time line (i.e., convex periodicity in the terminology in
Section 3.2.2). In fact, we also consider nonconvex periodicities such as,
e.g., “Mondays” (see Section 3.2.3). We left out only the possibility of
dealing with cases in which time intervals “per se” in the extensions of a
periodicity are nonconvex. For example, let us consider the periodicity
“Mondays plus Wednesdays.” We can deal with it using union [C (i.e., MW
= Mondays [C Wednesdays). However, the extension of MW is a set of
convex time intervals covering each one a day, being it a Monday or a
Wednesday. On the other hand, our language does not allow one to define a
periodicity whose extension is a set of nonconvex time intervals in which
the same interval covers a Monday and a Wednesdays (having a gap in it).

transaction time. Data part is not compulsory in periodic
tables, which may contain as validity time any periodicity
defined using our language (provided that a definition has
been stored in a dedicated system table). Tuples in the
same table may hold at different periodicities and
granularities (e.g., 11th Hours of Mondays vs. first three
Days of each Month). Fig. 2 shows a simplified example of
a timetable in a school. COURSES states, for each course
(attribute Course-Cod), teacher, classroom, and validity
time. OFFICE describes the office-hours of teachers. MEET
gives classroom and time of meetings (Meet-Cod). In the
example, we take Hours as the basic periodicity. XXX:n-m is
a mnemonic symbolic name for the interval consisting of
the (n+1)-th, ..., (m)th hours of day XXX. For example, the
user definition for “Wed:10-12” (stored in a separate
dedicated table) can be given as shown by (ex.7) below,
and has as extension Wednesdays between 10 and 12.
Finally, 1stMon of Months can be defined as in (ex.8).

(ex.7) Wed:10-12 = [11-12] \ Hours NSDur Wednesdays

(ex.8) 1stMon of Months ¼ 1 \ Mondays NSDur Months

4.2 Algebraic Operators on Periodic Tables: Basic
Issues

In our model, each validity time << d1; d2 >;C > is a
symbolic (intensional) representation of a temporal element
(i.e., BExtð< d1; d2 >;CÞ). Thus, we could operate at the
extensional level, applying Gadia’s operators [20]. On the
other hand, we define the operators �P, �P, �P, �P, [P,
which extend standard snapshot operators (i.e., �, �, �, �,
[) to work on periodic tables, operating directly on our
symbolic representation.4 We denote by Sch(R) the schema
of the data part of R and, by t(S), a tuple t restricted to the
schema S. t(FT) denotes the frame time of a tuple t and t(PER)
its periodicity (e.g., if t is the first tuple of COURSES, t(FT) =
[1/10/98, 31/11/99] and tðPERÞ ¼ Mon : 12-13 [C Wed :

10-12Þ. Finally, \I stands for standard intersection between

two time intervals.
An important issue concerns the treatment of validity

times of tuples with equal data part in Projection, Union,

and Difference since one has to compose only the periodi-

cities of those tuples whose frame times intersects in time.

Let us consider, e.g., the example in Fig. 3, where we have

two periodic tables R1 and R2 containing tuples with equal

data part t (omitted in the figure), and different validity

times, and we want to compute R ¼ R1 [P R2 (with no loss

of generality, in this example, we represent frame times as

pair of numbers; Mon stands for Mondays, etc.).
The time interval [10,12) is covered by the frame time of

the 1st tuple of R1 only, so that the tuple

t1 ¼ # tj < ½10; 12Þ;Mon [C Tue [C Wed > #

belong to R (notation: we use “#” as tuple delimiter). On the

other hand, [12,13) is covered by the 1st tuple of R1 and by

the 1st tuple of R2. Thus, the union of the periodicities of the

two tuples (i.e., ðMon [C Tue [C WedÞ [C ðWed [C ThuÞÞ
must be given in output, i.e.,

t2 ¼ #tj < ½12; 13Þ;Mon [C Tue [C Wed [C Thu > # 2 R:

Since [13,13] is covered by the 1st tuple of R1 and by both

tuples of R2,

t3 ¼ # tj < ½13; 13�;Mon [C Tue [C Wed [C Thu [C Fri > #

belongs to R, etc. Thus, in general, the definition of [P (and

of �P and �P) involve considering the fragments (e.g.,

[10,12), [12,13), [13,13], (13,15], [16,16], [19,20] in the

example above) of frame times of the tuples with equal

data part.

4.3 Defining Fragments

In the following, given a tuple t and a relation R, EqData(t,R)

denotes the set of all (and only) the tuples in R having the

same data part as t. Let t be a tuple in a periodic table R0 and

let tðR0Þ indicate the data part of t. Let R a periodic table

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 2, MARCH/APRIL 2003

4. Notice that the very same table can contain different periodicities
expressed at different user-defined granularities and that the operators of
the relational algebra operate on tables regardless of whether the
granularities are different or not.

Fig. 2. Timetable in a school.

(possibly R0) such that SchðRÞ ¼ SchðR0Þ. We define EqData

as follows:

Definition 6. EqDataðt; RÞ ¼ fsns 2 R; sðRÞ ¼ tðRÞg.

Projection, union, and difference should consider the set

of all the frame times of tuples t0 in EqData(t,R). Let FT 0sðSÞ
denote the set of the frame times of a set S or tuples.

Definition 7. FT 0sðSÞ ¼ ftðFTÞnt 2 Sg.

Now, using all the starting and ending points of the

intervals in FT’s(EqData(t,R)), one can subdivide the parts

of the timeline covered by FT’s(EqData(t,R)) into smaller

nonoverlapping subintervals, which cover all spans of time

covered by intervals in FT’s(EqData(t,R)) and have as

endpoints the endpoints of such intervals (see Fig. 4). Let

Fragments(FT’s(EqData(t,R)) be the set of such subintervals.

Given a set ISet of intervals representing frame times,

let IStarts(ISet) and IEnds(Iset) be the sets of starting

and ending points of the intervals in ISet, and let

IBoundsðIsetÞ ¼ IStartsðIsetÞ [IEndsðIsetÞ, and let us as-

sume, for the sake of brevity, that all intervals in ISet are

closed (only point 4 in the definition below is affected by

this assumption). Fragments(Iset) can be defined as follows:

Definition 8. FragmentsðISetÞ ¼ fi; time-intervalðiÞg such

that

1. 9j 2 ISetNSDurði; jÞ ^ ,
2.

8j time-intervalðjÞ; j 2 ISet; 8p time-pointðpÞ; p 2 j)
9j0time-intervalðj0Þ; j0 2 FragmentsðISetÞ ^ p 2 j0^;

3.

8p time-pointðpÞ; p 2 IBoundsðISetÞ)
not ð9j0time-intervalðj0Þ; j0 2 FragmentsðISetÞ ^
Duringðp; j0ÞÞ ^; and

4.

ði ¼ ½i�; iþ� if i� 2 IStartsðISetÞ ^ iþ 2 IEndsðISetÞÞ _
ði ¼ ½i�; iþÞ if i� 2 IStartsðISetÞ ^ iþ 2 IStartsðISetÞÞ _
ði ¼ ði�; iþ� if i� 2 IEndsðISetÞ ^ iþ 2 IEndsðISetÞÞ _
ði ¼ ði�; iþÞ if i� 2 IEndsðISetÞ ^ iþ 2 IStartsðISetÞÞ:

Intuitively, condition 1 states that each interval i in
Fragments(ISet) must be contained (properly or not) into
an interval in ISet. Condition 2 states that Fragments(ISet)
covers all time points covered by ISet. Condition 3 states that
no starting/ending point of ISet can be properly contained
(predicate During(p,i) holds if the point p is such that
i� < p < iþ) into any interval in Fragments(ISet); this grants
that the intervals in Fragments(ISet) are nonoverlapping and
are the smallest intervals one can build considering the
points in IBounds as starting and ending points. Finally,
condition 4 states how starting/ending points of i are
obtained, given the time points in IStarts and IEnds. The
graphical example in Fig. 4 better illustrates the intuition
underlying the definition of Fragments(Iset). The frame
times in Fig. 4 are those we used in the example in Fig. 3. In
the example in Fig. 4, ISet = {[10,15],[12,13],[13,16],[19,20]},
IStarts = {10,12,13,19}, IEnds = {13,15,16,20}, IBounds = {10,12,
13,15,16,19,20}, and Fragments(ISet) = {[10,12),[12,13),[13,13],
(13,15],(15,16],[19,20]}. For example, the first interval
i = [10,12) in Fragments(ISet) is obtained by taking as starting
point the first point in IBounds (i.e., 10). The ending point
should be the next point in IBounds (i.e., 12). However, since
12 2 IStarts, the interval is open to the right. The next
interval has 12 as a starting point, the next point in IBounds
(i.e., 13) as an ending point, and so on.

TERENZIANI: SYMBOLIC USER-DEFINED PERIODICITY IN TEMPORAL RELATIONAL DATABASES 7

Fig. 3. R ¼ R1 [P R2 (in case tuples denoted by 1, 2, 3, and 4 have the same data part). Only the validity time T is shown.

Fig. 4. Evaluation of fragments of the set of time intervals {[10,15],
[12,13],[13,16],[19,20]}. The result (shown in bold in the figure) is the set
{[10,12),[12,13),[13,13],(13,15],(15,16],[19,20]}.

4.4 Primitive Algebraic Temporal Operators

Now, we can define the operators �P, �P, �P, �P, [P, which
extend the standard snapshot algebraic operators (i.e., �, �,
�, �, [) to operate on periodic tables. Notice that, in all the
definitions, tables contain only those tuples t such that both
t(FT) and t(PER) are not empty. Card(S) denotes the
cardinality of a set S, and Intersects(i,j) holds if two time
intervals i and j intersect in time (formally, it stands for the
disjunction of Allen’s relations [3] Overlaps(i,j), Over-
lapped-by(i,j), Starts(i,j), Started-by(i,j), Contains(i,j), Dur-
ing(i,j), Equal(i,j), Finishes(i,j), or Finished-by(i,j)).

Selection. (Atemporal) selection selects the tuples whose
data part satisfies a condition (which is a condition on the
data part only), regardless of its temporal part.

Schð�P ðRÞÞ ¼ SchðRÞ;
�P ðRÞ ¼ ftjt 2 R; ðtðRÞÞg:

Cartesian product. We chose to adopt the intersection
semantics for the Cartesian product. Thus, the FT of the
resulting tables is the (time interval) intersection \I of the
frame times, and the periodicity is the intersection \C
between periodicities.

SchðR1�P R2Þ ¼ SchðR1Þ [SchðR2Þ;
R1�P R2 ¼ fsj9t1 2 R1; 9t2 2 R2; sðR1Þ ¼ t1ðR1Þ;
sðR2Þ ¼ t2ðR2Þ; sðFTÞ ¼ t1ðFTÞ \I t2ðFTÞ;
sðPERÞ ¼ t1ðPERÞ \C t2ðPERÞ; sðFTÞ 6¼ �; sðPERÞ 6¼ �g:

Union. The union operator [P makes the union of two
periodic tables R1 and R2. Tuples with different data part are
put unchanged into the resulting table. On the other hand,
the union of a set S of tuples with equal data part (e.g., of the
tuples in EqDataðt;R1Þ [EqDataðt;R2ÞÞ is obtained as
exemplified in Section 4.2. More formally, such a union is a
set of j tuples, where j is the cardinality of Fragments(FT’s(S))
(i.e., Card(Fragments(FT’s(S))) = j). Each resulting tuple has
the same data part, has as the frame time one of the
fragments (say I), and as periodicity the union of the
periodicities of all the tuples t01; . . . ; t

0
k in S such that t0iðFTÞ

covers I, 1 � i � k; k � 1 (i.e., t01ðPERÞ [C . . . [C t0kðPERÞÞ.
Formally, union is defined as follows:

SchðR1 [P R2Þ ¼ SchðR1ÞðSchðR1Þ ¼ SchðR2ÞÞ
R1 [P R2 ¼ fsjð9t1 2 R1,

CardðEqDataðt1;R1Þ [EqDataðt1;R2ÞÞ ¼ 1,

sðR1Þ ¼ t1ðR1Þ; sðFTÞ ¼ t1ðFTÞ; sðPERÞ ¼ t1ðPERÞÞ,
OR ð9t12R1;CardðEqDataðt1;R1Þ[EqDataðt1;R2ÞÞ>1,

9I; t01; . . . ; t0ksðR1Þ ¼ t1ðR1Þ; sðFTÞ ¼ I,

sðPERÞ ¼ t01ðPERÞ [C . . . [C t0kðPERÞ,
where I 2 FragmentsðFT0sðEqDataðt1;R1Þ [
EqDataðt1;R2ÞÞÞ and t01; . . . ; t

0
k are all and only the

tuples t0 2 ðEqDataðt1;R1Þ [EqDataðt1;R2ÞÞ such

that NSDurðI; t0ðFTÞÞ holds,

OR ð9t22R2;CardðEqDataðt2;R1Þ[EqDataðt2;R2ÞÞ¼1,
sðR1Þ¼t2ðR2Þ; sðFTÞ¼ t2ðFTÞ; sðPERÞ¼ t2ðPERÞÞ,

OR ð9t22R2;CardðEqDataðt2;R1Þ[EqDataðt2;R2ÞÞ>1,

9I; t01; . . . ; t0ksðR1Þ ¼ t2ðR1Þ; sðFTÞ ¼ I,

sðPERÞ ¼ t01ðPERÞ [C . . . [C t0kðPERÞ, where

I2FragmentsðFT0sðEqDataðt2;R1Þ[EqDataðt2;R2ÞÞÞ

and t01; . . . ; t
0
k are all and only the tuples

t0 2 ðEqDataðt2;R1Þ [EqDataðt2;R2ÞÞ such that

NSDurðI; t0ðFTÞÞ holds}.

Projection. Projection can be used to select data
attributes. In case the data parts of the tuples obtained
by projection on the attributes A is different, the frame
time and the periodicity are not changed by Projection.
On the other hand, for each tuple t such that
CardðEqDataðtðAÞ;RðAÞÞÞ > 1 (i.e., such that there is at
least another tuple t0 in R such that tðAÞ ¼ t0ðAÞ; RðAÞ
indicates the restriction of a table R to the attributes in A)
the union of periodicities must be performed in the
intersecting parts of the frame times, as in the case of
union above. More precisely, projection is defined as
follows:

Schð�P AðRÞÞ ¼ AðA � SchðRÞÞ
�P AðRÞ ¼ fsjð9t1 2 R;CardðEqDataðt1ðAÞ;RðAÞÞÞ ¼ 1,
sðAÞ ¼ t1ðAÞ; sðFTÞ ¼ t1ðFTÞ; sðPERÞ ¼ t1ðPERÞÞ OR

ð9t; I; t01; . . . ; t0kt 2 R, CardðEqDataðtðAÞ;RðAÞÞÞ > 1,

sðAÞ¼tðAÞ; sðFTÞ¼ I; sðPERÞ¼ t01ðPERÞ[C. . .[C t0kðPERÞ,
where I 2 FragmentsðFT0sðEqDataðtðAÞ;RðAÞÞÞÞ and

t01; . . . ; t
0
k are all and only the tuples

t0 2 ðEqDataðtðAÞ;RðAÞÞÞ such that

NSDurðI; t0ðFTÞÞ holds }.

Difference. Difference between two periodic tables R1
and R2 gives as result a table containing all the tuples of R1
which are different in the data part from all tuples in R2.
Tuples with the same data part are dealt with considering
the fragments of their frame times (as in the case of union).
In particular, let S1 = EqData(t,R1) and S2 = EqData(t,R2).
Then, the fragments F ¼ FragmentsðFT0sðS1 [S2ÞÞ must be
considered. For each time interval (fragment) I 2 F, let
ft1; :::tkg the set of all tuples in S1 whose frame time covers
I, and let ft01; . . . ; t0hg the set of all tuples in S2 whose frame
time covers I. Then, the tuple

t0 ¼ # tj < I; ðt1ðPERÞ [C . . . [C tkðPERÞÞ�C

ðt01ðPERÞ [C . . . [C t0hðPERÞÞ > #

belongs to R, if its periodicity is not empty. Formally,

SchðR1�P R2Þ ¼ SchðR1ÞðSchðR1Þ ¼ SchðR2ÞÞ
R1�P R2 ¼ fsjð9t1 2 R1;CardðEqDataðt1;R1Þ [
EqDataðt1;R2ÞÞ ¼ 1; sðR1Þ ¼ t1ðR1Þ; sðFTÞ ¼
t1ðFTÞ; sðPERÞ ¼ t1ðPERÞÞ OR

ð9 t; I; t01; . . . ; t0k; t001 ; . . . ; t00ht 2 R1CardðEqDataðt;R1Þ [
EqDataðt;R2ÞÞ>1; sðR1Þ ¼ tðR1Þ; sðFTÞ ¼ I; sðPERÞ ¼
ðt01ðPERÞ [C. . .[C t0kðPERÞÞ �C ðt001ðPERÞ [C . . . [C t00j ðPERÞÞ
where I 2 FragmentsðFT0sðEqDataðt;R1Þ [EqDataðt;R2ÞÞÞ
and t01; . . . ; t

0
k ðk � 1Þ are all and only the tuples

t0 2 EqDataðt;R1Þ such that NSDurðI; t0ðFTÞÞ holds and

t001 ; . . . ; t
00
j ðj � 0Þ are all and only the tuples

t00 2 EqDataðt;R2Þ such that NSDurðI; t00ðFTÞÞ holds, and

sðPERÞ 6¼ �5 }.

For example, given the tables R1 and R2 in Fig. 3, R ¼
R1�P R2 is shown in Fig. 5.

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 2, MARCH/APRIL 2003

5. Obviously, in case |EqData(t,R2)|=0, the difference is simply
t01ðPERÞ [C . . . [C t0kðPERÞ.

4.5 Temporal Operators and Functions

We now introduce new operators and functions that are

unique to the temporal algebra, focusing only on the
Extension function and on the temporal operators selecting

tuples on the basis of temporal conditions involving only the
validity time of tuples independently of each others. In our

model, the validity time is composed by a frame time and
by a periodicity. Thus, temporal selection can involve a

frame time (SelectPt, SelectIn), a periodicity (SelectPer), or
both components (SelectPtPer, SelectInPer). Moreover, as

regards frame times, the selection condition may compare it

with a time point (SelectPt, SelectPtPer) or with a time
interval (SelectIn, SelectInPer).

. SelectPt (SelectPoint). SelectPt applies to a periodic
table R, a relation Rel (Before or After) and a time
point P and selects all tuples in R occurring in a time
in relation Rel with the time point P. The frame time
t(FT) of each tuple in R is restricted to the subpart of
it which satisfies Rel, and the resulting table contains
all those tuples whose frame time and periodicity are
not empty. For example, the case where Rel = Before
is shown below, where Cut_Before applies on an
interval < i�; iþ > and a point p and gives as a
result the interval < i�; iþ > if iþ < p; the interval
< i�; pÞ if i� < p � iþ, and � otherwise.

SchðSelectPtBefore;PðRÞÞ ¼ SchðRÞ
SelectPtBefore;PðRÞÞ ¼ fs j 9t1 2 R; sðRÞ ¼ t1ðRÞ,
sðPERÞ ¼ t1ðPERÞ; sðFTÞ ¼ Cut Beforeðt1ðFTÞ;PÞ;
sðFTÞ 6¼ � }.

For example, given the table OFFICE in Fig. 2,

SelectPtBefore;1=9=98ðOFFICEÞ selects tuples whose
frame time is (at least partially) before 1/9/98,

giving as result

Res ¼ f#P11j < ½1=1=98; 1=9=98Þ;
Mon : 11-13 [C Tue : 9-11 > #;

#A02j < ½1=1=98; 1=9=98Þ;Mon : 14-16 > #g:

. SelectIn (Select Interval). SelectIn is similar to
SelectPt above, selecting (i.e., “cutting,” via the
operator Cut_Intersects introduced in Section 3.2.1)
the part of the frame time nonstrict during the time
interval I (see, e.g., query Q3 in Section 7).

. SelectPer (Select Periodicity). SelectPer applies to a
periodic table R and to a user-defined periodicity C

(whose definition is stored in a dedicated table), and
provides as output all the tuples t of R occurring at
the periodicity specified by C (i.e., tuples occurring
in tðPERÞ \C C, such that ðtðPERÞ \C CÞ 6¼ �Þ.

SchðSelectPerCðRÞÞ ¼ SchðRÞ
SelectPerCðRÞÞ ¼ fsj9t1 2 R; sðRÞ ¼ t1ðRÞ,
sðFTÞ¼t1ðFTÞ; sðPERÞ¼p; p¼t1ðPERÞ\C C; p 6¼�g.
For example, SelectPerMondaysðOFFICEÞ selects tu-
ples holding on Mondays, giving as result

Res ¼f#P11j < ½1=1=98; 31=12=98�;
Mon : 11-13 > #;#A02j < ½1=1=98; 31=1=99�;
Mon : 14-16 > #g:

. SelectPtPer (Select Point and Period), SelectInPer
(Select Interval and Periodicity) are simply a
combination of the types of selections above (see,
e.g., queries Q1 and Q4 in Section 7).

Further temporal operators could be introduced
in order to select tuples on the basis of temporal
conditions which compare the validity times of
different tuples (similar, e.g., to left/right temporal
join in [13]). For example, considering the tables in
Fig. 2, these operators might be used in order to look
for teachers who had their office hours after one of
their lessons, on Mondays. Introducing such opera-
tors involves a careful analysis of the semantics of
relational temporal predicates (e.g., “after”) in the
context of periodic validity times and is one of the
goals of our future work.

. Extension. The Extension function operates on a
time interval I and a periodic table and extends the
schema of the table with a new attribute, Ext_Attr.
For each tuple t in R, t(Ext_Attr) will contain the set
of all time intervals (expressed as pairs of dates in
the Gregorian calendar) which constitutes the exten-
sion of the period t(PER) in the frame time tðFTÞ \I I.
As an example, see e.g., query Q2 in Section 7.

SchðFExtensionðRÞÞ ¼ SchðRÞ [fExt Attrg
FExtensionðRÞ ¼ fsj9t1 2 R; sðRÞ ¼ t1ðRÞ,
sðFTÞ ¼ t1ðFTÞ; sðPERÞ ¼ t1ðPERÞ,
sðExt AttrÞ ¼ BExtðt1ðFTÞ \I I; t1ðPERÞÞg.

4.6 Properties of the Temporal Algebra

Different criteria can be used in order to evaluate temporal
algebrae. In particular, the properties of equivalence and
reduction are very relevant since they can be used to check
whether a model is a well-formed temporal extension of the
atemporal (standard) relational algebra (see [32]). In fact,
the equivalence property grants that, with an appropriate
definition of a transformation function that maps each
snapshot (atemporal) table R into a corresponding periodic
table RP, the results that one obtain by first transforming
snapshot tables into periodic ones, then applying the
temporal operators of our algebra (e.g., �P) are the same
that would be obtained by first applying the corresponding
standard operators of the atemporal algebra (e.g., �), and
then transforming the result. On the other hand, the
reduction property grants that, with an appropriate defini-
tion of a transformation function that maps each periodic

TERENZIANI: SYMBOLIC USER-DEFINED PERIODICITY IN TEMPORAL RELATIONAL DATABASES 9

Fig. 5. R ¼ R1�P R2, where R1 and R2 are the periodic tables in Fig. 3.

Only the validity time T is shown.

table RP into the corresponding snapshot (atemporal) table
R, the results that one obtain by first applying the temporal
operators of our algebra (e.g., �P) to periodic tables and
then transforming the results into snapshot tables are the
same that would be obtained by first transforming the
periodic tables into snapshot ones and then applying the
corresponding standard operators of the atemporal algebra
(e.g., �). A sketch of the proofs can be found in [41].

Property 7. The equivalence property holds for our “periodic”
temporal algebra.

Property 8. The reduction property holds for our “periodic”
temporal algebra.

5 FULLY SYMBOLIC EVALUATION OF

SET-OPERATORS ON USER-DEFINED

PERIODICITIES

In this section, we introduce a symbolic evaluation method
for our extended algebra and study its properties.

5.1 Intensional (Symbolic) versus
Extensional Evaluation

The temporal algebra in Section 4 operates in a standard
way on the atemporal attributes (data part of tuples).
Moreover, our temporal algebra is independent of how the
operations on validity times are implemented. The frame
time component in the validity time of derived tables can be
easily computed by performing set-operations on the time
intervals representing the frame times, and data attributes
can be implemented in a standard way. On the other hand,
the treatment periodicities in validity times can be either
extensional or intensional (symbolic). In particular, the
execution of the algebraic operators in Sections 4.4 and 4.5
on periodic tables involve the application of the set
operators \C, �C, and [C on the periodicities in the validity
times. In the extensional treatment, set-operators are per-
formed on the extensions of periodicities; for example, given
two periodicities C1 and C2 and a frame time I, C1 \C C2 is
implemented as BExtðI;C1Þ \T BExtðI;C2Þ, i.e., as an
operation on Gadia’s temporal elements [20]. In the
intensional treatment, each periodicity is represented by the
symbolic definition given by the user and the algebraic
temporal operators operate in a symbolic way on the
periodicity in the validity times of tuples, in the sense that
only symbolic string manipulation of expressions in our
language in Section 3 is performed (extensions are com-
puted only if they are explicitly required by the user—via
the Extension function). An intensional treatment might be
very advantageous from the point of view of storage
allocation and from the computational point of view.
Moreover, the extensional approach is not feasible in case
of infinite frame times (infinite extensions). However, the
main reason for which we believe that intensional evalua-
tion is important is that it provides more perspicuous and
high-level outputs to the users (see Section 8.2). For
example, the extensional evaluation of the union of the
periodicity “Mondays” and “Wednesdays” (e.g., in a
one-year-long frame time) results in a long list of intervals
(pair of dates), while the intensional (symbolic) one could
provide as output the compact and “significant” symbolic
expression “Mondays [C Wednesdays.” In principle, one
could devise a “hybrid” approach in which one 1) takes in

input the symbolic expressions, 2) convert them into
extensions, 3) performs operations on extensions, and
4) retransform the extensional results into “significant”
output symbolic expressions. However, such an approach
seems to us computationally expensive and quite proble-
matic in practice. In fact, in general, symbolic expressions
automatically generated from a set of extensions might be
far from being “significant” for users (unless very skilful
and complex learning techniques are devised and used to
reach such a goal). Thus, we believe that, if one wants to give
in output “perspicuous” symbolic results, the evaluation
should be performed directly at the symbolic level. How-
ever, in order to provide “perspicuous” results, the symbolic
evaluation cannot just give in output a string concatenation
of input periodicities and operators. At least two types of
simplifications can be (and need to be) performed:

1. redundancy elimination; e.g., the output of the union
of “Working-Days” (i.e., days from Mondays to
Fridays) and “Mondays” should be just “Working-
Days” and not “Working-Days [C Mondays” and

2. empty periodicity detection; for instance, the output
of the intersection of “Mondays” and “Wednesdays”
should be the empty periodicity (henceforth repre-
sented by “Ø”) and not “Mondays \C Wednesdays.”

In this section, we present a symbolic evaluation method
that performs these simplifications, and study its proper-
ties. It is important to remark that our method aims at
performing simplifications without generating the extensions
of the input periodicities. For example, in our symbolic
evaluation method, the intersection of “1stDays of Months”
and “Mondays” is “1stDays of Months \C Mondays” since
some intersections between the two extensions are possible.
Now, in certain frame times (such as, e.g., [1/4/1999, 30/7/
1999]), the extension of “1stDays of Months \C Mondays”
is empty, but this can only be detected via a generation of
the extensions. All simplifications that depend on the
chosen frame time can be obtained by users by explicitly
invoking the temporal function Extension (see Section 4.5).
In Section 6, we will sketch a semisymbolic evaluation
method that considers also the simplifications due to the
frame time still providing a symbolic output and that
exploits the fully symbolic evaluation method discussed in
this section whenever possible.

5.2 Relations between User-Defined Periodicities

Since periodicity is user-defined, it is not possible to define
all intersections, unions, etc. between all pairs of periodi-
cities a priori. We thus pointed out a set of six possible
relations between two user-defined periodicities which are
exhaustive and mutually exclusive, and defined the sym-
bolic evaluation of [C, \C , �C, and :C on these basis. The
relations are:
C1 ¼C C2 (C1 temporally equal to C2) holds if the

extensions of C1 and C2 are the same (or, in other words, if
they denote the same TE). For example, Mondays ¼C

Mondays, and, considering the European week and the
obvious definitions of Mondays and of First-Day-of-Weeks,
we have Mondays ¼C First-Day-of-Weeks. More formally,

C1 ¼C C2, ExtðC1Þ ¼ ExtðC2Þ:

C1 C C2 (C1 temporally contains C2) holds if, for each
time interval in the extension of C2, there is a time interval

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 2, MARCH/APRIL 2003

in the extension of C1 containing (properly or not) it and the

relation ¼C does not hold. For example, with usual

definitions, Days C Mondays, Weeks C Days. More

formally,

C1 C C2, ð8 I 2 ExtðC2Þ)
9 J 2 ExtðC1Þ ^NSDurðI; JÞÞ ^ :ðC1 ¼C C2Þ:

C1 !C C2 (C1 temporally contained into C2). The

inverse of C1 C C2.
C1 6¼C C C2 (C1 covering temporally disjoint from C2)

holds in case all the time intervals in the extensions of C1

and C2 are temporally disjoint (the predicate Disjoint(i,j)

stands for Before(i,j), Meets(i,j), Met-by(i,j), or After(i,j) in

Allen’s Algebra [3]). Moreover, the set of all the extension

covers the whole timeline. For example, the set of all days

from Mondays to Fridays and the set of Saturdays and

Sundays are covering temporally disjoint. More formally,

C1 6¼C
C C2, ð8I 2 ExtðC1Þ; 8J 2 ExtðC2Þ) DisjointðI; JÞÞ

^ ð8P time-pointðPÞ; 9IðI 2 ExtðC1Þ _ I 2 ExtðC2ÞÞ ^ P 2 IÞ:

C1 6¼N C C2 (C1 noncovering temporally disjoint from

C2) holds in case all time intervals in the extensions of C1

and C2 are disjoint. Moreover, the set of all the extension

does not cover the whole timeline. For example, with usual

definitions, Mondays 6¼C Tuesdays and Mondays 6¼C

Wednesdays. More formally,

C1 6¼N
C C2,ð8I2 ExtðC1Þ; 8J2 ExtðC2Þ)DisjointðI; JÞÞ^

ð9P time-pointðPÞ; 8IðI 2 ExtðC1Þ _ I 2 ExtðC2ÞÞ ^ P 62 IÞ:

C1 �C C2 (C1 temporally intersects C2) holds in case

none of the above relations hold. We call this relation

temporal intersection since, if none of the relations ¼C , !C ,

 C , 6¼N
C , 6¼C

C hold between C1 and C2, we have that

there is an intersection between the extensions of C1 and of

C2 (otherwise, 6¼N
C or 6¼C

C would hold), but there are

some intervals or subintervals of intervals in Ext(C1) which

are not contained into an interval in Ext(C2) (otherwise, !C

or ¼C would hold), and vice-versa. For example, with usual

definitions, Mondays 9C 1stDay-of-Months. More formally,

C1 9C C2, :ðC1 ¼C C2 _ C1 !C C2 _
C1 C C2 _ C1 6¼N

C C2 _ C1 6¼C
C C2Þ:

5.3 Symbolic Evaluation of [C, \C, and �C on Base
User-Defined Periodicities

In the following, we divide the periodicities which can be
defined using the constructs in our high-level symbolic
language in Section 3 into two subclasses: base periodicities
and composed periodicities.

1. With the term base periodicity, we will intend the
basic periodicity and those periodicities obtained by
the application of the constructs Convex_Cal and
Select_Periods only.

2. With the term composite periodicity, we intend
periodicities defined using at least one of the set-
operators (i.e., [C, \C , �C, and :C). A composite
periodicity can be directly defined by the users, or
can also derive from the application of algebraic
operators (e.g., �P performs intersection \C between
periodicities).

This distinction is important from the operational point of

view. In fact, while in most relevant cases the relation

between two base periodicities C1 and C2 (i.e., 9C, ¼C , !C ,

 C , 6¼N
C , or 6¼C

C) can be obtained by rules operating on

the definition of C1 and C2 only (see Section 5.5), the same

is not true in case C1 and C2 are composite periodicities. In

this section, we define a way of symbolically computing [C,

\C, and �C between two base periodicities C1 and C2

(assuming C1 6¼ � and C2 6¼ �), on the basis of the relation

between C1 and C2.
Table 1 represents a set of conditional transformation rules

of the form:

8C1;C2 IF C1 R C2 THEN Expr1! Expr2;

where C1 and C2 are two user-defined base periodicities, R
is one of the six relations between periodicities in Section 5.2,
Expr1 is the symbolic expression “C1 \C C2”, “C1 [C C2,”
or “C1�C C2,” and Expr2 the output symbolic expression.
For example, the entry <row: C1 !C C2; column: C1 \C C2>
in Table 1 represents the rule:

8C1;C2 IF C1 !C C2 THEN C1 \C C2! C1:

In other words, if C1 !C C2 holds, then the result of the
symbolic evaluation of C1 \C C2 is C1. Thus, for example,
with the usual definitions of Mondays and Weeks, we
would have Mondays !C Weeks, and thus the symbolic
evaluation of “Mondays” \C “Weeks” gives as result
“Mondays.”

TERENZIANI: SYMBOLIC USER-DEFINED PERIODICITY IN TEMPORAL RELATIONAL DATABASES 11

TABLE 1
Symbolic Evaluation of the Operators [C, \C, and �C on Base Periodicities

Complexity. The relation (9C, ¼C , !C , C , 6¼N
C ,

6¼C
C) between any two user-defined periodicities can be

computed as soon as the periodicities are inserted (and,
thus, offline with respect to the query process), and can be
stored into a dedicated table (henceforth, called Relation
Table). Thus, in our approach, intersection, union, and
differences of base periodicities can be simply performed
via a lookup in the Relation Table, plus a lookup in Table 1.
In the following analysis, we assume that look-up opera-
tions require constant time.

The correctness of the rules for symbolic evaluation can be
defined in terms of the (extensional) semantics of the
operators [C, \C , �C (on the basis of the properties of the
corresponding operators [T, \T, and �T on TE’s) by
showing that, for each rule

8C1;C2 IF C1 R C2 THEN Expr1! Expr2

in Table 1, Ext(Expr1) = Ext(Expr2) (see the proof in [41]).

Property 9. The rules of symbolic evaluation in Table 1 are
correct.

Also, the completeness of our symbolic evaluation can be
defined in terms of the (extensional) semantics of periodi-
cities and operators on periodicity. In particular, we should
have to prove that, for any two user-defined periodicities
C1 and C2, if Ext(C1) = Ext(C2), then there is a way of
obtaining C2 from C1 by the applications of our symbolic
transformation rules. Our symbolic evaluation method is
not complete in this sense. Its goal is less ambitious: It only
aims at simplifying symbolic expressions by the elimina-
tion of redundancies and the detection of empty periodi-
city. We have proven that our symbolic evaluation above is
complete as regards these forms of simplifications (see
[41]). For example, we have proven that, given two base
periodicities C1 and C2 and an operation OPC ([C, \C, or
�C) between them,

1. whenever ExtðC1 OPC C2Þ � ExtðC2Þ, there is a rule
such that the symbolic expression “C1 OPC C2”
is transformed into “C2” (or vice-versa, if
ExtðC1 OPC C2Þ � ExtðC1Þ).

2. whenever ExtðC1 OPC C2Þ ¼ �, there is a rule such
that the symbolic expression “C1 OPC C2” is trans-
formed into “Ø.”

Property 10. The rules of symbolic evaluation in Table 1 are
complete as regards redundancy elimination and emptyness

detection on intersection, union, and difference of base
periodicities (but not considering frame times).

5.4 Symbolic Evaluation of [C, \C, �C, and :C on
Composite User-Defined Periodicities

Complement (:C). Table 2 reports the relation between :C
C1 and C2, given the relation between two base periodi-
cities C1 and C2. In Table 2, we assume that neither Ext(C1)
nor Ext(C2) cover the whole timeline and that C1 6¼ � and
C2 6¼ �. These special cases are managed by easy “ad hoc”
rules. Given Table 2 (and the relations between base
periodicities), one can treat the complement of a base
periodicity C1 as a base periodicity C10 in the symbolic
evaluation.

In the following, we suppose that composite periodicities
are put in normal form. The transformation can be obtained
using the standard properties (e.g., distributivity, DeMor-
gan’s laws), which also holds for the operators \C, [C, �C,
and :C on periodicities (see Property 2). Thus, in the
following, we consider composite periodicities of the form:

ðX1 \C . . . \C XnÞ [C ðY1 \C . . . \C YkÞ[C

. . . [C ðZ1 \C . . . \C ZhÞ;

where each Xi, Yi, and Zi are base periodicities or
complements of base periodicities (called literal period-
icities—or literals, for short—henceforth). Given the trans-
formations in normal form, set-operators can be computed
by the operations 1) and 2) below:

1. Symbolic Intersection ðX1 \C . . . \C XnÞ \C
ðY1 \C . . . \C YmÞ. Given two sets S1 and S2 of
literal periodicities (representing two intersections
X1 \C . . . \C Xn and Y1 \C . . . \C Ym to be inter-
sected), the goal of symbolic intersection is to
determine the resulting set of literal periodicities
(which constitute the resulting intersection). The
algorithm considers the list L containing the literal
periodicities in S1 and those in S2 (function Append)
and remove from it all literal periodicities which are
“redundant” since they contain (properly or not)
other literal periodicities in the intersection. In case
two, disjoint (relation 6¼N

C or 6¼C
C) literal periodi-

cities are found “Ø” is given as output.6 The function

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 2, MARCH/APRIL 2003

TABLE 2
Relation between :C C1 and C2, Given the Relation between Two Base Periodicities C1 and C2

6. The algorithm assumes that the two input intersections (X1 \C . . .
\CXn) and (Y1 \C . . . \C Ym) have already been simplified independently
of each others and performs the simplification on the new intersection. This
assumption can be easily removed by modifying the For Each statement in
Symbolic_Intersection into “For Each pair < Xj;Yi > such that
Xj 2 S1 [S2, Yi 2 S1 [S2 do “

Delete(x,L) deletes an occurrence of x from L. The
function build sym exprðOP; fS1; ::; SngÞ, given an
operator (\C or [C) and a set fS1; ::; Sng of user-
defined symbolic periodicities, gives as a result the
symbolic expression “S1 OP OP Sn” and operates
in linear time.

Symbolic_Intersection({X1, ..., Xn}, {Y1, ..., Ym})

Let S1 ¼ fX1; . . . ;Xng, S2 ¼ fY1; . . . ;Ymg
INTERS append (S1, S2) /* list of all literals in S1 and
S2, possibly with repetitions */

For Each pair < Xj, Yi > such that Xj 2 S1, Yi 2 S2
(1 � j � n, 1 � i � m) do

If ððYi 6¼N
C XjÞ _ ðYi 6¼C

C XjÞÞ
Then Return (“Ø”)

Else If ððYi ¼C XjÞ _ ðYi C XjÞÞ
Then Delete(Yi,INTERS)

Else If ðXj C YiÞ Then Delete(Xj,INTERS) od

If INTERS 6¼ null Then Return

(build_sym_expr(\C, INTERS)) Else Return(“Ø”)

For example, the intersection of

S1 ¼ f1stMondays of Januaryg and
S2 ¼ fJanuary;Mondaysg

is f1stMondays of Januaryg.
Complexity. Let n and m be the number of literals

in the two input terms. For each pair of literals,
Symbolic_Intersection looks up, in the Relation
Table, the relation between them and uses it in
order to evaluate the conditions in the “if” state-
ments. Since the pairs are n*m, at most O(n*m)
operations (table lookups, condition evaluations,
and deletions) are performed.

2. Symbolic Union ðX1 \C . . . \C XnÞ [C ðY1 \C
. . . \C YmÞ. Given two sets of literal periodicities
(representing two intersections X1 \C . . . \C Xn to
which union has to be applied) symbolic union
builds up their union eliminating “redundant”
sets. Union(Si,Sj) removes the redundant set Sj if
Sj is such that All_Contain(Si,Sj) holds (or vice-
versa). All_Contain(S1,S2) operates on two sets of
literals and checks whether, for each Xj 2 S1, there
is a Yi 2 S2 contained by Xj—properly or not
—(i.e., such that ðXj ¼C YiÞ _ ðXj C YiÞ).

Symbolic_Union({X1, ..., Xn}, {Y1, ..., Ym})

Let S1 ¼ fX1; . . . ;Xng, S2 ¼ fY1; . . . ;Ymg
If All_Contain(S1,S2)

Then Return (build_sym_expr([C,S1))

Else If All_Contain(S2,S1)
Then Return (build_sym_expr([C, S2))

Else Return (build_sym_expr([C,

{build_sym_expr(\C, S1),

build_sym_expr(\C, S2)}));

For example, the union of

ð1stMondays of Months \C 1st4 Days of Months

\C Working DaysÞ

and

ð1st5 Days of Months \C MondaysÞ

is ð1st5 Days of Months \C MondaysÞ since

1st5Days of Months C 1st4Days of Months

(e.g., 1st5Days of Months can be defined as “[1-5] /
Days NSDur Months”) and

Mondays C 1stMondays of Months:

Complexity. Let n and m be the number of literals in the
two input sets S1 and S2. All_contain considers all n*m
pairs of literals and looks up the Relation Table to check the
relation between them. Thus, the complexity is O(n*m).

The following properties hold for our symbolic evalua-
tion on composite periodicities:

Property 11. Symbolic evaluation on composite periodicities is
correct.

Property 12. Symbolic evaluation is not complete regarding
redundancy elimination and emptyness detection on intersec-
tion, union, and difference on composite periodicities.

Corollary 1. The correctness of our symbolic implementation of
the algebraic operators in Section 4 trivially follows from the
correctness of our symbolic evaluation method of set operators
on periodicities. In fact, the algebraic operators in Section 4
operate in a standard way on the atemporal attributes, and
perform symbolic union, intersection, and difference on the
periodicities in the validity time attribute (together with trivial
operations on the frame times).

5.5 Complexity of the Symbolic Management of
Validity Times in the Algebraic Operations

Until now, we considered the complexity of our symbolic
operations of intersection, union, and difference on user-
defined periodicities independently of the context in which
they are used, i.e., independently of the algebraic operators
in the queries. The algebraic operators of projection (�P) and
union ([P) perform the union ([C) of the periodicities in the
validity time (henceforth, VT), Cartesian product (�P)
perform intersection and difference (�P) performs the
difference (�C) of the periodicities in the VT (while the
other algebraic operators do not modify the VT). Since more
than one of these VT-modifying operators can be applied in
the same query, it is interesting to see how our symbolic
approach behaves in these cases. For the sake of simplicity
and clarity, we consider only union ([P) and Cartesian
product (�P) and we take into account tables containing
only one tuple each (the generalization of the following
analysis to tables containing more than one tuple is easy).
We do not pay attention to the atemporal part of the tuples
(and to the frame time) and assume that the periodicity in
the VT of tuples in base tables has always the same form
and dimension:

(per1) ðX11 \C . . . \C X1iÞ [C ðX21 \C . . . \C X2iÞ [C
. . . [C ðXu1 \C . . . \C XuiÞ,

i.e., it consists of a union of u intersection-terms, each one
consisting of an intersection of i literals. We only consider
the worst case for our approach, i.e., the case when no
simplification can ever be performed during the repeated
application of symbolic operations on the periodicities in
the VT of tuples.

TERENZIANI: SYMBOLIC USER-DEFINED PERIODICITY IN TEMPORAL RELATIONAL DATABASES 13

Union ([P). Let us suppose that we perform the union
between two tables T1 and T2 containing one tuple each
with periodicity of the form (and dimension) of (per1)
above and with the same data part dp (if the data part if
different, no manipulation is made on the periodicities in
the VT’s); then let us suppose to perform the union of the
resulting table with a new table T3, containing again a tuple
with data part dp and periodicity like (per1), and so on. The
first union ([P) applies Symbolic_Union to the two
periodicities. Since each periodicity consists of the union
([C) of u intersection-terms, and Symbolic_Union operates
on pairs of intersection-terms, we need u2 applications of
Symbolic_Union (one for each pair < itk; ith > —where
1 � k; h � u—of intersection-terms such that itk belongs to
the periodicity of the first tuple, and ith belongs to the
periodicity of the second tuple). Since each intersection-
term is an intersection of i literals, the complexity of each
application of Sybolic_Union is Oði2). Thus, under the above
assumptions, the complexity of performing union ([P) on a
pair of tuples is Oðu2 # i2). Furthermore, in the worst case in
which no simplification can be performed, the dimension of
the periodicity of the resulting tuple becomes 2u*i, i.e., we
have 2u intersection-terms consisting each one of i literals.

After n� 1 applications of union ([P) as above (and if no
simplification can be performed), the periodicity of the
tuple in the resulting table consists of n#u intersection-terms
each one consisting of (the intersection \C of) i literals. At
the nth step, we make the union of such a resulting table
with a table containing a unique tuple, with data part dp
and periodicity like (per1). Thus, the time complexity of the
nth application of union ([P) is Oðn#u2 #i2Þ, and the
periodicity in the resulting tuple consists of ðnþ 1Þ#u
intersection-terms of i literals each.

Cartesian Product (�P). As above, let us suppose that
we perform incrementally n operations of Cartesian
Product, taking at each step the result of the previous
operations and a new table. Each application of Cartesian
Product applies Symbolic_Intersection to the input periodi-
cities.7 In particular, in the first application of Cartesian
Product, one has to apply Symbolic_Intersection to each
pair < itk; ith > (where 1 � k; h � u) of intersection-terms
such that itk belongs to the periodicity of the first tuple and
ith belongs to the periodicity of the second tuple. Since
each intersection-term consists of i literals, the complexity
of the first application of Cartesian Product is Oðu2 #i2Þ.
However, in the worst case in which no simplification can
be performed, the number of intersection-terms and their
dimension increases: the periodicity in the resulting tuple
consists of u2 intersection-terms of 2#i literals each.

Thus, after n� 1 applications of Cartesian Product (�P)
as above (and if no simplification can be performed), the
periodicity of the tuple in the resulting table consists of un

intersection-terms each one consisting of (the intersection
\C of) n#i literals. Thus, the time complexity of the nth
application of �P is Oðn#unþ1 #i2Þ, and the periodicity in the
resulting tuple consists of unþ1 intersection-terms each one
consisting of ðnþ 1Þ#i literals each. Thus, in the worst case
in which no simplification can be performed, the dimension

of the periodicity in the validity times of tuples grows
exponentially with the number of Cartesian Products in the
query and the time complexity grows up accordingly.

This growth is, in our opinion, the necessary price each
symbolic approach has to pay in order to maintain a
symbolic representation of periodicities in the VT when
applying several VT-modifying query operators in the same
query. However, it seems to us a quite reasonable price,
since we believe that, in many practical applications, the
number of such operators is quite limited, and many
simplifications can be performed. In particular, simplifica-
tions are very frequent in case many “standard” Gregorian
periodicities are used, since they tend to be either disjoint
(relations 6¼N

C and 6¼C
C , e.g., Mondays vs. Tuesdays) or

contained (relations !C and C , e.g., Mondays vs. days,
days vs. weeks), and disjointness and containment relations
are at the core of all the simplification algorithms we
developed (see Sections 5 and 6). Furthermore, it is a low
price when compared to the complexity of the approach in
[34] (which is, to the best of our knowledge, the only other
approach that supports user-defined symbolic periodicities
in the data of DB’s; see Section 8.2).

5.6 Computing the Temporal Relation between
Base User-Defined Periodicities

We defined a set of rules for determining automatically
which one of the six relations (¼C , !C , C , 6¼N

C , 6¼C
C , or

9C) holds between two user-defined periodicities (ex-
pressed in the formalism in Section 3) on the basis of their
definition only, without having to generate their extensions.
We divided such rules into three different groups:

. Rules determining the relation between two periodi-
cities occurring in the same definition. For instance,
rule (IT) states that a definition of the form C1 = n /
C2 NSDur C3 implies C1 !C C3 and C1 !C C2 (e.g.,
from the definition Aprils = 4 / Months NSDur
Years, we have that Aprils !C Years and Aprils !C

Months).
. Rules determining the relation between two periodi-

cities occurring in two different definitions. For
instance, rule (II2) states that, given two definitions
of the form C ¼ ½ni-nj�=C1 NSDur C2 and C0 ¼
½nh-nk�=C1 NSDur C2, then, if ½ni � nj� ¼ ½nh � nk�,
we have C ¼C C0; if ½ni � nj� ! ½nh � nk�, then C !C C0

(for instance, from Mondays = 1/ Days NSDur
Weeks and Working-Days = [1-5]/ Days NSDur
Weeks we have Mondays !C Working-Days); if
½ni � nj� \ ½nh � nk� ¼ �, then C 6¼N

C C0 in case the
two selections ½ni � nj� and ½nh � nk� do not cover the
time line, C 6¼C

C C0, otherwise (e.g., from Mondays
above and Wednesdays = 3/ Days NSDur Weeks,
we have Mondays 6¼N

C Wednesdays, while from
Working-Days above and Week-Ends = [6-7] / Days
NSDur Weeks, we have Working-Days C 6¼C

C C0

Week-Ends).
. Rules determining the relation between two periodi-

cities on the basis of the relations. For example, from
the transitivity of !C and from Mondays !C

Working-Days and Working-Days !C Weeks, we
have Mondays !C Weeks.

14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 2, MARCH/APRIL 2003

7. Moreover, after the repeated application of Symbolic_Intersection, one
obtain a new periodicity per0. Thus, one could also choose to repeatedly
apply Symbolic_Union to each pair of intersection-terms in per0, in order to
look for further simplifications. We do not consider this possibility in this
analysis for the sake of clarity and brevity.

Since the user is completely free in the use of the
language in Section 3 for defining new periodicities,
our rules do not cover all possible cases. For example,
given the formalism in Section 3, the user has many
different ways of defining temporally equal periodi-
cities (e.g., s/he could define pairs of days—or
triplets, or so on ...—and redefine the other period-
icities—e.g., years—in terms of them) and our rules
do not cover all of them. However, our rules proved
to be powerful enough to cover “nonexceptional”
cases. Whenever the relation between a pair of
periodicities is needed and it is not obtained by the
application of our rules, the relation can be asked to
the user (or computed via extensional evaluation—
see Section 6). The rules can be applied whenever a
new user-defined periodicity is entered by a user,
offline with respect to the query process. The
relations between periodicities find out by the rules
can then be stored into a dedicated table (the Relation
Table), which can be initialized with the relations
holding with the most commonly used periodicities.

5.7 Temporal Operators and Temporal Functions

The evaluation of the function Extension (Section 4.5)
explicitly requires the generation of the extension of input
periodicities, on the basis of their definitions. We adopt an
attribute grammar and use attributes in order to synthesize
the extension of a periodicity, on the basis of the
components in its definitions. A brief description of the
algorithms we use can be found in [41]. Analogous
algorithms concerning Leban’s formalism [27] have been
described in [9], [14].

6 SEMISYMBOLIC EVALUATION METHOD

We now extend the fully symbolic evaluation method in
Section 5 to capture also the simplifications due to the frame
time. Moreover, the semisymbolic approach can be used in
order to determine those relations between periodicities
which are not captured by the ad hoc rules (see Section 5.6).
The fully symbolic evaluation method above is exploited
whenever possible. The semisymbolic approach is based on
the four functions below (where C, C1, and C2 stand for
user-defined periodicities, SC, SC1, and SC2 are sets
fC1; . . . ;Ckg of periodicities to be intersected (via \C),
and FT is a frame time).8

EmptyExt(C,FT): returns false if there is at least an interval
in the extension of C that intersects the frame time FT
(i.e., if BExt(FT,C) is not empty), true otherwise.

ContainedExt(C1,C2,FT): returns

1. C2 if all the intervals in BExt(FT,C2) are contained
into intervals in BExt(FT,C1) (i.e., if

ð8i i 2 BExtðFT;C2Þ)
ð9j j 2 BExtðFT;C1Þ ^NSDurði; jÞÞ

holds; or, in other words, if

BExtðFT;C1Þ BExtðFT;C2ÞÞ;

2. C1 if all the intervals in BExt(FT,C1) are contained
into intervals in BExt(FT,C2),

3. the pair < C1;C2 > if both containments above hold
(i.e., BExtðFT;C1Þ ¼ BExtðFT;C2Þ), and

4. null otherwise.

EmptyExtInt(SC,FT): returns false if there is at least an
interval in the extension of the intersections periodicities
in SC which intersects the frame time FT (i.e., if
BExtðFT;C1 \C . . . \C CkÞ is not empty), true otherwise.

ContainedExtInt(SC1,SC2,FT): let SC1 ¼ fC01; . . . ;C0kg
and SC2 ¼ fC001; . . . ;C00hg; it returns SC2 if all the
intervals in BExtðFT;C001 \C . . . \C C00hÞ are contained
into intervals in BExtðFT;C01 \C . . . \C C0kÞ, SC1 if the
opposite containment holds, < SC1; SC2 > if both
containments hold and null otherwise (i.e., if no contain-
ment holds).

On the basis of these functions, we can extend the
evaluation of set operators on base periodicities proposed in
Section 5. The fully symbolic method in Section 5 is correct
and simplification-complete on base periodicities (see
Properties 9 and 10), apart for the treatment of simplifica-
tions due to frame times. Thus, we only need to consider
the extensions required in order to capture simplifications
due to frame times. Thus, in all cases in Table 1 where
the output of the symbolic evaluation was “Ø,” we retain
the fully symbolic evaluation, and no extensional evalua-
tion is needed. Whenever the symbolic evaluation leads
to a redundancy elimination in Table 1, the extensional
evaluation just need to check whether the extension of the
symbolic output is not empty in the given frame time.
For example, if C1 ¼C C2, the rule in Table 1 is “if
C1 ¼C C2, then C1 \C C2! C100, and the output of the
semisymbolic evaluation must be C1 if EmptyExt(C1,FT)
is false, “Ø” otherwise. Whenever no simplification is
obtained by the rules in Table 1 (e.g., “if C1 9C C2, then
C1 \C C2! C1 \C C2”), the extensional evaluation has to
check simplifications due to frame times, as shown by the
procedure Ext_Base_Intersection below. The algorithms
for union and difference are analogous (see [41]; com-
ments are between “/*” and “*/”).

Ext_Base_Intersection(C1,C2,FT) /* applied only in case

C1 9C C2 */

/* in case at least one of the extensions is empty in FT,

then return “Ø” */

TERENZIANI: SYMBOLIC USER-DEFINED PERIODICITY IN TEMPORAL RELATIONAL DATABASES 15

8. Another useful function is period(C1,C) (defined also in [9]), which,
given a periodicity C1 and the basic periodicity C, gives as output the
number of intervals of Ext(C) after which the pattern of intervals in Ext(C1)
is repeating (e.g., Period(Weeks,Days)=7; Period(Years,Days)=1,461). Con-
tainedExt (ContainedExtInt) could generate the extensions of the two input
periodicities (sets of periodicities) “in parallel,” and stop the generation as
soon as the first extension for which there is no containment is found. In the
worst case (i.e., if containment holds), ContainedExt(C1,C2,FT) has to
generate all the extensions in the shortest interval between the frame time
FT and LCMP (an acronym for Least Common Multiple Period), where
LCMP=lcm(period(C1,C),period(C2,C)), and C is the basic periodicity (e.g.,
if C1=Mondays, C2 ¼ 1stDay-of-Years, C=Days—and considering leap
years—LCMP=1,461*7=10,227). In other words, since periodicities repeats
regularly over a given period, no more than a whole repetition (covering
one period) need to be generated. The case on ContainedExtInt is
analogous. Similarly, the evaluation of EmptyExt and EmptyExtInt does
not usually imply generating all the extensions in the frame time FT since
these functions may return as soon as the first extension intersecting the
frame time is generated. However, in the worst case, EmptyExt(C1,FT) has
to generate all the extensions in the shortest interval between FT and
period(C1,C).

If EmptyExt(C1,FT) OR EmptyExt(C2,FT)
Then Return(“Ø”) Else

begin X ContainedExt(C1,C2,FT);

/* in case both containments hold, or in case the extensions

of C1 are contained into those of C2, return “C1” */

If (X=<“C1”,“C2”>) OR (X=“C1”)

Then Return(“C1”)

Else If (X=“C2”) Then Return(“C2”)

Else If Null(X) Then

/* if no containment holds, and if the intersection of the

extensions in FT (i.e., BExtðFT;C1 \C C2Þ) is empty, return

“Ø” */

If EmptyExtInt({C1,C2},FT) Then Return(“Ø”)

Else Return(“C1 \C C2”)

end;

Extensional evaluation is used also to extend the
symbolic intersection and union operations on composite

periodicities. In both cases, the symbolic evaluation is

performed first in order to obtain as many simplifications
as possible. Then, the results of symbolic evaluation are
further refined as follows. In case of intersection, the input
to the extensional evaluation is a set S ¼ fC1; ::;Ckg of
periodicities and a frame time FT. If any of C1,..,Ck has an
empty extension in FT, then Ext_Comp_Intersection returns

“Ø.” Otherwise, ContainedExt(Ci,Cj,FT) is invoked on each
pair < Ci;Cj > of periodicities in S to delete redundancies.
Finally, EmptyExtInt is invoked on the resulting set of
periodicities, to check whether the extension of the resulting
set is empty within the frame time FT. Analogously, the
semisymbolic union also exploits the symbolic evaluation

and the extensional functions above to perform all possible
simplifications. A detailed description of these algorithms is
outside the goals of this paper, and is given in [41].

To conclude, it is important to notice that our semisym-
bolic evaluation method: 1) exploits the results obtained by
the fully-symbolic evaluation, 2) limits as much as possible
the generation of extensions (see also footnote 8 above), and

3) always provides symbolic outputs (extensions are given in
output only if they are explicitly requested by users via the
use of the Extension function) using the generation of
extensions just in order to perform simplifications in the
symbolic expressions. Finally, and more important, we have
proven Property 13 (see the proof in [41]):

Property 13. Our Semisymbolic evaluation is correct and

complete as regards redundancy elimination and emptyness

detection.

Corollary 2. As in the case of the fully symbolic evaluation

method, the correctness and simplification completeness of

our symbolic implementation of the algebraic operators in

Section 4 directly follows from Property 13.

7 EXAMPLES

Let us suppose that we have a database containing the
periodic tables in Fig. 2 and, in addition, 1) a set of

dedicated tables to store the user definitions of periodicities
and 2) the Relation Table and let us consider the following
query:

When (intensional interpretation) was room R01 busy

between 1/12/98 and 31/1/99 on Mondays?

which can be expressed in our extended temporal algebra

as follows:

(Q1)

SelectInPer½1=12=98;31=1=99�;Mondaysðð�P�ð�PRoom�Cod¼R01ðMEETÞÞ
[Pð�P � ð�PRoom�Cod¼R01ðCOURSESÞÞÞÞ.
Notice that any query considering a user-defined periodicity

C (e.g., Mondays in the example above) involves the fact that

a definition of C is available in the dedicated tables.9

Atemporal selections do not involve any special operation

on the temporal attributes and, in this specific example, give

as output the tables MEET and COURSES unchanged.

Projection makes the union of the periodicities of tuples

with equal data part (i.e., of all tuples in our example since we

used projection on the empty set of data attributes; notice that

�P � projects over the validity time attribute only). This

involves, among other things, the symbolic evaluation of the

periodicities in the validity times T of the resulting tuples.

The results of atemporal selection and projection are the

tablesR1 ¼ �P � ð�PRoom�Cod¼R01ðCOURSESÞÞ andR2 ¼ �P �
ð�PRoom�Cod¼R01ðMEETÞÞ in Fig. 6. Then, R1 [P R2 must be

performed. The final result is shown by Table R3 in Fig. 6.

Finally, SelectInPer½1=12=98�31=1=99�;MondaysðR3Þ involves the

evaluation of the intersection \I of the frame times of tuples

with [1/12/98 - 31/1/99] and the intersection of the

periodicity with “Mondays,” resulting in Table R4 in Fig. 6.
In case one is interested in the list of time intervals which

satisfy the condition (i.e., in an extensional evaluation of the

periodicity) in an interval of time (say, [1/12/98, 31/12/

98]), one could apply the Extension operator, asking the

query:

(Q2) FExtensionð½1=12=98; 31=12=98�;
SelectInPer½1=12=98;31=1=99�;Mondays

ðð�P�; ð�PRoom�Cod¼R01ðMEETÞÞ
[Pð�P � ð�PRoom�Cod¼R01ðCOURSESÞÞÞÞÞ.

In such a case, the output would be a table like R4 with an

additional Ext_Attr attribute containing the list of exten-

sions, for each tuple. For example, the extensions of the first

tuple in R4 above would be: {[7/12/98 at 9, 7/12/98 at 9],

[7/12/98 at 12, 7/12/98 at 12], [7/12/98 at 14, 7/12/98 at

15], [14/12/98 at 9, 14/12/98 at 9], [14/12/98 at 12, 14/12/

98 at 12], [21/12/98 at 9, 21/12/98 at 9], [21/12/98 at 12,

21/12/98 at 12], [28/12/98 at 9, 28/12/98 at 9], and [28/12/

98 at 12, 28/12/98 at 12]}.
Notice that, in this and many other cases, a symbolic

output might be more significant for users than a long list of

extensional results (as one could obtain, e.g., with an

extensional approach; see the discussion in the conclusions).
As further examples, consider the following queries (we

use “#” to mark the starts and ends of each tuple).

16 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 2, MARCH/APRIL 2003

9. In a practical implementation, the user might choose among a
predefined menu of predefined periodicities, or use a user-friendly interface
(based on the language in Section 3) to introduce in the dedicated table a
periodicity not already present in such a table.

Which teachers had courses or office hours during

meeting M03 in 1998?

(Q3) SelectIn½1=1=98;31=12=98�ðð�PTeach�CodðCOURSESÞ [P
OFFICEÞ �P ð�P�; ð�PMeet�Cod¼M03ðMEETÞÞÞÞ.

Answer:

f#A02j< ½1=1=98-31=12=98�; 1stMon of Months : 14-16 > #g
(the symbolic intersection Mon: 14-16 \C 1stMon of Months :

14-16 gives as result 1stMon of Months : 14-16).

Give me the code of meetings held after 30/4/98 on the

first day of each month. (where 1stDay of Month has

been defined by the user in the dedicated table).

(Q4) �PMeet�CodðSelectPtPerAfter;30=4=98;1stDay of MonthðMEETÞÞ
Answer: f#M03j < ð30=4=98; 31=12=98�; 1stMon of Months :

14-16 \C 1stDay of Month > #g.

8 COMPARISONS AND CONCLUSIONS

In this paper, we proposed a temporal relational model and

a temporal algebra dealing with user-defined “symbolic”

periodicity in both data and queries, to the overall goal of

getting relational databases closer to a human-oriented way of

dealing with temporal information. Some approaches in the

temporal database literature defined a temporal algebra and

a temporal model to deal with periodicity, mostly repre-

senting periodicity as mathematical formulae; other ap-

proaches (also in artificial intelligence) mainly focused on

the definition of high-level symbolic languages to model

periodicity in a user-friendly way. In this paper, we

proposed an original approach which integrates the

advantages of both types of approaches.
We proposed a comprehensive and integrated approach

(see again Fig. 1 in Section 2) to deal with user-defined

periodicities (both in the data and in the queries) in

temporal databases. In order to achieve such a goal, we

introduced 1) a temporal model and algebra based on 2) a
symbolic language to express user-defined periodicity

whose semantics and properties are given on the basis of
the domain of the temporal elements, as well as a 3) a fully-

symbolic and a semisymbolic evaluation method of the
set-operators on periodicities. It seems to us that such an
integrated treatment of all these aspects provides crucial
advantages since, among the other things, allowed us to

1. provide a semantics for the operators (e.g., Select_
Periods, \C) of our high-level language and formally
compare the expressiveness of our language with
others in the literature,

2. prove the properties of the operators e.g., (Select_
Periods, \C) of our high-level language

3. prove the properties of the operators of our temporal
algebra (e.g., equivalence and reduction), and

4. prove the correctness and simplification-complete-
ness of our symbolic and semisymbolic evaluation.

In our opinion, none of the approaches in the literature
considers in detail all of the issues 1-3 above (and the
related proofs). Moreover, we strongly believe that our
(semi)symbolic evaluation method may have interesting
applications also in other fields than TDB, including access
control models to DB (see, e.g., [7]), data broadcasting [21],
active databases, multimedia scenarios, etc.

8.1 Related Works and Comparisons

Periodicity and its related notions of granularity and calendars
[8] have been widely studied in many different areas of
logic and computer science. For instance, within the
artificial intelligence community, most attention has been
devoted to the treatment of qualitative temporal constraints
(e.g., “before”) between events which repeat in time (see,
e.g., [25], [26], [28], [33], [40], [43]). On the other hand,
approaches in classical temporal logic (see, e.g., [1], [30])
deal with truth and validity of logical formulae, specifying
how predicates change value over time. However, [50]
showed that classical temporal logics do not address the

TERENZIANI: SYMBOLIC USER-DEFINED PERIODICITY IN TEMPORAL RELATIONAL DATABASES 17

Fig. 6. Stepwise symbolic evaluation of the query Q1.

issue of periodicity since, e.g., the classical logics with the
next and until operators cannot define all periodic sets. In
ETL [50], temporal connectives have been introduced in
order to overcome this drawback; however, infinitely many
connectives should be required. To remedy this problem,
Vardi [48] introduced the temporal fixpoint calculus "TL,
whose limitations are widely discussed in [46], which also
provided an interesting overview of many approaches to
periodic events. Regarding (nonmodal) first order logics,
Enderton [19] showed that a standard first-order language,
enhanced with integer congruence relations, captures
periodicity.

In the area of temporal vatabases, periodicity has been

widely studied. For example, periodicity and/or different

time granularities are supported in [4], [5], [6], [7], [18], [22],

[23], [29], [34], [45], [46], [49]. Many approaches only

focused on the treatment of periodicity in the query (see,

e.g., [46] and Oracle8; see www.oracle.com\databases\

timeseries.html). Considering the approaches dealing with

periodicity also in the data, Baudinet [5] distinguished

between the approaches using deductive rules (e.g., [16],

who dealt with periodicity in the context of Datalog1s) and

those using constraints. For instance, Kabanza et al. have

proposed a very influential and comprehensive approach

based on constraints, carefully dealing with all the related

aspects involved by the introduction of user-defined

periodicity into relational temporal databases [22], [23]. In

particular, they extended classical relational models to deal

with periodic data by representing infinite temporal

information by generalised tuples defined by unions of linear

repeating points (points of the form c1 þ c2X; henceforth LRP)

and constraints on these points (e.g., X1 ¼ X2 þ c3). They

proved that the expressive power of their formalism corre-

sponds to that of Presburger arithmetic. They also defined

the temporal extension of the algebraic operations and a first

order query language to deal also with LRP, and studied

their computational complexity. However, we believe that a

main drawback of Kabanza’s approach (which was also

recognized by one of the coauthors of Kabanza’s approach

in the paper [34]) is the fact that “mathematical” languages

such as LRP are not “human-oriented” (see Section 8.2).
Regarding symbolic languages dealing with periodi-

city, [7], [9], [27], [34] are the works most closely related to
our approach. However, these approaches (except [34]) did
not devise relational temporal models and algebras, and did
not introduce symbolic evaluation methods to deal with
periodicities (which are the main tasks of our work).

Niezette and Stevenne [34] extended the notion of LRP to
Linear Repeating Intervals (LRI) and applied it to the definition
of calendars. In their approach, calendars are periodic
infinite sets of consecutive intervals, and can be expressed
using expressions of the form O1:C1 þ . . .þOn:Cn �D,
where the sum identifies the starting point of the intervals
and D their duration. Ci are calendars and Oi are integers (to
indicate a selection) or the keyword all (to indicate that all
intervals have to be considered). For example, all:Yearsþ
f1; 2; 5g:Monthsþ 3:Days � 3 Hours has as extension the set
of all time intervals which represent the first three hours of
the third days of January, February, and May of each year

(the ordered list of calendars used in a defintion—e.g.,
<Years,Months,Days> in the example—is called hierarchy in
[34]). However, their symbolic language is mainly a symbolic
interface built upon LRI (and, thus LRP), thus inheriting
some of the disadvantages of this formalism, as shown in
Section 8.2. Moreover, as proven by Bettini and De Sibi [9],
calendars in Niezette’s and Stevenne’s language do not
correspond to periodic granularities (see [8], [9]). Niezette’s
and Stevenne’s language has been used in [7] to deal with
periodic authorizations in access control models for DBMS.
In their approach, an authorization is a pair consisting of a
time interval (the bounding of the authorization, corre-
sponding to the frame time in our approach) and a periodicity
(expressed using Niezette’s and Stevenne’s language) which
are translated into Toman’s constraint based language [45] to
manipulate them. Thus, basically, manipulation of periodi-
cities in [7] is not symbolic.

Basically, however, our high-level symbolic language can
be seen as a revision of Leban et al.’s language in [27] (used
also, e.g., in [14]). Leban introduced a way of defining
primitive sets (called collections) of time intervals which
cover the time line (e.g., seconds, days, etc., called calendars)
that basically corresponds to our Convex-Cal operator
(except our use of an anchor time point; thus, our
Convex_Cal operator corresponds to generate in [7]). Dicing
and slicing are Leban’s operators used to build new
collections on the basis of other collections. Basically, our
Select_Periods operators correspond to a combined applica-
tion of a dicing and a slicing. In fact, Leban’s dicing operator
allows one to divide each collection into another collection
using a relational operator (e.g., “Days .During. Weeks”
divides each one-week-long interval in the extension of
Weeks into the collection of Days contained in it) and slicing
selects an interval from a collection (e.g., “1/ Days .During.
Weeks” selects Mondays). However, Leban also allows
independent (and possibly nested) applications of these
operators and, in particular, of dicing. Thus, the semantics
of Leban’s language cannot be given in terms of Gadia’s
temporal elements [20] but requires nested sets of time
intervals. Moreover, in [27], the same interval may appear
more than once in the resulting collections, and the
semantics of dicing expressions such as “Days .<. Months”
seems to us ambiguous and unclear. Finally, a major
difference regards our introduction of the set operators of
intersection \C, union [C, difference �C, and complement :C
(set operators are not used by Leban; Niezette and Stevenne
[34] only considered union; set operators have been
considered, e.g., in [14], [17], [24]).

Only a few approaches extended the temporal model

and algebra dealing with periodicity in the validity time of
tuples. The approaches in [22], [23], [24], [34] are the most
closely related to our work. Kurt and Ozsoyoglu [24]
defined the temporal type of periodic elements to model
strictly periodic and also partially periodic events. Periodic
elements consist of both an aperiodic part and a periodic
part, represented by the repetition pattern and the period of
repetition. They also defined the set-operations of union,
intersection, complement, and difference, which are closed
with respect to periodic elements. While Kurt and Ozsoyo-
glu [24] devoted most attention to the definition of a

18 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 2, MARCH/APRIL 2003

periodic temporal object oriented SQL, they just sketched
the language to define the repetition pattern and the period.
Moreover, they do not mention any facility for introducing
user-defined periods. Thus, in practice, only little support is
provided to deal with user-defined periodicity. Moreover,
Kurt did not define the semantics set-operators on periodic
elements and did not show the implementation of these
operators.

Finally, the approach by Niezette and Stevenne [34] is the
more closely related to our approach. As discussed above,
they proposed an approach using a symbolic layer built
upon generalized databases (i.e., databases in which tuples
are associated with LRP to express periodicity [22], [23]).
They also proposed a semisymbolic evaluation method for
operations on symbolic periodicity (actually, in [34], only the
treatment of intersection between periodicities is discussed).
Such a method is only sketched in [34], where they
presented only examples showing that they exploit the
symbolic level to perform efficient symbolic simplifications
whenever periodicities share the same hierarchy. Otherwise,
the computation of intersection over two periodicities X ¼
O1:C1 þ . . .þOn:Cn and Y ¼ O01:C

0
1 þ . . .þO0m:C

0
m basically

transforms X and Y in such a way that they use the very
same hierarchy of calendars Ci and then performs simple
operations on the selections Oi and O0i. This transformation
involves very complex operations of calendar completion
and synchronization. Moreover, case X and Y contain
different calendars which are not in a subcalendar relation,10

this process involves the mapping onto linear repeating
intervals, and the output may be very cumbersome and not
friendly for the users (see the example in Section 8.2).
Moreover, in [34], the correctness and completeness of their
semisymbolic evaluation method are not discussed.

8.2 Symbolic Periodicity vs. Mathematical-Based
Periodicity vs. Extensional Approaches

Finally, it is worth reconsidering our choice of dealing with
“symbolic” user-defined periodicity. An “intensional”
(called “implicit” in [5]) approach has many advantages
with respect to an extensional one, e.g., it allows one to deal
also with infinite periodicities (e.g., “each Mondays,” with
frame time ð�1;þ1Þ) and is cheaper as regards both
memory allocation and computational costs. More impor-
tant, there is an additional fundamental advantage from the
“human-oriented” point of view which inspires our
approach: In many cases, extensional results are only
scarcely informative to users, who should have to reinter-
pret them in order to obtain an “intensional” significant
result. The comparison between the extensional and the
symbolic part of the answer to query Q2 in Section 7 is just
one of the many examples of this fact. For these reasons,
most TDB approaches chose to adopt an “intensional
approach” (see, e.g., [4], [5], [6], [7], [22], [23], [34], [45],
[49] and the survey [46]).

However, from the “human-oriented” point of view, also
constraint-based approaches using mathematical formulae
to express periodicity (see, e.g., [22], [23], [45] and the

survey in [46]) seem to us inadequate (see, e.g., the sharp

criticism in [27], [34], and notice that Stevenne was one of

the coauthors of the LRP paper [22]). Let us consider, e.g.,

the definition of “the first Mondays of each month”

(henceforth 1st-MM for short) in Kabanza’s mathematical

formalism. Weeks and months are not synchronous (or, in

the terms in [34], the subcalendar relation does not hold

between them), and the minimum common period over

which they repeat regularly is 28 years long. Thus, in order

to express 1st-MM using Kabanza’s unions of LRP [22], [23],

one has to explicitly list all the terms of the union. For

example, taking days as basic periodicity and 1/1/1998 as

reference time, one has to state a list (union) of 336 formulae

such as

336 formulae

10; 227 # nþ 4; 10; 227 # nþ 4;X1 ¼ X2
10; 227 # nþ 32; 10; 227 # nþ 32;X1 ¼ X2
10; 227 # nþ 60; 10; 227 # nþ 60;X1 ¼ X2
::::::

8>><
>>:

where the first and the second formulae in each row define

the LRP representing the starting and ending point of each

Monday, and the third formula in each row states the

constraint that these points are equal. 10,227 is the number

of days in 28 years, four represents the start of the first

Monday after the reference time (i.e., 5/1/1998). The union

contains 336 formulae since there are 336 months in 28

years. It is evident that this formalism is neither user-

friendly nor human-oriented since it forces users to

introduce very long lists of cumbersome formulae and

does not provide a perspicuous and commonsense repre-

sentation of the data.
A further major drawback is that, as already noticed by

Leban, in mathematical approaches all formulae must be

built from scratch, instead of building them in a composi-

tional and incremental way (e.g., in Kabanza et al. [22], [23]

1st-MM must be defined from scratch instead that in terms

of the definitions of Months and of Mondays).
On the other hand, in the symbolic language by Niezette

and Stevenne, 1st-MM can be easily represented by

all:monthsþ 1:weeksþ 1:days:

However, Niezette and Stevenne strongly rely on the

mapping onto LRP in order to deal with queries involving

set operations on periodicities. Consider, e.g., the intersec-

tion between 1st-MM and the fifth days of each month

(5th-M for short; defined by all.months+5.days). Since

1st-MM and 5th-M have different calendar hierarchies

(weeks is missing in the definition of 5th-M) intersection

finds out a common hierarchy. Since Weeks and Months are

not in a subcalendar relation, this process involves the

introduction of their “minimum common multiple periodi-

city” (called “bigwheels” by Niezette [34]), which is a

28-years-long calendar corresponding to the one implicitly

used in the mathematical LRP-based example shown above.

Thus, the definition of 1st-MM is transformed into the union

below of 336 terms

TERENZIANI: SYMBOLIC USER-DEFINED PERIODICITY IN TEMPORAL RELATIONAL DATABASES 19

10. Niezette and Stevenne [34] defined the subcalendar relation as
follows: A calendar X is a subcalendar of a calendar Y if each interval of Y is
exactly covered by a finite number of intervals of X. For instance, Days is a
subcalendar of Months, while Weeks is not.

bigwheelsþ 1:monthsþ 5:days

[bigwheelsþ 2:monthsþ 2:days

[bigwheelsþ 3:monthsþ 2:days [:::::

and 5th-M into the definition “bigwheels + all.months +
5.days,” and the intersection between the two definitions is
the union below (of 48 terms):

bigwheelsþ 1:monthsþ 5:days

[bigwheelsþ 10:monthsþ 5:days

[bigwheelsþ 16:monthsþ 5:days [:::::

Actually, this output seems to us scarcely more informative
and human-oriented than an extensional or mathematical
one.

In our symbolic approach, we can easily cope with the
examples above in a user-friendly, compositional, and
incremental way by introducing the Definitions 1, 2, and
3, and given the definitions of Days, Weeks, and Months:

1. Mondays ¼ 1=DaysNSDurWeeks,
2. 1st-MM ¼ 1=MondaysNSDurMonths, and
3. 5th-M ¼ 5=DaysNSDurMonths.

Finally, in our approach, the intersection of 1st-MM and
5th-M is easily computed using the conditional transforma-
tion rules in Table 1 (the temporal relation between 1st-MM
and 5th-M is 9C), and gives as result the compact symbolic
output “1st-MM \C 5th-M.” Even in this case, our semisym-
bolic evaluation is exploited in order to consider the
simplifications due to a given frame-time FT, our output
is either “Ø” (if the intersection has empty extension in FT)
or “1st-MM \C 5th-M.” In fact, we use the extensional
evaluation just in order to detect redundant or empty
periodicities, so that (differently from [34]), the user-
friendliness of our output is not affected by the adoption
of extensional evaluations.

In the case of many applications of VT-modifying
algebraic operators (e.g., �P) in the same query, we might
have a growth in the dimension of the periodicities (see
Section 5.5). However, notice that, in our approach, such a
growth is only related to the number of VT-modifying
operators in the queries, while in Niezette and Stevenne it
also depends on the least common multiple period of input
periodicities (which is usually several orders of magnitude
greater than the number of operators in a query).11

Moreover, no simplification (e.g., redundancy elimination)
is performed in Niezette’s approach.

8.3 Future Work

We are starting to devise a prototypical implementation of
our approach by exploiting the abstract data types facilities
provided by DBMS. In such an implementation, e.g.,
validity times are stored simply as a string of characters;

obviously, a complete implementation should involve also

an extension of SQL and of the operators to insert, delete,

and/or modify tuples. We also plan to extend our approach

to cover also nearly periodic events [46]. In such an extension,

we will probably rely on an interval-based extensional

semantics (see [42], [44]) instead that on Gadia’s [20]

classical point-based one. Moreover, we want to apply our

symbolic language to deal with user-defined periodicity

and its symbolic implementation in the area of multimedia

scenario authoring [2].
Finally, a long term project involves the treatment of

qualitative temporal constraints (e.g., “before”) between

tuples of periodic tables not only in the queries but also in

the data (to deal, e.g., with temporal constraints such as “each

Monday between 1/10/98 and 31/1/99 the lesson of

History is Before Mathematics”—see [40]—in the data of

temporal databases). This would involve the definition of

an integrated architecture to couple a temporal reasoner

about such constraints (such as, e.g., TeMP [40]) with the

data model and algebra in this paper (thus, extending the

modular architecture we proposed in [13], that coupled the

LaTeR temporal reasoner [11], [12] with a temporal DB [10]

in order to deal with qualitative constraints on nonperiodic

events only).

ACKNOWLEDGMENTS

The author is very grateful to R.T. Snodgrass and C.S.

Jensen for many useful discussions, comments, and

suggestions on early versions of this paper and to L. Egidi

for her help in the revision of the latest version. The author

is also very indebted to C. Bettini, R. Chandra, D. Cuckier-

man, C. Jensen, R. Morris, M. Ozsoyoglu, B. Pernici,

A. Segev, R. Snodgrass, and P. Wolper, who sent him

copies of their papers and other related papers in the

literature and/or gave him many relevant references. The

author is also very grateful to the anoymous reviewers for

their inspiring suggestions, their in-depth comments, and

their constructive criticism.

REFERENCES

[1] M. Abadi and Z. Manna, “Temporal Logic Programming,”
J. Symbolic Computation, vol. 8, no. 3, pp. 277-295, Sept. 1989.

[2] S. Adali, L. Console, M.L. Sapino, M. Schenone, and P. Terenziani,
“Representing and Reasoning with Temporal Constraints in
Multimedia Presentations,” Proc. Seventh Int’l Workshop Temporal
Representation and Reasoning (TIME’00), pp. 3-12, 2000.

[3] J.F. Allen, “Maintaining Knowledge about Temporal Intervals,”
Comm. ACM, vol. 26, no. 11, pp. 832-843, Nov. 1983.

[4] M. Baudinet, M. Niezette, and P. Wolper, “On the Representation
of Infinite Temporal Data and Queries,” Proc. ACM SIGACT-
SIGMOD-SIGART Symp. Principles of Database Systems, pp. 280-
290, May 1991.

[5] M. Baudinet, J. Chomicki, and P. Wolper, “Temporal Databases:
Beyond Finite Extensions,” Proc. Int’l Workshop Infrastructure for
Temporal Databases, June 1993.

[6] M. Baudinet, J. Chomicki, and P. Wolper, “Temporal Deductive
Databases,” Temporal Databases, A. Tansel, J. Clifford, S. Gadia,
S. Jajodia, A. Segev and R. Snodgrass, eds., 1993.

[7] E. Bertino, C. Bettini, E. Ferrari, and P. Samarati, “An Access
Contro Model Supporting Periodicity Constraints and Temporal
Reasoning,” ACM Trans. Database Systems, vol. 23, no. 3, pp. 231-
285, 1998.

20 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 2, MARCH/APRIL 2003

11. Moreover, even if in [34] Niezette and Stevenne didn’t describe the
application of intersection on composite periodicities (e.g., on unions of base
periodicities), one could argue that they would exploit the distributivity of
intersection over union. In such a case, n repeated nested applications of
intersection (as discussed in Section 5.5 for our approach) of periodicities
consisting of unions of u intersection terms would lead, in Niezette’s
approach, to a resulting periodicity of unþ1 #lcmðPeriodðPer1;BPÞ;
. . . ;PeriodðPern;BPÞÞ terms. Thus, in the worst case, the dimension would
be ðunþ1 #PeriodðPer1;BPÞ# . . .# PeriodðPern;BPÞÞ, where PeriodðPeri;BPÞ
indicates the period of a periodicity with respect to the basic periodicity.

[8] C. Bettini, C. Dyreson, W. Evans, R. Snodgrass, and X. Wang, “A
Glossary of Time Granularity Concepts,” Temporal Databases:
Research and Practice, 1998.

[9] C. Bettini and R. De Sibi, “Symbolic Representation of User-
Defined Time Granularities,” Proc. Sixth Int’l Workshop Temporal
Representation and Reasoning (TIME’99), pp. 17-28, 1999.

[10] V. Brusoni, L. Console, B. Pernici, and P. Terenziani, “Extending
Temporal Relational Databases to Deal with Imprecise and
Qualitative Temporal Information,” J. Clifford and A. Tuzhilin,
eds., Recent Advances of Temporal Databases, pp. 3-22, 1995.

[11] V. Brusoni, L. Console, and P. Terenziani, “On the Computational
Complexity of Querying Bounds on Differences Constraints,”
Artificial Intelligence, vol. 74, no. 2, pp. 367-379, 1995.

[12] V. Brusoni, L. Console, B. Pernici, and P. Terenziani, “LaTeR: An
Efficient, General-Purpose Manager of Temporal Information,”
IEEE Expert, vol. 12, no. 4, pp. 56-64, 1997.

[13] V. Brusoni, L. Console, B. Pernici, and P. Terenziani, “Qualitative
and Quantitative Temporal Constraints and Relational Databases:
Theory, Architecture, and Applications,” IEEE Trans. Knowledge
and Data Eng., vol. 11, no. 6, pp. 948-968, Nov./Dec. 1999.

[14] R. Chandra, A. Segev, and M. Stonebraker, “Implementing
Calendars and Temporal Rules in Next Generation Databases,”
Proc. Int’l Conf. Data Eng., pp. 264-273, 1994.

[15] J. Chomicki and T. Imielinsky, “Temporal Deductive Databases
and Infinite Objects,” Proc. Seventh ACM Symp. Principles of
Database Systems, pp. 61-73, Mar. 1988.

[16] J. Chomicki and T. Imielinsky, “Finite Representation of Infinite
Query Answers,” ACM Trans. Database Systems, vol. 18, no. 2,
pp. 181-223, June 1993.

[17] D. Cukierman and J. Delgrande, “Expressing Time Intervals and
Repetition within a Formalization of Calendars,” Computational
Intelligence, vol. 14, no. 4, pp. 563-597, 1998.

[18] C.E. Dyreson, W.S. Evans, H. Lin, and R.T. Snodgrass, “Efficiently
Supporting Temporal Granularities,” IEEE Trans. Knowledge and
Data Eng., vol. 12, no. 4, pp. 568-587, 2000.

[19] H. Enderton, A Mathematical Introduction to Logic. New York:
Academic Press, 1972.

[20] S.K. Gadia, “A Homogeneous Relational Model and Query
Languages for Temporal Databases,” ACM Trans. Database
Systems, vol. 13, no. 4, pp. 418-448, 1988.

[21] T. Imielinski, “Data on Air—What’s in It for the Database
Theorist,” Proc. Conf. Database Theory, pp. 1-13, 1995.

[22] F. Kabanza, J.-M. Stevenne, and P. Wolper, “Handling Infinite
Temporal Data,” Proc. ACM SIGACT-SIGMOD-SIGART Symp.
Principles of Database Systems, pp. 392-403, Apr. 1990.

[23] F. Kabanza, J.-M. Stevenne, and P. Wolper, “Handling Infinite
Temporal Data,” J. Computer and System Sciences, vol. 51, pp. 3-17,
1995.

[24] A. Kurt and M. Ozsoyoglu, “Modelling and Querying Periodic
Temporal Databases,” Proc. Workshop Sixth Int’l Conf. Database and
Expert Systems Applications (DEXA), pp. 124-133, 1995.

[25] P. Ladkin, “Primitive and Units for Time Specification,” Proc. Fifth
Nat’l Conf. Artificial Intelligence, pp. 354-359, Aug. 1986.

[26] P. Ladkin, “Time Representation: A Taxonomy of Interval
Relations,” Proc. Fifth Nat’l Conf. Artificial Intelligence, pp. 360-
366, Aug. 1986.

[27] B. Leban, D.D. McDonald, and D.R. Forster, “A Representation for
Collections of Temporal Intervals,” Proc. Fifth Nat’l Conf. Artificial
Intelligence, pp. 367-371, Aug. 1986.

[28] G. Ligozat, “On Generalized Interval Calculi,” Proc. Ninth Nat’l
Conf. Artificial Intelligence, pp. 234-240, July 1991.

[29] N. Lorentzos and R. Johnson, “Extending Relational Algebra to
Manipulate Temporal Data,” Information Systems, vol. 13, no. 3,
pp. 289-296, 1988.

[30] Z. Manna and A. Pnueli, The Temporal Logic of Reactive and
Concurrent Systems. Springer-Verlag, 1992.

[31] E. McKenzie and R. Snodgrass, “Schema Evolution and the
Relational Algebra,” Information Systems, vol. 15, no. 2, pp. 207-
232, 1990.

[32] L. McKenzie and R. Snodgrass, “Evaluation of Relational Algebras
Incorporating the Time Dimension in Temporal Databases,” ACM
Computing Surveys, vol. 23, no. 4, pp. 501-543, 1991.

[33] R.A. Morris, W.D. Shoaff, and L. Khatib, “Domain Independent
Temporal Reasoning with Recurring Events,” Computational
Intelligence, vol. 12, no. 3, pp. 450-477, 1996.

[34] M. Niezette and J.-M. Stevenne, “An Efficient Symbolic Repre-
sentation of Periodic Time,” Proc. First Int’l Conf. Information and
Knowledge Management, Nov. 1992.

[35] R. Snodgrass, “The TSQL2 Query Language,” Kluwer Academic,
1995.

[36] R. Snodgrass and I. Ahn, “Temporal Databases,” Computer, vol. 19,
no. 9, pp. 35-42, Sept. 1986.

[37] R.T. Snodgrass, M.H. Bohlen, C.S. Jensen, and A. Steiner,
“Transitioning Temporal Support in TSQL2 to SQL3,” Temporal
Databases—Research and Practice, O. Etzion, S. Jajodia, S. Sripada
eds., pp. 150-191, 1998.

[38] M. Soo and R. Snodgrass, “Multiple Calendar Support for
Conventional Database Management Systems,” Proc. Int’l Work-
shop an Infrastructure for Temporal Databases, June 1993.

[39] Temporal Databases: Theory, Design and Implementation. A. Tansel,
J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass, eds.,
Benjamin/Cummings, 1993.

[40] P. Terenziani, “Integrating Calendar-Dates and Qualitative Tem-
poral Constraints in the Treatment of Periodic Events,” IEEE
Trans. Knowledge and Data Eng., vol. 9, no. 5, pp. 763-783, 1997.

[41] P. Terenziani, “Symbolic User-defined Periodicity in Temporal
Relational DataBases, version II,” Technical Report RT58-00,
Dipartimento di Informatica, Univ. di Torino, http://www.di.
unito.it/~terenz/TECH-REP/, Year?

[42] P. Terenziani, “Is Point-Based Semantics Always Adequate for
Temporal Databases?” Proc. Seventh Int’l Workshop Temporal
Representation and Reasoning (TIME’00), pp. 191-199, 2000.

[43] P. Terenziani and P. Terenziani, “Integrated Temporal Reasoning
with Periodic Events,” Computational Intelligence, vol. 16, no. 2,
pp. 210-256, May 2000.

[44] P. Terenziani and R.T. Snodgrass, “Reconciling Point-Based and
Interval-Based Semantics in Temporal Relational Databases: A
Proper Treatment of the Telic/Atelic Distinction,” Technical
Report TR-60, TIMECENTER, June 2001.

[45] D. Toman, J. Chomicki, and D. Rogers, “Datalog with Integer
Periodicity Constraints,” Proc. Int’l Logic Programming Symp.,
pp. 189-203, 1994.

[46] A. Tuzhilin and J. Clifford, “On Periodicity in Temporal
Databases,” Information Systems, vol. 20, no. 8, pp. 619-639, Dec.
1995.

[47] F. Van Eynde, “Iteration, Habituality and Verb Form Semantics,”
Proc. Third Conf. European Chapter of the Assoc. for Computational
Linguistics, pp. 270-277, Apr. 1987.

[48] M.Y. Vardi, “A Temporal Fixpoint Calculus,” Proc. 15th Ann. ACM
SIGACT-SIGPLAN Symp. Principles of Programming Languages,
pp. 250-259, 1988.

[49] X. Wang, C. Bettini, A. Brodsky, and S. Jajodia, “Logical Design for
Temporal Databases with Multiple Granularities,” ACM Trans.
Database Systems, vol. 22, no. 2, pp. 115-170, 1997.

[50] P. Wolper, “Temporal Logic Can be More Expressive,” Information
and Control vol. 56, pp. 72-99, 1983.

Paolo Terenziani received both the Laurea
degree (in 1987) and the PhD degree in
computer science (in 1993) from the Universitá
di Torino, Italy. He is currently a full professor
with the Dipartimento di Scienze e Tecnologie e
Avanzate of the Universitá del Piemonte Orien-
tale “Amedeo Avogadro,” Alessandria, Italy. His
research interests mainly focus on the treatment
of time and time-dependent phenomena in
different areas, including databases (in the

subareas of temporal relational databases, and of semantics) and
artificial intelligence (natural language, knowledge representation,
temporal reasoning, constraint propagation techniques). He has
published more than 50 papers about these topics in refereed journals
and conferences.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dilb.

TERENZIANI: SYMBOLIC USER-DEFINED PERIODICITY IN TEMPORAL RELATIONAL DATABASES 21

