
Symbolic Verification of Communication Protocols

with Infinite State Spaces Using QDDs

(Extended Abstract)

Bernard Boigetot*
Universit~ de Liege

Institut Montefiore, B28
4000 Libge Sart-Tilman, Belgium

Emaih boigelot@montefiore.ulg.ac.be

Patrice Godefroid
Lucent Technologies - Bell Laboratories

1000 E. \u Road
Naperville, IL 60566, U.S.A.

Email: god@bell-labs.corn

A b s t r a c t

~re study the verification of properties of communication protocols modeled by a finite set
of finite-state machines that communicate by exchanging messages via unbounded FIFO queues.
It is well-known that most interesting verification problems, such as deadlock detection, are
undecidable for this class of systems. However, in practice, these verification problems may very
well turn out to be decidable for a subclass containing most "real" protocols.

Motivated by this optimistic (and, we claim, realistic) observation, we present an algorithm
that may construct a finite and exact representation of the state space of a communication
protocol, even if this state space is infinite. Our algorithm performs a loop.first search in the state
space of the protocol being analyzed. A loop-first search is a search technique that attempts to
explore first the results of successive executions of loops in the protocol description (code). A new
data structure named Queue-con~ent Decision Diagram (QDD) is introduced for representing
(possibly infinite) sets of queue-contents. Operations for manipulating QDDs during a loop-first
search are presented.

A loop-first search using QDDs has been implemented, and experiments on several com-
munication protocols with infinite state spaces have been performed. For these examples, our
tool completed its search, and produced a finite symbolic representation for these infinite state
spaces.

1 I n t r o d u c t i o n

State-space exploration is one of the most successful s trategies for analyzing and verifying properties of

finite-state concurrent reactive systems. It proceeds by exploring a global s ta te graph representing
the combined behavior of all concurrent components in the system. This is done by recursively

exploring all successor s ta tes of all s tates encountered dur ing the exploration, s tar t ing from a given

initial s tate, by executing all enabled t ransi t ions in each state. The s ta te graph tha t is explored is

called the state space of the system. Many different types of properties of a sys tem can be checked by

exploring its s ta te space: deadlocks, dead code, violations of user-specified assertions, etc. Moreover,

the range of properties tha t s tate-space explorat ion techniques can verify has been substant ial ly

broadened during the last decade thanks to the development of model-checking methods for various
temporal logics (e.g., ICES86, LP85, QS81, V~V86]).

* "Aspirant" (Research Assistant) for the National Fund for Scientific Research (Belgium). The work of this author
was done in part while visiting Bell Laboratories.

Verification by state-space exploration has been studied by many researchers (cf. [Liu89, Rud87]).
The simplicity of the strategy lends itself to easy, and thus efficient, implementations. Moreover,
verification by state-space exploration is fully automatic: no intervention of the designer is required.
The main limit of state-space exploration verification techniques is the often excessive size of the
state space. Obviously, this state-explosion problem is even more critical when the state space being
explored is infinite.

In contrast with the last observation, we show in this paper that verification by state-space explo-
ration is also possible for systems with infinite state spaces. Specifically, we consider communication
protocols modeled by a finite set of finite-state machines that communicate by exchanging messages
via unbounded FIFO queues. We present a state-space exploration Mgorithm that may construct
a finite and exact representation of the state space of such a communication protocol, even if this
state space is infinite. From this symbolic representation, it is then straightforward to verify many
properties of the protocol, such as the absence of deadlocks, whether or not the number of messages
stored in a queue is bounded, and the teachability of local and global states.

Of course, given an arbitrary protocol, our algorithm may not terminate its search. Indeed, it
is well-known that unbounded queues can be used to simulate the tape of a Turing machine, and
hence that most interesting verification problems are undecidable for this class of systems [BZ83].
However, in practice, these verification problems may very well turn out to be decidable for a
subclass containing most "real" protocols. To support this claim, properties of several communication
protocols with infinite state spaces have been verified successfully with the algorithm introduced in
this paper.

In the next section, we formally define communication protocols. Our algorithm performs a loop-
first search in the state space of the protoco~ being analyzed. A loop-first search is a search technique
that at tempts to explore first the results of successive executions of loops in the protocol description
(code). This search technique is presented in Section 3. A new data structure, the Queue-content
Decision Diagram (QDD), is introduced in Section 4 for representing (possibly infinite) sets of queue-
contents. Operations for manipulating QDDs during a loop-first search are presented in Section 5.
A loop-first search using QDDs has been implemented, and experiments on several communication
protocols with infinite state spemes are reported in Section 6. This paper ends with a comparison
between our contributions and related work.

2 Communicat ing Finite-State Mach ines

Consider a protocol modeled by a finite set ~4 of finite-state machines that communicate with each
other by sending and receiving messages via a finite set Q of unbounded FIFO queues, modeling
communication channels. Let Mi denote the set of messages that can be stored i n queue ql, 1 < i <
IQI. For notational convenience, let us assume that the sets 11~ are pairwise disjoint. Let Ci denote
the finite set of states of machine . ~ i , 1 _< i < 12~].

Formally, a protocol P is a tuple (C, co ,A ,Q,M,T) where C = C1 x . . . x CI:~[is a finite set
of control states, co E C is an initial control state, A is a finite set of actions, Q is a finite set of
unbounded FIFO queues, ~" = U l ~ M i is a finite set of messages, and T is a finite set of transitions,
each of which is a triple of the form (cl, op, c2) where cl and c2 are control states, and op is a label
of one of the forms qi!w, where qi E Q and w E M~*, q~?w, where q~ E Q and w E M~*, or a, where

a E A .

A transition of the form (cl, qi!w, c~) represents a change of the control state from cl to c2 while
appending the messages composing w to the end of queue ql. A transition of the form (cl, qi?w, c2)
represents a change of the control state from cl to c2 while removing the messages composing w Srom
the head of queue qi.

A global state of a protocol is composed of a control state and a queue-content. A queue-content

RtoS?ack 1 I

StoR!msgl I RtoS?ackl

I StoR!msgO SIoR?msg t~~

SmR!msgO RtoS?ackO

IRtoS!ackl
Rcv Roy

RtoS!ackO (StoR?msgO

SENDER RECEIVER

Figure 1: Alternating-Bit Protocol

associates with each queue qi a sequence of messages from Mi. Formally, a global state 7, or simply
a state, of a protocol is an element of the set C1 x . . - x CI~ [x M~ x . . . x M]*QI. A global state
7 = (c(1), c(2) , c(IAd I), w(1), w(2) w(]Q[)) assigns to each finite-state machine A~i a "local"
(control) state c(i) �9 Ci, and associates with each queue qj a sequence of messages w(j) �9 .~[~
which represents the content of qj in the global state 7. The initial global state of the system is
70 = (c0(1), c0(2) , . . . , c0(]-h~l), e , . . . , ~), i.e., we assume that all queues are initially empty.

A global transition relation --~ is a set of triples (7, a, 7~), where 7 and 3, ~ are global states, and
a �9 A U {r) . Let 7 ~* 7' denote (% a, 7') �9 "~. Relation ~ is defined as follows:

* if (cl, qi!w, co) �9 T, then (cl (1), cl (2) cx (I.AA]), w'(1), w'(2) , w'(IQ I)) Z~
(c2(1), c2(2) , c2(].hdl) , w"(1), w " (2) , . . . , w"(IQD) where w"(i) = w'(i)w and w"(j) = w' (j) ,
j # i (the control state changes from cl to c2 and w is appended to the end of queue q~);

�9 if (ca, qi?w, c2) �9 T, then (cl (1), cl (2) , . . . , cx([Ad]), w'(1), w'(2) , w'(]Q[)) Z~
(c2(1), c2(2) , . . . , c2([A4]), w"(1), w " (2) , . . . , w"([q])) Where w'(i) = ww"(i) and w"(j) = w' (j) ,
j # i (the control state changes from el to c2 and w is removed from the head of queue qi);

�9 if (cl ,a, c2) �9 T, then (c1(1),c1(2) cl (I .Ml) ,w ' (1) ,w ' (2) , . . . ,w'(lQI)) -~
(c2(1) ,c2(2) , . . . ,c2([A4D,w"(1) ,w"(2) , . . . ,w"(]Q[)) with w"(i) = w'(i), for all i < i < IQ]
(the control state changes from ca to c2 while the action a is performed).

A global state 7 ~ is said to be reachable from another global state 7 if there exists a sequence of
global transitions (Ti-a,ai ,Ti) , 1 < i < n, such that 7 = 70 2h 7a "" "7~-1 ~ 7~ = 7 ~. The global
state space of a system is the (possibly infinite) set of all states that are reachable from the initial
global state 7o.

E x a m p l e 1 As an example of communication protocol, consider the well-known Alternating-Bit
Protocol [BSW69]. This protocol can be modeled by two finite-state machines Sender and Receiver
that communicate via two unbounded FIFO queues StoR (used to transmit messages from the Sender
to the Receiver) and RtoS (used to transmit acknowledgments from the Receiver to the Sender).

Precisely, the Alternating-Bit Protocol is modeled by the protocol (C, co, A, Q, M, T) where C =
CSenaer X CR~e,i where Cse ,d~ = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10} and CR~c~i~ = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8) ;
co = (1, 1); A = {Snd, Rcv, t imeout); Q = {S toR, RtoS}; M = MStoR U MinoS, where MStoR =
{ msgO, m s g l) and Minos = { ackO, ack l } ; and T contains the transitions ((si , r l) , op, (s2 , r 2)) where

either r l = r2 and (sl,op, s2) is a transition in the Sender machine of Figure 1, or 81 = s2 and
(r l , op, r2) is a transition in the Receiver machine of Figure 1. The action Snd models a request to
the Sender, coming from a higher-level application, to transmit data to the Receiver side. The actual
data that are transmitted are not modeled, only message numbers msgO and msgl are t ransmit ted
over the queues. Similarly, the action Rcv models the transmission of data received by the Receiver
to a higher-level application. The actions labeled by $imeout model the expiration of timeouts. I

3 Loop-First Search

All state-space exploration techniques are based on a common principle: they spread the reachability
information along the transitions of the system to be analyzed. The exploration process starts with
the initial global state of the system~ and tries at every step to enlarge its current set of reachable
states by propagating these states through transitions. The process terminates when a stable set is
reached,

In order to use the above state-space exploration paracligm for verifying properties of systems
with infinite state spaces, two basic problems need to be solved: one needs a representation for
infinite sets of states, as well as a search technique that can explore an infinite number of states in
a finite amount of time.

In the context of the verification of communication protocols as defined in the previous section,
our solution to the first problem is to represent the control part explicitly and the queue-contents
"symbolically". Specifically, we will use special data structures for representing (possibly infinite)
sets of queue-contents associated with reachable control states.

To solve the second problem, we will use these data structures for simultaneously exploring
(possibly infinite) sets of global states rather than individual global states. This may make it possible
to reach a stable representation of the set of reachable global states, even if this set is infinite.
In order to simultaneously generate sets of reachable states from a single reachable state, me,a-
transitions [BW94] can be used. Given a loop that appears in the protocol description and a control
state c in that loop, a meta-transition is a transition that generates all global states tha t can be
reached after repeated executions of the body of the loop. By definition, all these global states have
the same control state c.

The classical enumerative state-space exploration algorithm can then be rewritten in such a way
that it works with sets of global states, i.e., pairs of the form (control state, da ta structure/~ rather
than with individual states. Initially, the search starts from an initial global state. At each step
during the search, whenever meta-transitions axe executable, they are explored first, which is a
heuristic aimed at generating many reachable states as quickly as possible. This is why we call such
a search a loop-first search. The search terminates if the representation of the set of reachable states
stabilizes. This hapl~ens when, for every control state, every new deducible queue-content is included
in the current set of queue-contents associated with that control state. At this moment, the final
set of pairs (control state, data structure I represents exactly the state space of the protocol being
analyzed.

In order to apply the verification method described above, we need to define a data structure
for representing (possibly infinite) sets of queue-contents, and algorithms for manipulating these
da ta structures. Specifically, whenever a transition or a meta-transition is executed from a pair
(control state, data structure / during a loop-first search, the new pair (control state, data structure)
obtained after the execution of this (meta-)transition has to be determined. Therefore, from any
given such data structure, one needs to be able to compute a new data structure representing the
effect of sending messages to a queue (qi!w) and receiving messages from a queue (qi?w), as well as
the result of executing frequent types of meta-transitions, such as repeatedly sending messages on a
queue ((q~!w)*), repeatedly receiving messages from a queue ((q~?w)*), and repeatedly receiving the

sequence of messages wl from a queue qi followed by sending another sequence of messages w2 on
another queue qj, i ~ j , ((qi?wl; qflw2)'). Finally, basic operations on sets are also needed, such as
checking if a set of queue-contents is included in another set, and computing the union of two sets
of queue-contents.

4 Queue-content Decision Diagrams

Queue-content Decision Diagrams (QDDs) are data structures that satis~" all the constraints listed
in the previous section. A QDD is a special type of finite-state automaton on finite words. A finite-
state automaton on finite words is a tuple A = (~], S, A , s o , F) , where Z is an alphabet (finite set of
symbols), S is a finite set of states, A C S x (~ u {E}) x S is a transition relation (e denotes the
empty word)~ s0 E S is the initial state, and F _C S is a set of accepting states. A transition (s, a, F)
is said to be labeled by a. A finite sequence (word) w = ala2 . . . an of symbols in ~ is accepted by the
automaton A if there exists a sequence of states a -- so . . . sn such that Vl < i < n : (si-1, ai, si) E ,h,
and sn E F. The set of words accepted by A is called the language accepted by A, and is denoted by
L(A). Let us define the projection W[M~ of a word w on a set Mi as the subsequence of w obtained
by removing all symbols in w that are not in Mi. An automaton is said to be deterministic if it
does not contain any transition labeled by the empty word, and if for each state, all the outgoing
transitions are labeled by different symbols.

Precisely, QDDs are defined as follows.

Def in i t ion 2 A QDD A for a protocol P is a deterministic finite-state automaton (M, S, A so, F)
on finite words such that

Vw e L(A) : w = ~V]MIIIM 2 . . . ~ [M . .

A QDD is associated with each control state reached during a loop-first search, and represents a
set of possible queue-contents for this control state. Each word w accepted by a QDD defines one
queue-content W[M~ for each queue qi in the protocol.

By Definition 2, a total order < is implicitly defined on the set Q of all queues qi in the protocol
such that, for all QDDs for this protocol, transitions labeled by messages in Mi always appear before
transitions labeled by messages in Mj if i < j . Therefore, for all QDDs for a protocol, a given
queue-content can only be represented by one unique word. In other words, Definition 2 implicitly
defines a "canonical" representation for each possible queue-content. Note that this does not imply
that QDDs are canonical representations for sets of queue-contents.

5 Operations on QDDs

Standard algorithms O n finite-state automata on finite words can be used for checking if the language
accepted by a QDD is included in the language accepted by another QDD, for computing the union
of QDDs, etc. (e.g., see [LPS1]). In what follows, A1 U A2 will denote an automaton that accepts
the language L(A1) u L(A2), while DETERMINIZE(A) will denote a deterministic automaton that
accepts the language L(A). We wilt write "Add (s, w, s') to A" to mean that transitions (si-1, ai, si)~
1 < i < n, such that w --- a la 2 . . .an , so = S, Sn = S I, and si, 1 _< i < n, are new (fresh) states, are
added to A.

We now describe how to perform the other basic operations on QDDs listed in Section 3.

Let A be the QDD associated with a given control s tate c. Let L(A) denote the language accepted
by A, and let Lop(A) denote the language that has to be associated with the control s tate e J reached

SEND(queue.id i, word w, QDD (M, S, A, so, F)) {

For all states s E S such that

3~' e (u~=lMj)" : ~0 ~ s,

do the following operations:

�9 Add a new state s' to S;
�9]?or all transitions t = (e ,m , s ") ~ A such that m e M j , j > i:

Replace t by (s ~ , m, s") ;
�9 For all transitions t = (s"~m,s) E A such that m E M j , j > i:

Replace t by (s", m, s%
�9 Add (s ,w,s r) to A;

�9 If s E F, add s' to F, and remove s from F;

Return DETERMINIZE((M, S, A, so, F)).

)

RECEIVE(queue-id i, word w, QDD (M, S, A, so, F)) {

For all states s E S such that

~ ' e (u~:~M~)" : .so g s~

do the following operations:

�9 Add a new state s t to S;
�9 For all transitions t -- (s ,m,s") e A such that m E Mj~j ~ i:

Replace t by (s t, m, s");
�9 For all transitions t = (s" ,m,s) E A such that m E M j , j _> i:

Replace t by (s", m, s');
�9 For all states s" E S such that s' ~ s":

Add a transition (s, e, s") to A;
�9 If s E F , m:ld s ~ to F, and remove s from F;

Return DETERMINIZE((M, S~ A, so, F)) .

}

Figure 2: qi!w and qi?w

after the execution of a t ransi t ion (c, op, c') f rom the control s ta te c~ wi th op E (qi!w, qi?w}. \Ve

have the following:

| Lq,!u.(A) = {w ' t3w ~ E L (A) : w~'iMi -~ WPlMiW A~/j r i : w"iM J = WtlMj} ,

* nq,?w(A) = (w"13w' E n (A) : W'IM ~ = WV~"IM , AVj r i : W'IM ~ = W'[M~}.

Algor i thms for comput ing a QDD A ~ tha t accepts all possible queue-contents obtained after the

execution of a t ransi t ion of the form q~!w or qi?w on a Q D D A = (l ~ , S , A , s o , F) are given in

Figure 2. The correctness of these a lgor i thms is es tabl ished by the following two theorems.

T h e o r e m 3 Let A be a QDD, let A' denote the automaton returned by SEND(i, w, A), and let
L(A') denote the language accepted by A'. Then A' is a QDD such that L(A ') -- Lq,~u.(A).

P r o o f Proofs are omit ted here due to space l imitat ions. See the full paper . I

T h e o r e m 4 Let A be a QDD, let A s denote the automaton returned by RECEIVE(i , w, A), and let
L(A ') denote the language accepted by A ~. Then A' is a QDD such that L(A ') = Lq~?u.(A).

SEND-STAR(queue-id i, word w, QDD (M, S, A, *0, F)) {

For all states s �9 S such that

do the following operations:

�9 Add two new states s ~ and s" to S;
�9 For all transitions t -- (s,rn, s ~'') �9 A such that rn E M j , j > i:

Replace t by (s", rn, sin);
�9 For all transitions t = (s% m, s) �9 A such that m �9 M j , j > i:

Replace t by (s'"~ m, s ') ;
�9 Add (s ,e ,s ') , (s',~,s") and (8',w,8') to ~;
�9 I f s � 9 a d d s " t o F ;

Return DETERMINIZE((M, S, A, so, F)).

}

RECEIVE-STAR(queue.id i, word w, QDD (M, S, z~, so, F)) {

For all states s �9 S such that

8 0 =:~ 81

do the following operations:

�9 Add a new state s p to S;
�9 For all transitions t = (8, m,s") E A such that m �9 M j , j > i:

(8 , m , s) Replace t by
�9 For all transitions t = (s",rn, 8) E A such that rn �9 M j , j > i:

Replace t by (8", m, s~);

�9 For all states s" �9 S such that 3w' �9 {w}* : s ~ ~ 8":
Add a transition (s, s, 8") to A;

�9 I f s � 9 a d d s ~ t o F ;

Return DETERMINIZE((M, S, A, 80, F)).

}

Figure 3: (qi!w)* and (qi?w)*

P r o o f See the full paper. �9

We now consider the meta- t rans i t ions discussed in Section 3. The operation (qi!w)* denotes

the union of all possible queue-contents obtained after sending k sequences of messages w E M/* to

the queue ql of the sys tem, for all k > 0. The operation (qi?w)* denotes the union of all possible

queue-contents obtained after receiving k sequences of messages w E Mi* from the queue qi of the

system, for all k >_ 0. The operation (qi?wl; qj!w~)* denotes the union of all possible queue-contents

obtained after receiving k sequences of messages wl ~ .~I~* from the queue ql and sending k sequences

of messages w2 E -~f~ to the queue qj, for all k > 0, and for i ~ j .

Let A be the QDD associated with a given control s ta te c. Let L(A) denote the language accepted

by A, and let Lop(A) denote the language tha t has to be associated with the control s tate e reached
after the execution of a meta- t rans i t ion (c, op, c) with op E {(qi!w)*, (qi?w)*, (q~?wa; qj!w2)*). We
have the following:

| L(q,!~,).(g) ---- {w"13w' e L(A), k >_ 0 i w " l . , = w ' l . , wk ^ Vj r i : W"lMi = w:lMj },

* L(q,?,~). (A) = {w"lSw' e L(A) , k > O: w'lM , = w~w"lM, A Vj r i : w " l . , = w'iM j },

RECEIVE-SEND-STAR(queue_id i, word wl, queue.id j , word w~, QDD (M~ S, &, so, F)) {

Let n be the greatest integer such that

3sl s~+l ~ S : Sl ~ s2 ~ . .- ~ s .+ l ,

with Vl < k < l _ n + l : sk :~ s~;

Let A0 denote the QDD (M, S, &, so, F)~

For all k, 1 < k _ n + 1, compute Ak -- SEND(j, w2, RECEIVE(/, w~, A~-~));

If L(A,+~) = 0:

�9 Return DETERMINIZE(O~=0Ak);

If L(A.+~) # $:

�9 Let p = 1;
�9 While L(A~+I) # L(RECEIVE(i, w~, A,+I)):

p : - p + l ;
�9 For all k, 2 _ k <_ p, compute A,+~ = SEND(j, w2, RECEIVE(i, wl, A.+k-1));
�9 Compute A,+p+~ =SEND-STAR(j,w~, DETERMINIZE(U~+~+IAk));
�9 Return DETERMINIZE(U~__+~ +lAk).

}

Figure 4: (qi?wl; qj!w2)*

t ! �9 L(q,?w,;q~!~2).(A) = {w"]Sw' e L(A) ,k > 0 : W~lM, = w~w'lM , A w IMj = W'lMr ^VI r
{ i , j) : w " l . , = w'lM,}.

Algorithms for comput ing a QDD A' t ha t accepts all possible queue-contents obtained after

the execution of a meta- t rans i t ion of the form (qi!w)*, (qi?w)*, or (qfiwl;qj!w2)* on a QDD A =

(M, S, A, s0, F) are given in Figures 3 and 4. The correctness of these algori thms is established by
the following theorems.

T h e o r e m 5 Let A be a QDD, let A' denote the automaton returned by SEND-STAR(i, w, A), and
let L(A') denote the language accepted by X . Then A' is a QDD such that L(A') = L(q~!~).(A).

P r o o f See the full paper. �9

T h e o r e m 6 Let A be a QDD, let A' denote the automaton retuT~ed by RECEIVE-STAR(i, w, A),
and let L(A') denote the language accepted by A'. Then A' is a QDD such that L(A') = L(~,?w). (A).

P r o o f See the full paper. �9

L e m m a 7 Let n and A,+I be as defined in the algorithm RECEIVE-SEND-STAR(i, wl, j, w2, A),
with i # j . If the language accepted by An+l is not empty, then there exists p such that 0 < p <
(n + 1)!, and L(An+I) = L(RECEIVE(i,w~,An+I)).

P r o o f See the full paper. �9

T h e o r e m 8 Let A be a QDD, let A' denote the automaton returned by RECEIVE-SEND-STAR(i,
wl, j , w2, A), , with i # j , and let L(A') denote the language accepted by A'. Then A' is a QDD
such that L (X) = L(q,?,ol:q~!~). (A).

P r o o f See the full paper. �9

It is worth noticing tha t , as a corollary of the last theorem, the language L(q~?~;qj!,~2).(A) is
regular.

6 Experimental Results

Consider again the Alternating-Bit protocol of Example 1. Meta-transitions are added to the proto-
col description for loops that match either (qi!w)*, (qi?w)*, or (qi?wl;qj!w2)*. Precisely, the meta-
transitions (3, (RtoS?ackl; StoR!msgO)*, 3), (3, (StoR!msgO)*, 3), (8, (RtoS?ackO; StoR!rnsgl)*, 8),
(8, (StoR!msgl)*,8) are added to the set of transitions of the Sender, while the meta-transitions
(1, (StoR?msgl; RtoS!ackl)*, 1) and (5, (StoR?m~gO;]~toS!ackO)', 5) are added to the set of transi-
tions of the Receiver.

~Are have implemented (in C) a "QDD-package" containing an implementation of the algorithms
for manipulating QDDs described in the previous section, and we have combined it with a loop-first
search. Starting with the control state (1,1) and the QDD (M, {so}, {), so, {so)), which corresponds
to the queue-content e for both queues StoR and RtoS, the execution of the loop-first search for the
Alternating-Bit protocol terminates after 5.9 seconds of computation on a SPARC10 workstation.
The number of (meta-)transitions executed is 331. The largest QDD constructed during the search
contains 21 states; and 52 control states are reachable from the initial state.

Many properties can be checked on the symbolic representation of the state space of the protocol
obtained at the end of the search. For instance, it is then straightforward to prove that the protocol
does not contain any deadlocks, that there are reachable control states where the number of messages
in a queue is unbounded, that messages are always delivered in the correct order, etc.

Our tool has also been tested on several variants of the Alternating-Bit protocol, where the tran-
sitions labeled by "timeout" are removed from the protocol description, where the Sender/Receiver
have various number of control states, etc. An interesting variant is the case where queues may lose
messages (to model unreliable transmission media). In order to handle this case, it is sufficient to
define one additional algorithm SEND-LOSSY(i, w, A), that merely returns A u SEND(i, w, A). We
also performed experiments on several simple sliding-window protocols [Tan89], with various window
sizes. For all these examples with infinite state spaces (more than 20 in total), our tool was able
to successfully terminate its search within a few minutes of computation. This shows that, at least
for this particular though important c]a~s of examples, our verification method is very useful and
robust.

7 Comparison with Other Work and Conclusions

Although most verification problems are undecidable for arbitrary protocols modeled by communicat-
ing finite-state machines, decision procedures have been obtained for the verification of specific prop-
erties for limited sub-classes [KM69, RY86, GGLR87, CF87, Fin88, Jergl, SZ91, A J93, A J94, CFP96].
These sub-classes do not cover, e.g., the Alternating-Bit Protocol and the properties discussed in the
previous section, which were easily verified using a loop-first search and QDDs.

Clearly, a necessary, but not sufficient, condition for the termination of our algorithm is that,
for all reachable control states of the protocol, the language of queue-contents associated with that
control state can be represented by a QDD. The class of protocols characterized by the above nec-
essary condition is equivalent to the class of protocols for which, for each reachable control state
of the protocol, the set of possible queue-contents can be described by a recognizable expression
(i.e., a finite union of cartesian products of regular expressions). Indeed, it can be shown that any
recognizable language can be represented by a QDD, and that any set of queue-contents represented
by a QDD is a recognizable language.

In [Pac87], it is pointed out that several verification problems are decidable for the above class of
protocols. However, no method is given for constructing a recogniz&ble expression representing all
possible queue-contents for each control state of the protocol. Actually, from [CFP96], it is easy to
show that an algorithm for constructing such recognizable expressions, for any protocol in the class

10

defined above, cannot exist. In contrast, our contribution is to provide a practical algorithm which
is able to compute such a representation for protocols in the above class, although not for all of them
- this is impossible anyway.

In this paper, we have presented algorithms on QDDs for computing the effect of executing three
frequent types of meta-transitions. These algorithms were sufficient for analyzing the protocols
considered in the previous section. However, it is possible to design algorithms on QDDs for other
types of meta-transitions as welh Interesting future work is to characterize precisely the set of meta-
transitions that preserve recognizability and to provide a generic algorithm for computing the effect
of the execution of any meta-transition in this class. These topics will be addressed in a forthcoming
paper.

In [PPgl], a verification method based on data-flow analysis is used to generate "flow equations"
from the description of a set of communicating finite-state ma~:hines. By computing approximations
of solutions for these equations, it is possible to show that the original system is free of certain types
of errors. In contrast, our algorithm is able to produce an exact representation of the state space
of the protocol being analyzed. This enables us not only to prove the absence of errors, but also
to detect errors and to exhibit to the user sequences of transitions that lead to errors. Note that,
obviously, approximations could also be used in our framework, e.g., for simplifying QDDs when
they become too complex, or when the search does not seem to stop. For the examples we have
considered so far, no approximations were necessary.

The idea of representing states partly explicitly (control part) and partly symbolically (data part)
already appeared in [ACD93] for the verification of real-time systems, where dense-time domains are
represented by polyhedra. This idea also appeared in [BW94], where the values of integer variables
are represented by periodic vector sets. These symbolic representations are quite different from
QDDs.

For digital hardware verification [BCM+90], the most commonly used symbolic representation is
certainly the Binary Decision Diagram (BDD) [Bry92], which represents a boolean function (with
a finite domain) as a directed acyclic graph. In [GL96], it is shown how QDDs can be combined
with BDDs to improve the efficiency of classical BDD-based symbolic model-checking methods for
verifying properties of communication protocols with large finite state spaces.

8 A c k n o w l e d g m e n t s

We wish to thank Michael Merritt and Mark Stasl~uskas for helpful comments on a preliminary
version of this paper.

R e f e r e n c e s

[ACD93]

[AJ93]

[AJ94]

[BCM+90]

R. Alur, C. Courcoubetis, and D. Dill. Model-checking in dense real-time. Information
end Computation, 104(1):2-34, May 1993.

P. A. Abdulla and B. Jonsson. Verifying programs with unreliable channels. In Proceed-
ings of the 8th IEEE Symposium on Logic in Computer Science, 1993.

P. A. Abdulla and B. Jonsson. Undecidable verification problems for programs with
unreliable channels. In Proc. ICALP-94, volume 820 of Lecture Notes in Computer
Science, pages 316-327. Springer-Verlag: 1994.

J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic model
checking: 1020 states and beyond. In Proceedings of the 5th Symposium on Logic in
Computer Science~ pages 428-439, Philadelphia, June 1999.

[Bry92]

[BSW69]

[BW94]

[BZ83]

ICES86]

[cr87]

[CFP96]

[Fin88]

[GGLR87]

[CL96]

[Jer91]

[KM69]

[Liu89]

[LP81]

[LP85]

[Pac87]

[PP91]

]1

R.E. Bryant. Symbolic boolean manipulation with ordered binary-decision diagrams.
A CM Computing Surveys, 24(3):293-318, 1992.

K. Bartlett, R. Scantlebury, and P. Wilkinson. A note on reliable full-duplex transmis-
sions over half-duplex lines. Communications of the ACM, 2(5):260-261, t969.

B. Boigelot and P. Wolper. Symbolic verification with periodic sets. In Proc. 6th Confer-
ence on Computer Aided Verification, volume 818 of Lecture Notes in Computer Science,
pages 55-67, Stanford, June 1994. Springer-Verlag.

D. Brand and P. Zafiropulo. On communicating finite-state machines. Journal of the
ACM, 2(5):323-342, 1983.

E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-state con-
current systems using temporal logic specifications. ACM Transactions on Programming
Languages and Systems, 8(2):244-263, January 1986.

A. Ch0quet and A. Finke]. Simulation of linear FIFO nets having a structured set of
terminal markings. In Proc. 8th European Workshop on Application and Theory of Petri
Nets, pages 95-112, Saragoza, 1987.

G. C&~, A. Finkel, and S. Purushothaman. Unreliable channels are easier to verify than
perfect channels. Information a.nd Computation, 124(3):20-31, 1996.

A. Finkel. A new class of analyzable cfsms with unbounded FIFO channels. In Proc. 8th
IFIP WG 6.1 International Symposium on Protocol Specification, Testing, and Verifica-
tion, pages 1-12, Atlantic City~ 1988. North-Holland.

M. G. Gouda, E. M. Gurari, T. H. Lai, and L. E. Rosier. On deadlock detection in
systems of communicating finit~state machines. Computers and Artificial Intelligence,
6(3):209-228, 1987.

P. Godefroid and D. E. Long. Symbolic Protocol Verification with Queue BDDs. In
Proceedings of the 11th IEEE Symposium on Logic in Computer Science, New Brunswick,
July 1996.

T. Jeron. Testing for unboundedness of FIFO channels. In Proc. STACS-91: Symposium
on Theoretical Aspects of Computer Science, volume 480 of Lecture Notes in Computer
Science, pages 322-333, Hamburg, 1991. Springer-Verlag.

R. M. Karp and R. E. Miller. Parallel program schemata. Journal of Computer and
System Sciences, 3(2):147-195, 1969.

M.T. Liu. Protocol engineering. Advances in Computing, 29:79-195. 1989.

H. R. Lewis and C. H. Papadimitriou. Elements of the Theory of Computation. Prentice
Hall, 1981.

O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs satisfy
their linear specification. In Proceedings of the Twelfth A CM Symposium on Principles
of Programming Languages, pages 97-107, New Orleans, January 1985.

J. K. Pachl. Protocol description and analysis based on a state transition model with
channel expressions. In Proe. 7th IFIP WG 6.1 International Symposium on Protocol
Specification, Testing, and Verification. North-Holland, 1987.

W. Peng and S. Purushothaman. Data flow analysis of communicating finite state ma-
chines. A CM Transactions on Programming Languages and Systems, 13(3):399-442, 1991.

[QS81]

[Rud87]

[RY86]

[sz91]

[Tan89]

[vw861

12

J.P. QuieUe and J. Sifakis. Specification and verification of concurrent systems in CESAR.
In Proc. 5th Int'l Syrup. on Programming, volume 137 of Lecture Notes in Computer
Science, pages 337-351. Springer-Verlag, 1981.

H. Rudin. Network protocols and tools to help produce them. Annual Review of Computer
Science, 2:291-316, 1987.

L. E. Royer and H. C. Yen. Boundedness, empty channel detection and synchronization
for communicating finite automata. Theoretical Computer Science, 44:69-105, 1986.

A. P. Sistla and L. D. Zuck. Automatic temporal verification of buffer systems. In Proc.
3rd Workshop on Computer Aided Verification, volume 575 of Lecture Notes in Computer
Science, pages 93-103, Aalborg, July 1991. Springer-Verlag.

A. Tanenbaum. Computer Neworks. Prentice Hall, 1989.

M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In Proceedings of the First Symposium on Logic in Computer Science, pages
322-331, Cambridge, June 1986.

