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A b s t r a c t  

~re study the verification of properties of communication protocols modeled by a finite set 
of finite-state machines that communicate by exchanging messages via unbounded FIFO queues. 
It is well-known that most interesting verification problems, such as deadlock detection, are 
undecidable for this class of systems. However, in practice, these verification problems may very 
well turn out to be decidable for a subclass containing most "real" protocols. 

Motivated by this optimistic (and, we claim, realistic) observation, we present an algorithm 
that may construct a finite and exact representation of the state space of a communication 
protocol, even if this state space is infinite. Our algorithm performs a loop.first search in the state 
space of the protocol being analyzed. A loop-first search is a search technique that attempts to 
explore first the results of successive executions of loops in the protocol description (code). A new 
data structure named Queue-con~ent Decision Diagram (QDD) is introduced for representing 
(possibly infinite) sets of queue-contents. Operations for manipulating QDDs during a loop-first 
search are presented. 

A loop-first search using QDDs has been implemented, and experiments on several com- 
munication protocols with infinite state spaces have been performed. For these examples, our 
tool completed its search, and produced a finite symbolic representation for these infinite state 
spaces. 

1 I n t r o d u c t i o n  

State-space exploration is one of the  most  successful s trategies for analyzing and verifying properties of 

finite-state concurrent  reactive systems.  It proceeds by exploring a global s ta te  graph representing 
the  combined behavior of all concurrent components  in the  system.  This  is done by recursively 

exploring all successor s ta tes  of all s tates  encountered dur ing  the  exploration, s tar t ing from a given 

initial s tate,  by executing all enabled t ransi t ions  in each state.  The  s ta te  graph tha t  is explored is 

called the  state space of the system. Many different types of  properties of a sys tem can be checked by 

exploring its s ta te  space: deadlocks, dead code, violations of user-specified assertions, etc. Moreover, 

the  range of properties tha t  s tate-space explorat ion techniques can verify has been substant ial ly 

broadened during the  last decade thanks  to the  development  of model-checking methods  for various 
temporal  logics (e.g., ICES86, LP85, QS81, V~V86]). 
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Verification by state-space exploration has been studied by many researchers (cf. [Liu89, Rud87]). 
The simplicity of the strategy lends itself to easy, and thus efficient, implementations. Moreover, 
verification by state-space exploration is fully automatic: no intervention of the designer is required. 
The main limit of state-space exploration verification techniques is the often excessive size of the 
state space. Obviously, this state-explosion problem is even more critical when the state space being 
explored is infinite. 

In contrast with the last observation, we show in this paper that  verification by state-space explo- 
ration is also possible for systems with infinite state spaces. Specifically, we consider communication 
protocols modeled by a finite set of finite-state machines that  communicate by exchanging messages 
via unbounded FIFO queues. We present a state-space exploration Mgorithm that  may construct 
a finite and exact representation of the state space of such a communication protocol, even if this 
state space is infinite. From this symbolic representation, it  is then straightforward to verify many 
properties of the protocol, such as the absence of deadlocks, whether or not the number of messages 
stored in a queue is bounded, and the teachability of local and global states. 

Of course, given an arbitrary protocol, our algorithm may not terminate its search. Indeed, it 
is well-known that  unbounded queues can be used to simulate the tape of a Turing machine, and 
hence that  most interesting verification problems are undecidable for this class of systems [BZ83]. 
However, in practice, these verification problems may very well turn out to be decidable for a 
subclass containing most "real" protocols. To support this claim, properties of several communication 
protocols with infinite state spaces have been verified successfully with the algorithm introduced in 
this paper. 

In the next section, we formally define communication protocols. Our algorithm performs a loop- 
first search in the state space of the protoco~ being analyzed. A loop-first search is a search technique 
that  at tempts to explore first the results of successive executions of loops in the protocol description 
(code). This search technique is presented in Section 3. A new data structure, the Queue-content 
Decision Diagram (QDD), is introduced in Section 4 for representing (possibly infinite) sets of queue- 
contents. Operations for manipulating QDDs during a loop-first search are presented in Section 5. 
A loop-first search using QDDs has been implemented, and experiments on several communication 
protocols with infinite state spemes are reported in Section 6. This paper ends with a comparison 
between our contributions and related work. 

2 Communicat ing  Finite-State  Mach ines  

Consider a protocol modeled by a finite set ~4 of finite-state machines that  communicate with each 
other by sending and receiving messages via a finite set Q of unbounded FIFO queues, modeling 
communication channels. Let Mi denote the set of messages that  can be stored i n queue ql, 1 < i < 
IQI. For notational convenience, let us assume that  the sets 11~ are pairwise disjoint. Let Ci denote 
the finite set of states of machine . ~ i ,  1 _< i < 12~]. 

Formally, a protocol P is a tuple (C, co ,A ,Q,M,T)  where C = C1 x . . .  x CI:~[ is a finite set 
of control states, co E C is an initial control state, A is a finite set of actions, Q is a finite set of 
unbounded FIFO queues, ~" = U l ~ M i  is a finite set of messages, and T is a finite set of transitions, 
each of which is a triple of the form (cl, op, c2) where cl and c2 are control states, and op is a label 
of one of the forms qi!w, where qi E Q and w E M~*, q~?w, where q~ E Q and w E M~*, or a, where 

a E A .  

A transition of the form (cl, qi!w, c~) represents a change of the control state from cl to c2 while 
appending the messages composing w to the end of queue ql. A transition of the form (cl, qi?w, c2) 
represents a change of the control state from cl to c2 while removing the messages composing w Srom 
the head of queue qi. 

A global state of a protocol is composed of a control state and a queue-content. A queue-content 
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Figure 1: Alternating-Bit Protocol 

associates with each queue qi a sequence of messages from Mi. Formally, a global state 7, or simply 
a state, of a protocol is an element of the set C1 x . . -  x CI~  [ x M~ x . . .  x M]*QI. A global state 
7 = (c(1), c(2) . . . .  , c(IAd I), w(1), w(2) . . . . .  w(]Q[)) assigns to each finite-state machine A~i a "local" 
(control) state c(i) �9 Ci, and associates with each queue qj a sequence of messages w(j )  �9 .~[~ 
which represents the content of qj in the global state 7. The initial global state of the system is 
70 = (c0(1), c0(2) , . . . ,  c0(]-h~l), e , . . . ,  ~), i.e., we assume that  all queues are initially empty. 

A global transition relation --~ is a set of triples (7, a, 7~), where 7 and 3, ~ are global states, and 
a �9 A U {r) .  Let 7 ~* 7' denote (% a, 7') �9 "~. Relation ~ is defined as follows: 

* if (cl, qi!w, co) �9 T,  then (cl (1), cl (2) . . . . .  cx (I.AA ]), w'(1), w'(2) . . . .  , w'(IQ I)) Z~ 
(c2(1), c2(2) . . . .  , c2(].hdl) , w"(1), w " ( 2 ) , . . . ,  w"(IQD ) where w"(i) = w'( i )w and w"( j )  = w' ( j ) ,  
j # i (the control state changes from cl to c2 and w is appended to the end of queue q~); 

�9 if (ca, qi?w, c2) �9 T, then (cl (1), cl ( 2 ) , . . . ,  cx([Ad]), w'(1), w'(2) . . . .  , w'(]Q[)) Z~ 
(c2(1), c2(2) , . . . ,  c2([A4]), w"(1), w " ( 2 ) , . . . ,  w"([q])) Where w'(i) = ww"( i )  and w"( j )  = w' ( j ) ,  
j # i (the control state changes from el to c2 and w is removed from the head of queue qi); 

�9 if (cl ,a,  c2) �9 T, then (c1(1),c1(2) . . . . .  cl ( I .Ml) ,w ' (1) ,w ' (2) , . . .  ,w'(lQI)) -~ 
(c2(1) ,c2(2) , . . . ,c2([A4D,w"(1) ,w"(2) , . . . ,w"(]Q[))  with w"(i)  = w'(i), for all i < i < IQ] 
(the control state changes from ca to c2 while the action a is performed). 

A global state 7 ~ is said to be reachable from another global state 7 if there exists a sequence of 
global transitions (Ti-a,ai ,Ti) ,  1 < i < n, such that  7 = 70 2h 7a "" "7~-1 ~ 7~ = 7 ~. The global 
state space of a system is the (possibly infinite) set of all states that  are reachable from the initial 
global state 7o. 

E x a m p l e  1 As an example of communication protocol, consider the well-known Alternating-Bit 
Protocol [BSW69]. This protocol can be modeled by two finite-state machines Sender and Receiver 
that  communicate via two unbounded FIFO queues StoR (used to transmit messages from the Sender 
to the Receiver) and RtoS  (used to transmit  acknowledgments from the Receiver to the Sender). 

Precisely, the Alternating-Bit Protocol is modeled by the protocol (C, co, A, Q, M, T) where C = 
CSenaer X CR~e,i . . . .  where Cse ,d~  = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10}  and CR~c~i~ = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ) ;  
co = (1, 1); A = {Snd,  Rcv, t imeout);  Q = {S toR,  RtoS};  M = MStoR U MinoS, where MStoR = 
{ msgO, m s g l  ) and Minos = { ackO, ack l } ; and T contains the transitions ((si , r l ) ,  op, ( s2 , r 2 ) ) where 



either r l  = r2 and (sl,op, s2) is a transition in the Sender machine of Figure 1, or 81 = s2 and 
(r l ,  op, r2) is a transition in the Receiver machine of Figure 1. The action Snd models a request to 
the Sender, coming from a higher-level application, to transmit data  to the Receiver side. The actual 
data  that  are transmitted are not modeled, only message numbers msgO and msgl are t ransmit ted 
over the queues. Similarly, the action Rcv models the transmission of data  received by the Receiver 
to a higher-level application. The actions labeled by $imeout model the expiration of timeouts. I 

3 Loop-First Search 

All state-space exploration techniques are based on a common principle: they spread the reachability 
information along the transitions of the system to be analyzed. The exploration process starts  with 
the initial global state of the system~ and tries at every step to enlarge its current set of reachable 
states by propagating these states through transitions. The process terminates when a stable set is 
reached, 

In order to use the above state-space exploration paracligm for verifying properties of systems 
with infinite state spaces, two basic problems need to be solved: one needs a representation for 
infinite sets of states, as well as a search technique that  can explore an infinite number of states in 
a finite amount of time. 

In the context of the verification of communication protocols as defined in the previous section, 
our solution to the first problem is to represent the control part  explicitly and the queue-contents 
"symbolically". Specifically, we will use special data  structures for representing (possibly infinite) 
sets of queue-contents associated with reachable control states. 

To solve the second problem, we will use these data  structures for simultaneously exploring 
(possibly infinite) sets of global states rather than individual global states. This may make it possible 
to reach a stable representation of the set of reachable global states, even if this set is infinite. 
In order to simultaneously generate sets of reachable states from a single reachable state,  me,a- 
transitions [BW94] can be used. Given a loop that  appears in the protocol description and a control 
state c in that loop, a meta-transition is a transition that  generates all global states tha t  can be 
reached after repeated executions of the body of the loop. By definition, all these global states have 
the same control state c. 

The classical enumerative state-space exploration algorithm can then be rewritten in such a way 
that  it works with sets of global states, i.e., pairs of the form (control state, da ta  structure/~ rather 
than with individual states. Initially, the search starts  from an initial global state. At each step 
during the search, whenever meta-transitions axe executable, they are explored first, which is a 
heuristic aimed at generating many reachable states as quickly as possible. This is why we call such 
a search a loop-first search. The search terminates if the representation of the set of reachable states 
stabilizes. This hapl~ens when, for every control state,  every new deducible queue-content is included 
in the current set of queue-contents associated with that  control state. At this moment,  the final 
set of pairs (control state, data structure I represents exactly the state space of the protocol being 
analyzed. 

In order to apply the verification method described above, we need to define a data  structure 
for representing (possibly infinite) sets of queue-contents, and algorithms for manipulating these 
da ta  structures. Specifically, whenever a transition or a meta-transition is executed from a pair 
(control state, data  structure / during a loop-first search, the new pair (control state, data  structure) 
obtained after the execution of this (meta-)transition has to be determined. Therefore, from any 
given such data structure, one needs to be able to compute a new data structure representing the 
effect of sending messages to a queue (qi!w) and receiving messages from a queue (qi?w), as well as 
the result of executing frequent types of meta-transitions, such as repeatedly sending messages on a 
queue ((q~!w)*), repeatedly receiving messages from a queue ((q~?w)*), and repeatedly receiving the 



sequence of messages wl from a queue qi followed by sending another sequence of messages w2 on 
another queue qj, i ~ j ,  ((qi?wl; qflw2)').  Finally, basic operations on sets are also needed, such as 
checking if a set of queue-contents is included in another set, and computing the union of two sets 
of queue-contents. 

4 Queue-content Decision Diagrams 

Queue-content Decision Diagrams (QDDs) are data structures that  satis~" all the constraints listed 
in the previous section. A QDD is a special type of finite-state automaton on finite words. A finite- 
state automaton on finite words is a tuple A = (~], S, A , s o , F ) ,  where Z is an alphabet (finite set of 
symbols), S is a finite set of states, A C S x (~ u {E}) x S is a transition relation (e denotes the 
empty word)~ s0 E S is the initial state, and F _C S is a set of accepting states. A transition (s, a, F)  
is said to be labeled by a. A finite sequence (word) w = ala2 . . .  an of symbols in ~ is accepted by the 
automaton A if there exists a sequence of states a -- so . . .  sn such that  Vl < i < n : (si-1,  ai, si) E ,h, 
and sn E F.  The set of words accepted by A is called the language accepted by A,  and is denoted by 
L(A).  Let us define the projection W[M~ of a word w on a set Mi as the subsequence of w obtained 
by removing all symbols in w that  are not in Mi. An automaton is said to be deterministic if it 
does not contain any transition labeled by the empty word, and if for each state, all the outgoing 
transitions are labeled by different symbols. 

Precisely, QDDs are defined as follows. 

Def in i t ion  2 A QDD A for a protocol P is a deterministic finite-state automaton (M, S, A so, F )  
on finite words such that  

Vw e L(A)  : w = ~V]MIIIM 2 . . . ~ [ M . .  

A QDD is associated with each control state reached during a loop-first search, and represents a 
set of possible queue-contents for this control state. Each word w accepted by a QDD defines one 
queue-content W[M~ for each queue qi in the protocol. 

By Definition 2, a total order < is implicitly defined on the set Q of all queues qi in the protocol 
such that,  for all QDDs for this protocol, transitions labeled by messages in Mi always appear before 
transitions labeled by messages in Mj if i < j .  Therefore, for all QDDs for a protocol, a given 
queue-content can only be represented by one unique word. In other words, Definition 2 implicitly 
defines a "canonical" representation for each possible queue-content. Note that  this does not imply 
that  QDDs are canonical representations for sets of queue-contents. 

5 Operations on QDDs 

Standard algorithms O n finite-state automata  on finite words can be used for checking if the language 
accepted by a QDD is included in the language accepted by another QDD, for computing the union 
of QDDs, etc. (e.g., see [LPS1]). In what follows, A1 U A2 will denote an automaton that  accepts 
the language L(A1) u L(A2), while DETERMINIZE(A) will denote a deterministic automaton that  
accepts the language L(A).  We wilt write "Add (s, w, s') to A" to mean that  transitions (si-1,  ai, si)~ 
1 < i < n, such that  w --- a la  2 . . .an ,  so = S, Sn = S I, and si, 1 _< i < n, are new (fresh) states, are 
added to A. 

We now describe how to perform the other basic operations on QDDs listed in Section 3. 

Let A be the QDD associated with a given control s tate  c. Let L(A)  denote the language accepted 
by A, and let Lop(A) denote the language that  has to be associated with the control s tate  e J reached 



SEND(queue.id i, word w, QDD (M, S, A, so, F))  { 

For all states s E S such that 

3~'  e (u~=lMj)" : ~0 ~ s, 

do the following operations: 

�9 Add a new state s' to S; 
�9 ]?or all transitions t = ( e ,m , s " )  ~ A such that  m e M j , j  > i: 

Replace t by ( s ~ , m, s" ) ; 
�9 For all transitions t = (s"~m,s) E A such that  m E M j , j  > i: 

Replace t by (s", m, s% 
�9 Add (s ,w,s  r) to A; 

�9 If s E F,  add s' to F,  and remove s from F;  

Return DETERMINIZE((M, S, A, so, F)).  

) 

RECEIVE(queue-id i, word w, QDD (M, S, A, so, F)) { 

For all states s E S such that 

~ '  e (u~:~M~)" : .so g s~ 

do the following operations: 

�9 Add a new state s t to S; 
�9 For all transitions t -- (s ,m,s")  e A such that  m E Mj~j ~ i: 

Replace t by (s t, m, s"); 
�9 For all transitions t = (s" ,m,s)  E A such that  m E M j , j  _> i: 

Replace t by (s", m, s'); 
�9 For all states s" E S such that  s' ~ s":  

Add a transition (s, e, s") to A; 
�9 If s E F ,  m:ld s ~ to F,  and remove s from F;  

Return DETERMINIZE((M, S~ A, so, F)) .  

} 

Figure  2: qi!w and  qi?w 

after the  execution of a t ransi t ion (c, op, c') f rom the  control  s ta te  c~ wi th  op E (qi!w, qi?w}. \Ve 

have the  following: 

| Lq,!u.(A) = {w ' t3w ~ E L ( A ) :  w~'iMi -~ WPlMiW A~/j r i :  w"iM J = WtlMj} , 

* nq,?w(A) = (w"13w' E n ( A ) :  W'IM ~ = WV~"IM , AVj  r i : W'IM ~ = W'[M~}. 

Algor i thms for comput ing  a QDD A ~ tha t  accepts  all possible queue-contents  obtained after the 

execution of a t ransi t ion of the  form q~!w or qi?w on a Q D D  A = ( l ~ , S , A , s o , F )  are given in 

Figure  2. The correctness of these a lgor i thms is es tabl ished by the  following two theorems.  

T h e o r e m  3 Let A be a QDD, let A' denote the automaton returned by SEND(i,  w, A),  and let 
L(A' )  denote the language accepted by A'.  Then A'  is a QDD such that L(A ' )  -- Lq,~u.(A). 

P r o o f  Proofs  are omit ted here due to space l imitat ions.  See the  full paper .  I 

T h e o r e m  4 Let A be a QDD, let A s denote the automaton returned by RECEIVE( i ,  w, A),  and let 
L(A ' )  denote the language accepted by A ~. Then A'  is a QDD such that L(A ' )  = Lq~?u.(A). 



SEND-STAR(queue-id i, word w, QDD (M, S, A, *0, F)) { 

For all states s �9 S such that  

do the following operations: 

�9 Add two new states s ~ and s" to S; 
�9 For all transitions t -- (s,rn, s ~'') �9 A such that  rn E M j , j  > i: 

Replace t by (s", rn, sin); 
�9 For all transitions t = (s% m, s) �9 A such that  m �9 M j , j  > i: 

Replace t by (s'"~ m, s ' ) ;  
�9 Add (s ,e ,s ' ) ,  (s',~,s") and (8',w,8') to ~;  
�9 I f s � 9  a d d s " t o F ;  

Return DETERMINIZE((M, S, A, so, F)). 

} 

RECEIVE-STAR(queue.id i, word w, QDD (M, S, z~, so, F))  { 

For all states s �9 S such that 

8 0 =:~ 81 

do the following operations: 

�9 Add a new state s p to S; 
�9 For all transitions t = (8, m,s")  E A such that m �9 M j , j  > i: 

(8 , m , s  ) Replace t by 
�9 For all transitions t = (s",rn, 8) E A such that rn �9 M j , j  > i: 

Replace t by (8", m, s~); 

�9 For all states s" �9 S such that  3w' �9 {w}* : s ~ ~ 8": 
Add a transition (s, s, 8") to A; 

�9 I f s � 9  a d d s  ~ t o F ;  

Return DETERMINIZE( ( M, S, A,  80, F)). 

} 

Figure 3: (qi!w)* and (qi?w)* 

P r o o f  See the  full paper.  �9 

We now consider the  meta- t rans i t ions  discussed in Section 3. The operation (qi!w)* denotes 

the  union of all possible queue-contents obtained after sending k sequences of messages w E M/* to 

the  queue ql of the  sys tem,  for all k > 0. The  operation (qi?w)* denotes the  union of all possible 

queue-contents obtained after receiving k sequences of messages  w E Mi* from the queue qi of the  

system,  for all k >_ 0. The  operation (qi?wl; qj!w~)* denotes the  union of all possible queue-contents 

obtained after receiving k sequences of messages  wl ~ .~I~* from the queue ql and sending k sequences 

of messages w2 E -~f~ to the  queue qj, for all k > 0, and for i ~ j .  

Let A be the QDD associated with a given control s ta te  c. Let L(A)  denote the  language accepted 

by A, and let Lop(A) denote the  language tha t  has  to be associated with the  control s tate e reached 
after the execution of a meta- t rans i t ion  (c, op, c) with op E {(qi!w)*, (qi?w)*, (q~?wa; qj!w2)*). We 
have the  following: 

| L(q,!~,).(g) ---- {w"13w' e L(A), k >_ 0 i w " l . ,  = w ' l . ,  wk ^ Vj  r i : W"lMi = w:lMj }, 

* L(q,?,~). (A) = {w"lSw'  e L(A) ,  k > O: w'lM , = w~w"lM, A Vj  r i :  w " l .  , = w'iM j }, 



RECEIVE-SEND-STAR(queue_id i, word wl, queue.id j ,  word w~, QDD (M~ S, &, so, F)) { 

Let n be the greatest integer such that  

3sl . . . .  s~+l ~ S : Sl ~ s2 ~ . .-  ~ s .+ l ,  

with Vl < k < l _ n + l  : sk :~ s~; 

Let A0 denote the QDD (M, S, &, so, F)~ 

For all k, 1 < k _ n + 1, compute Ak -- SEND(j, w2, RECEIVE(/, w~, A~-~)); 

If L(A,+~) = 0: 

�9 Return DETERMINIZE(O~=0Ak); 

If L(A.+~) # $: 

�9 Let p =  1; 
�9 While L(A~+I) # L(RECEIVE(i, w~, A,+I)): 

p : - p + l ;  
�9 For all k, 2 _ k <_ p, compute A,+~ = SEND(j, w2, RECEIVE(i, wl, A.+k-1)); 
�9 Compute A,+p+~ =SEND-STAR(j,w~, DETERMINIZE(U~+~+IAk)); 
�9 Return DETERMINIZE(U~__+~ +lAk). 

} 

Figure 4: (qi?wl; qj!w2)* 

t !  �9 L(q,?w,;q~!~2).(A) = {w"]Sw' e L(A) ,k  > 0 : W~lM, = w~w'lM , A w  IMj = W'lMr ^VI  r 
{ i , j )  : w " l . ,  = w'lM,}. 

Algorithms for comput ing  a QDD A' t ha t  accepts all possible queue-contents  obtained after 

the  execution of a meta- t rans i t ion  of the  form (qi!w)*, (qi?w)*, or (qfiwl;qj!w2)* on a QDD A = 

(M, S, A, s0, F )  are given in Figures 3 and 4. The  correctness of these algori thms is established by 
the  following theorems. 

T h e o r e m  5 Let A be a QDD, let A' denote the automaton returned by SEND-STAR(i, w, A), and 
let L(A') denote the language accepted by X .  Then A' is a QDD such that L(A') = L(q~!~).(A). 

P r o o f  See the full paper. �9 

T h e o r e m  6 Let A be a QDD, let A' denote the automaton retuT~ed by RECEIVE-STAR(i,  w, A), 
and let L(A') denote the language accepted by A'. Then A' is a QDD such that L(A') = L(~,?w). (A). 

P r o o f  See the full paper. �9 

L e m m a  7 Let n and A,+I be as defined in the algorithm RECEIVE-SEND-STAR(i, wl, j, w2, A), 
with i # j .  If the language accepted by An+l is not empty, then there exists p such that 0 < p < 
(n + 1)!, and L(An+I) = L(RECEIVE(i,w~,An+I)).  

P r o o f  See the full paper. �9 

T h e o r e m  8 Let A be a QDD, let A' denote the automaton returned by RECEIVE-SEND-STAR(i, 
wl, j ,  w2, A), , with i # j ,  and let L(A') denote the language accepted by A'. Then A' is a QDD 
such that L (X)  = L(q,?,ol:q~!~). (A). 

P r o o f  See the full paper.  �9 

It is worth noticing tha t ,  as a corollary of the  last  theorem, the  language L(q~?~;qj!,~2).(A ) is 
regular. 



6 Experimental  Results  

Consider again the Alternating-Bit protocol of Example 1. Meta-transitions are added to the proto- 
col description for loops that match either (qi!w)*, (qi?w)*, or (qi?wl;qj!w2)*. Precisely, the meta- 
transitions (3, (RtoS?ackl; StoR!msgO)*, 3), (3, (StoR!msgO)*, 3), (8, (RtoS?ackO; StoR!rnsgl)*, 8), 
(8, (StoR!msgl)*,8) are added to the set of transitions of the Sender, while the meta-transitions 
(1, (StoR?msgl; RtoS!ackl)*, 1) and (5, (StoR?m~gO; ]~toS!ackO)', 5) are added to the set of transi- 
tions of the Receiver. 

~Are have implemented (in C) a "QDD-package" containing an implementation of the algorithms 
for manipulating QDDs described in the previous section, and we have combined it with a loop-first 
search. Starting with the control state (1,1) and the QDD (M, {so}, {), so, {so)), which corresponds 
to the queue-content e for both queues StoR and RtoS, the execution of the loop-first search for the 
Alternating-Bit protocol terminates after 5.9 seconds of computation on a SPARC10 workstation. 
The number of (meta-)transitions executed is 331. The largest QDD constructed during the search 
contains 21 states; and 52 control states are reachable from the initial state. 

Many properties can be checked on the symbolic representation of the state space of the protocol 
obtained at the end of the search. For  instance, it is then straightforward to prove that the protocol 
does not contain any deadlocks, that there are reachable control states where the number of messages 
in a queue is unbounded, that messages are always delivered in the correct order, etc. 

Our tool has also been tested on several variants of the Alternating-Bit protocol, where the tran- 
sitions labeled by "timeout" are removed from the protocol description, where the Sender/Receiver 
have various number of control states, etc. An interesting variant is the case where queues may lose 
messages (to model unreliable transmission media). In order to handle this case, it is sufficient to 
define one additional algorithm SEND-LOSSY(i, w, A), that merely returns A u SEND(i, w, A). We 
also performed experiments on several simple sliding-window protocols [Tan89], with various window 
sizes. For all these examples with infinite state spaces (more than 20 in total), our tool was able 
to successfully terminate its search within a few minutes of computation. This shows that, at least 
for this particular though important c]a~s of examples, our verification method is very useful and 
robust. 

7 Comparison with Other Work and Conclusions 

Although most verification problems are undecidable for arbitrary protocols modeled by communicat- 
ing finite-state machines, decision procedures have been obtained for the verification of specific prop- 
erties for limited sub-classes [KM69, RY86, GGLR87, CF87, Fin88, Jergl, SZ91, A J93, A J94, CFP96]. 
These sub-classes do not cover, e.g., the Alternating-Bit Protocol and the properties discussed in the 
previous section, which were easily verified using a loop-first search and QDDs. 

Clearly, a necessary, but not sufficient, condition for the termination of our algorithm is that, 
for all reachable control states of the protocol, the language of queue-contents associated with that 
control state can be represented by a QDD. The class of protocols characterized by the above nec- 
essary condition is equivalent to the class of protocols for which, for each reachable control state 
of the protocol, the set of possible queue-contents can be described by a recognizable expression 
(i.e., a finite union of cartesian products of regular expressions). Indeed, it can be shown that any 
recognizable language can be represented by a QDD, and that any set of queue-contents represented 
by a QDD is a recognizable language. 

In [Pac87], it is pointed out that several verification problems are decidable for the above class of 
protocols. However, no method is given for constructing a recogniz&ble expression representing all 
possible queue-contents for each control state of the protocol. Actually, from [CFP96], it is easy to 
show that an algorithm for constructing such recognizable expressions, for any protocol in the class 
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defined above, cannot exist. In contrast, our contribution is to provide a practical algorithm which 
is able to compute such a representation for protocols in the above class, although not for all of them 
- this is impossible anyway. 

In this paper, we have presented algorithms on QDDs for computing the effect of executing three 
frequent types of meta-transitions. These algorithms were sufficient for analyzing the protocols 
considered in the previous section. However, it is possible to design algorithms on QDDs for other 
types of meta-transitions as welh Interesting future work is to characterize precisely the set of meta- 
transitions that  preserve recognizability and to provide a generic algorithm for computing the effect 
of the execution of any meta-transition in this class. These topics will be addressed in a forthcoming 
paper. 

In [PPgl], a verification method based on data-flow analysis is used to generate "flow equations" 
from the description of a set of communicating finite-state ma~:hines. By computing approximations 
of solutions for these equations, it is possible to show that  the original system is free of certain types 
of errors. In contrast, our algorithm is able to produce an exact representation of the state space 
of the protocol being analyzed. This enables us not only to prove the absence of errors, but also 
to detect errors and to exhibit to the user sequences of transitions that lead to errors. Note that, 
obviously, approximations could also be used in our framework, e.g., for simplifying QDDs when 
they become too complex, or when the search does not seem to stop. For the examples we have 
considered so far, no approximations were necessary. 

The idea of representing states partly explicitly (control part) and partly symbolically (data part) 
already appeared in [ACD93] for the verification of real-time systems, where dense-time domains are 
represented by polyhedra. This idea also appeared in [BW94], where the values of integer variables 
are represented by periodic vector sets. These symbolic representations are quite different from 
QDDs. 

For digital hardware verification [BCM+90], the most commonly used symbolic representation is 
certainly the Binary Decision Diagram (BDD) [Bry92], which represents a boolean function (with 
a finite domain) as a directed acyclic graph. In [GL96], it is shown how QDDs can be combined 
with BDDs to improve the efficiency of classical BDD-based symbolic model-checking methods for 
verifying properties of communication protocols with large finite state spaces. 

8 A c k n o w l e d g m e n t s  

We wish to thank Michael Merritt and Mark Stasl~uskas for helpful comments on a preliminary 
version of this paper. 

R e f e r e n c e s  

[ACD93] 

[AJ93] 

[AJ94] 

[BCM+90] 

R. Alur, C. Courcoubetis, and D. Dill. Model-checking in dense real-time. Information 
end Computation, 104(1):2-34, May 1993. 

P. A. Abdulla and B. Jonsson. Verifying programs with unreliable channels. In Proceed- 
ings of the 8th IEEE Symposium on Logic in Computer Science, 1993. 

P. A. Abdulla and B. Jonsson. Undecidable verification problems for programs with 
unreliable channels. In Proc. ICALP-94, volume 820 of Lecture Notes in Computer 
Science, pages 316-327. Springer-Verlag: 1994. 

J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic model 
checking: 1020 states and beyond. In Proceedings of the 5th Symposium on Logic in 
Computer Science~ pages 428-439, Philadelphia, June 1999. 



[Bry92] 

[BSW69] 

[BW94] 

[BZ83] 

ICES86] 

[cr87] 

[CFP96] 

[Fin88] 

[GGLR87] 

[CL96] 

[Jer91] 

[KM69] 

[Liu89] 

[LP81] 

[LP85] 

[Pac87] 

[PP91] 

]1 

R.E. Bryant. Symbolic boolean manipulation with ordered binary-decision diagrams. 
A CM Computing Surveys, 24(3):293-318, 1992. 

K. Bartlett, R. Scantlebury, and P. Wilkinson. A note on reliable full-duplex transmis- 
sions over half-duplex lines. Communications of the ACM, 2(5):260-261, t969. 

B. Boigelot and P. Wolper. Symbolic verification with periodic sets. In Proc. 6th Confer- 
ence on Computer Aided Verification, volume 818 of Lecture Notes in Computer Science, 
pages 55-67, Stanford, June 1994. Springer-Verlag. 

D. Brand and P. Zafiropulo. On communicating finite-state machines. Journal of the 
ACM, 2(5):323-342, 1983. 

E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-state con- 
current systems using temporal logic specifications. ACM Transactions on Programming 
Languages and Systems, 8(2):244-263, January 1986. 

A. Ch0quet and A. Finke]. Simulation of linear FIFO nets having a structured set of 
terminal markings. In Proc. 8th European Workshop on Application and Theory of Petri 
Nets, pages 95-112, Saragoza, 1987. 

G. C&~, A. Finkel, and S. Purushothaman. Unreliable channels are easier to verify than 
perfect channels. Information a.nd Computation, 124(3):20-31, 1996. 

A. Finkel. A new class of analyzable cfsms with unbounded FIFO channels. In Proc. 8th 
IFIP WG 6.1 International Symposium on Protocol Specification, Testing, and Verifica- 
tion, pages 1-12, Atlantic City~ 1988. North-Holland. 

M. G. Gouda, E. M. Gurari, T. H. Lai, and L. E. Rosier. On deadlock detection in 
systems of communicating finit~state machines. Computers and Artificial Intelligence, 
6(3):209-228, 1987. 

P. Godefroid and D. E. Long. Symbolic Protocol Verification with Queue BDDs. In 
Proceedings of the 11th IEEE Symposium on Logic in Computer Science, New Brunswick, 
July 1996. 

T. Jeron. Testing for unboundedness of FIFO channels. In Proc. STACS-91: Symposium 
on Theoretical Aspects of Computer Science, volume 480 of Lecture Notes in Computer 
Science, pages 322-333, Hamburg, 1991. Springer-Verlag. 

R. M. Karp and R. E. Miller. Parallel program schemata. Journal of Computer and 
System Sciences, 3(2):147-195, 1969. 

M.T. Liu. Protocol engineering. Advances in Computing, 29:79-195. 1989. 

H. R. Lewis and C. H. Papadimitriou. Elements of the Theory of Computation. Prentice 
Hall, 1981. 

O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs satisfy 
their linear specification. In Proceedings of the Twelfth A CM Symposium on Principles 
of Programming Languages, pages 97-107, New Orleans, January 1985. 

J. K. Pachl. Protocol description and analysis based on a state transition model with 
channel expressions. In Proe. 7th IFIP WG 6.1 International Symposium on Protocol 
Specification, Testing, and Verification. North-Holland, 1987. 

W. Peng and S. Purushothaman. Data flow analysis of communicating finite state ma- 
chines. A CM Transactions on Programming Languages and Systems, 13(3):399-442, 1991. 



[QS81] 

[Rud87] 

[RY86] 

[sz91] 

[Tan89] 

[vw861 

12 

J.P. QuieUe and J. Sifakis. Specification and verification of concurrent systems in CESAR. 
In Proc. 5th Int'l Syrup. on Programming, volume 137 of Lecture Notes in Computer 
Science, pages 337-351. Springer-Verlag, 1981. 

H. Rudin. Network protocols and tools to help produce them. Annual Review of Computer 
Science, 2:291-316, 1987. 

L. E. Royer and H. C. Yen. Boundedness, empty channel detection and synchronization 
for communicating finite automata. Theoretical Computer Science, 44:69-105, 1986. 

A. P. Sistla and L. D. Zuck. Automatic temporal verification of buffer systems. In Proc. 
3rd Workshop on Computer Aided Verification, volume 575 of Lecture Notes in Computer 
Science, pages 93-103, Aalborg, July 1991. Springer-Verlag. 

A. Tanenbaum. Computer Neworks. Prentice Hall, 1989. 

M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program 
verification. In Proceedings of the First Symposium on Logic in Computer Science, pages 
322-331, Cambridge, June 1986. 


