
Symbolically Derived Jacobians Using Automatic

Differentiation - Enhancement of the OpenModelica

Compiler

Willi Braun Lennart Ochel Bernhard Bachmann

Bielefeld University of Applied Sciences, Department of engineering and mathematics

Am Stadtholz 24, 33609 Bielefeld

{wbraun,lochel,bernhard.bachmann}@fh-bielefeld.de

Abstract

Jacobian matrices are used in a wide range of
applications - from solving the original DAEs to
sensitivity analysis. Using Automatic Differentia-
tion the necessary partial derivatives can be pro-
vided efficiently within a Modelica-Tool. This pa-
per describes the corresponding implementation
work within the OpenModelica Compiler (OMC)
to create a symbolic derivative module. This
new OMC-feature generates symbolically partial
derivatives in order to calculate Jacobian matrices
with respect to different variables. Applications
presented here, are the generation of linear mod-
els of non-linear Modelica models and the usage
of the Jacobian matrix in DASSL for simulating a
model.

Keywords: Symbolic Jacobian, Automatic Dif-

ferentiation, Linearization, DASSL, OpenModel-

ica

1 Introduction

In the process of modeling and simulation the us-
age of derivatives in many stages of this process is
very common. The derivatives are useful for simu-
lating a model as well as for the sensitivity analysis
[1] or the optimization [4] of models. The deriva-
tives can be calculated in different ways. There
exist numerical methods like finite difference, or
symbolical methods as in algebra systems. But
there is another method containing characteristics
of both of them: Automatic Differentiation (AD)
is the better choice over other ways for computing
derivatives. It is accurate like symbolic differentia-
tion, since the results are not affected by any trun-
cation errors. AD is originally a numerical method

in contrast to numerical differentiation that evalu-
ates the derivative of a function specified by se-
quence of assignments in a computer program.
Since a Modelica program is written with symbolic
expressions, AD can be used to calculate symboli-
cally partial derivatives. In this work the OMC is
enhanced to provide the symbolic derivatives for a
Modelica model using AD. The new OMC feature
is applicable in a versatile way. As first application
it is used for the linearization of non-linear mod-
els. The linearization of a non-linear model needs
the calculation of partial derivatives with respect
to some specific variables of the Modelica model.
The partial derivatives are organized in so-called
Jacobian matrices. For the linear model it must be
calculated four different Jacobian matrices so that
the main task is the calculation of symbolic partial
derivatives for the linearization. A further appli-
cation of this new OMC capability, is the usage of
the derivatives for simulating a Modelica model.
The commonly used implicit integration method
DASSL is providing an interface for the symbolic
Jacobian matrix. This feature can be now used to
speed-up the solving time in OMC.

The structure of this paper is as follows: First,
methods from AD theory are shortly introduced in
order to calculate the symbolic derivatives. After-
wards a short introduction of the relevant Model-
ica language features is presented and the mathe-
matical representation of the corresponding Mod-
elica models is described. With this implementa-
tion we are able to differentiate almost the com-
plete Modelica language elements supported by
OpenModelica. Finally, the generation of a linear
model and the usage of the symbolic derivatives
for simulating a Modelica model with DASSL are
presented as applications.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

495

2 Automatic Differentiation

The calculation of the symbolic derivatives of a
Modelica model is possible by using automatic
differentiation (AD) methods. AD is an efficient
method to calculate the derivative value for an al-
gorithmic function. This technique is based on the
fact that the derivatives of a function can be calcu-
lated by repeatedly applying mathematical rules
to all the sequential elementary operations of a
coded function. The elementary operations can
be differentiated by applying the basic derivation
rules

∇(u± v) = ∇u±∇v

∇(uv) = u∇v + v∇u

∇(
u

v
) =

(∇u− u
v
∇v)

v

for the arithmetic operations and the chain rule

∇φ(u) = φ̇(u)∇u

for differentiable functions φ (e.g. such as the
standard functions sin(x), cosx, . . .) with known
derivatives. This approach is referred to in lit-
erature as "forward" mode [9].

For example, a function given by the formula 1
can be decomposed in the elementary operations
as in table 1.

f(x1, x2) = (x1 ∗ x2 + sin(x1))(3 ∗ x1
2 + x2) (1)

The basic rules of differentiation can be applied to
the decomposed arithmetic operations to obtain
the partial derivative of the function. Thus, the
final results are the values t9 = f(x1, x2) of the
function and its partial derivatives ∇f = ∇t9 =
[(t2 + cos(t1))t8 + 6t1t5, t1t8 + t5].

Since AD is originally a numerical method, it
is common to determine the values only. If these
terms are replaced by the original expressions that
are available inside a Modelica compiler the sym-
bolic derivative formulas are obtained. This auto-
matic differentiation method can be used analog-
ically in order to calculate the partial derivatives
to the optimized DAEs as they occur in Modelica.
This is possible, because the calculation of partial
derivatives is performed by consistently applying
the chain rule and the basic differentiation rules as
mentioned above.

3 Differentiate a Modelica Model

A Modelica model is typically translated to a basic
mathematical representation in terms of a flat sys-
tem of differential and algebraic equations before
being able to simulate the model. This translation
process elaborates on the internal model represen-
tation by performing analysis and type checking,
inheritance and expansion of base classes, mod-
ifications and redeclarations, conversion of con-
nect equations to basic equations, etc. The re-
sult of this analysis and translation process is a
flat set of equations, including conditional equa-
tions as well as constants, variables, and function
definitions. By the term flat is meant that the
object-oriented structure has been broken down to
a flat representation where no trace of the object
hierarchy remains, apart from dot notation (e.g.
Class.Subclass.variable) within names.

Flat Modelica DAEs could be represented math-
ematically by the equation:

0 = F (ẋ(t), x(t), u(t), y(t), p, t) (2)

Below the notations used in the equation above
are summarized:

• ẋ(t) the differentiated vector of state variables
of the model.

• x(t) the vector of state variables of the model,
i.e., variables of type Real that also appear
differentiated somewhere in the model.

• u(t) a vector of input variables, i.e., not de-
pendent on other variables, of type Real.They
also belong to the set of algebraic variables
since they do not appear differentiated.

• y(t) a vector of Modelica variables of type
Real which do not fall into any other cate-
gory.

• p a vector containing the Modelica variables
declared as parameter or constant i.e., vari-
ables without any time dependency.

This implicit equation is transformed to the ex-
plicit state-space representation by the so-called
block-lower-triangular (BLT) transformation re-
sulting in the optimized DAEs. This transforma-
tion is done by a matching and sorting algorithm
which results in a sequence of assignments so that
the variables can be solved sequentially [7]:

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

496

Operations Differentiate(ti, {x1, x2}) ∇f

t1 = x1 ∇t1 = [1, 0] [1, 0]

t2 = x2 ∇t2 = [0, 1] [0, 1]

t3 = t1t2 ∇t3 = t1∇t2 +∇t1t2 [t2, t1]

t4 = sin(t1) ∇t4 = cos(t1)∇t2 [cos(t1), 0]

t5 = t3 + t4 ∇t5 = ∇t3 +∇t4 [t2 + cos(t1), t1]

t6 = t1 ∗ t1 ∇t6 = 2t1∇t1 [2 ∗ t1, 0]

t7 = 3 ∗ t6 ∇t7 = 3∇t6 [6 ∗ t1, 0]

t8 = t7 + t2 ∇t8 = ∇t7 +∇t2 [2 ∗ t1, 1]

t9 = t5 ∗ t8 ∇t9 = t5∇t8 +∇t5t8 [t2 + cos(t1))t8 + 6t1t5, t1t8 + t5]

Table 1: Decomposed function f(x1, x2) to elementary operations and the partial derivatives.

0 = F (ẋ(t), x(t), u(t), y(t), p, t)

0 = F (z(t), x(t), u(t), p, t), z(t) =

(

ẋ(t)
y(t)

)

z(t) =

(

ẋ(t)
y(t)

)

= g(x(t), u(t), p, t)

(

ẋ(t)
y(t)

)

=

(

h(x(t), u(t), p, t)

k(x(t), u(t), p, t)

)

(3)

This sequence of assignments can immediately
be used for calculating the partial derivatives sym-
bolically by means of automatic differentiation.
Thus the differentiation process is performed on
such optimized DAEs. These DAEs are separated
in two partitions, a state block and an algebraic
block. The function h represents the state block
and consists of all equations, which are necessary
to determine the differentiated states. The func-
tion k represents the algebraic block, which con-
tains all remaining equations.

Consider, for example, the following small
differential-algebraic system:

f1 := ẋ1 = a ∗ x1

f2 := ẋ2 = a ∗ x2 + ẋ1

f3 := a = sin(x1) + cos(x2)

To calculate all necessary partial derivatives
the system has to be sorted by the BLT-
Transformation based on the adjacency matrix:

ẋ1 ẋ2 a a ẋ1 ẋ2

f1
f2
f3

1 0 1
1 1 1
0 0 1

f3
f1
f2

1 0 0
1 1 0
1 1 1

To get all partial derivatives with respect to the
states the whole system needs to be differentiated,
which means every equation has to be differenti-
ated with respect to the states. This requires the
derivatives of all known variables with respect to
the states. In a Modelica model it is assumed that
the known variables are the states and the inputs.
In this example only the states appear as known
variables:

(

∂x1

∂x1
= 1 ∂x2

∂x1
= 0

∂x1

∂x2
= 0 ∂x2

∂x2
= 1

)

The next step is to take the sorted equations and
differentiate straight forward applying the rules
described above. With all the resulting partial
derivatives it is possible to organize the Jacobian
matrix with respect to the states x in equation
(4). In the following, Modelica language features
are described which need to be handled by the au-
tomatic differentiation.

Equations

The differentiation of ordinary equations is
straightforward. In the optimized DAEs the
matching algorithm provides information about
the variable which has to be solved for in each
equation. Therefore, the equations are rear-
ranged to a corresponding assignment and differ-
entiated. This also works for equations including
if-expressions, where each branch will be differenti-
ated, respectively. Non-linear equations will result
into equations depending linearly on the differen-
tiated variables (see example in the Algebraic loop
section).

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

497

A =
∂f

∂x
=

(

∂f1
∂x2

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

)

=

(

cos(x1)x1 + a − sin(x2)x1
cos(x1)x2 + cos(x1)x1 + a − sin(x2)x2 + a− sin(x2)x1

)

(4)

Algebraic loops

In many applications the transformation to the
optimized DAEs cannot achieve a true lower-
triangular form. It is at least possible to reduce
the DAEs to a Block-Lower-triangular form with
diagonal blocks of minimal size. These blocks are
called algebraic loops and must be solved simul-
taneously. In general, this results in a system of
linear and/or nonlinear equations.

For example the following equations have to be
solved simulataneously:

f(x, p, t) :=

(

ẋ1
ẋ2

)

=

(

ax1 +
1

2
ẋ2

2

bx2 −
1

2
ẋ1

2

)

The equations are differentiated with respect to
the state to determine the first row of the Jacobian
matrix:

(

∂f1
∂x1

:= ∂ẋ1

∂x1
= a+ ∂ẋ2

∂x1
ẋ2

∂f2
∂x1

:= ∂ẋ2

∂x1
= −∂ẋ1

∂x1
ẋ1

)

The resulting equation must still be solved si-
multaneously to determine the expressions for the
first row of the Jacobian matrix. However, nonlin-
ear equations that are differentiated, result always
in equations depending linearly on the differenti-
ated variables, which in this case, yield a linear
system of equations to be solved.

Algorithms

Whereas equations are well suited to describe
physical processes, there are situations where com-
putations are more conveniently expressed by al-
gorithms in a sequence of statements. In con-
trast to equations, statements are fixed assign-
ments, i.e. the right-hand-side ones are assigned
to the left-hand-side ones. Several assignments to
the same variable can be performed in one algo-
rithm section. Besides of simple assignment state-
ments, an algorithm can contain if-, while-, and
for-clauses. The symbolic differentiation can han-
dle all of them.

Functions in Modelica

In Modelica, there exist two different types of func-
tions, a Modelica function, written in Modelica

code, and external functions that are written in
C/Fortran code. A Modelica function is defined
by an algorithm section that can be differentiated
in the same way as algorithms. From the result
a new Modelica function as the derivative to the
original one is generated. This derivative function
can be propagated by the derivative annotation
to other process that needs the derivative. For
external functions the numerical finite difference
method is used, if that functions do not provide
partial derivatives with the aid of the derivative
annotation.

4 Applications for Symbolic Ja-

cobian

4.1 Linear Models

A general nonlinear Modelica model is represented
by state-space equations with n state variables, m
input variables and k output variables:

(

ẋ(t)
y(t)

)

=

(

h(x(t), u(t), p, t)

k(x(t), u(t), p, t)

)

Linearizing the state-space equations the Tay-
lor series expansion is applied and leads to a
continuous-time linear dynamical system that has
the form:

ẋ(t) = A(t) ∗ x(t) +B(t) ∗ u(t)
y(t) = C(t) ∗ x(t) +D(t) ∗ u(t)

A(t) = ∂h
∂x

∈ R
n×n, B(t) = ∂h

∂u
∈ R

n×m

C(t) = ∂k
∂x

∈ R
k×n, D(t) = ∂k

∂u
∈ R

k×m

The matrices A(t), B(t), C(t), and D(t) are
the Jacobian matrices of the non-linear Modelica
model. Thus the finding of linearization of a model
is done by the calculation of the Jacobian matrices
at a convenient time.

After all, the linear model can easily be gen-
erated when it’s possible to differentiate a set
of equations with respect to a set of variables.
Therefore functions are implemented, that apply
the method of forward automatic differentiation to
given sets of equations, algorithms and variables.
This function can deal with single equations, with

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

498

Figure 1: Schematic figure of inverse pendulum
model.

systems of equations as well as algorithm sec-
tions and generate symbolically the needed Jaco-
bian matrices for the linearization. The different
steps of this procedure are sketched by the fol-
lowing model in Listing 1 and the corresponding
schematic diagram of that model in Figure 1. In
this model an inverse pendulum is balanced by a
cart.

model InversePendulum
parameter Real M = 0 . 5 ;
parameter Real m = 0 . 2 ;
parameter Real b = 0 . 1 ;
parameter Real i = 0 . 0 0 6 ;
parameter Real g = 9 . 8 ;
parameter Real l = 0 . 3 ;
parameter Real pi = 3.141592653589793 ;
Real cart_x ;
Real cart_v ;
Real pendulum_theta ;
Real pendulum_w ;
output Real y [2] ;
input Real u ;

equation

der (cart_x) = cart_v ;
der (pendulum_theta) = pendulum_w ;
(M + m)∗der (cart_v) + b∗cart_v +
u = m∗ l ∗der (pendulum_w)∗ cos (pendulum_theta+pi)
−m∗ l ∗pendulum_w^2∗ s i n (pendulum_theta+pi) ;
(i+m∗ l ^2)∗der (pendulum_w)+
m∗ l ∗g∗ s i n (pendulum_theta+pi)=
−m∗ l ∗der (cart_v)∗ cos (pendulum_theta+pi) ;
y={cart_x , pendulum_theta } ;

end InversePendulum ;

Listing 1: InversePendulum model

The equations in Figure 2 are included into the
generated simulation program and with this in-
formation the matrices A and C linearized model
can be generated to any point in time. After com-
piling the generated C-code the evaluation of the
linearized model at point in time 0 yields the Mod-
elica model in Listing 2. The same simulation pro-
gram can generate the linear model at any other
point in time, i.e. equal 1, by simulating until then
and afterwards evaluating the symbolic differenti-

ated equations at this point.

model l inear_InversePendulum
parameter Integer n = 4 ; // s t a t e s
parameter Integer k = 1 ; // top−l e v e l inputs
parameter Integer l = 2 ; // top−l e v e l outputs
parameter Real x0 [4] = {0 , 0 , 0 , 0} ;
parameter Real u0 [1] = {0} ;
parameter Real A[4 , 4] =
[0 , 1 , 0 , 0 ;
0 , −0.1818181818181819 ,2 .672727272727272 ,0 ;
0 , 0 , 0 , 1 ;
0 , −0 .4545454545454546 ,31 .18181818181818 ,0] ;

parameter Real B[4 , 1] =
[0 ; 1 . 818181818181818 ;
0 ; 4 . 545454545454546] ;
parameter Real C[2 , 4] = [1 , 0 , 0 , 0 ; 0 , 0 , 1 , 0] ;
parameter Real D[2 , 1] = [0 ; 0] ;
Real x [4] (s t a r t=x0) ;
output Real y [2] ;
input Real u [1] (s t a r t=u0) ;

Real x_cart_x = x [1] ;
Real x_cart_v = x [2] ;
Real x_pendulum_phi = x [3] ;
Real x_pendulum_w = x [4] ;
Real u_u = u [1] ;
Real y_y1 = y [1] ;
Real y_y2 = y [2] ;

equation

der (x) = A ∗ x + B ∗ u ;
y = C ∗ x + D ∗ u ;

end l inear_InversePendulum ;

Listing 2: Linear Model of the InversePendulum
at point in time 0

Equations (16)
=========
1 : DERPcart_x$pDERcart_x = 0.0
2 : DERPcart_x$pDERcart_v = 1.0
3 : DERPcart_x$pDERpendulum_theta = 0.0
4 : DERPcart_x$pDERpendulum_w = 0.0
5 : DERPpendulum_theta$pDERcart_x = 0.0
6 : DERPpendulum_theta$pDERcart_v = 0.0
7 : DERPpendulum_theta$pDERpendulum_theta = 0.0
8 : DERPpendulum_theta$pDERpendulum_w = 1.0
9 : (M + m) * DERPcart_v$pDERcart_x +
m * (l * (DERPpendulum_w$pDERcart_x * cos(pendulum_theta + pi))) = 0.0
10 : (M + m) * DERPcart_v$pDERcart_v +
(b + m * (l * (DERPpendulum_w$pDERcart_v * cos(pendulum_theta + pi)))) = 0.0
11 : (M + m) * DERPcart_v$pDERpendulum_theta +
m * (l * (DERPpendulum_w$pDERpendulum_theta * cos(pendulum_theta +
pi) + (-der(pendulum_w)) * sin(pendulum_theta + pi))) -
m * (l * (pendulum_w ^ 2.0 * cos(pendulum_theta + pi))) = 0.0
12 : (M + m) * DERPcart_v$pDERpendulum_w +
m * (l * (DERPpendulum_w$pDERpendulum_w * cos(pendulum_theta + pi))) -
2.0 * (m * (l * (pendulum_w * sin(pendulum_theta + pi)))) = 0.0
13 : (i + m * l ^ 2.0) * DERPpendulum_w$pDERcart_x =
(-m) * (l * (DERPcart_v$pDERcart_x * cos(pendulum_theta + pi)))
14 : (i + m * l ^ 2.0) * DERPpendulum_w$pDERcart_v =
(-m) * (l * (DERPcart_v$pDERcart_v * cos(pendulum_theta + pi)))
15 : (i + m * l ^ 2.0) * DERPpendulum_w$pDERpendulum_theta +
m * (l * (g * cos(pendulum_theta + pi))) =
(-m) * (l * (DERPcart_v$pDERpendulum_theta * cos(pendulum_theta + pi)
+ (-der(cart_v)) * sin(pendulum_theta + pi)))
16 : (i + m * l ^ 2.0) * DERPpendulum_w$pDERpendulum_w =
(-m) * (l * (DERPcart_v$pDERpendulum_w * cos(pendulum_theta + pi)))

Figure 2: Equations for linear model matrices A
and C

Such linear models are used in control theory
for example as an observer to control the original
nonlinear model [5].

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

499

4.2 Provide the analytical jacobian ma-

trix to DASSL

For accurate, high-speed solution of DAEs as they
occur in Modelica (see equation (2)) Petzold’s
Fortran-based DASSL(Differential-Algebraic Sys-
tem Solver) is the most widely used sequential code
for solving such DAEs. After all, the DASSL im-
plementation uses the following equation [8]

h(t, x, α̂x+ β) = 0,

where α̂ is a constant which changes whenever the
step size or the order changes, β is a vector which
depends on the solution at past times and t, x, α̂, β

are evaluated at tn. This equation is solved in
DASSL by a modified version of Newton’s method,

xm+1 = ym − cj(
∂h

∂x
+ cj ∗

∂h

∂ẋ
)
−1

h(t, x, α̂x+ β).

The iteration matrix

M =
∂h

∂x
+ cj ∗

∂h

∂ẋ

is computed and factored, and is then used for as
many time steps as possible.

By default DASSL calculates the iteration ma-
trix M by the means of numerical finite differ-
entiation. However, it is also possible to equip
DASSL with an user-specific routine that provides
the symbolically calculated iteration matrix M .
On one hand, the symbolically calculated values
are more accurate and on the other hand, it is
faster to evaluate the symbolical formulas.

5 Conclusion and Future Work

The successful implementation of symbolically
generated partial derivatives for the correspond-
ing Jacobian matrices using automatic differentia-
tion methods in the OpenModelica Compiler has
been demonstrated. The new feature supports all
Modelica language elements and Modelica models
already handled by OMC. The corresponding sym-
bolic derivative module has been validated by cre-
ating linear models for non-linear Modelica mod-
els. Futhermore, providing the analytically de-
termined Jacobian matrix to DASSL, leads to a
faster simulation of the model. In addition to this,
this implemented methods offer a variety of dif-
ferent application fields (i.e. parameter identifica-
tion, sensitivity analysis, uncertainty calculation,

inline-integration methods, model reduction, opti-
mization . . .).

In future it is possible to improve this module in
two directions: First this module could be made
accessible for the user. The user could select some
functions of equations (3) and some depended vari-
ables. Thus the user can decide which symbolic
matrices is wanted in the simulation program. The
second direction could be to generate directly a
Modelica model with the symbolic derivative ex-
pressions. With this approach the symbolic matri-
ces could be made accessible during simulation in
a way so that the updated version can always be
used for controlling or optimization processes.

Other initiatives aim to extend the Functional
Mock-up Interface for model exchange [2] to sup-
port the evaluation of sparse Jacobians. This work
can easily be adapted to provide the required cal-
culations.

Acknowledgments

The German Ministry BMBF has partially
funded this work (BMBF Förderkennzeichen:
01IS09029C) within the ITEA2 project OPEN-
PROD (http://www.openprod.org).

References

[1] Elsheikh A., Noack S. and Wiechert W.: Sen-
sitivity analysis of Modelica applications via
automatic differentiation, 6th International
Modelica Conference, Bielefeld, 2008.

[2] MODELISAR: Functional Mock-
up Interface for Model Exchange,
http://modelisar.org/specifications/

FMI_for_ModelExchange_v1.0.pdf, Januar
2010.

[3] Fritzson P. et. al.: OpenModelica Sys-
tem Documentation, PELAB, Department of
Computer and Information, Linköpings uni-
versitet, 2010.

[4] Imsland L., Kittilsen P. and Schei T.: Using
Modelica models in the real time dynamic op-
timization - gradient computation, Proceed-
ings 7th Modelica Conference, Como, 2009.

[5] Lunze, J.: Regelungstechnik 2 – Beobachter-
entwurf, Springer-Lehrbuch, Springer Berlin
Heidelberg, 2010.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

500

[6] Modelica Association: Modelica – A unified
Object-oriented Language for Physical Sys-
tems Modeling Language Specification – Ver-
sion 3.2, 2010.

[7] Otter M.: Objektorientierte Modellierung
Physikalischer Systeme (Teil 4) Transforma-
tionsalgorithmen, Automatisierungstechnik,
Oldenbourg Verlag München, 1999.

[8] Petzold L. R.: A Description of DASSL: A
Differential/Algebraic System Solver, Sandia
National Laboratories Livermore, 1982.

[9] Rall L.B.: Automatic differentiation: Tech-
niques and applications, vol. 120 of Lecture
Notes in Computer Science, Springer, 1981.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

501

