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Symbols and quantities in parietal
cortex: elements of a mathematical
theory of number representation and
manipulation

Stanislas Dehaene

In this chapter, I put together the first elements of a mathematical theory relating neuro-

biological observations to psychological laws in the domain of numerical cognition. The

starting point is the postulate of a neuronal code whereby numerosity—the cardinal of a

set of objects—is represented approximately by the firing of a population of numerosity

detectors. Each of these neurons fires to a certain preferred numerosity, with a tuning

curve which is a Gaussian function of the logarithm of numerosity. From this log-

Gaussian code, decisions are taken using Bayesian mechanisms of log-likelihood compu-

tation and accumulation. The resulting equations for response times and errors in

classical tasks of number comparison and same–different judgments are shown to tightly

fit behavioral and neural data. Two more speculative issues are discussed. First, new

chronometric evidence is presented supporting the hypothesis that the acquisition of

number symbols changes the mental number line, both by increasing its precision and by

changing its coding scheme from logarithmic to linear. Second, I examine how symbolic

and nonsymbolic representations of numbers affect performance in arithmetic compu-

tations such as addition and subtraction.

Introduction

An ultimate goal of psychology is to provide lawful explanations of mental mechanisms

in terms of a small set of rules, preferably framed in the language of mathematics, which

capture the regularities present in human and animal behavior. Furthermore, those

psychological laws should not remain stated solely at a descriptive level (although obtaining

valid descriptive rules of behavior is usually an indispensable step on that road). Rather, they

should be ultimately grounded in a neurobiological level of explanation, through a series

of additional bridging laws linking the molecular, synaptic, cellular, and circuit levels

with psychological representation and computations.

Are these ambitious goals out of reach? No. In the domain of perception and motor

control, solid psychological and bridiging laws have been described, one of the most

successful cases being signal detection theory. Furthermore, at a higher cognitive level,
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the work of Roger Shepard has suggested that internal cognitive processes of mental

representation and transformation can be captured by elegant mathematical rules,

including Bayesian principles of similarity and categorization (Shepard, 2001).

In the present chapter, I will suggest that a model inspired by those earlier successes

can begin to capture the main regularities observed in a small domain of semantics: the

representation of number. We now have a good mathematical theory of the format of

representation by which numerical quantities are encoded mentally, as well as of the

main laws by which these representations are used to generate behavior in simple identity

judgments, comparisons and calculations. Furthermore, two spectacular advances in

electrophysiology—the discovery of single neurons tuned to numerosity in the macaque

monkey (Sawamura et al., 2002; Nieder et al., 2002; Nieder and Miller, 2003, 2004), and

of neurons plausibly implementing random-walk accumulation models of decision

(Gold and Shadlen, 2002)—have given us insight into the neuronal mechanisms from

which those laws arise.

The mathematical principles which now constitute a sort of ‘standard model’ for

numerical cognition have been described over the years by various people and in various

publications (e.g. Shepard et al., 1975; Van Oeffelen and Vos, 1982; Link, 1990; Dehaene,

1992; Dehaene and Mehler, 1992; Gallistel and Gelman, 1992; Dehaene and Changeux,

1993; Cordes et al., 2001; Dehaene, 2002, 2003; Nieder and Miller, 2003; Piazza et al.,

2004; Pica et al., 2004; Verguts et al., 2005; Barth et al., 2006; McCrink et al., 2006). One of

the goals of this chapter is to present a single reference source for equations that are

currently widely dispersed in the literature. Nevertheless, mathematically less sophisti-

cated readers can skip all of these equations, because their main points are also explained

in plain language in the text. The main purpose of this chapter, indeed, is to provide an

accessible synthesis of this theory and to compare its predictions with reanalyses of a

variety of data. I shall do so in a ‘theory-first’ manner, first presenting the mathematical

principles and then some of the best evidence for or against them (although historically,

of course, theory development occurred in reverse order).

As we shall see, our ability to capture a variety of findings with a small set of principles

is impressive. Nevertheless, systematic integration of multiple data into a coherent

framework also leads to the identification of two important unsolved problems: How

does the coding of symbolic information differ from that of nonsymbolic information

(e.g. representing the meaning of the word ‘thirteen’ versus the quantity represented by

13 dots)? And what are the mechanisms by which we compute operations of addition

and subtraction?

Numerosity representation

We start by specifying how the cardinal of sets is represented mentally. The term numerosity

is used to refer to the cardinal property of sets, and to distinguish it from culture-dependent

numerals or number symbols such as the word ‘three’. Many experiments indicate that

humans and other animal species possess a refined mental representation of numerosity,

even when the use of number symbols is not available (in animals, preverbal infants,
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or cultures with a reduced number lexicon) or is made impossible (e.g. by verbal interfer-

ence in adults).

Mathematical theory: log-Gaussian model

The theory presented here (See Figure 24.1) postulates that each numerosity is repre-

sented internally by a noisy distribution of activation on an internal continuum or

mental number line. Mathematically, the numerosity of a set of n dots is represented

internally by a Gaussian random variable X (the internal representative of n) with mean

q(n) and with standard deviation w(n). Those parameters altogether specify the nature

and precision of the numerical code. In particular, the parameter w(n) determines the

internal variability or amount of noise in the coding scheme.

There are several possible choices for q(n) and w(n), but they are constrained by a

strong empirical observation, the fact that Weber’s law holds for numerosity stimuli.

As further discussed below, Weber’s law states that the minimal numerical change that

can be discriminated increases in direct proportion to the magnitude of the numerosities

involved. An alternative formulation is that numerosity discrimination depends only on

the ratio of the numbers involved, not their absolute values.

The simplest theoretical postulate is that internal variability is the same for all of the

represented numbers (w(n) = w). In order for Weber’s law to hold, the internal variable then

has to vary as the logarithm of the represented numerosity n (q(n) = Log(n)). In this case,

the probability distribution which specifies the likelihood that a number n is represented, at

a given moment, by a particular value x of the internal random variable X is given by:

(24.1)

where G is the normal curve. This equation simply means that a given input numerosity

is represented, at different moments, by noisy values that tend to cluster around a loca-

tion corresponding to Log(n) on the number line. I will refer to this model as the log-

Gaussian model. Note that the model has a single free parameter, w, the internal Weber

fraction that specifies the degree of precision of the internal quantity representation.

An alternative model supposes that the internal variable scales linearly with n, but with

a variability that also scales linearly with n (w(n) = w ¥ n, q(n) = n). This is called the

scalar variability model. Both models make essentially identical predictions for discrimi-

nation and comparison behavior, differing only in subtle, second-order terms that relate

to asymmetries in the response curves.1 Thus, for purposes of computing error rates and

response times, one may use one or the other model, depending on which is mathemati-

cally more tractable. More controversial, however, is whether the models are equivalent at
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1 When w is close to zero, as is true in human adults (w ~ 0.15–0.20), so that log(1 + w) ~ w, even the

quantitative values of w obtained with the log-Gaussian model and with the scalar variability model

are close to identical.
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all levels and, in particular, whether they can be distinguished at the neural level. Below,

I will consider several subtle phenomena that seem to favor the logarithmic model.

Neuronal modeling

Jean-Pierre Changeux and I have presented a theoretical model of the neuronal 

implementation of the log-Gaussian hypothesis (Dehaene and Changeux, 1993), later 
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Internal logarithmic scale: log(n)

1. Coding by Log-Gaussian numerosity detectors

1 2 84 16…

2. Application of a criterion and formation of two pools of units

Stimulus of numerosity n

Criterion c

Pool favoring R1 Pool favoring R2

3. Computation of log-likelihood ratio by differencing

Pool favoring R2

Pool favoring R1
− LLR for R2 over R1

4. Accumulation of LLR, forming a random-walk process

Trial 1 Trial 2 Trial 3

Mean Response Time

Starting
point of

accumulation

Decision
threshold for R2

Time

Decision
threshold for R1

Figure 24.1 Overall outline of how the proposed mathematical theory accounts for elementary

arithmetic decisions. Numerosity is coded by a fluctuating distribution of activation over log-Gaussian

numerosity detectors. The decision is attained through to a random-walk process based on accu-

mulation of estimates of the log-likelihood of the available responses. LLR, log-likelihood ratio.
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elaborated by others (Verguts and Fias, 2004; Verguts et al., 2005). Our model illustrates

how approximate numerosity can be extracted from a retinotopic map through three

successive stages: (1) retinotopic coding of object locations regardless of object identity

and size; (2) representation of total activity by accumulation neurons which simply sum

the activation on the object location map; (3) representation of each approximate

numerosity by a distinct set of numerosity detector neurons, each tuned to a specific

numerosity.

Because human and nonhuman animals can represent a large range of numbers (e.g.

Cantlon and Brannon, 2006), we postulated a logarithmic spacing of neural thresholds,

such that a decreasing number of neurons was allocated to increasingly larger numerosi-

ties (the alternative hypothesis of linear coding seemed implausible as it would imply that

the vast majority of neurons encode large numerosities, although these numerosities are

quite hard to discriminate). This principle of compressive coding was inspired by the

known over-representation of species-relevant parameter ranges in sensory maps (e.g.

fovea in retinotopic maps, hand and face in somatosensory maps, or even echo-locating

frequencies in bat tonotopic maps). Simulations then showed that those neurons had

approximately Gaussian tuning curves when plotted on a logarithmic axis—a neuronal

implementation of the log-Gaussian hypothesis.

In the Dehaene–Changeux model, then, the firing rate of a numerosity detector

neuron that responds preferentially to numerosity p, in response to a range of stimulus

numerosities n, traces a bell-shaped curve which is Gaussian on a log scale and has a

maximal firing peak at the location p. Mathematically, this tuning curve is given by:

(24.2)

In this equation, G is the normal curve and w ¢ is the neural Weber fraction which defines

the degree of coarseness with which neurons encode numerosity. Note that w ¢ can be quan-

titatively different from the psychologically defined internal Weber fraction w. This is

because there is no simple relation between the single-neuron representation level (where

tuning curves are characterized by parameter w ¢), and the psychological representation

level (where the precision of a subject’s representation is characterized by parameter w).

Intuitively, it is easy to envisage cases in which these parameters are dissociated. For

instance, even if single neurons had a very coarse tuning curve (high w¢), it might still be

possible to perform precise psychological judgment (low w) by averaging across an entire

neural population. Conversely, even if some neurons had very precise codes (low w¢), it

might not be possible for decision mechanisms to separate their signals from those of

other less informative neurons, thus resulting in a psychological level of performance

lower than the best performance theoretical achievable (high w).

The neurophysiological literature contains many discussions of the bridging laws that

relate single-neuron coding to psychophysical representation, particularly in the well-

documented domain of movement perception (Shadlen et al., 1996; Parker and

Newsome, 1998; Shadlen and Newsome, 1998). There is no consensus yet on the best
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formulation of these bridging laws. Their determination requires careful analysis of the

trial-to-trial firing rate variability, number of neurons contributing to behavior, struc-

ture of correlations between them, and pooling rule used to combine their responses into

a single summary value. Nevertheless, some basic results are available. A simple analysis

indicates that, if a bank of neurons with Gaussian tuning is used to encode a certain

magnitude, then the best way to estimate which value is represented by this population is

to compute their population vector, which is the mean of the preferred values of each

neuron, weighted by their current firing rate [mathematically, this is the best estimator in

the maximum likelihood sense (Dayan and Abbott, 2001, pp. 106–108)]. According to

this population-vector model, a set of log-Gaussian neurons predicts a log-Gaussian

psychophysical internal scale—but not necessarily with the same quantitative variability

parameters w and w¢.

Experimental evidence

Behaviorally, the main prediction of the log-Gaussian model concerns the metric of

similarity between the representations of two numerosities n1 and n2 (with n1 < n2). The

model predicts that the judged similarity between two numerosities should vary mono-

tonically with the difference of their logarithms.

Similarity (n1,n2) = S(|Log(n1) – Log(n2)|) = S(Log(r)) (24.3)

where S is monotonically decreasing and r = n2/n1 is the ratio of the two numbers.

Subjective similarity ratings conform to this rule (Shepard et al., 1975). When subjects

rated the conceptual similarity of two numbers, regardless of whether they were denoted

by dot patterns, digits or words, a logarithmic similarity scale was recovered by nonmetric

multidimensional scaling.

At the neural level, Dehaene and Changeux’s (1993) model predicts the existence of a

hierarchy of several types of neurons: object maps, accumulation neurons, and numeros-

ity detector neurons. At present, strong evidence exists only for the latter type of cells

(Nieder et al., 2002; Nieder and Miller, 2003, 2004). Their properties conform in great

detail to the proposed log-Gaussian model. Nieder and Miller trained macaque monkeys

in a numerical match-to-sample task. On each trial, they attended to the numerosity of a

sample set of visual dots and memorized it. After a delay, they were presented with a

second numerosity and decided whether it was equal to the first. During both sample

and delay periods, many neurons were tuned to a preferred numerosity, in the sense that

they fired maximally to a given number of dots, and showed decreasing firing rates when

the numerosity was smaller or larger than this preferred value. Collection of data from

hundreds of trials led to a very precise characterization of each neuron’s tuning curve.

The hypothesis of a Gaussian curve on a linear axis (scalar variability) could be rejected.

Rather, asymmetries in the tuning curves were compatible with the log-Gaussian

hypothesis of a fixed-width Gaussian tuning curve once plotted as a function of log(n).

The numerosity-tuned neurons were initially found in prefrontal cortex, but later

recordings in the depth of the intraparietal sulcus revealed another population of
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number neurons in, or close to, area VIP. The parietal cells differed from the prefrontal

cells in two ways: they had a significantly faster latency, and they fired less strongly

during the delay. Thus, the data are compatible with the hypothesis that numerosity is

first computed and represented in intraparietal cortex, then transferred to prefrontal

cortex for memory purposes. The object map and linear accumulation neurons postu-

lated by the theory might then be tentatively associated with area LIP, which is retino-

topic, monosynaptically connected to VIP, and thought to encode a saliency map of

relevant object locations. Indeed very recently, neurons whose firing rate vary monotoni-

cally with number have been identified in area LIP (Roitman, Brannon and Platt, 2007).

The location where numerosity-sensitive neurons are found is a plausible homolog of

the human intraparietal region found active during many mental arithmetic and numerical

judgment tasks (Dehaene et al., 2003). Indeed its location in the depth of the macaque intra-

parietal sulcus could be roughly predicted from the finding of a homologous geometrical

arrangement of surrounding sensorimotor regions in humans and macaques (Simon et al.,

2002, 2004).

Following Nieder and Miller’s finding, Manuela Piazza and I examined whether numerosity

coding by log-Gaussian numerosity detectors could also be demonstrated in the human

intraparietal sulcus (Piazza et al., 2004). Since we could not record from single human

neurons, we took advantage of the functional magnetic resonance imaging (fMRI) adap-

tation method. While the subjects passively attended to the screen, we adapted them by

repeatedly presenting, for several minutes, the same adaptation numerosity nhab, which

could be either 16 or 32 dots on different runs. We then presented occasional trials where

the numerosity ndev deviated by a variable amount from the reference value, up to twice

smaller or twice larger. As in Nieder and Miller’s study, stimuli were generated randomly

by a Matlab program which provided precise control over non-numerical parameters

(Dehaene et al., 2005). Based on past work, we expected repetition suppression, a decrease

in the activity of the neurons coding for the adaptation numerosity. Using the above

firing-rate function f(n,p), we could predict mathematically the amount of activation

expected to be elicited by a given deviant numerosity. Intuitively, this activation should

reflect the combination of two Gaussians: one evoked by the adaptation numerosity,

which created a Gaussian ‘trough’ in the neural population around the location of the

adaptation value, and the second evoked by the deviant stimulus which is used to ‘read

out’ the state of adaptation of the representation, and activates a Gaussian population of

numerosity detectors which have been more or less adapted depending on their proximity

to the adaptation value. Mathematically, the total activation which results from this combi-

nation is given by an operation called the convolution of the two Gaussians (see appen-

dix of Piazza et al., 2004, for details). Thus, we expected the recovery from adaptation

also to follow a Gaussian function of the difference of the logarithms of nhab and ndev,

but with a width larger than the neural tuning curve by a factor of :

(24.4)
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The fMRI data conformed in great detail to this model. In a whole-brain search, only the

left and right intraparietal regions showed an fMRI response which depended on the

amount of numerical deviancy. The shape of this response was tightly fitted by a Gaussian

once plotted on the appropriate logarithmic scale. Furthermore, in log scale the Gaussian

had a similar width for adaptation values 16 and 32, thus showing that Weber’s law holds.

In the absence of direct single-neuron recordings in humans, those data, replicated 

by others in adults and 4-year-olds (Cantlon et al., 2006; see also Temple and Posner,

1998), provide suggestive evidence that the same principle of log-Gaussian coding might

be underlying numerosity perception in human adults, children, and nonhuman

primates.

Recently, this method of numerosity adaptation has been extended to 2–3 month-old

infants (V. Izard, G. Dehaene-Lambertz and S. Dehaene, unpublished data; V. Izard, PhD

thesis, December 2005). We collected event-related potentials during adaptation–

dishabituation with numerosities 2 versus 3, 4 versus 8, or 4 versus 12. Once babies were

adapted to one of these numerosities, a right parietal negativity was evoked whenever the

corresponding deviant was presented. Although lacking in precise localization, those

results tentatively suggest that the parietal numerosity representation may be in place at a

very early age in human development possibly with an early right hemisphere bias.

Open issues

A debated issue concerns whether behavioral and even neuroimaging or neurophysiolog-

ical data may ever separate the log-Gaussian model from the linear scalar variability

model. Randy Gallistel (personal communication) has repeatedly argued that they

cannot. Behaviorally, indeed, I have demonstrated that both models predict an essential

identical ratio dependence in a broad variety of judgments (S. Dehaene, unpublished

work; see also below). At the neural level, Gallistel argues that a similar argument applies:

the firing of the neurons can be considered as a sort of decision whose profile can be

predicted from an underlying linear coding scheme with scalar variability. According to

Gallistel, if each neuron were programmed as an ideal detector of numerosity on a linear

continuum with scalar variability, it would show precisely the tuning curve asymmetries

and ratio dependence that are thought to support the log-Gaussian model! If this argu-

ment is correct, then the models truly are inseparable, and are in fact mathematically

equivalent. I would argue, however, that for fear of an infinite regress, it is not correct to

postulate yet another, deeper level of linear representation on which the neurons act as

optimal encoders. The presumption is that Nieder and Miller have recorded from what

constitutes the brain’s neuronal representation of number, and the log-Gaussian model

appears to provide the most compact description of that code.

There may be other, less controversial ways to separate the models. The log-Gaussian

model predicts a uniform distribution of preferred numerosities on a logarithmic scale,

hence more neurons dedicated to small numerosities than to large ones. In Nieder and

Miller’s initial work, it was not possible to test this prediction, because only the numerosities

1–5 were tested. Nieder and Merten (2007) however extended this work to numerosities

1–30 and found that increasingly fewer neurons were tuned to larger numbers, compatible
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with the log-Gaussian model. It may not be entirely unrelated that, in all languages of the

world, the frequency with which we name a given numerosity n is a sharply decreasing

function of n (Dehaene and Mehler, 1992).

Against the log-Gaussian hypothesis, Brannon et al. (2001) have argued that, if numerosity

were represented on a logarithmic internal scale, addition and subtraction operations

would not be possible. Empirically, they showed that pigeons could be successfully

trained to perform an approximate subtraction task. More generally, Gallistel and

Gelman (1992) argued that a mental representation should be characterized by the type

of operation it supports, and that competence for addition and subtraction provides

incontrovertible evidence for a linear mental number line. In my opinion, however, this

argument confounds the content of a representation with its form, what is being repre-

sented and how it is represented, or in Saussurian terms, the signified and the signifier.

In the log-Gaussian model, what is being represented is a number n, although its internal

representative is q(n) = log(n). It is equally absurd to state that when computing a

subtraction n1 – n2, we should then subtract the logarithms of n1 and n2, than to say that,

because a computer encodes numbers in binary format, it should always compute 1 + 1 = 10!

In brain and computer alike, the rules of transformation of the representatives q(n1) and

q(n2) should be stated so that the result of the internal operation is isomorphic to the

desired arithmetic operation. In the case of the subtracting pigeons, I showed that,

whether the numbers were coded by a linear or a logarithmic scheme, a simple neural

network could easily pass the behavioral test that Brannon et al. took as diagnostic of a

linear subtraction operation (Dehaene, 2001). The issue of calculation algorithms is

discussed further below.

A separate open issue concerns whether the proposed ‘number line’ representation

constitutes the sole semantic representation of number. There is evidence, at least in

human infants, for a distinct system of representation of small sets of objects (1, 2 or 3),

thought to be based on object or event files, and not subject to Weber’s law (for review,

see Feigenson et al., 2004). This system might be responsible for ‘subitizing’, the capacity

to quickly and accurately name numerosities 1, 2 and 3 in adults. An alternative possibil-

ity, however, is that subitizing merely represents performance at the lower, most precise

end of the number line continuum (Mandler and Shebo, 1982; Dehaene and Cohen,

1994; Cordes et al., 2001; Piazza et al., 2003). In animals, performance is quite often

continuous over the whole range of numbers, with little or no evidence in favor of a

distinct ‘subitizing’ system (Brannon and Terrace, 2000; Nieder et al., 2002; Nieder and

Miller, 2003, 2004; Cantlon and Brannon, 2006; but see Hauser and Carey, 2003). Thus,

whether a distinct system exists, what are its neural mechanisms, and how they might be

modeled mathematically remain open issues.

Numerosity discrimination, comparison and identification

I now turn to the utilization of the numerosity representation in simple cognitive tasks.

Based on the postulated log-Gaussian representation, and assuming a certain form for

the decision system, can one reconstruct animal and human performance in simple tasks? 
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I start with the prediction of performance (percentage correct) in various numerosity

tasks, assuming that decision in this case is based on a single internal sample on the internal

number line.

Theory

The theoretical principles applied here are identical to those used in signal detection

theory to characterize psychophysical judgments. In turn, these principles can be derived

from optimal Bayesian decision based on maximum likelihood or maximum a posteriori

inference (Green and Swets, 1966; MacMillan and Creelman, 1991). In the most general

terms, a behavioral experiment consists in presenting a set of numerical stimuli Si, each

of which is associated with one member of the set of responses Rj. On a given trial,

the stimulus S is represented by a noisy random variable X on the internal continuum.

The aim of the decision system is to select, among the set of possible responses Rj, the

response R that has the greatest probability P(Rj|x) of being correct, given the state x of

the internal representation (the analysis can also be extended to the maximization of

rewards associated with each response). Optimal responding can be achieved by finding

the response R that maximizes this probability P(Rj|x). By Bayes’ rule,

P(Rj|x) = P(x|Rj) P(Rj)/P(x) (24.5)

In this equation, only the first two terms vary with Rj. The first can be calculated: it

consists in the mean of the Gaussian curves evoked by all the stimuli for which the

correct response is Rj. The second term is often constant (all responses are equiprobable)

or can be estimated over trials (possibly generating some bias).

The end result of this procedure is a family of optimal response curves [gj(x) = P(Rj|x)]

which specify, for every possible value of the internal representation x, what is the proba-

bility that the response Rj is the correct one.2 The optimal strategy, when observing an

internal representation x, consists in selecting the response Rj for which gj(x) is the

largest. This strategy defines a set of criteria that divide the internal number line into

regions that should be responded to with different responses Ri. Once these criteria are

set, it is easy to compute the probability of making a correct response to each stimulus 

Si. One simply has to consider all of the possible internal encodings x of this stimulus,

and to examine for which fraction of them the above decision rule leads to the 

correct answer. Mathematically, this is given by the integral of the internal Gaussian repre-

sentation over the interval of response criteria that are associated with the desired response

to that stimulus. In the same way, the entire stimulus–response matrix which defines the

probability of making any given response to any given stimulus can be computed.

NUMERICAL COGNITION536

2 In cases where a trial consists in the presence of two numerosities n1 and n2, those functions are

defined over two internal variables x1 and x2 instead of one. Nevertheless the logic of finding which

response has the highest probability of being correct remains the same. Furthermore, depending on

the arrangement of the stimuli, one may frequently make the simplifying assumption that subjects

base their decisions on a reduced variable such as the difference between x1 and x2. This approach has

been adopted in what follows.
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Application to experimental examples

To make this presentation more concrete, we now consider several simple examples.

Numerosity discrimination

The theory and experiments for this task have been presented by Van Oeffelen and Vos

(1982). Briefly, in a block of trials, the subject is presented with one of two numerosities

(e.g. 15 or 18 dots) and has to decide which numerosity is presented. Thus, the stimulus set

comprises only two numbers n1 and n2 (with n1 < n2), and the response set is also limited

to two responses: R1 = ‘n1’ and R2 = ‘n2’. Assuming equiprobable responses, the optimal

response curves can be derived from the log-Gaussian representation curves according to:

(24.6)

where G is the normal curve. It is easy to see that g2(x) > g1(x) if and only if x > c, where

is the response criterion. Hence, the optimal 

strategy, quite intuitively, consists in responding R1 = ‘n1’ if the internal representation 

of the target falls closer to log(n1) than to log(n2), and to respond R2 = ‘n2’ otherwise.

The predicted performance is thus

(24.7)

Note that the latter form makes clear the dependence of performance on the ratio of the two

numbers, r = n2/n1 (one version of Weber’s law). Van Oeffelen and Vos (1982) tested this

equation against human numerosity discrimination data, and found it to be quite accurate.

Ratio-dependent performance has also been observed during numerosity discrimina-

tion in human infants (Lipton and Spelke, 2003). Although the data are probably not

quantitative enough for a formal fit of our equations, the Weber fraction appears to

decrease with age: 6-month-old babies fail to discriminate numerosities in a 3:2 ratio,

while 9-month-old babies can (Lipton and Spelke, 2003).

Numerosity comparison

In the nonsymbolic number comparison task, on each trial subjects are presented with a

single set of dots and have to determine if its numerosity is larger or smaller than some

fixed reference nref. Thus, the set of stimuli can be large, but the set of responses is

reduced to two responses: larger or smaller. An analysis of the optimal strategy, along the

above lines, shows that there is a single criterion c on the internal number line, and that

subjects’ response should be ‘larger’ if the internal representation exceeds this criterion,

and ‘smaller’ otherwise. The optimal criterion c generally coincides with, or is close to,
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the internal representation of nref: c = log(nref). For each target number, one can then

predict the fraction of choices of the larger response as:

(24.8)

Again, this equation makes apparent that performance should depend on the ratio of the

stimulus and reference numbers, r = n/nref.

At least two successful tests of this equation have been published. First, Piazza et al.

(2004) collected numerosity comparison judgments in adults. As shown in Figure 24.2,

Equation 24.8 fitted the data very tightly. Ratio dependence was tested explicitly by testing

two reference numbers, 16 and 32, and verifying that the slope of the psychophysical

curves shifted by a factor of 2 on a linear scale (and was constant when plotted on a log

scale). Second, Pica et al. (2004) used a slightly different version of the comparison task,

where the subject sees two successive numerosities n1 and n2, and decides which is the larger.

The theory is only slightly different here, and assumes that subjects respond ‘n1 > n2’ if

and only if the internal representatives are in the same order x1 > x2. It is easy to obtain

analytic expressions for error rates, both under the log-Gaussian and under the scalar

variability hypotheses:

Log-Gaussian model:3

(24.9)

Linear, scalar variability model:

(24.10)

Both equations yield virtually identical predictions which, as made clear by the above

equations, again depend solely on the ratio of the two numbers, r = n2/n1 (with n1 < n2).

Pica et al. (2004) collected data from children and adult, both in French subjects and in

Munduruku Indians from the Amazon. In all cases, performance conformed to the above

equations, thus suggesting that numerosity judgments belong to a core set of arithmetic

knowledge that is available independently of language, culture and education.
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3 Note that the sole difference with the equation characterizing performance in comparison with a fixed

reference is a factor of 2 on the scaling of the parameter w. See MacMillan and Creelman (1991) for a

cogent explanation of such subtle differences between psychophysical paradigms, particularly what

they call two-choice tasks (where two stimuli n1 and n2 are presented) versus reminder tasks (where a

single stimulus n is compared to a fixed reference).
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Same–different judgments

Another simple task consists in asking subjects whether two numbers are the same or

different. Piazza et al. (2004) used this task with a fixed reference. Subjects were presented

on each trial with a single numerosity n and had to decide whether this numerosity was

identical to, or different from, a fixed reference nref (this reference was fixed for an entire

block, and subjects were reminded of it on each trial). If the different target numerosities

are symmetrically distributed around the habituation numerosity on a logarithmic scale

(which was the case in Piazza et al.’s stimulus set), then the subject’s optimal criterion

consists in responding ‘same’ whenever the internal representation of the stimulus

numerosity n, x, falls within a symmetrical decision interval centered around the repre-

sentation of the reference number. Thus, subjects should respond ‘same’ if and only if

x belongs to [log(nref) – d, log(nref) + d], where d defines the width of the criterial region.

Given this response strategy, the probability of responding ‘same’ to a stimulus numeros-

ity n is given by:

(24.11)

Again, performance should depend on the ratio of the stimulus and reference numbers,

r = n/nref. As shown in Figure 24.2, an excellent fit with experimental data was observed,

and ratio dependence was verified with two reference numbers, 16 and 32.

A related task was used by Nieder and Miller (2003) in macaque monkeys. As described

earlier, on each trial, subjects were first presented with a sample number n1, then after

some delay with a second number n2. They had to decide whether the first number

matched the second, or differed from it. As shown in Figure 24.1, performance averaged

across a very large number of trials was a remarkably regular function of the difference of

logarithms of the two numbers (or, equivalently, of their log ratio), which Nieder and

Miller (2003) showed to be well captured by a Gaussian curve.

According to the theory, a simplified though frequently close to optimal strategy for

this task is to respond ‘same’ whenever the difference between the internal representatives

x1 and x2 falls below a certain criterion d. The probability of responding ‘same’ is then

given by:

(24.12)

where r = n2/n1 (with n1 < n2). Note that this equation, the integral of a Gaussian over a

given interval, departs from the simple Gaussian used by Nieder and Miller (2003) to fit

their data. Nevertheless, I have verified that the two fits are essentially indistinguishable

and that the present equation thus provides an excellent account of the performance of

Nieder and Miller’s monkeys in numerical match-to-sample tasks.
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Numerosity labeling

A final task consists in asking the subject to label numerosities using a set of verbal or

nonverbal labels. For instance, one may ask human subjects to label sets of dots ranging

from 10 to 100 with round numbers such as the decade names ‘ten’ to ‘ninety’ (Izard,

2005). Chimpanzees have also been trained to label numerosities using the Arabic digits

1–9 (Matsuzawa, 1985; Tomonaga and Matsuzawa, 2002). In humans, this task can be

complicated by the use of slow but exact counting strategies, which fall beyond the scope
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Figure 24.2 Human and macaque monkey performance in simple numerosity tasks is 

well-captured by the proposed psychophysical model. (A) Humans, larger–smaller comparison of

large numerosities to a fixed reference (16 or 32). (B) Humans, same–difference judgment of

large numerosities with a fixed reference (16 or 32). Both data sets are redrawn from Piazza 

et al. (2004). The dots are experimental data points, and the curve is the best fit by equations

described in the text. The dependence of performance on the log numerosity ratio is evident. 

(C) Data from Nieder et al. (2002) for same–different judgment. The monkeys decide whether a

sample numerosity (numeral appearing above each curve) matches a subsequently presented

numerosity (abscissa, log scale). The curves appear as shifted versions of the curve in (B) again

indicating that performance depends solely on log ratio.
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of the present theory. In animals, however, and perhaps also in human cultures with few

number words and no overt counting system, the proposal is that subjects do not count

serially, but merely apply symbolic labels to their mental representations of approximate

numerosity (Dehaene and Mehler, 1992; Tomonaga and Matsuzawa, 2002; Gordon, 2004;

Pica et al., 2004).

The theory for such numerosity-labeling tasks, developed by Izard (2005) assumes

that, for each target numerosity n, subjects generate an internal representation X of the

target numerosity, thus a Gaussian random variable centered on log(n), and respond

with the verbal label r whose canonical representation on the number line log(r) falls

closest to log(n). This strategy implies that the number line continuum is divided into

distinct response domains according to a set of response criteria forming a response grid

(Figure 24.3A). The response domain corresponding to response r1 is separated from the

domain corresponding to the next response r2 by response criterion

(24.13)
c (r )= c (r )= Log r r+ 1 – 2 1 2( )

Optimal response grid

Actual rescaled response grid

Internal continuum

Stimulus (n = 100)

Response (r = 50)
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Figure 24.3 (A) Model of approximate numerosity naming (Izard, 2006). The input numerosity,

once coded on the logarithmic number line, is categorized according to a response grid which is

an affine rescaled version of the optimal logarithmically scaled grid. (B) Numerosity-naming

responses of a representative subject, showing power-law responding with Weberian variability

on a linear scale (left), and linear performance with fixed variability on a log–log scale (right). 

(C) Reconstructed distribution of the random variable leading to response choice [on a log scale,

after centering on the modal value q(n) and averaging across all targets and subjects]. The

observed distribution tightly fits the predicted Gaussian.
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A complication is that subjects’ responses are often poorly calibrated. For instance it is

quite common for subjects to respond ‘fifty’ to a set of 100 or 200 dots (Minturn and

Reese, 1951; Krueger, 1982). Véronique Izard showed that a simple assumption could still

capture the subject’s behavior. The assumption is that miscalibration is due to an affine

scaling of the entire response grid. That is, instead of applying the optimal response

criteria defined above, subjects actually use a linearly scaled grid of response criteria

(24.14)

where a is a stretch parameter and b a shift parameter, both of which typically differ from

their optimal values (respectively 1 and 0).

Given this theory of the response selection process, the model predicts the frequency

with which response r will be selected in response to numerosity n:

(24.15)
In principle, this equation allows computation of any aspect of the subject’s responses

to any numerosity. In practice, it is difficult to obtain formal mathematical results.

However, using plausible approximations, Izard (2005) was able to compute the subject’s

mean response to a given numerosity n. Interestingly, the response increases nonlinearly,

as a power-law of the true numerosity n:

(24.16)

Izard (2005) showed that the above model provided a remarkably good fit to human

subjects’ numerosity naming data in the range 10–100. All subjects were initially miscali-

brated and severely underestimated numerosity. In those cases, the predicted power-law

relation was observed (see example in Figure 24.3B). A single example of a numerosity–

name pairing was sufficient to recalibrate them to a quasi-linear relation. This recalibration

process was well captured by a change in the parameters a and b. Furthermore, variability

in the subjects’ responses increased with stimulus numerosity on a linear scale, but

became constant and with a linear stimulus–response relation once the data were plotted

on a log–log scale (Figure 24.3B). Because a very large number of responses was collected

for each subject, the data allowed for a reconstruction of the distribution of the internal

random variable leading to response selection. On a logarithmic axis, this distribution

traced an almost perfect Gaussian curve (Figure 24.3C).

In spite of these successes in modeling numerosity naming data, there are at least two

directions where the theory will require extension. First, the theory assumes nonoverlap-

ping response domains: each portion of the number line can be referred to by a single

symbolic label. In natural speech, however, there are competing words or phrases for

each numerosity. For instance the same quantity 13 can be truthfully named with variable

degrees of precision as ‘thirteen’, ‘a dozen’ or ‘ten–fifteen’. Dehaene and Mehler (1992)

have proposed that each numeral has a defined response range, which is larger for round
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numbers such as ‘fifteen’ than for other numbers such as ‘thirteen’ (see also Pollmann and

Jansen, 1996). Exactly how number word selection should be modeled in the presence of

such competing responses and variable context remains to be determined.

A second area open to further research concerns tasks in which, instead of using a

small set of discrete labels, the subject labels numerosity with a continuous or quasi-

continuous response, for instance by tapping a key approximately as many times as the

numerosity that was presented (Mechner, 1958; Whalen et al., 1999; Cordes et al., 2001).

Such tasks probably do not involve the setting of a response grid, but rather a continuous

monitoring of the numerosity being produced and a simple decision rule for stopping

when that numerosity is thought to match or exceed the memorized one—a process

which will not be further discussed here (but see for example Gibbon, 1977; Gibbon and

Fairhurst, 1994).

Numerical response times

We now turn to the mental chronometry of arithmetic tasks. In many of the above tasks,

response times vary systematically in parallel with the percentage of correct responses.

Can arithmetic decision times also be accounted for by a simple mathematical model?

Theory

A simple idea concerning decisions under uncertainty was first introduced by Alan

Turing in a cryptographic context, and a few years later by the statistician Abraham Wald

(1947). In their view, the reason why decisions take a variable time which depends on the

quality of the evidence, is because evidence must be accumulated until a pre-defined

level of statistical certainty is achieved. The idea was imported into psychology by Stone

(1960) and Laming (1968), then extended by Link (1975, 1990, 1992), Ratcliff (1988),

Ratcliff and Rouder, 1998), and many others (e.g. Schwarz, 2001; Page et al., 2004;

Sigman and Dehaene, 2005). It plays a key role in modern models of decision making

and response time distributions (for accessible syntheses, see Gold and Shadlen, 2001,

2002; Usher and McClelland, 2001; Smith and Ratcliff, 2004).

Here I shall explain this theory only in the case of a simple two-alternative decision

(e.g. larger–smaller comparison; see Figure 24.1). Assume that the subject is presented

with a target numerosity n, but instead of a single representative x, now has at its disposal

a time series of independent samples xt on the internal number line. According to Bayes’

rule, each new sample allows updating of the posterior probability that the response Rj is

the correct one, given all of the previous samples:

P(Rj|x1 .. t + 1) = P(xt +  1|Rj) P(Rj| x1 º t) / P(xt + 1) (24.17)

When only two responses are allowed, the mathematics can be simplified because a single

quantity, the log-likelihood ratio (LLR), suffices to track how each additional sample

changes the decision probabilities. This quantity is defined by the following equation:

(24.18)
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Intuitively, the LLR measures the relative amount of support for response 2 over response 1.

It is positive if the majority of the data supports response 2, and negative if it supports

response 1. By Bayes’ rule, one has

(24.19)

This formula indicates that, by simple summation, one can add up the contributions of

each random sample towards the decision (including a possible initial bias for one of the

two responses). The successive bits of information contributed by each new sample

should be added to produce an internal random walk. As time passes, the accumulated

LLR will vary somewhat randomly up and down. However, if there is a consistent signal

in the internal samples, it should progressively drift towards either positive or negative

values. An optimal decision consists in waiting until the LLR has reached one of two

fixed bounds ±q, and then responding with response R2 if LLR is positive, and with

response R1 if LLR is negative.

The value of q, which is set by the subject, specifies the desired error rate. q also deter-

mines how the subject deals with the speed–accuracy trade-off. Setting q to a low value

means that the decision threshold will be reached quickly, but with many errors (because

internal noise will often lead the internal random walk to the wrong decision bound).

Setting q to a higher value means that decisions will be slower, but more accurate.

A theory for the optimal choice of parameter q, depending on the rewarding scheme and

inter-trial interval, has been presented (Bogacz et al., 2006).

Discrimination task

Although the formula that gives the increment to the LLR as a function of the observed

internal sample xi is complex, it becomes simpler in some particular cases such as the

above-discussed numerosity discrimination task, where one must simply decide which of

two possible numerosities n1 or n2 was presented. In this case, the formula becomes:

(24.20)

Since the samples xi are Gaussian, this equation indicates that the random walk consists

in a sum of Gaussian steps proportional to xi – c, where . Quite intu-

itively, those steps are positive if the sample xi is above the mid-point between log(n1)

and log(n2), and negative otherwise. The mean and standard deviation of the step size

are:

(24.21)

Once again, they indicate that all aspects of performance (errors, mean RT, RT distribu-

tion) should depend solely on the log ratio r of the two numerosities n1 and n2.
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Other tasks

In most other tasks, the mathematics becomes more complicated. According to the

normative theory of optimal decision making outlined above, the step size should be

This function of x is usually rather complicated and need not be linear or even mono-

tonic with x. Thus, the random-walk steps may have an unusual, mathematically intractable

distribution. Nevertheless, in many cases the Gaussian random walk can be used as an

analytically tractable approximation. It is also possible that the neural systems for deci-

sion making rely on such a Gaussian approximation because it is easier to compute

neurally (Gold and Shadlen, 2001). Thus, in the literature, it is frequently assumed that each

decision is based on a Gaussian random walk defined, for a given target numerosity n, by

parameters m and s specifying the mean and standard deviation of the steps per unit of

time. If needed, one may compare those analytic calculations with simulations of many

random walks that behave according to the exact LLR equations.

Predictions of the model

In the Gaussian random-walk model, the decision time is defined as the first point at

which the random walk crosses one of two absorbing barriers +q and –q. Determining

the distribution of decision time is a mathematically well-defined and physically well-

known diffusion problem, for which much is known (see e.g. Wald, 1947; Link, 1992).

Here I consider only the simplest case where there is no initial bias for either response.

First, performance and error rates can be computed. A generic formula for response

rates (valid also for non-Gaussian steps) is:

(24.22)

where l  depends on the distribution of the random walk steps

This equation shows that, in the random walk model, the dependence of errors on

mean step size m (hence on distance in a number comparison task, for instance) is a

sigmoid function. Remember that, in the classical signal detection theory, the predicted

function is the integral of a Gaussian. Although those functions differ in theory, they are

sufficiently similar as to be empirically indistinguishable. However, the random walk

model presents the advantage of capturing the well-known observation of a speed–

accuracy trade-off: as shown by Equation 24.22, performance is not fixed, but increases

in a predictable manner with q, the response threshold.

The mean response times can also be predicted as:

(24.23)
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where T0 is a constant additional time corresponding to the total duration of nondeci-

sion processes (e.g. perceptual and motor components). Note that RT decreases as an

inverse function of step size, a function which is shallower than the above error curve.

The sigmoid shape of errors and inverse shape of RTs as a function of log ratio constitute

clear predictions of the random-walk model.

Finally, the variance and even the distribution of RTs can be calculated analytically

(Smith and Ratcliff, 2004; Wagenmakers et al., 2006). There is an exact formula for the

probability density function of RT, but it is quite complex. A simpler formula can be

obtained if one considers, as a first approximation, the problem of a random walk

process hitting a single barrier (thus neglecting the effect of errors). Obviously this will be

a good approximation only if the task and subject threshold afford relative error-free

performance. In this case, the probability density function of RT is

(24.24)

A problem with the random-walk model, known at least since Laming (1968), is that it

predicts an identical distribution of correct and error RTs. This problem, however, has

been corrected in slightly more complicated versions of the model that assume trial-to-

trial variability in the starting point of the random walk, the decision threshold, and/or

the mean step size (Ratcliff and Rouder, 1998; Smith and Ratcliff, 2004). Naturally, those

models have many additional free parameters.

Model identification

A specific difficulty with random-walk models is that their complexity often precludes

easy identification of their parameters based on the available response time data. In the

simplest model considered here, the minimum parameters that need to be fitted to each

stimulus condition are: T0 (nondecision time), q (decision threshold), and m (mean step

size).4 Here I consider two simple and effective strategies (for more sophisticated

approaches, see e.g. Ratcliff and Tuerlinckx, 2002).5

Strategy 1

This strategy, which I derived from equations in Link (1992), requires only the mean RT and

mean error rate in each cell of the experimental design (e.g. for each target number n).
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4 The standard deviation of step size, s, is not independent of the other parameters once the time unit is

fixed. It can thus be arbitrarily fixed (here, I took s = 1).

5 Both strategies will fail for cells of the experimental design which contain 0% or 100% errors. In such

cases, it is possible to regularize the data by adding 1/2 to the count of error trials.
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From Equations 24.22 and 24.23, we first derive a simple relation between mean RT and

errors:

(24.25)

This equation predicts that, across a range of stimulus conditions, there should be a

linear relation between mean RT and a transformed function of the error rates. Thus, a

first test of the random-walk model consists in checking, by linear regression, if this

linear relation holds. If it does, then the intercept and the slope of the linear regression

will provide estimates of T0 and q (assuming a fixed s). Once these two parameters have

been inferred, using Equation 24.23 m can be estimated for each target n as

(24.26)

The advantage of this procedure is that it includes an internal check of the validity of

the random-walk model. The disadvantages include the assumption that T0 and q are

identical across conditions, and that there is no response bias. The quality of the estimation

is also highly dependent on the quality of the RT-error regression. If the data include

errors due to another source, for instance guessing or inattention, then T0 will be overes-

timated. For blocks of numerical comparison with a fixed notation, however, the

assumption of fixed T0 and q is reasonable (the assumption is that perceptual and motor

time are identical for all numbers, and that subjects set their criterion prior to seeing the

target number). As we shall see, under these conditions the procedure recovers highly

stable estimations of m.

Strategy 2. Wagenmakers’s EZ-diffusion model

This strategy is described in detail in (Wagenmakers et al., 2006), so the equations 

will not be reproduced here. The strategy requires measurement of the mean RT,

the variance of RT, and the mean error rate in each cell of the experimental design.

From those three measures, an explicit formula recovers the parameters m, T0, and q.

Thus, an advantage of the EZ model is that it allows independent computation of all

three parameters of the random-walk model separately for each cell of the experimental

design. These parameters can then be submitted to an analysis of variance. Thus, unlike

in strategy 1, one can explicitly test whether T0 and q remain fixed across experimental

conditions. On the negative side, the strategy assumes that there is no response bias (see

Wagenmakers, 2006, for more complicated alternatives) and is somewhat unstable

numerically.
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Experimental evidence

Number comparison

Number comparison is the numerical task that has received the most extensive treatment

by the random-walk model (Link, 1975, 1990, 1992). I have verified that the model

accounts for the performance and RTs in the data sets at my disposal (e.g. Dehaene, 1989;

Dehaene et al., 1990, 1998; Piazza et al., 2004). Here I shall consider only a particularly

dense set of data kindly provided to me by Cantlon and Brannon (2006), and which

allows for a thorough test of the validity of the random-walk model in two species. In

Cantlon and Brannon’s experiment, two monkeys and 11 human subjects were presented

with arrays of dots ranging from two to 30 dots. They had to select the smaller array or,

in other blocks, the larger array. Here I have averaged across those two types of blocks.

Figure 24.4 shows the data and fits of the random-walk model obtained using strategy 1.

The top graphs indicate that, in both species, the variations of RT and error rate with the

distance between the compared numerosities (as measured by the logarithm of their

ratio) are well captured by the functions predicted by the model. I verified that a much

worse prediction is obtained if the numerical distance is measured by the difference

between the two numerosities, rather than by the difference of their logarithms.

Note that the distance effect is steeper on error rates than on mean RTs, as predicted. In

each species, the bottom left graph examines the linear relation between RT and trans-

formed error rate predicted by Link (1975, 1992). This relation is verified in both humans

and monkeys, and allows for an estimation of T0 and q. Interestingly, the response

threshold q is very similar across species (monkeys: 16.3; humans: 18.0), but the nonde-

cision time appears slower in humans (monkeys: 342 ms; humans: 462 ms).

Most importantly, the mean step size of the random walk is an almost perfectly linear

function of the log ratio of the two numbers (bottom right graphs in Figure 24.2). This

linear function has a null intercept, i.e. the subjects appear not to be able to accumulate

any information as the difference between the two numerosities becomes very small. The

entire curve fits with the theory, which states that subjects accumulate a stochastic signal

proportional to the difference of the log-Gaussian numerosity estimates provided by the

two sets of dots. The slope of that function estimates, for a given numerical difference,

the quantity of information that is accumulated per unit of time. Interestingly, this quantity,

which plays a role similar to the internal Weber fraction in the simpler signal detection

model, is somewhat smaller in monkeys (0.66) than in humans (0.99). This finding is in

agreement with Cantlon and Brannon’s conclusion that monkeys are somewhat less

sensitive to numerosity information than (educated) humans.

Neuronal modeling

For a long time, the random-walk model was a purely psychological tool, and it was

unclear whether it bore any relationship to actual neural network mechanisms. Recently,

however, experiments and models on the neural mechanisms of decision making have

flourished. Gold and Shadlen (2001, 2002) describe how neuronal populations might

compute quantities relevant to the random-walk model. Furthermore, Mazurek et al. (2003)

NUMERICAL COGNITION548
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have proposed an explicit simulation model (see also Usher and McClelland, 2001), and

Wong and Wang (2006) have described a neuro-realistic implementation of an accumulation-

like neural decision process. Here, I briefly review these contributions.

Gold and Shadlen first note that the LLR, or a quantity monotonically related to it, can

be quite easily computed as the difference of activity of two populations of neurons:

those voting in favor of response R1, and those voting in favor of response R2. Thus, in

the case of numerical tasks, a decision can be taken by selecting two relevant pools of

numerosity-detecting neurons (e.g. those coding respectively for numbers smaller and

larger than some reference), and computing the difference of their mean firing rates. The

latter differencing operation can be accomplished either by a balance of excitatory and

inhibitory feedforward connections, or by lateral competition between two competing

populations of cells.

A second step consists in accumulating those difference signals. Mazurek et al. (2003)

have shown how this can be accomplished by populations of decision neurons with a

time delay and a self-connection. Intuitively, using those self-connections, the decision

neurons can feed back onto themselves the neural activation that they received in the

past, and hence maintain an accumulated record of the total amount. Wong and Wang

(2006) have presented a realistic neuronal model of this process (see also Usher and

McClelland, 2001; Machens et al., 2005). Wong and Wang consider pools of selective and

nonselective excitatory neurons connected to a pool of inhibitory inter-neurons. They

explicitly calculate the mean field dynamics of this system in the presence of an input

signal favoring one or the other populations. The bifurcation diagram shows how this

dynamical system approximates the accumulator needed in the random-walk theory: the

accumulated evidence progressively pushes the activity of the two competing neuronal

pools away from a saddle point and towards one of two attractors corresponding to the

two possible decisions, in a time directly related to the amount of input evidence.6

Thus, two key components of the random-walk model (LLR formation and accumula-

tor mechanism) have received a plausible neuronal implementation. Still, it should be

noted that there is currently no comprehensive model of an entire decision task at the

neuronal level. Such a model would require specifying: (1) how task instructions lead to

the selection of the appropriate pools of neurons; (2) how these neurons become transito-

rily linked to the appropriate decision units, with the appropriate excitatory or inhibitory

weights; (3) how the decision threshold, leading to motor response initiation, is imple-

mented. A model of tactile frequency comparison, which comes close to achieving these

goals, has been recently presented by Machens et al. (2005; see also Lo and Wang, 2006).

Neurobiological and neuroimaging evidence

The plausibility of the random-walk model of simple response decisions was greatly

strengthened when Michael Shadlen and colleagues discovered neuronal signals that

NUMERICAL COGNITION550

6 Interestingly, in this neuronal model the evidence accrual process deviates from the neutral point at an

exponential rate, a possibility that has rarely been considered in behavioral models, but may fit

response time data better (see Page et al., 2004).
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appeared as plausible neural correlates of a stochastic accumulation process (Kim and

Shadlen, 1999; Gold and Shadlen, 2001, 2002). Here I mention these data only briefly,

because in spite of their intrinsic interest, they do not directly concern numerical tasks.

During a motion judgment task, neurons whose firing appeared to constitute a plausible

correlate of evidence accumulation were identified, first in prefrontal cortex (Kim and

Shadlen, 1999), then in area LIP (Shadlen and Newsome, 2001) and other regions such as

superior colliculus. The cells began deviating from baseline firing rates at a fixed latency

of about 200 ms after the stimulus, and showed, on average, steadily increasing firing

rates with a slope proportional to the amount of sensory evidence (here, the proportion of

coherent motion in the display). Finally, they predicted the response of the animal, which

appeared to be emitted once the neurons reached a fixed level of firing. All of these data

have been captured in detail by the above-described neuronal models (Mazurek 

et al., 2003; see also Smith and Ratcliff, 2004; Wong and Wang, 2006; Lo and Wang, 2006).

Other tasks have yielded similar data. In particular, Ranulfo Romo’s team has charac-

terized neuronal firing in many cortical areas during a tactile frequency comparison task

(Romo and Salinas, 2003). Romo et al. have identified neurons, particularly in prefrontal

cortex, whose activity initially increases with the evidence accrued from the first stimulus;

they then subtract the evidence accrued from the second stimulus before converging to a

decision as to which of these two quantities is the largest. This process seems to be highly

similar to that postulated for numerical comparison, although for unknown reasons

tactile frequency appears to be encoded by the monotonically increasing or decreasing

firing of neurons rather than by Gaussian tuning to a specific value.

Decision processes based on differencing followed by accumulation have also been

reported in humans using indirect neuroimaging methods. Most notably, when humans

are asked to decide whether a noisy image depicts a face or a house, left dorsolateral

prefrontal cortex activity is proportional to the difference between activation in the fusiform

face area and in the parahippocampal place area and predicts behavioral performance

(Heekeren et al., 2004). Thus, this region, inscribed in a network of areas involving parietal

and prefrontal regions, appears engaged in decision by evidence accumulation in humans.

It seems likely that the same decision network would be involved in numerical tasks, but

this has not been firmly demonstrated yet.

Symbolic and nonsymbolic numbers

Up to now, I have considered only the processing of nonsymbolic numerosities. I now

turn to the processing of symbolic stimuli such as numbers presented as Arabic numerals

or as written or spoken numerals.

Theory

How do written and spoken symbols come to have meaning? The symbol grounding 

problem consists in understanding how arbitrary shapes can ever acquire genuine mean-

ings, over and above a mere network of relations to other symbols (Harnad, 1990). In the

special case of numbers, I have proposed a simple solution to this grounding problem

(Dehaene, 1997; see also Gelman and Gallistel, 1978). The nonsymbolic representation of
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numerosity is universally present in infants and adults of all cultures, and precedes the

acquisition of linguistic symbols for numbers. When we learn number symbols, we

simply learn to attach their arbitrary shapes to the relevant nonsymbolic quantity repre-

sentations. Thus, the symbol ‘3’ comes to evoke the very same representation that would

be evoked by a set of three dots, namely a Gaussian distribution of activation over numeros-

ity detector neurons. In neurophysiological terms, in the course of learning the meaning

of numerals, neuronal assemblies involved in auditory and visual symbol analysis

(respectively left superior temporal and bilateral ventral occipito-temporal cortices)

must develop connections, direct or indirect, to neuronal assemblies in the depth of the

intraparietal cortex.

According to an extreme version of this hypothesis, symbolic and nonsymbolic arith-

metic tasks should then be captured by a single mathematical model with identical

parameters including the internal weber fraction w. This hypothesis might be appropri-

ate for certain experiments in which monkeys and apes are trained to recognize arabic

digits and to attach them to the relevant numerosities by a pure process of association

(Matsuzawa, 1985; Washburn and Rumbaugh, 1991; Tomonaga and Matsuzawa, 2002).

Indeed, in those experiments, error rates are consistent with the use of estimation strate-

gies comparable to those captured by the above mathematical model. However, there are

reasons to believe that the situation might be more complex in humans. The acquisition

of numerical symbols seems to provide access to a new level of competence for exact

arithmetic. This conclusion is supported by several pieces of evidence. Cross-culturally,

subjects whose culture has very few number words fail in exact arithmetic tasks that chil-

dren in our culture easily perform (Gordon, 2004; Pica et al., 2004). Developmentally, the

acquisition of counting is accompanied by a sudden emergence of precise responding,

for instance in the ‘give-a-number’ task (Wynn, 1992b). Finally, neuroimaging and

neuropsychological data indicate an association of exact arithmetic tasks with linguistic

codes (Dehaene et al., 1999; Lemer et al., 2003).

To account for these unique consequences of acquiring symbolic information, a mini-

mal assumption might be that the precision of the quantity code is modified by the

acquisition of number symbols (Dehaene, 1997). Through interaction with a precise

system, where each number n is distinguished categorically from its neighbours n – 1 and

n + 1, the tuning curves of numerosity detector neurons would become narrower, and

the number line representation would crystallize into categorically distinct domains

(Pica et al., 2004). In keeping with Steven Kosslyn’s hypothesis of hemispheric specializa-

tion for categorical versus coordinate relations (Kosslyn et al., 1989), one might expect

this refinement of numerical precision to occur mostly in the left hemisphere, which is

also in more direct connection to linguistic symbols. For mathematical modeling purposes,

we would then assume that all of the above formulas, developed for nonsymbolic

numerosities, continue to hold for symbolic number processing, merely with a smaller

value of the Weber fraction w.

While this is a viable model, a recent neural network simulation suggests that exposure

to symbols may induce even more changes to the numerosity network (Verguts and Fias,

2004) (see Figure 24.5). Verguts and Fias used nonsupervised learning in a network

NUMERICAL COGNITION552

24-Haggard-Chap24  7/18/07  12:17 PM  Page 552



SENSORIMOTOR FOUNDATIONS OF HIGHER COGNITION 553

exposed either to numerosity information alone, or to numerosity paired with an

approximate symbol (coarsely approximating a child’s inputs during acquisition of number

words). Each symbolic input was coded by an arbitrary discrete unit. When nonsymbolic

information alone was presented, the network developed numerosity detectors similar to

Nieder and Miller’s neurons and possessing all of the key properties of the standard

model (skewed tuning curves on a linear axis, which become Gaussian when plotted on 

a logarithmic axis). Crucially, after pairing with symbolic information, the same numeros-

ity detector units became tuned to symbols as well. Yet, there were two key differences

between the unit’s responses to symbolic and nonsymbolic inputs (see Figure 24.5). First,

the tuning curves for symbolic inputs were much sharper. The simulated neurons essen-

tially have a discrete, all-or-none peak of firing for their preferred value (thus each

neuron cares mostly about a single, precise number), but they also show a shallow

surrounding area of local preference for neighbouring numbers. Second, the tuning

curves no longer broaden as the numbers increase (Weber’s law), rather they have a fixed

width for all numbers tested (1–5). Thus, the network develops a new type of representa-

tion, linear with fixed variability.

What I find most interesting in Verguts and Fias’s proposal is that the very same neurons

are involved in coding the quantity meaning of symbolic and nonsymbolic numerical

information. The predictions for neural recordings are clear. When tested with symbolic

and nonsymbolic inputs, each neuron would show the same preferred quantity in both

domains. Only the tuning curve would be narrower for symbolic than for nonsymbolic

Exact,

all-or-none

component

Analog

component

Non-symbolic input

100

50

−4 −3 −2 −1 0 1

1 2 3 4 5 1

1

2

3

4

5

2 3 4 5Numerosity

2 3 4 −4 −3 −2 −1 0 1 2 3 4Distance
0

100

50

0

100

50

0

100

50

0

N
o
rm

a
liz

e
d
 r

e
s
p
o
n
s
e
 (

%
)

N
o
rm

a
liz

e
d
 r

e
s
p
o
n
s
e
 (

%
)

Symbolic input

Figure 24.5 Numerical coding scheme emerging from Verguts and Fias’s (2004) neuronal 

network after exposure to paired symbolic and nonsymbolic numerosities. When presented with

nonsymbolic numerosities (left), the simulated neurons show broad distance-dependent tuning

curves (top) that increase in width when plotted on a linear numerosity scale (bottom). When

presented with symbolic numerals (right), the same neurons show sharp tuning curves (top)

with fixed width as the number increases (bottom).
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inputs, and this difference would increase as the numbers become larger. The fact that the

same neurons are involved means that there should be partial transfer of learning: if we

learned to perform exact arithmetic tasks, using quantities derived from symbolic inputs,

the same circuits would then be capable of performing the same operations approxi-

mately when nonsymbolic inputs are presented. Verguts and Fias’s model thus proposes a

concrete implementation of how a single brain area can be involved in both approximate

and exact calculation modes (Dehaene, 1992; Dehaene and Cohen, 1995).

Verguts and Fias’s proposal can be further extended. It seems possible that only some

of the numerosity detector neurons acquire this more precise ‘numerical receptive field’

as a result of being associated with symbols. Even in educated human adults, some

numerosity detector neurons, particularly in the right hemisphere, might keep their

approximate tuning curves. These neurons might then encode the approximate mean-

ings of ‘round numbers’ such as ten, fifteen, or a dozen (Dehaene and Mehler, 1992). The

existence of an intermediate range of such neurons, with variable tuning precision, might

explain the linguistic universal of two-numeral constructions (e.g. ‘ten twelve books’,

‘ten fifteen books’, ‘ten twenty books’), by which we can refer symbolically not only to a

quantity, but also to its variable degree of precision (Pollmann and Jansen, 1996).

Do these possibilities exhaust the transformations induced to our semantic system by

the acquisition of symbolic numerals? No. There is evidence that humans possess a rich

semantic lexicon for numbers. This lexicon specifies at least the parity and divisibility

properties of numbers (e.g. primes, powers of two, multiplication facts) (Dehaene et al.,

1993), but also more anecdotal semantic information such as famous dates, brands, etc.

(e.g. 1492, 747) (Cohen et al., 1994). At the moment, however, incorporating such

complex semantic information is way beyond the scope of our simple mathematical

model.

Experimental evidence

Distance effects with symbolic numerals

The hypothesis that symbolic numerals inherit many of the properties of the nonsym-

bolic numerosity representation has been validated in a large number of experiments.

A first indication of its plausibility came from Moyer and Landauer’s (1967) finding of

a distance effect when subjects compared two arabic digits. Although there was no simi-

larity between stimuli at the symbol level, the subjects’ behavior indicated the use of

a mental representation of quantity where conceptual similarity varies with quantity 

proximity. This observation was quickly extended to many tasks. Distance effects have

been observed in two-digit numeral comparison (Hinrichs et al., 1981; Dehaene, 1989;

Dehaene et al., 1990), with detailed characteristics that seemed largely compatible 

with the random-walk model (Link, 1990; Page et al., 2004; Sigman and Dehaene, 2005)

(see below). Even when deciding whether two number symbols are the same or not,

response times vary with numerical distance, suggesting a high automaticity of the

symbol-to-quantity conversion pathway (Duncan and McFarland, 1980; Dehaene and

Akhavein, 1995).
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Stages of processing of symbolic numerals

The notion that symbolic numerals, regardless of their notation, pass through successive

stages of symbol recognition followed by conversion to a nonverbal quantity code in

parietal cortex was verified in several publications. I initially tested this issue using event-

related potentials (ERPs) and the additive-factors method (Dehaene, 1996). During a

comparison task with numbers presented as written words or as arabic numerals, response

times showed additive effects of three factors: notation used (arabic or verbal), numerical

distance, and motor effector (left or right hand). Additivity is consistent with serial stages

of (1) numeral recognition, (2), notation-independent quantity comparison, and 

(3) response programming and execution. ERPs revealed signatures of all three stages, with

a fast spread of activation first in left and right ventral occipito-temporal regions involved

in numeral recognition, then in bilateral parietal cortices, where a distance effect was

found, and finally in motor cortex. The separation between notation-dependent but

distance-independent numeral processing in ventral occipito-temporal cortex, and 

notation-independent but distance-dependent quantity processing in intraparietal

cortex, was later replicated in fMRI (Pinel et al., 2001, 2004).

Recently, Mariano Sigman and I used another chronometric technique to examine the

decomposition of the number comparison task into processing stages (Sigman and

Dehaene, 2005, 2006). In a psychological refractory period (PRP) design, we asked subjects

to perform the number comparison task together with another unrelated pitch catego-

rization task with tones presented at variable SOAs relative to number onset. Using the

locus of slack logic (Pashler, 1984), we showed that notation- and response-dependent

stages of the task could be performed in parallel with stages of the tone task, but that the

distance-dependent stage could not—it was performed strictly serially with the response

decision stage of the tone task. We also showed that the response time distribution

expected from the random-walk model (Equation 24.24) fitted the data superbly, and

that this distribution was shifted accordingly when the numerical decision was delayed

by the tone decision. This study thus confirms the parsing of the number comparison

task into notation-dependent and quantity-dependent stages and suggests that only the

latter involves a ‘central system’ or ‘global workspace’ that can only perform one opera-

tion at a time (Dehaene and Changeux, 2004).

Cerebral convergence of symbolic and nonsymbolic information

Manuela Piazza, Philippe Pinel and I recently used fMRI adaptation to test directly the

hypothesis of common neural populations for symbolic numerals and nonsymbolic

numerosities (Piazza et al., 2006). During several minutes, subjects attended to the

repeated presentation, every 1200 ms, of an approximate quantity presented either as a

set of dots (e.g. 17, 18, or 19 dots) or as an arabic numeral (the numerals 17, 18 or 19).

We verified that the BOLD fMRI signal adapted over the course of about 40 s in left and

right intraparietal cortices, within regions isolated using an independent localizer scan

(subtraction task). We then introduced sparse deviants which could be close or far quan-

tities (e.g. 20 or 50), and could appear in the same or different notation. The results repli-

cated our earlier finding that the intraparietal cortex signal shows a distance-dependent
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recovery from adaptation (Piazza et al., 2004). Crucially, they also showed that this recovery

holds even when the notation changes. This finding suggests, indirectly, that there must

be populations of numerosity detector neurons jointly activated by symbolic and

nonsymbolic notations, so that they can be habituated by one and transfer this habitua-

tion to the other.

Interestingly, in left parietal cortex, the effect was asymmetrical. When adaptation was

to dots and the deviants were arabic numerals, there was recovery of adaptation to far

but not to close quantities. However, when adaptation was to arabic numerals and the

deviants were dots, there was recovery of adaptation to both close and far quantities (e.g.

adaptation to 17–18–19, recovery to both 20 and 50). This finding suggests, in keeping

with Verguts and Fias’s (2004) model, that the quantities evoked by Arabic numerals may

be more precise than those evoked by nonsymbolic sets of dots, at least in the left hemi-

sphere, and hence the neuronal populations adapted by Arabic stimuli were narrower

than those evoked by dot presentations. In the future, fMRI adaptation could be used to

test more directly Verguts and Fias’s (2004) model by plotting the profile of the adapta-

tion curve as a function of numerical distance, and using this profile to infer the neuronal

tuning curves for symbolic and nonsymbolic stimuli (Piazza et al., 2004).

Acquisition of symbolic numerals

While several neuroimaging studies have observed nonsymbolic quantity representations

in parietal cortex in young children (Temple and Posner, 1998; Cantlon et al., 2006), very

few studies have examined the acquisition of number symbols. The theory that I have

outlined stipulates that, in the course of development, an increasingly automatized

connection develops between ventral regions for symbol shape identification and intra-

parietal regions for quantity representation. Consistent with this idea, a recent fMRI

study (Rivera et al., 2005) has examined the evolution of brain activity with age (8–19 years)

during a simple symbolic arithmetic task which was performed with equal accuracy at all

ages. While most regions showed a decrease in brain activity, particularly in prefrontal

cortex, suggesting a progressive automatization, only two regions showed an increase: left

occipito-temporal cortex and left parietal cortex, exactly as predicted.

Log-to-linear shift during development

An interesting prediction unique to Verguts and Fias’s model is that the acquisition of

number symbols is accompanied by a change in the internal semantic representation.

While the representation of nonsymbolic numerosity is logarithmically compressed,

Verguts and Fias’s model implies that the symbolic representation is linear. In their simu-

lations, when activated by symbols, numerosity detector neurons have fixed tuning

curves on a linear scale, suggesting that they encode a linear, fixed variability scale no

longer subject to Weber’s law. This prediction can be tentatively related to observations of

a shift from a logarithmic to a linear mapping of number onto a spatial scale in the course

of development (Siegler and Opfer, 2003). Siegler and Opfer asked their subjects (8-, 10-

or 12-year-old children, plus an adult group) to point to the locations of numbers on a

spatially extended segment labelled from 1 to 100 (or from 1 to 1000). Children of all
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ages performed this task well; both monotonically mapped number onto space, in agree-

ment with the hypothesis that numerical quantities are represented internally on an

internal continuum analogous to a mental ‘number line’ (Hubbard et al., 2005).

Furthermore, the older children (12-year-olds and adults) organized the numbers

linearly, spreading them evenly on the spatial scale. However, the youngest children

(8–10-year-olds) spontaneously implemented a compressive mapping which was well

captured by a logarithmic function. For instance, they place 10 close to the middle of 1

and 100, and grouped all of the larger numbers towards the large end.

Siegler and Opfer’s data cannot resolve whether this log-to-linear change occurs 

spontaneously in the course of development, or depends on exposure to language and

education. However, we have recently obtained a similar logarithmic effect in adult

Mundurukus, an Amazonian people with reduced number lexicon and access to educa-

tion and tools (S. Dehaene, V. Izard, P. Pica and E. Spelke, unpublished data, see Pica et

al., 2004). On a segment marked with a single dot at one end and a set of ten dots at the

other, we asked the Mundurukus to map the quantities 1 through 10 presented as sets of

dots, series of tones, Munduruku numerals, or Portuguese numerals. In all of these

modalities, the Munduruku performed logarithmically, similarly to Siegler and Opfer’s

younger children. Thus, although what triggers the conceptual shift from logarithmic to

linear in children remains unknown, the fact that it is not observed in adult Mundurukus,

who have very few spoken and no written numerals, suggests that mere maturation is not

sufficient. Some experience with symbolic inputs seems necessary, but other factors such

as explicit mathematical education and experience with measurement cannot be excluded.

Refined analyses of the symbolic comparison task

As noted above, the random-walk model, once fitted to RT and error data, provides a

fine-grained estimation of the nature of representation and decision processes. To directly

evaluate how these processes are organized for symbolic numerals, and to compare with

the above nonsymbolic comparison task, I have reanalyzed the data for my studies of

comparison of two-digit arabic numerals (Dehaene et al., 1990). In this task, human

subjects had to classify arabic numerals as larger or smaller than a fixed reference. Three

experiments were performed: comparison with 55, with 65 or with 66.

Figure 24.6 shows the analysis of the data for comparison with 65, using analysis strategy 1.

Both the RTs and error rates showed a distance effect which conformed well to the theory

(errors showing a sharper decrease with distance than RTs). Furthermore, the expected

relation between RT and transformed errors was always highly significant 

(p << 0.001), indicating that the random-walk model applies well to symbolic compari-

son. Finally, there was a highly significant increase in mean step size m with numerical

distance (p << 0.001). With respect to the above nonsymbolic comparison data, however,

two distinctive features were observed. First, the variations of m across the target numbers,

were slightly better predicted by the linear model (i.e. by the difference between the

target number and the standard 65) than by the logarithmic model (i.e. by the log ratio

of the standard and target). Second, the m were no longer strictly proportional to the

numerical difference, as they were for nonsymbolic stimuli (Figure 24.4). There was a
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Human subjects, comparison of Arabic numerals with standard 65
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Figure 24.6 Symbolic comparison analyzed using the random-walk model (data reanalyzed from

Dehaene et al., 1990). Human subjects compared two-digit arabic numerals to a fixed standard

of 65 (top), 66 (bottom left), or 55 (bottom right). The format is the same as Figure 24.4, with

the exception of a linear scale for target numbers (abscissa). Relative to numerosity comparison

(Figure 24.4), arabic numeral comparison is much more precise, with error rates peaking at only

13% (top right panel). Examination of the m parameter indicates that the information accumulated

per unit of time increases with the difference between numbers (rather than their log ratio), and

shows a discontinuity at the origin (information is accumulated at a fast rate even when the

numerical difference is minimal). RT, reaction time.
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highly significant discontinuous offset as well (p < 0.001; compare Figures 24.4 and 24.6),

indicating that as soon as the symbolic target was larger than the reference, even by one

unit, a constant vote could be cast in favor of the ‘larger’ response.

These observations were replicated in analyses of two other symbolic comparison data

sets (comparison with 55 and with 66; Dehaene et al., 1990; see Figure 24.6). Furthermore,

in order to directly compare nonsymbolic and symbolic number processing within the

same participants, Anna Wilson and I designed a new experiment in which, in different

blocks, subjects had to compare numbers presented either as sets of dots or as two-digit

arabic numerals (Dehaene and Wilson, unpublished data). In order to study Weber’s law,

on some blocks the numbers ranged from 11 to 39 and had to be compared to the refer-

ence 25, and in other blocks they ranged from 41 to 69 and had to be compared to the

reference 55. In all cases, a highly regular distance effect was found, and the random-walk

model provided an excellent fit of the data, including a highly significant RT-error relation.

However, the recovered m values showed that somewhat different numerical representa-

tions served as the basis for decision on symbolic and nonsymbolic trials (Figure 24.5).

Two major differences were found. First, as above, on nonsymbolic trials the m varied

continuously with the numerical distance between the target and the standard (the range

of targets was too small to tell whether this distance was better measured on a linear or

log scale), but on symbolic trials there was again a clear discontinuous component.

Second, when the magnitude of the numbers more than doubled (from standard 25 to

standard 55), performance in the nonsymbolic block dropped, and the mean random-

walk step size m decreased by a factor of about two (Weber’s law)—but no such decrease

was observed for symbolic numerals, where it was just as easy to compare numbers

around 25 as around 55.

What are the implications of these findings? The profile of mean step size m suggests

that two sources of information contribute to the decision-making process during

symbolic number comparison. The first of these components grows, apparently linearly,

with the difference between the target and the standard—this is a classical component of

quantity-based evidence, similar to that found with nonsymbolic stimuli, except that the

underlying continuum seems to be linear rather than logarithmic. The second compo-

nent is all-or-none and provides a discrete vote for the larger response whenever the

number is larger than the standard, or for the smaller response otherwise.

At first, the existence of this second component seems somewhat paradoxical. If such

an accurate signal is available, why cannot the subject respond immediately, without

being affected by the proximity of quantities? According to the random-walk model, the

problem for the decision system is to extract the decision-relevant signals from other

sources of noise. Assuming that numerosity detector neurons that have become very

precise with symbolic exposure are intermixed with others that have remained imprecise,

and that all are pooled together into the decision process, one would obtain precisely the

observed summation of an exact, all-or-none signal and a distance-dependent analog

signal. In Verguts and Fias’s (2004) model, such exact and analog components are in fact

present in the tuning curve of individual neurons (Figure 24.5). It would thus seem that

this model can provide an excellent account of the data in Figures 24.6 and 24.7.
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I also used strategy 2 to fit the EZ-diffusion model to the symbolic number compari-

son data. The findings for the mean random-walk step size m were unchanged, but the

EZ-diffusion also allowed for an estimation of the parameters T0 (nondecision time) and

q (decision threshold) separately for each target. I did not observe any significant varia-

tion of the decision threshold q, in keeping with the idea that this parameter is fixed

prior to target presentation (however, see Botvinick et al. (2001) and Bogacz et al. (2006)

for suggestions as to how this parameter may change from trial to trial). However, the

nondecision time T0 was systematically 70–100 ms slower for target numerals that fell

within the decade of the standard (e.g. standard 65, targets between 60 and 69) compared
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Figure 24.7 Replication of the differences between symbolic and nonsymbolic comparison 

within the same subjects (A. Wilson and S. Dehaene, unpublished data). The panels show the

recovered m for each of four distinct experimental blocks: comparison with standard 25 or 55,

and with targets presented as sets of dots or as two-digit arabic numerals. Note that for simplicity,

all data are plotted as a function of the linear distance between target and standard (although

with nonsymbolic targets, a slightly better fit is obtained with log ratio). The key differences are

(1) the amount of information per unit of time is subject to Weber’s law for nonsymbolic 

targets, but not for nonsymbolic targets; (2) a discontinuity is present at the origin for symbolic,

but not for nonsymbolic targets.
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to target numerals outside this decade. This aspect of the results resolves an older contro-

versy concerning the origins of discontinuities in number comparison. The hypothesis of

a digital-to-analog conversion during symbolic comparison suggested that RTs should be

a smooth, continuous function of numerical distance. However, the results actually

revealed small RT discontinuities at the boundaries of the decade of the standard (Hinrichs

et al., 1981; Dehaene et al., 1990). The random-walk decomposition now shows clearly

that these discontinuities arise outside of the decision system. In my analyses, the 

m values that serve as inputs to the decision process never showed any discontinuity at

decade boundaries, compatible with the hypothesis that decision is based on an analog

quantity representation. However, the nondecision time showed a discontinuity, presum-

ably imputable to a perceptual delay when the target number starts with the same decade

digit as the standard and the subjects presumably have to orient more attention to the

units digit.

In summary, the symbolic code for numbers appears to have both a perceptual cost

(the need for longer perceptual analysis of the digital content of the stimulus) and a decision

advantage (the decision is more precise and appears to be based, at least in part, on exact,

all-or-none numerical information rather than solely on analog quantity information).

All of the observed differences between symbolic and nonsymbolic number processing

are compatible with Verguts and Fias’s (2005) model of a narrowing and linearization of

the tuning curves of numerosity detectors with exposure to symbolic inputs.7

Simple calculations

A final issue concerns how the number representation is used in simple arithmetic calcu-

lations such as addition or subtraction. Let it be clear from the outset that this part of the

theory is much less developed. Here I focus exclusively on calculation with nonsymbolic

numerosities, where some predictions can be made concerning error rates. Proposals as

to how the theory might be extended to symbolic arithmetic will be briefly considered at

the end.

A challenge to any theory of arithmetic is that a variety of tasks has been used to probe

nonsymbolic calculation. Typically, subjects are shown two successive numerosities,

either merely juxtaposed (Cordes et al., 2003; Lemer et al., 2003) or integrated into an

animation that suggests an arithmetic operation of addition or subtraction (e.g. two sets

of dots being added into a box) (Wynn, 1992a; McCrink and Wynn, 2004; Pica et al.,

2004; Barth et al., 2005, 2006; McCrink et al., 2006). Subjects mentally compute the

corresponding result and respond using one of several modes. They may be presented

with a third number, and asked to compare it explicitly with their result, either using

7 Verguts and Fias further suggest that the symbolic number priming effect (Dehaene et al., 1998;

Koechlin et al., 1999; Naccache and Dehaene, 2001) supports the model inasmuch as the size of the RT

priming effect seems to vary with the linear distance between numbers rather than with their ratio

(Reynvoet et al., 2002).
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Figure 24.8 Mean and standard deviation (SD) of reaction time (RT) (left) and estimated nonde-

cision time T0 (right) in three experiments of two-digit number comparison analyzed with

Wagenmakers’ (2006) EZ-diffusion strategy for random-walk model identification. In all 

experiments, T0 shows a clear discontinuity when the target crosses the decades boundary of

the standard for comparison, suggesting an added perceptual cost of having to closely analyze

the units digit. That this effect can be entirely attributed to nondecision processes is clearly 

visible in the graphs on the left, when the mean RT shows a sudden increase without any 

concomitant change in the standard deviation.
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larger–smaller comparison (Pica et al., 2004; Barth et al., 2005, 2006) or same–different

judgment (McCrink et al., 2006). In preverbal infants, an implicit surprise reaction can

be recorded when the outcome does not match the expected value (Wynn, 1992a; McCrink

and Wynn, 2004). Educated subjects can also be asked to name the correct value or to

point to it (Pica et al., 2004).

Theory

My first postulate will be that the decision components of all of these tasks are performed

according to above-described mechanisms of larger–smaller, same–different, and

numerosity labelling judgments (see in particular Equations 24.8–12 and 24.15). The

sole difference is that the basis for the subjects’ response is no longer an externally given

quantity n, but rather an internally computed quantity, the result of an internal transfor-

mation on external inputs n1 and n2 which approximates the requested operation n1 + n2

or n1 – n2.8 Assuming that the outcome n is also represented internally by a Gaussian

random variable X, the only remaining issue is how the mean and standard deviation of

this variable vary as a function of the mean and standard deviation of the operands n1 and

n2, separately for addition and for subtraction.

In the absence of any knowledge of the mechanisms of the internal transformation and

their possible biases, the simplest normative model is one in which the subjects’ mental

estimations are unbiased, and thus the mental representation q(n) of the result n of an

addition or subtraction operation is, on average, placed at the appropriate location on

the number line:

q+ (n) = q(n1+n2) and q–(n) = q(n1 – n2) (24.27)

where q is the log function. Note that the implementation of the internal transformations

implied by Equation 24.27 is not trivial. It is not the logarithms of the operands them-

selves that must be added or subtracted, otherwise the result would be multiplication or

division. Rather, the logarithmic compression of the number line must somehow be

‘undone’ before the addition or subtraction operation is computed. In spite of its apparent

complexity, such a computation is clearly within reach of simple neural networks that

learn to extract simple ‘basis functions’ and can function as arbitrary interpolators (Denève

et al., 2001). In fact, a computation formally similar to addition and subtraction is imple-

mented by the parietal spatial updating mechanism (Duhamel et al., 1992), which uses

eye movement direction and amplitude to remap memories of saccade targets. The

computation performed is analogous to vector addition, and is not impeded by the fact

that the retinotopic map shows logarithmic foveal expansion. It is a highly intriguing

anatomical fact that the areas involved in this vector addition process, VIP and LIP, overlap

SENSORIMOTOR FOUNDATIONS OF HIGHER COGNITION 563

8 In its most general version, this hypothesis states that any number obtained as the output of some

arithmetic calculation or decision can be re-used as the input into another. How such ‘piping’ of inter-

mediate results occurs in the human brain remains highly unclear. My speculation is that it requires a

central exchange system or global workspace, presumably involving prefrontal cortex, whose operation

is necessarily serial and consciously controlled (see Dehaene and Changeux, 2004).
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with those involved in number representation (Dehaene et al., 2003; Nieder and Miller,

2004). This anatomical relation tentatively suggests a possible ‘recycling’ of the spatial

remapping VIP–LIP circuitry for computationally similar arithmetic transformations

(Dehaene, 2005; Hubbard et al., 2005).

Can one make any predictions concerning the precision of such an addition or subtrac-

tion result? Clearly, the precision of the outcome should depend on the initial precision

of the operands. Both the log-Gaussian model and the scalar variability model predict

that number encoding is subject to Weber’s law, i.e. variability proportional to the mean.

If the random variables encoding the two numbers are stochastically independent, then

their variances should add, leading to:

vare(n) = var(n1) + var(n2) (24.28)

where, according to Weber’s law, var(n1) = (w n1)2 and var(n2) = (w n2)2.

In this equation, e is +1 for addition, and –1 for subtraction. The equation makes it

clear that the precision of these operations should depend solely on the size of the

operands. For instance, the same final precision is predicted for the operations 24 + 8 and

24 – 8, although the outcomes are centered on 32 and 16 respectively. An alternative

equivalent formulation of this property states that, for equal results n, addition should

always be more precise than subtraction.

Two refinements of Equation 24.28 have been proposed independently by Cordes et al.

(2003) and by my collaborators and I (Barth et al., 2006; McCrink et al., 2006). First, there

might be a covariance term if n1 and n2 are not estimated independently. For instance,

subjects might compare n2 with n1, or in some subtraction displays with moving objects

they might notice that some of the objects composing set n1 appear to leave the display

during presentation of n2 (McCrink et al., 2006). Such sources of covariance in the esti-

mation of n1 and n2 would lead to a better precision on the outcome of n1 – n2 than

expected based on the estimation of n1 and n2 in isolation—and to a worse precision on

the outcome of n1 + n2.

A second source of variance might come from the operation itself and, in particular,

the need to temporarily store the result n. In the absence of a more precise characteriza-

tion of the arithmetic mechanism itself, both Cordes et al. (2003) and Barth et al. (2006)

have proposed to subsume these effects under an additional term with Weberian variability

on the outcome n.

With those two refinements, the variance of an operation result becomes:

vare (n) = var(n1) + var(n2) + 2 e cov(n1,n2) + l var(n1 + e n2) (24.29)

where according to Weber’s law, var(n1) = (w n1)2, var(n2) = (w n2)2, var(n1 + e n2) =
w2 (n1 + e n2)2, and l is a scaling factor which indicates how much additional impreci-

sion is due to calculation, over and above the intrinsic imprecision due to the internal

representation. Yet, a difficulty with this equation is that, at present, no one has proposed

a precise form for the covariance term, thus limiting its practical applicability.
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Once precise hypotheses are made about the mean (24.27) and variance (24.28 or

24.29) of an arithmetic result, it is relatively easy to model specific tasks by modifying the

above Equations 24.8–24.12, and 24.15. For instance, if the subject is asked to decide

whether the arithmetic result n1 + n2 is larger or smaller than a third numerosity n, under

the hypotheses of Equation 24.29 and assuming stochastic independence (no covariance

term), Equation 24.10 then becomes:

(24.30)

This equation was used by Barth et al. (2006) and, with the simplifying assumption l = 0,

by Pica et al. (2004) to model their numerosity addition and subtraction tasks.

Experimental evidence

The ability to combine two numerosities into simple addition and subtraction opera-

tions has been demonstrated in preverbal human infants using a surprise paradigm in

which infants look longer when an arithmetically impossible outcome is presented

(Wynn, 1992a; Koechlin et al., 1997). This competence was initially demonstrated for

very small numerosities (1 + 1 or 2 – 1) around 41/2 months of age, and it has recently

been extended to large numerosities (5 + 5 and 10 – 5) in 9-month-old infants (McCrink

and Wynn, 2004).

A simple prediction, common to all models, is that performance in such tasks 

should depend primarily on the ratio of the arithmetic result to the proposed result.

This ratio dependence has not been tested in infants yet, but it has been observed in 

5-year-olds (Barth et al., 2005) and adults (Pica et al., 2004; Barth et al., 2006). Barth 

et al. (2005) showed that 5-year-olds could perform a cross-modal addition combining

visually and auditorily presented numerosities, thus confirming that the computation

occurs at an abstract numerosity representation level rather than between visual images

of sets.

Recently, a few studies have begun to generate quantitative data appropriate for testing

the more precise predictions of the model (Cordes et al., 2003; Pica et al., 2004; Barth 

et al., 2006; McCrink et al., 2006). Pica et al. (2004) showed that Equation 24.28 (without
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covariance or l terms) accurately fitted the data from Western and Amazonian subjects

performing numerosity addition and subtraction tasks. Furthermore, a prediction of

that equation, the fact that performance should be more precise for addition than for

subtraction, was verified by Barth et al. (2006). However, Barth et al. (2006) also noted an

important deviation which suggests rejection of this simple model. Somewhat counter-

intuitively, Equation 24.28 predicts that the precision on the result n of an addition n1 + n2

can be better than if n had been presented directly to the subject. This is because, if the

variances of n1 and n2 add, the standard deviation of the result can be proportionally

smaller than the standard deviation of the initial values (by a factor which can be as large

as 2). Barth et al. (2006), however, always observed worse performance in addition plus

comparison (deciding whether n1 + n2 is larger or smaller than n3) than in comparison

alone. Similar observations were made by Cordes et al. (2003). Both authors suggest the

need for an additional l term reflecting the additional variance introduced by the arith-

metic operation and the maintenance of the result n in memory. The Barth et al. (2006)

data were accurately fitted by letting l = 1.3.

Can one similarly prove the necessity of the covariance term? For subtractions involv-

ing large operands but a small result (e.g. 32 – 28), the model without covariance predicts

that final precision should be very poor, but this is not the case (Cordes et al., 2003;

McCrink et al., 2006). McCrink et al. (2006) explicitly compared performance on

matched pairs of operations such as 24 + 8 and 24 – 8. The model without covariance or

l term predicts equal final precision, but this was clearly false: in all cases subtraction was

more precise, compatible with the covariance model. Unfortunately, the absence of a

simple comparison baseline, without addition or subtraction, did not make it possible to

further specify the parameters of the model.

Koleen McCrink and I also made a new observation that questions more deeply the

above theoretical framework (McCrink et al., 2006). In our experiments, over a large

number of trials, we repeatedly presented subjects with the same operation (e.g. 24 + 8),

each time paired with a different outcome (e.g. 13, 16, 20, 24, 32, 40, 48). Subjects had to

decide whether these outcomes were correct or not. In this way, we were able to trace a

curve that indicated which numerosity subjects judged as the most likely outcome of a

given operation. Surprisingly, although this value always fell close to the correct arith-

metic outcome it presented a systematic bias. Additions were slightly overestimated, and

subtractions were notably underestimated (in retrospect, a similar trend is perceptible in

Cordes et al., 2003). This observation tentatively suggests that the number line may be

submitted to a ‘representational momentum’ effect similar to that found for physical

motion (Freyd and Finke, 1984) or motion on the pitch continuum (Freyd et al., 1990):

during an addition operation, while moving towards larger numbers, the internal repre-

sentation would ‘move too far’ towards the large end of the number line—and a converse

shift towards small numbers would occur during subtraction. While the numerical

momentum effect thus supports the hypothesis that arithmetic is analogous to motion

on the number line, and that similar circuity is recruited for both numerical and spatial

updating (Hubbard et al., 2005), this finding also complicates the search for a simple

mathematical model of elementary arithmetic.
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Open issues

A central question concerns the relation of these nonsymbolic arithmetic abilities to

those deployed in calculation with arabic digits. The dominant view is that symbolic

arithmetic is based on ‘two calculation sytems’ (Dehaene and Cohen, 1991), one based on

quantity manipulations and used for nonsymbolic numerosities, and the other based on

purely formal processes of symbol manipulation and explicit memory retrieval (Ashcraft,

1992). The hopes of capturing such a complex set of pathways by simple mathematical

equations are dim. Nevertheless, it has been suggested that the simplest mathematical

operations, particularly subtraction, may rely primarily on nonsymbolic quantity

manipulations (Gallistel and Gelman, 1992; Cohen and Dehaene, 2000; Cohen et al.,

2000). The observation of highly regular effects of number size (Ashcraft, 1992), of clear

distance effects when subjects are asked to evaluate the correctness of a proposed opera-

tion outcome (Ashcraft and Stazyk, 1981), and of joint impairments of symbolic and

nonsymbolic addition after a small left parietal hemorrhage in a patient with dyscalculia

and Gerstmann’s syndrome (Lemer et al., 2003) hint that elementary symbolic arithmetic

relies heavily on quantity representations of the type described in this chapter. The emer-

gence of new ideas concerning the encoding of symbolic and nonsymbolic quantities

(Verguts and Fias, 2004) and of new possibilities to visualize the cerebral mechanisms of

arithmetic, perhaps down to the single-neuron level (Nieder et al., 2002; Nieder and

Miller, 2003, 2004), invites new reflections on this topic.

Conclusion

I have presented a simple but powerful mathematical theory of number representation

and manipulation. As mentioned in the introduction, although putting it all together has

required some ingenuity, none of its elements are particularly original. The theory has

been developed over the years by many groups, and it draws heavily on pre-existing

developments in signal detection theory and random-walk models of decision making.

Yet the virtue of such a theorizing effort is three-fold. First, it presents a homogeneous

and formal description of behavior in simple numerical tasks, complete with detailed

equations that can be quantitatively compared with human and animal performance.

Second, it proposes bridging laws linking those behavioral approaches to the underlying

neuronal mechanisms. With the emergence of single-neuron studies of arithmetic, those

bridging laws will become increasingly testable. Third, the theory is simple enough that it

can serve as a minimal ‘standard model’ on which to base further improvements.

An interesting issue is to what extent the present theory could be generalized outside

the numerical domain. The coding principles outlined in ‘Numerosity representation’ are

clearly not unique to numbers—in fact they make use of Gaussian tuning curves, popu-

lation coding, and psychophysical decision mechanisms that have been used for years in

coding of perceptual dimensions such as movement direction and spatial coordinates.

Furthermore, mechanisms for combining two such values into simple arithmetic-like

operations exist in many animal species which are known to compute vector sums,

temporal differences or reward rates (Gallistel, 1990). It has been proposed that the
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general circuitry linking parietal areas VIP and LIP is jointly used for vector sums and

differences in the domains of space, time and number (Hubbard et al., 2005). Indeed, the

coding and manipulation of spatial, temporal and numerical magnitudes might consti-

tute an overarching function of the parietal lobes (Walsh, 2003). The present theory

would readily extend to these domains. Still, one should remain aware that neuronal

coding principles can also differ across domains, as exemplified by Gaussian tuning for

number versus coding by monotonically varying firing rates for tactile frequency (Romo

and Salinas, 2003). The range of solutions available to neuronal networks for solving

arithmetic-like problems, as well as the reason for choosing one over the other, remain to

be thoroughly theorized (see Verguts, 2006; Salinas 2006).

Even within the numerical domain, attempting to build an integrative theory has

revealed at least four areas where our knowledge is insufficient: How do we encode

symbolic numerals? What factors generate a switch from logarithmic to linear represen-

tations of quantity in the course of development? How do we compute simple arithmetic

transformations? And what is the global architecture which permits flexible chaining of

operations and feeding of the results of one operation into another (‘piping’)? I have no

doubt that the present minimal propositions will serve as a useful target for experi-

menters, and hope that the advancement of numerical cognition will be such that they

will have to be quickly replaced by more refined ideas.
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