
SymCrash: Selective Recording for Reproducing Crashes
Yu Cao§, Hongyu Zhang�, and Sun Ding�

§Tsinghua University
Beijing 100084, China

cyrainfish@gmail.com

�Microsoft Research
Beijing 100080, China

honzhang@microsoft.com

�Nanyang Technological University
Singapore 639798

ding0037@ntu.edu.sg

ABSTRACT

Software often crashes despite tremendous effort on software

quality assurance. Once developers receive a crash report, they

need to reproduce the crash in order to understand the problem

and locate the fault. However, limited information from crash

reports often makes crash reproduction difficult. Many “capture-

and-replay” techniques have been proposed to automatically

capture program execution data from the failing code, and help

developers replay the crash scenarios based on the captured data.

However, such techniques often suffer from heavy overhead and

introduce privacy concerns. Recently, methods such as BugRedux

were proposed to generate test input that leads to crash through

symbolic execution. However, such methods have inherent

limitations because they rely on conventional symbolic execution

techniques. In this paper, we propose a dynamic symbolic

execution method called SymCon, which addresses the limitation

of conventional symbolic execution by selecting functions that are

hard to be resolved by a constraint solver and using their concrete

runtime values to replace the symbols. We then propose

SymCrash, a selective recording approach that only instruments

and monitors the hard-to-solve functions. SymCrash can generate

test input for crashes through SymCon. We have applied our

approach to successfully reproduce 13 failures of 6 real-world

programs. Our results confirm that the proposed approach is

suitable for reproducing crashes, in terms of effectiveness,

overhead, and privacy. It also outperforms the related methods.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging-

Debugging Aids

General Terms

Reliability, Experimentation

Keywords

Crash reproduction; program instrumentation; symbolic execution;

error handling; capture and replay

1. INTRODUCTION
Although software project teams spend much resource and effort

on software quality assurance before releasing products, in reality,

released software still contains bugs. Some bugs manifest

themselves as crashes, which are often considered as severe

problems and are typically assigned a high priority for fixing.

Once software crashes in the field, developers should reproduce

and fix the problem. However, it is difficult to reproduce field

failures that occur in user environment, which is often different

from developer’s testing environment. Even the users write a bug

report, the reproduction of crash could be still difficult due to

complex environmental settings [56], sources of non-determinism

[8], and poor bug report quality [54].

To help debug field failures, many crash reporting systems such as

Windows Error Reporting [22], Apple Crash Reporter [1], and

Mozilla Crash Reporter [31] have been proposed and deployed.

When a crash happens in field, these system collect crash related

information especially call stack trace, and send these information

back to the developers upon user permission. Although the stack

information is shown to be useful [6, 16, 18, 27, 48], it is often

too limited for effective failure reproduction.

In recent years, automated tools have been developed to help

developer reproduce field crashes. Many of these tools [2, 8, 25,

26] are based on the concept of capture and replay --- they capture

relevant information from the failing code and reproduce the

crashes by replaying the recorded information. For example,

ChroniclerJ [8] captures all the non-deterministic inputs to

reproduce bugs. However, it is difficult to emulate all non-

deterministic inputs. Furthermore, recording user input incurs

serious privacy concerns.

BugRedux [25] uses different execution data obtained by different

level of instrumentations, and reproduces the crashes by

performing symbolic execution over the synthesized traces.

Conventional symbolic execution can infer program inputs by

solving constraints along the paths. However, conventional

symbolic execution often fails to solve certain path constraints

due to various hard-to-resolve functions such as overly complex

functions and nonlinear math functions [51, 52]. Therefore, the

effectiveness of BugRedux can be further improved.

In our work, we propose SymCon, a dynamic symbolic technique,

which replaces hard-to-resolve functions with concrete runtime

values and then performs symbolic execution. In this way,

SymCon can solve more path constraints and improves the

effectiveness of conventional symbolic execution. Based on

SymCon, we present SymCrash, an automated capture-and-replay

technique. SymCrash only selects hard-to-resolve functions to

instrument and monitor. When a crash happens, SymCrash

performs SymCon using the recorded data and generates test cases

that can reproduce the crash.

We also develop a tool, SymCrashJ, which implements SymCrash

for Java programs. We evaluate SymCrashJ using 14 failures of 6

real-world programs. SymCrashJ can successfully reproduce 13

out of 14 crashes. We also evaluate the runtime performance and

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for components of this work owned by others

than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

ASE�14, September 15–19, 2014, Vasteras, Sweden.

Copyright © 2014 ACM 978-1-4503-3013-8/14/09…$15.00.
http://dx.doi.org/10.1145/2642937.2642993

791

privacy impact of SymCrashJ. Our results confirm that the

proposed approach can achieve lower overhead and better privacy,

when compared with the related approaches (BugRedux and

Chronicler).

This paper provides the following novel contributions:

� We propose SymCon, a dynamic symbolic execution

technique that improves the effectiveness of symbolic

execution by replacing the hard-to-resolve functions with

their concrete values obtained at program runtime.

� We propose SymCrash, which performs selective recording

of hard-to-resolve functions and reproduces crashes using

SymCon.

� We develop SymCrashJ, a tool that implements SymCrash

for Java programs. We also evaluate the effectiveness,

overhead, and privacy of SymCrashJ using real programs.

The remainder of this paper is organized as follows. Section 2

describes the background of crash reproduction and gives a

motivating example. Section 3 introduces the background of

symbolic execution and presents SymCon. We describe the

SymCrash approach and the implementation details in Section 4.

Section 5 describes our experimental evaluation and discusses the

results. Section 7 surveys related work, followed by Section 8 that

concludes the paper.

2. BACKGROUND AND MOTIVATION
Before discussing our approach, we briefly provide some

necessary background information on general crash-reproducing

methods and give a motivating example.

2.1 Capture and Replay Methods
In recent year, researches have proposed many crash reproduction

methods. These methods share the similar process: first they

capture the program execution information in the field at the time

of crash, they then help developers reproduce the crash by

replaying the recorded information in the lab. Figure 1 shows an

overall structure of such a capture & replay framework.

Figure 1. An overview of a crash reproduction

We briefly introduce some of the main methods here:

ReCrash [2, 3] generates multiple unit tests that reproduce a

given program failure. It instruments a program to store partial

copies of method arguments in memory, and deploys the

instrumented program in the field. If the program crashes,

ReCrash uses the saved information to create unit tests

reproducing the crash. ReCrash can introduce high performance

overhead because it captures the states of all objects [8]. Such a

high overhead makes ReCrash difficult to be applied in practice.

Chronicler [8] captures all the non-deterministic inputs (such as

file, I/O, shared memory, etc.) during program execution and uses

the collected data to reproduce the crashes in the lab. Unlike

ReCrash, Chronicler performs a lighter recording while still

supporting a complete reply. However, the number of non-

deterministic methods Chronicler instruments could be

overwhelming. Also, recording all non-deterministic inputs,

including the user’s inputs, could bring serious privacy concerns

in practice.

BugRedux [25] collects program execution traces (such as call

stacks, method call sequences, complete execution traces)

obtained by different level of instrumentations. It can use the

collected traces to mimic the observed field failures and to

reproduce the crashing faults. Based on the program execution

traces, BugRedux utilizes conventional symbolic execution to

generate test inputs that can exercise the traces. Their

experimental results showed that the method call sequence data

are more efficient for crash reproduction. BugRedux may not

always return results due to the limitations of conventional

symbolic execution (which will be described in Section 3).

2.2 A Motivating Example
We adapt the WU_FTPD example described in [20] as a

motivating example. The WU_FTPD program implements a file

transfer server and has a known format string vulnerability. The

original program of WU_FTPD is written in C. We modify the

original C program (version 2.6.0) and port it into a Java program,

as shown in Figure 2. The site_exec function allows uses to

execute commands remotely. The parameter cmd contains the user

specified command, such as "/usr/bin/helloworld -l *.c". This

program throws an exception when the length of the command

string exceeds 32. For example, when the input cmd is

“!!!!!!!!!!!!!!!!!!!!”, the program crashes.

1. public static void site_exec(String cmd) {

2. String PATH = "/home/ftp/bin";

3. int sp = cmd.indexOf(' ');

4. double dsp=java.lang.Math.log(sp+2);

5. int j; String result;

6. if (dsp == 0) {

7. j = cmd.lastIndexOf('/');

8. if (j > -1)

9. result = cmd.substring(j);

10. else

11. result = cmd;

12. } else {

13. j = cmd.lastIndexOf('/', sp);

14. result = cmd.substring(j);

15. }

16. if (result.length() + PATH.length() > 32) {

17. throw new RuntimeException ("Buffer overflow");

18. }

19. String buf = PATH + result;

20. execute (buf);

21. }

Figure 2. The site_exec function of the wu-ftpd program

To reproduce the crash, ChroniclerJ requires to record user input,

which can reproduce the crash but could violate user privacy.

BugRedux uses symbolic execution to generate test input and can

thus avoid the privacy concerns. However, BugRedux has

limitations in handling certain functions due to the inherent

limitations of conventional symbolic execution. For example, to

symbolically execute the path along the lines 2-3-4-5-6-12-13-14-

16-17, an SMT constraint solver needs to solve the path

constraints containing the return value of Math.log function. This

function is a nonlinear function and takes a variable as a

parameter. Its value cannot be easily determined by an SMT

792

constraint solver during symbolic execution. Therefore,

BugRedux cannot reproduce this crash.

In this work, we propose a new capture and replay technique,

which only instruments the selected, hard-to-solve functions and

enables symbolic execution to continue by utilizing their runtime

values. Test input that reproduces the crashes can be generated

from symbolic execution. Our approach can mitigate the privacy

and overhead concerns and in the meantime improve the

effectiveness of crash reproduction.

3. SYMCON - SYMBOLIC EXECUTION

WITH CONCRETE VALUES

3.1 Symbolic Execution
Symbolic execution [28] is a program analysis technique, which

can infer the program inputs through analyzing the program.

During symbolic execution, an analyzer uses symbolic values

instead of actual (concrete) values. The inputs are obtained by

solving Path Conditions (PCs), which are conjunctions of

constraints over symbolic expressions. The solutions to a PC are

the inputs that drive the program through an execution path. A PC

can be submitted to an off-the-shelf SMT constraint solver (such

as Z3 [17] and Yices [19]), which returns a satisfying assignment

for all variables appearing in formulas that can be proven

satisfiable. If a path is infeasible, the solver returns unsatisfiable

and no solution will be given. If the SMT solver cannot solve a

path constraint, it returns unknown.

In our work, we implement symbolic execution using the

Symbolic Path Finder (SPF) tool [15, 5, 33], which is a symbolic

extension of Java Path Finder [47]. SPF combines symbolic

execution and model checking techniques to explore different

program paths and to automatically generate test inputs. It also

provides advanced features such as partial orders and symmetry

reductions to handle the problem of state explosion.

Although symbolic execution is effective in generating test inputs,

it has limitations too. For example, it has problems in handling

complex math operations and external library calls [15, 52]. These

limitations are due to the path explosions and the inherent

incompleteness in decision procedures. In this paper, we identify a

set of functions that are hard to be solved by conventional

symbolic execution tools and propose a technique that can address

the limitations of symbolic execution by utilizing the runtime

values.

3.2 Hard-to-Resolve Functions
Conventional symbolic execution adopts path-based program

analysis, which models program behaviour as a path constraint

along each execution path. The path constraint is later evaluated

against a constraint solver. Path-based analysis offers high

precision and is therefore widely adopted in program optimization

and test case generation. However, in general, symbolic execution

based on path constraint solving faces many intractable problems,

including:

· Limited support for the number of predicates along a path.

Existing constraint solvers can only support a limited number

of predicates in a path. Submitting overly complex path

constraints to a solver could lead to state explosion. To

address this problem, many tools, such as SPF, introduce an

upper bound to limit the number of predicates along a path

[33].

· Limit support for the number of paths in a control flow graph

(CFG). In symbolic execution, the program branches,

function calls and loops are exhaustively visited in a depth-

first manner. The symbolic execution terminates when the

number paths it processes exceeds an upper bound. Therefore,

many paths in a CFG may be failed to verify. To address this

problem, many tools such as CUTE [34] and Pex [37]

introduce an upper bound to limit the number paths for

symbolic execution.

· Limited support for loops/recursions. To overcome the state

explosion issue caused by complex program structures like

loops or recursive function calls, several advanced program

analysis techniques are proposed, such as program

abstraction [4, 30, 36] and loop summarizations [24]. The

abstraction techniques can map a program with a large

number of states into an abstracted model with limited states.

Later symbolic execution can be applied to the abstracted

model to reduce search cost. Loop summarization

techniques treat a loop as a block and summarize the loop’s
data dependency impact as inferred invariants [24, 35].

However, not all the loop and recursive structures could be

accurately abstracted or summarized. For example, the work

in [35] summarizes loops by expressing certain important

variables with loop counts, but it cannot handle cases where

variables are not linearly updated with the corresponding

loop count. Although many other techniques, such as search

strategy (using search-guiding heuristics to guide path

exploration) [53], have been proposed to address the loop

problems, the problems still exist [51].

· Limited support for complex string operations. Modern SMT

solvers are capable of solving string constraints by

expressing the constraints in terms of bitvectors. Therefore,

they support symbolic string analysis. However, these tools

still cannot support all complex string operations due to

possible state explosion. Redelinghuys [41] compared the

ability of 7 different symbolic string analysis tools (including

SPF and Pex) and pointed out their limitations in supporting

various string operations. He found that some string

operations, such as contains or startWith, are fully supported

by all the tools. While other functions, such as split and

valueOf, only receive partial support.

· Limited support for native functions and external library calls.

Symbolic execution may fail due to inherent complexity of

native functions and external library calls [52]. SPF

addresses these limitations by using the Model Java Interface

(MJI) mechanism [15], which can model external libraries.

However, traditional symbolic execution tools still cannot

handle some of the native functions such as nonlinear math

functions. This is because most of decision procedures and

constraint solvers cannot fully support non-linear arithmetic

operations.

In our work, we heuristically identify the functions that could lead

to the intractable problems. We treat them as hard-to-solve

functions, which are hard to be resolved by a conventional SMT

solver and can block a symbolic execution. The syntactical

characteristics of these hard-to-resolve functions are as follows:

· Deeply nested predicates: if a function contains deeply

nested predicates, the number of paths and the number of

predicates in a path may be large. Therefore, it is more likely

to cause the state explosion problem. Existing symbolic

793

execution techniques impose a bound on the size of the

search depth. Following the design of SPF [33], we

heuristically consider a set of nested predicates with nested

level deeper than 10 a hard-to-solve characteristic.

· Loops/recursions: a program with loops may cause the

number of paths to grow exponentially, and may cause

symbolic execution to run out of resources. If a variable is

not linearly updated within each iteration, it cannot be

symbolically expressed by the loop count (the number of

times the loop has executed) [35]. Therefore, we consider a

loop containing the following characteristics a hard-to-solve

one: a) it updates a variable v that is referenced by a path

constraint, b) there is an inner loop that also updates v, or

there are conditional branches within the loop along which

the variable v is updated, c) the number of loop iterations

depends on external input. Furthermore, we consider

recursive functions as hard-to-resolve functions.

· Complex string operations: in our work, we identify string

operations that are not supported or partially supported by

SPF [41], and treat them as hard-to-resolve ones. Examples

include the replace, split, and valueOf functions.

· Native functions and external library calls: we consider

the native math functions whose parameters are dependent on

external inputs as hard-to-resolve functions. We also

consider third-party external library calls (whose source code

is not available) as hard-to-resolve functions.

The hard-to-resolve functions can be identified through relatively

simple program analysis. Note that our approach also allows users

to manually update the hard-to-resolve function list, so that they

have flexibility in supporting their specific constraint solvers.

3.3 SymCon
In this work, we propose a dynamic symbolic execution method

called SymCon, which can address the limitations of conventional

symbolic execution by utilizing the concrete runtime values of the

hard-to-resolve functions. The concrete values can be obtained

through program instrumentation and are used in constraint

solving, together with the symbolic values.

More specifically, in SymCon, if a function M is a hard-to-resolve

function, we use its return value at runtime, instead of treating it

as a symbol. For example, the function Math.log is a hard-to-

resolve function because it implements nonlinear arithmetic

operation. We obtain its return value at runtime via program

instrumentation, and use this value in follow-up symbolic

execution. If a function is not a hard-to-resolve function, we treat

it as a symbol and perform usual symbolic execution.

We use the program in Figure 1 as an example to illustrative

SymCon. In this program, the string-related functions such as

indexOf, lastIndexOf, length can be supported by a modern SMT

solver, therefore we treat their return values symbolically. Line 4

contains a hard-to-resolve function (Math.log). Suppose we can

obtain the concrete value of the Math.log function at runtime, we

can use this value to perform SymCon. For example, to

symbolically execute the path along the lines 2-3-4-5-6-12-13-14-

16-17, the path condition to be resolved are as follows:

sp == cmd.indexOf(‘ ’)

ᴧ dsp == Math.log(sp + 2)

ᴧ dsp != 0

ᴧ j == cmd.lastIndexOf('/', sp)

ᴧ result == cmd.subString(j)

 ᴧ result.length() + PATH.length() > 32

 ᴧ PATH.length() == 13

This PC cannot be solved by an SMT constraint solver such as Z3

due to the existence of a non-linear function Math.log (sp+2).

Through program instrumentation, we know the latest return value

of this function at the time of crash. So we use this concrete value

to replace the Math.log(sp + 2) item in the PC, therefore

enabling symbolic execution to continue. Finally, the solver

returns �/testtest testtest�, which satisfies the constraints and

reproduces the crash.

Note that the proposed SymCon is different from the mixed

concrete-symbolic solving used in SPF [15]. SPF identifies

SimplePC (which contains solvable constraints) and ComplexPC

(which contains constraints that cannot be solved directly). SPF

then forces the solver to generate solutions for the SimplePCs,

and use the solutions to solve ComplexPCs. SymCon is also

different from existing dynamic symbolic execution techniques

such as DART [23], which use randomly generated inputs to

enable symbolic executions to continue. SymCon uses the

monitored runtime values of hard-to-resolve functions, therefore it

can obtain more accurate values for crash reproduction.

4. REPRODUCING CRASHES BASED ON

SELECTIVE RECORDING
We propose SymCrash, an approach that reproduces crashes

based on SymCon. SymCrash instruments the applications to

monitor the return values of hard-to-resolve functions in the field.

Using the recorded data, SymCrash can generate test input for the

crashes by performing SymCon. Figure 3 shows an overall

process of our approach.

SymCrash mainly consists of three parts. The first part is

Instrumenter, which instruments the original application to collect

program execution information. The second part is Logging,

which monitors the program execution in the field and collects

necessary log data. The third part is ReExecution, which

reproduces crash via SymCon in the lab. During the ReExecution

phase, SymCrash replaces the symbolic values of hard-to-resolve

functions with the concrete values that are recorded in the log data.

In this way, more symbolic executions can be completed and test

data that leads to crashes can be generated.

We have implemented a tool called SymCrashJ, which is a

realization of SymCrash for Java programs. Note that our

approach can be applied to programs written in other languages as

well.

Figure 3. An overview of SymCrash

Lo
g

g
in

g
In

st
ru

m
e

n
te

r
R

e
E

xe
cu

ti
o

n

Program

Instrumentation

Identify hard-to-

resolve functions

Instrumented Version

Monitor methods

(record values

and objects)

Generate logs
Log File

Writing to disk

SymCon
Generate test

input

Crash Stack

Trace

794

4.1 Instrumentation and Logging
SymCrashJ first identifies the hard-to-solve functions, which

exhibit the characteristics described in Section 3.2 and can be

hardly supported by conventional symbolic execution. It then

instruments these functions to record the function return values

and necessary program execution information. The

instrumentation is implemented using the ASM bytecode

framework [9]. The instrumented version is deployed in the field,

which collects the runtime values of hard-to-resolve functions,

generates specific logs according to the method sequence, and

writes the log data to disk.

Algorithm 1: ReExecution
Input : cg : Call graph of program P

goal_list: Methods in stack trace G0 G1 … Gn

log_data : Log data

method_list : A list of hard-to-resolve functions

Output : input_test : The test input

1 begin

2 cur_goal G0

3 state_set (P_entry, initial symbolic values, G0, true)

4 while true do

5 cur_state null

6 while cur_state null do

7 cur_state findNextState(state_set, cg, cur_goal)

8 if cur_state == null then

9 if cur_goal == G0 then

10 return

11 else

12 cur_goal previous goal in goal_list

13 continue

14 end

15 end

16 end

17 if cur_state.m == cur_goal then

18 if cur_goal Gn then

19 cur_goal next goal in goal_list

20 cur_state.m cur_goal

21 else

22 input_test solver.solve(cur_state.PC)

23 if input_test is found then

24 return input_test

25 else

26 remove (cur_state, state_set)

27 end

28 end

29 end

30 updateSymCon (cur_state, state_set , method_list)

31 end

32 end

Figure 4. The ReExecution algorithm

There are several issues associated with log data. The first issue is

about data type. For immutable types (such as Integer, Double,

Float, Byte, Character, Long, String), SymCrashJ simply saves

them as pointer references. Other data types require a full copy in

order to ensure that the log data reflects the current state of the

program, rather than the previous state. Following ChroniclerJ,

SymCrashJ uses System.arrayCopy provided by JVM to copy

arrays that contain immutable types and a runtime reflective

cloning library [11] to copy other types. The second issue

associated with log data is about log matching. Because the same

method can be called multiple times, SymCrashJ does not simply

record the method names, it also records the source code line

number, the class name, the thread ID, and the current time. The

third issue is about the constructor. Java constructor has no return

value. As pointed out in [8], in some cases, calling a constructor

does not generate a reference to the object. We need to monitor

the state of the call stack, and then copy the newly created object

until the object is used. In addition, we ensure the correctness of

log data in a thread-safe way.

SymCrashJ adopts a similar strategy for writing log data as

ChroniclerJ does. Log data stored in memory is automatically

saved to disk at regular intervals. Furthermore, log data is

generated automatically when program crashes. SymCrashJ uses a

daemon process for logging, so that the monitored program can

execute normally. There are two disk formats of log data. Some

log data can be serialized (such as basic type) and some cannot.

Serializable type is saved using Java serialization mechanism and

non-serializable type is saved in XML format. These techniques

help improve the efficiency and reduce overhead.

4.2 ReExecution
SymCrashJ reproduces crashes using the log data collected

through program instrumentation. It generates test inputs by

performing SymCon. The test input leads to the crashes that the

original crash stack traces represent.

Figure 4 shows the ReExecution algorithm, which is similar to the

test generation algorithm used in BugRedux [25]. The input of

this algorithm includes goal_list (representing call sequence in

crash stack), log_data (representing the logged data obtained

through program instrumentation), method_list (representing the

hard-to-resolve functions that are instrumented and monitored).

The algorithm outputs the test data that can reproduce the crash as

specified by the goal_list.

Our algorithm works as follows. First, it performs initializations

(lines 2-3), which set cur_goal (current goal) to the first goal G0

in the goal_list. It then sets state_set, which contains quadruples

(m, state, g, PC), where m is the entry method, state is the current

symbolic state, g is the current target goal, and PC is the current

path condition. The initial value of m can be set by developers and

is typically the program entry point.

In lines 4-31, the algorithm performs symbolic execution based on

the stack trace given in goal_list. It first initializes cur_state,

which is an element of state_set and represents the current state of

symbolic execution. The algorithm then finds out the next target

state to be explored using the findNextState function. To reach the

cur_goal from the current state, we use call graph, which depicts

the caller-callee relationship at the method level. We also use the

SOOT tool [44] to generate the call graph. For each state s in

state_set, the findNextState function computes the shortest path

from s.m to cur_goal in the call graph. It then returns the state that

has minimum distance to cur_goal, and assigns it to cur_state.

Once the cur_state is obtained, the ReExecution algorithm checks

if its value is null. If it is null, it means that the current goal

cannot be reached. The algorithm then backtracks to the previous

goal in the goal_list (lines 8-16). For the new cur_state, the

algorithm checks if cur_stat.m and cur_goal are the same. If the

cur_stat.m and cur_goal are the same and Gn (the last goal) is

reached, the symbolic execution stops and the current PC is

submitted to an SMT constraint solver. Otherwise, the algorithm

searches for the next goal in the goal_list (lines 19-20) and

continues symbolic execution by calling the updateSymCon

795

function. The updateSymCon function implements SymCon as

described in Section 3.3. Once a method M is encountered,

updateSymCon checks if M is within the predefined hard-to-

resolve function list. If yes, it searches for the function return

value recorded in the log file, and uses the return value at the time

of crash to replace the symbolic value of M. Also, during the

symbolic execution, the symbolic state cur_state and state_set are

updated.

The ReExecution algorithm terminates when a test input is found

(i.e., the constraint solver finds a solution to satisfy the path

constraints), or there are no more states to explore.

In summary, our approach instruments a program, collects the

concrete runtime values of hard-to-resolve functions, and

performs SymCon to obtain test input that can lead to the same

crash stack trace as the users observe. Unlike ReCrashJ,

SymCrashJ does not record all the objects and therefore reduces

overhead. Unlike BugRedux, SymCrashJ can reproduce more

crashes because SymCon enables more constraints to be solved.

Unlike ChroniclerJ, SymCrashJ does not record the user inputs,

therefore mitigating the privacy concerns.

5. EXPERIMENTS AND RESULTS

5.1 Research Questions
We perform experiments to evaluate the effectiveness,

performance overhead, and privacy impact of the proposed

approach. We aim to answer the following research questions:

RQ1: How effective can SymCrashJ reproduce failures?

This RQ evaluates the ability of SymCrashJ to successfully

reproduce the observed crashes. We have selected 14 crashes of 6

real-world Java applications, as shown in Table 1. Many of these

crashes are also used in related work. We run SymCrashJ to see

how many of them can be reliably reproduced.

RQ2: What is the runtime overhead of SymCrashJ?

This RQ evaluates if the performance overhead of SymCrashJ,

introduced by its instrumentation mechanism, is suitable to be

deployed in the field. To answer RQ2, we evaluate SymCrashJ’s

performance overhead using the same subject programs as used in

ReCrashJ [3]. We also run these programs to perform the same

tasks as described in [3]. The programs and the tasks are shown in

Table 2.

Table 1. The crashes used in our study

Program Size

(KLOC)

Description Bug

ID

Exception Reason Related

Work

BSTTree 0.04 An

implementation

of BST Tree

algorithm

1 ClassCastException Object type conversion CnC [13]

2 ClassCastException Object type conversion CnC [13]

Apache

Commons

Math

48.21

An

implementation

of math library

645 MathRuntimeException Iterate on the original vector, not on the

copy that is modified.

ChroniclerJ

[8]

790 IllegalArgumentExcepti

on

Intermediate integer values overflow when

processing large datasets

ChroniclerJ

[8]

803 Non-exception “X*0 == 0” returns false if X is an infinite

number.

ChroniclerJ

[8]

Apache

Commons

Lang

27.91

A library that

provides helper

utilities for

Java.lang API

72 NullPointerException When calling the function

EqualsBuilder.append(Object[],Object[])

ChroniclerJ

[8]

84 Exception Missing boundary check when calling

RandomStringUtils.randomAlphabetic

N/A

294 ArrayIndexOutOfBound

sException

The indexOf(String str, int startIndex)

function does not check whether it has

gone over the actual size of the string

being built.

N/A

300 NumberFormat

Exception

Invalid strings are passed to the

NumberUtils.createNumber method

ChroniclerJ

[8]

Ant 101.20 A Java-based

build tool

334

46

NullPointerException The value.length() function throws an

exception due to a null input value.

Star [45]

384

58

NullPointerException The NullPointerException is thrown in

Task.log. getProject().log(this, msg,

msgLevel);

Star [45]

Apache

Commons

Collections

13.61 An extension of

java collections

library

28 NullPointerException The SequencedHashMap.indexOf(Object

key) method fails when the object key is

not in the map.

Star [45]

Joda Time 81.96 A date and time

Java class

library

88 IllegalArgumentExcepti

on

Invalid arguments for the constructor

method

N/A

93 NullPointerException The variable weekyear is null N/A

796

Table 2. The programs used for evaluating the overhead of

SymCrashJ

Program Task File Size

SVNKit

Checkout

Checking

out a project

880 44 Mb

SVNKit

Update

Updating a

project

880 44 Mb

Eclipse Content Compiling Content.java 48 LOC

Eclipse String Compiling StringContent

.java

99 LOC

Eclipse Channel Compiling ChannelIOSe

cure.java

642 LOC

Eclipse JLex Compiling JLex version

1.2.4

841 LOC

We also evaluate the overhead of SymCrashJ under two extreme

scenarios: 1) heavy I/O workload, and 2) heavy string-processing

workload. For scenario 1, we develop special programs to

simulate the scenario. For scenario 2, we choose the DaCapo

benchmark as used in [2, 8]. The overhead is computed as the

percentage increase of the running time due to the instrumentation.

RQ3: What is the impact of SymCrashJ on user privacy?

Privacy concerns can adversely affect the usefulness of crash

reproducing tools. Unlike ChroniclerJ, SymCrashJ records only

the selected, hard-to-resolve functions, not all non-deterministic

functions. In this RQ, we evaluate how SymCrashJ affects user

privacy by comparing the original inputs that lead to crashes in

Table 1 and the test inputs that reproduce these crashes.

For all the RQs, we compare SymCrashJ with two recent work:

BugRedux and ChroniclerJ. Because ReCrashJ can be hardly

deployed in practice due to its high performance overhead [8], we

did not compare with it in RQ1. For BugRedux, it supports four

types of execution data (Point of Failure, Call Stack, Call

Sequence, and Complete Trace). In our experiments, we only

compare our tool with BugRedux instrumented with Call

Sequence data, which is the most cost-effective realization of

BugRedux as highlighted in [25]. Furthermore, as the original

BugRedux supports only C programs, we also developed a Java

version of BugRedux in order to perform the comparison. We

perform all the experiments on a Windows 7 system, with 3GB

RAM.

5.2 Experimental Results

RQ1 - Effectiveness
We apply SymCrashJ, BugRedux, and ChroniclerJ to reproduce

the 14 real crashes shown in Table 1. The experiment results are

summarized in Table 3, which shows if the observed crashes can

be successfully reproduced (“Y” or “N”).

Table 3 shows that SymCrashJ can successfully reproduce 13 out

of 14 crashes. The programs terminate with the same exceptions

as users would observe.

BugRedux only reproduces 9 crashes. Taking the Apache

Commons Lang-294 bug as an example, this bug causes the

following ArrayIndexOutOfBoundsException exception when the

function StrBuilder.deleteAll is called:

Exception in thread "main"

java.lang.ArrayIndexOutOfBoundsException

at java.lang.System.arraycopy(Native Method)

 at org.apache.commons.lang.text.StrBuilder.

deleteImpl(StrBuilder.java:1114)

 at org.apache.commons.lang.text.StrBuilder.

deleteAll(StrBuilder.java:1188)

The bug is within a user-defined indexOf function called by the

deleteAll function, which does not check the boundary of the

string being built properly. BugRedux cannot reproduce this crash

because there are many complex string operations (such as

arraycopy), which are hard-to-resolve functions that block

traditional symbolic executions. SymCrashJ utilizes SymCon,

therefore it can successfully reproduce this crash.

Table 3. The results for evaluating the effectiveness of

SymCrashJ

Bug ID ChroniclerJ BugRedux SymCrashJ

BSTTree-1 √ √ √

BSTTree-2 √ √ √

Math-645 √ √ √

Math-790 √ √ √

Math-803 √ × ×

Lang-72 √ √ √

Lang-84 × √ √

Lang-294 √ × √

Lang-300 √ √ √

ANT-33446 × × √

ANT-38458 √ × √

Collections-28 √ × √

Joda-Time-88 × √ √

Joda-Time-93 × √ √

The results also show that SymCrashJ outperforms ChroniclerJ,

which can only reproduce 10 crashes. This could be due to the

incomplete list of nondeterministic methods that ChroniclerJ

instruments and monitors.

0.00% 10.00% 20.00% 30.00% 40.00% 50.00%

SVNKit Checkout

SVNKit Update

Eclipse Content

Eclipse String

Eclipse Channel

Eclipse Jlex

RecrashJ ChroniclerJ SymCrashJ

Figure 5. The performance overhead of SymCrashJ

797

RQ2 - Overhead
We have evaluated the runtime overhead of SymCrashJ using the

benchmarks described in [2]. Figure 5 shows the comparison

results. Because the Eclipse subjects are small, SymCrashJ and

ChroniclerJ achieve similar overhead. The SVN projects are much

larger and have a larger number of I/O operations. Therefore

ChroniclerJ incurs much higher overhead, while SymCrashJ

achieves lower overhead because it only monitors a limited

number of hard-to-resolve functions.

We also evaluate the performance of SymCrashJ under two

extreme scenarios: 1) heavy I/O workload, and 2) heavy string-

processing workload. For scenario 1, we developed a program that

reads characters from a disk file, using the read() function in the

java.io.BufferedReader class. The number of characters to be read

is a randomly generated number, ranging from 2MB to 1GB. We

run this program 200 times and monitor its execution using

SymCrashJ and ChroniclerJ. Figure 6 shows the average overhead

of the 200-time executions. SymCrashJ achieves much lower

overhead than ChroniclerJ (<2%), while ChroniclerJ causes 40%-

88% overhead.

0.00%

15.00%

30.00%

45.00%

60.00%

75.00%

90.00%

0 200 400 600 800 1000

O
V

E
R

H
E

A
D

FILE SIZE (MB)

SymCrashJ

ChroniclerJ

Figure 6. The overhead of SymCrashJ and ChroniclerJ (for

heavy I/O workload)

0

1500

3000

4500

6000

7500

9000

10500

12000

fop luindex lusearch tomcat

P
e

rf
o

rm
a

n
ce

Original SymCrashJ

Figure 7. The performance of SymCrashJ and the original

program (for heavy string-processing workload)

For scenario 2, we select 4 subject systems from the DaCapo

Benchmarks [7], namely Fop, Luindex, Lusearch, and Tomcat.

These subject systems are selected because they contain a lot of

string-related operations such as text search, file processing, and

webpage processing. We use these systems to test the performance

of SymCrashJ under heavy string-processing workload. Figure 7

shows the experimental results. SymCrashJ achieves similar

performance as the original system’s, the overhead is less than

6.5%.

Our evaluation results show that SymCrashJ is a light-weight

monitoring tool, which does not incur much performance

overhead, even for systems involving heavy I/O and string-

processing work.

RQ3 - Privacy
Unlike ChroniclerJ, SymCrashJ records only the selected, hard-to-

resolve functions. It generates test data based on symbolic

execution and recorded values of the selected functions. Therefore,

SymCrashJ does not record all user inputs and the generated test

cases could be different from the original user inputs. In this way,

SymCrashJ mitigates the privacy issues. As an example,

considering the Apache Commons Lang 294 bug, which leads to

an ArrayIndexOutOfBoundsException exception when the string

"\n%BLAH%" is input. Using SymCrashJ, we obtain the input

string “\n” through symbolic execution, which can also lead to the
same exception, therefore reproducing the crash using a different

input, without violating the users’ privacy.

Table 4. The results for evaluating the privacy of SymCrashJ

Bug ID SymCrashJ ChroniclerJ Original Input

BSTTree-1 "aaa" "gbk" "gbk"

BSTTree-2 "aaa" "BSTTree" "BSTTree"

Math-645 -1 0 0

Math-790 1490 1600 1600

Lang-72 3 2 2

Lang-294 “\n” “\n%BLAH%” “\n%BLAH%”

Lang-300 "2l" "1l" "1l"

ANT-38458 0 82 82

Collections-28 "test" "s" "s"

For the 9 bugs that can be reproduced by both SymCrashJ and

ChroniclerJ (Table 3), we compare the original inputs that caused

the crashes and the test inputs generated by the tools. As

ChroniclerJ is based on the recording of the user inputs, the test

input generated by ChroniclerJ are exactly the same as the original

inputs, while our approach can produce different inputs, therefore

mitigating the privacy problem.

5.3 Discussions of the Results
Our evaluation shows that SymCrash is suitable for reproducing

crashes, in terms of effectiveness, performance and privacy.

SymCrash also outperforms the related methods such as

BugRedux [25] and Chronicler [8]. BugRedux supports the

collection of method call traces through instrumentations and the

generation of test data that exercises the execution traces. Like

BugRedux, SymCrash is also based on symbolic execution, but it

addresses the limitation of conventional symbolic execution by

considering the hard-to-resolve functions. Chronicler [8]

reproduces crashes by recording nondeterministic functions

including user inputs. Unlike Chronicler, SymCrash does not

monitor all non-deterministic methods, instead it only monitors

the functions that symbolic execution are likely to fail and

generate test input through symbolic execution. Our experimental

798

results confirm that SymCrash improves crash reproducibility,

reduces the overhead and mitigates the privacy concerns.

Our approach has limitation too. Although SymCon can address

the limitations of conventional symbolic execution by recording

concrete values of hard-to-resolve functions, it may still fail to

generate valid solutions. Even though each hard-to-resolve

function is replaced with its concrete runtime value, the number of

path conditions could be still large, especially for large programs.

Symbolic execution could still fail to deal with the state explosion

problem even advanced mechanisms (such as partial order,

abstraction, loop summarization) are adopted [15, 51, 52].

Furthermore, symbolic execution tools often encounter the object-

creation problem, where they fail to generate desirable object

states [52]. In Table 3, we show that SymCrashJ cannot reproduce

the Apache Commons Math 803 crash. This program contains a

function as shown below. This function takes an object of

RealVector class as an input parameter, performs data copy

operations over the object, and then returns an object of

ArrayRealVector class. SymCon fails to process this function due

to the complex nature of symbolic execution.

1 public ArrayRealVector ebeMultiply(RealVector v) {

 …

2 checkVectorDimensions(v);

3 double[] out = data.clone();

4 for (int i = 0; i < data.length; i++) {

5 out[i] *= v.getEntry(i);

6 }

7 return new ArrayRealVector(out, false);

8 }

Our experimental results as shown in Figures 5-7 confirm that

SymCrash achieves relatively low runtime overhead. To evaluate

the overhead, we choose the same subject programs used by

ReCrashJ and run these programs to complete certain tasks. These

tasks include checking out, updating, and compiling a project. We

also design experiments to evaluate our tool in the worst and best

scenarios. However, it remains possible that there exist some

special use cases of the programs that could lead to inconsistent

results as we have obtained.

Furthermore, our experimental results as shown in Table 4

confirm that SymCrash can mitigate the privacy concerns.

However, in some circumstances, SymCrash may still generate the

same test input as users. For example, if the program only crashes

at a certain input value, then the test input generated by symbolic

execution should be the same as the original input, thus the user

privacy could be violated. Furthermore, a hard-to-resolve function

might return a value that includes part of the user input. How to

further mitigate privacy concerns is an important future work.

6. THREATS TO VALIDITY
We have identified the following threats to validities:

· Limited number of subjects. In our experiments, we

evaluate SymCrashJ using 14 crashes of 6 real-world

programs. Most of these subjects were also used in related

works. These subjects were collected by studying bug reports,

building the corresponding versions of the programs, and

reproducing the crashes. Such a process is tedious and time-

consuming. Therefore the number of crashes we evaluated is

rather limited and the bugs underlying the crashes may not be

representative or comprehensive. We may have accidentally

chosen bugs that lead to better (or worse) crash

reproducibility.

· Concurrency. So far, we have not evaluated our approach

for concurrency related failures. Although the

implementation of symbolic execution in our algorithm is

based on Java Path Finder, which supports multi-threading,

our approach does not monitor communications between

threads and therefore does not necessarily reproduce races. It

would be interesting to combine our approach with certain

race-detection technology [32] or thread-level sequential

path analysis techniques [42] to support concurrency.

· User study. In our work, we evaluate our approach through

in-house experiments. Although such evaluation is based on

real-world crashes and programs, the ultimate usefulness and

effectiveness of the proposed approach should be evaluated

by real users. Conducting a user study and obtaining

feedbacks from participants will be an important future work.

7. RELATED WORK

Crash Reproduction

Software crashes are a major contributor to system down time and

user dissatisfaction. In recent years, many studies have been

dedicated to the analysis of crashes of real-world, large-scale

software systems. For example, many crash reporting systems [1,

22, 31] are deployed to automatically collect crash stack

information from the field. Ganapathi et al. [21] performed an

empirical study of Windows OS crashes and discussed major

crash types. Several bucketing methods [16, 18, 29] were

proposed to group similar crash reports based on call stack

similarity. There are also methods for helping developers locate

crashing faults based on collected crash stack traces [27, 48].

DebugAdvisor [6] helps developers find a solution to the reported

failure by identifying similar problem reported before.

One of the first steps to comprehend and diagnosis a failure is to

reproduce the failure. Many crash reproduction techniques have

been proposed. We have described BugRedux [25] and

Chronicler [8] in Section 2 and compared SymCrash with them in

our experiments. Orso et al. [26, 38] also proposed techniques for

selectively capturing and replaying of program executions. Their

techniques can be used to generate test cases from user executions

and reproduce crash. However, their technique lets users specify a

subsystem of interest, which requires the users to have prior

knowledge about the possible problematic area. ESD [54]

proposed by Zamfir et al. automatically synthesizes executions of

the program and reproduces bug symptoms based on the point of

failure (POF) information given in a bug report. It uses symbolic

execution to try to generate inputs that would reach the POF. As

we have shown in this paper, conventional symbolic execution

has limitations in generating test data. Furthermore, as pointed out

by Jin and Orso [25], POF-based crash reproduction is less

effective than the method call trace based one.

Our approach is essentially based on the concept of capture &

replay. Roehm et al. [43] presented an approach that is

complementary to existing capture & replay approaches. Their

approach monitors high-level user interactions (such as editing

operations or commands), and visualizes the monitored user

interaction traces to help developers reproduce failures.

Furthermore, our approach aims for helping developer debug field

failures in the lab. Tucek et al. [46] proposed an approach to on-

site software failure diagnosis at the very moment of failure. Their

tool employs lightweight monitoring to detect failures and collect

additional information by re-execution on the user’s machine.

799

JCrasher [12] can generate unit test cases for finding crash-

inducing bugs based on randomly generated data. Later on, it is

combined with a static analysis tool (ESC/Java) to generate better

test cases [13]. They also proposed DSD-Crasher [14]: a tool that

uses dynamic analysis to infer likely program invariants, explores

the space defined by these invariants through static analysis, and

finally produces and executes test cases. These tools focus on

generating test cases to find crashing faults. Our work generates

test cases that reproduce field failures.

Static and Dynamic Symbolic Execution

Symbolic execution has been widely used in software testing and

verification. Static symbolic execution focuses on interpreting

program behavior using symbolic expressions. An exemplar tool

is SPF [15], which is an extension of Java Path Finder for

symbolic execution. SPF targets to automatically generate test

case for Java programs through model checking and constraint

solving. It has good support for math constraints, string operations,

data structures and arrays, and pre-conditions. Păsăreanu et al. [40]

also proposed a framework that uses annotations in the form of

method specifications and loop invariants. Their technique works

backward from the property to be checked and systematically

applies approximation to achieve termination.

However, real-world programs are usually large and complex. As

described in Section 3, in general, symbolic execution based on

path constraint solving faces many intractable problems such as

state explosion [15, 52]. To minimize the impact of such

intractable problems, most existing symbolic execution

approaches, including those reviewed above, are bounded: they

provide parameters or mechanisms to limit the symbolic execution

under a controllable range [15, 37].

To overcome the intractable problems of symbolic execution,

Dynamic Symbolic Execution (DSE) techniques (also known as

concolic execution or directed random testing) have been

proposed [10, 23, 34]. DSE executes the program under test

symbolically and replaces the hard-to-resolve expressions with the

concrete values generated by random or default inputs. For

example, DART [23] is a DSE technique that runs the program

under test both concretely (executing the actual program with

random inputs) and symbolically (calculating constraints on

values at memory locations expressed in terms of input

parameters). CUTE [34] is a DSE technique that attempts to cover

all feasible paths: it traverses a program in a depth-first search,

and generates path constraint along each traversed path. It forces

symbolic operations to be performed as if some symbolic

variables are temporarily concrete (non-symbolic). SymCon is

also a DSE technique. However, it uses the monitored runtime

values of hard-to-resolve functions, instead of using the values

generated by random inputs.

Pex [37] is a white-box test case generation tool, which explores

programs under test by dynamic symbolic execution and builds

automated tests with high code coverage. It supports reasoning

over pointer arithmetic and object-oriented programs. To address

the space-explosion issue in path exploration, Xie et al. [53]

proposed an extension of Pex, which adopts a search strategy that

uses state-dependent fitness values (computed through a fitness

function) to guide path exploration. Recently, they also proposed

to involve human cooperation in DSE. For example, in Pex4Fun

[49] and CodeHunt [50], they allow programmers to modify the

given working implementation to match the behavior of the secret

implementation.

8. CONCLUSIONS
Reproducing field failures is an important step of debugging. In

this paper, we first identify a set of methods that are hard to be

solved by conventional symbolic execution. We then propose

SymCon, a dynamic symbolic execution technique that replaces

hard-to-resolve functions with concrete runtime values. Based on

SymCon, we present SymCrash, which is an automated capture-

and-replay technique. SymCrash only instruments and monitors

the selected, hard-to-solve functions. Developers can use the

recorded log data to perform SymCon and to reproduce the

crashes. We develop SymCrashJ, which is an implementation of

SymCrash for Java. We have applied SymCrashJ to successfully

reproduce 13 failures of 6 real-world programs. Our results also

confirm that SymCrashJ can introduce less runtime overhead and

achieves better privacy, when compared to the related tools.

In the future, we will apply our tool to a variety of real programs

to further evaluate and improve the tool, and to seek feedback

from real developers. In addition, we will consider how to further

reduce the impact of state explosion, through a combination of

relevant work such as program annotation [40]. Other techniques

such as random testing can be also used to complement symbolic

execution. In this paper, we identify and instrument all the hard-

to-resolve functions. How to perform program instrumentation in

order to achieve an optimal balance among effectiveness,

overhead, and privacy is also an interesting future work.

9. ACKNOWLEDGMENTS
We thank Huiyong Huo, Rongxin Wu, and Hee Beng Kuan Tan

for the helpful discussions on the experiments. This research is

supported by the NSFC grant 61272089.

10. REFERENCES
[1] Apple, Technical Note TN2123: CrashReporter.

http://developer.apple.com/library/mac/#technotes/tn2004/tn

2123.html, 2010.

[2] S. Artzi, S. Kim, and M. D. Ernst. ReCrashJ: a tool for

capturing and reproducing program crashes in deployed

applications. In Proc. ESEC/FSE�09, pp. 295-296, August

2009.

[3] S. Artzi, S. Kim, and M. D. Ernst. ReCrash: Making software

failures reproducible by preserving object states. In Proc.

22nd European Conference on Object-Oriented

Programming (ECOOP 2008), Paphos, Cyprus, July 2008.

[4] S. Anand, C. Pasareanu, and W. Visser. Symbolic execution

with abstract subsumption checking. In Proc. SPIN, 2006.

[5] S. Anand, C. S. Păsăreanu, and W. Visser. JPF–SE: A

symbolic execution extension to java pathfinder. In Proc.

Tools and Algorithms for the Construction and Analysis of

Systems, Springer, pp. 134-138, 2007.

[6] B. Ashok, J. Joy, H. Liang, S. K. Rajamani, G. Srinivasa, and

V. Vangala. DebugAdvisor: A recommender system for

debugging. In Proc. of the 7th joint meeting of the European

software engineering conference and the ACM SIGSOFT

symposium on The foundations of software engineering

(ESEC/FSE�2009), pp. 373-382, 2009.

[7] S. M. Blackburn, R. Garner, et al. The DaCapo benchmark

suite. http://www.dacapobench.org/benchmarks.html.

[8] J. Bell, N. Sarda, and G. Kaiser. Chronicler: Lightweight

recording to reproduce field failures. In Proc. of the 34th

800

International Conference on Software Engineering

(ICSE�13), pp. 362-371, May 2013.

[9] E. Bruneton, R. Lenglet, and T. Coupaye. Asm: A code

manipulation tool to implement adaptable systems. In

Adaptable and extensible component systems, 2002.

[10] C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, D. Engler.

EXE: automatically generating inputs of death. In Proc. of

the 13th ACM conference on computer and communications

security (CCS 2006), pp. 322-335. ACM, 2006

[11] Cloning – a Java Deep-Cloning library.

http://code.google.com/p/cloning/, 2014.

[12] C. Csallner and Y. Smaragdakis. JCrasher: an automatic

robustness tester for Java. In Software: Practice and

Experience, vol. 34, pp. 1025-1050, 2004.

[13] C. Csallner and Y. Smaragdakis. Check ’n’ Crash:
Combining static checking and testing. In Proc. of the 27th

International Conference on Software Engineering (ICSE

2005), pp. 422-431, 2005.

[14] C. Csallner, Y. Smaragdakis, and T. Xie. DSD-Crasher: A

hybrid analysis tool for bug finding. In ACM Transactions on

Software Engineering and Methodology, 17(2):345-371,

April 2008.

[15] C. Păsăreanu, W. Visser, D. Bushnell, J. Geldenhuys, P.

Mehlitz, and N. Rungta. Symbolic PathFinder: integrating

symbolic execution with model checking for Java bytecode

analysis. In Automated Software Engineering Journal,

20:391-425, 2013.

[16] Y. Dang, R. Wu, H. Zhang, D. Zhang, and P. Nobel.

ReBucket: A method for clustering duplicate crash reports

based on call stack similarity. In Proc. of the 34th

International Conference on Software Engineering (ICSE

2012), pp.1084-1093, Zurich, Switzerland, June 2012.

[17] L. de Moura and N. Bjorner. Z3: An Efficient SMT Solver.

Technical report, Microsoft, 2008.

[18] T. Dhaliwal, F. Khomh, and Ying Zou. Classifying field

crash reports for fixing bugs: A case study of Mozilla

Firefox. In Proc. of the 27th IEEE International Conference

on Software Maintenance (ICSM�11), pp. 333-342,

Williamsburg, VA, USA, Sep 2011.

[19] B. Dutertre and L. de Moura. The Yices SMT solver. Tool

paper at http://yices.csl.sri.com/tool-paper.pdf, August 2006.

[20] P. Hooimeijer, D. Molnar, P. Saxena, M. Veanes. Modeling

imperative string operations with transducers. Tech. Rep.

MSR�TR�2010�96, Microsoft, 2010.

[21] A. Ganapathi, V. Ganapathi, and D. Patterson. Windows XP

kernel crash analysis. In Proc. of the 20th conference on

Large Installation System Administration. Washington, DC:

USENIX Association, pp. 12-12, 2006.

[22] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul, V.

Orgovan, G. Nichols, D. Grant, G. Loihle, and G. Hunt.

Debugging in the (very) large: ten years of implementation

and experience. In Proc. of 23th ACM SIGOPS Symp. on

Operating System Principles (SOSP�09), Big Sky, Montana,

USA, pp. 103-116, 2009.

[23] P. Godefroid, N. Klarlund, K. Sen. DART: directed

automated random testing. In Proc. 2005 ACM SIGPLAN

Conference on Programming Language Design and

Implementation (PLDI), pp. 213-223. ACM Press, 2005.

[24] P. Godefroid and D. Luchaup. Automatic partial loop

summarization in dynamic test generation. In Proc.

International Symposium on Software Testing and Analysis

(ISSTA�11), pp. 23-33, 2011.

[25] W. Jin and A. Orso. BugRedux: Reproducing field failures

for in-house debugging. In Proc. of the 34th International

Conference on Software Engineering (ICSE�12), pp. 474-

484, Zurich, Switzerland, 2012.

[26] S. Joshi and A. Orso. SCARPE: A Technique and Tool for

Selective Capture and Replay of Program Executions. In

Proc. of the 23rd IEEE International Conference on

Software Maintenance (ICSM 2007), pp. 234-243, 2007.

[27] W. Jin and A. Orso. F3: Fault Localization for Field Failures.

In Proc. International Symposium on Software Testing and

Analysis (ISSTA�13), pp.213-223, Lugano, Switzerland,

2013.

[28] J. C. King, Symbolic execution and program testing.

Communications of the ACM, volume 19, number 7, pp. 385-

394, 1976.

[29] S. Kim, T. Zimmermann, and N. Nagappan, Crash graphs:

An aggregated view of multiple crashes to improve crash

triage. In Proc. of the 41st Annual IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN

2011), pp. 486 - 493, Hong Kong, June 2011.

[30] K. L. McMillan, Lazy annotation for program testing and

verification. In Proc. of the 22nd international conference on

Computer Aided Verification (CAV'10), pp. 104-118, 2010.

[31] Mozilla. Mozila Crash Reporting. http://crash-

stats.mozilla.com, 2012.

[32] M. Naik, A. Aiken, and J. Whaley, Effective static race

detection for Java. In Proc. of the 2006 ACM SIGPLAN

conference on Programming language design and

implementation (PLDI '06), ACM, pp. 308-319, 2006.

[33] Symbolic PathFinder -- Tool Documentation.

http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-

symbc/doc, 2013.

[34] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit

testing engine for C. In Proc. of the 10th European software

engineering conference held jointly with 13th ACM

SIGSOFT international symposium on Foundations of

software engineering (ESEC/FSE-13), pp.263-272, 2005.

[35] P. Saxena, P. Poosankam, S. McCamant, and D. Song. Loop-

extended symbolic execution on binary programs. In Proc. of

the 18th international symposium on software testing and

analysis (ISSTA�09), pp. 225-236, 2009.

[36] N. Sharygina and J. C. Browne. Model checking software via

abstraction of loop transitions. In Proc. Fundamental

Approaches to Software Engineering, Springer, pp. 325-340,

2003.

[37] N. Tillmann and J. De Halleux. Pex–white box test

generation for. Net. In Proc. Tests and Proofs (TAP'08),

LNCS 4966, Springer, pp. 134-153, 2008.

[38] A. Orso and B. Kennedy. Selective capture and replay of

program executions. In Proc. of the 3rd Int. Workshop on

Dynamic Analysis, pp. 1-7, ACM, 2005.

801

[39] C. Pacheco, S. Lahiri, M. Ernst, T. Ball, Feedback-directed

random test generation. In Proc. of the 29th International

Conference on Software Engineering (ICSE 2007),

Minneapolis, MN, USA, May 2007.

[40] C. S. Pasareanu, W. Visser. Verification of Java Programs

Using Symbolic Execution and Invariant Generation. In

Proc. SPIN, pp. 164-181, 2004.

[41] G. Redelinghuys. Symbolic String Execution, Master thesis,

University of Stellenbosch.

http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-symbc,

2013.

[42] M. Russinovich and B. Cogswell. Replay for concurrent

nondeterministic shared-memory applications. In Proc. of

Conf. on Programming Languages and Implementation

(PLDI�96), pp. 258-266, 1996.

[43] T. Roehm, N. Gurbanova, B. Bruegge, C. Joubert, W.

Maalej. Monitoring user interactions for supporting failure

reproduction. In Proc. 21st International Conference on

Program Comprehension (ICPC 2013), 73-82, May 2013.

[44] Soot: a Java Optimization Framework.

http://www.sable.mcgill.ca/soot/, 2014.

[45] The Star Project. https://sites.google.com/site/starcrashstack/,

2013.

[46] J. Tucek, S. Lu, C. Huang, S. Xanthos, and Y. Zhou. Triage:

Diagnosing production run failures at the user’s site. In Proc.

of 21st ACM SIGOPS Symp. on Operating System Principles

(SOSP�07), 2007.

[47] W. Visser, K. Havelund, G. P. Brat, S. Park, and F. Lerda.

Model checking programs. Automated Software Engineering

Journal, 10(2):203-232, April 2003.

[48] R. Wu, H. Zhang, S.C. Cheung and S. Kim, CrashLocator:

Locating Crashing Faults based on Crash Stacks. In Proc.

International Symposium on Software Testing and Analysis

(ISSTA'14), San Jose, CA, July 2014.

[49] N. Tillmann, J. de Halleux, and T. Xie. Pex4Fun: Teaching

and learning computer science via social gaming. In Proc.

CSEET, Practice and Methods Presentations, & Tutorials

(PMP&T), pp. 546-548, 2011.

[50] N. Tillmann, J. Bishop, N. Horspool, D. Perelman, and T.

Xie. Code Hunt - searching for secret code for fun. In Proc.

of the 7th International Workshop on Search-Based Software

Testing (SBST�14), 2014.

[51] X. Xiao, S. Li, T. Xie, and N. Tillmann. Characteristic

studies of loop problems for structural test generation via

symbolic execution. In Proc. of the 28th IEEE/ACM

international conference on automated software engineering

(ASE�13), pp. 246-256, Nov 2013.

[52] X. Xiao, T. Xie, N. Tillmann, and J. de Halleux, Precise

identification of problems for structural test generation. In

Proc. International Conference on Software Engineering

(ICSE'11), pp. 611-620, 2011.

[53] T. Xie, N. Tillmann, J. de Halleux, W. Schulte, Fitness-

Guided Path Exploration in Dynamic Symbolic Execution. In

Proc. of the 39th Annual IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN

2009), Lisbon, Portugal, June-July 2009.

[54] C. Zamfir and G. Candea, Execution synthesis: a technique

for automated software debugging. In Proc. of the 5th

European conference on Computer systems (EuroSys�10),

ACM, pp. 321-334, 2010.

[55] T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A.

Schröter, and C. Weiss. What makes a good bug report?

IEEE Transactions on Software Engineering, 36(5):618-643,

2010.

[56] A. Zeller. Why does my program fail? A guide to automated

debugging. Morgan Kaufmann, May 2005.

802

