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ABSTRACT 

Software often crashes despite tremendous effort on software 

quality assurance. Once developers receive a crash report, they 

need to reproduce the crash in order to understand the problem 

and locate the fault. However, limited information from crash 

reports often makes crash reproduction difficult. Many “capture-

and-replay” techniques have been proposed to automatically 

capture program execution data from the failing code, and help 

developers replay the crash scenarios based on the captured data. 

However, such techniques often suffer from heavy overhead and 

introduce privacy concerns. Recently, methods such as BugRedux 

were proposed to generate test input that leads to crash through 

symbolic execution. However, such methods have inherent 

limitations because they rely on conventional symbolic execution 

techniques. In this paper, we propose a dynamic symbolic 

execution method called SymCon, which addresses the limitation 

of conventional symbolic execution by selecting functions that are 

hard to be resolved by a constraint solver and using their concrete 

runtime values to replace the symbols. We then propose 

SymCrash, a selective recording approach that only instruments 

and monitors the hard-to-solve functions. SymCrash can generate 

test input for crashes through SymCon. We have applied our 

approach to successfully reproduce 13 failures of 6 real-world 

programs. Our results confirm that the proposed approach is 

suitable for reproducing crashes, in terms of effectiveness, 

overhead, and privacy. It also outperforms the related methods. 
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1. INTRODUCTION 
Although software project teams spend much resource and effort 

on software quality assurance before releasing products, in reality, 

released software still contains bugs. Some bugs manifest 

themselves as crashes, which are often considered as severe 

problems and are typically assigned a high priority for fixing. 

Once software crashes in the field, developers should reproduce 

and fix the problem. However, it is difficult to reproduce field 

failures that occur in user environment, which is often different 

from developer’s testing environment. Even the users write a bug 

report, the reproduction of crash could be still difficult due to 

complex environmental settings [56], sources of non-determinism 

[8], and poor bug report quality [54].  

To help debug field failures, many crash reporting systems such as 

Windows Error Reporting [22], Apple Crash Reporter [1], and 

Mozilla Crash Reporter [31] have been proposed and deployed. 

When a crash happens in field, these system collect crash related 

information especially call stack trace, and send these information 

back to the developers upon user permission. Although the stack 

information is shown to be useful [6, 16, 18, 27, 48], it is often 

too limited for effective failure reproduction. 

In recent years, automated tools have been developed to help 

developer reproduce field crashes. Many of these tools [2, 8, 25, 

26] are based on the concept of capture and replay --- they capture 

relevant information from the failing code and reproduce the 

crashes by replaying the recorded information. For example, 

ChroniclerJ [8] captures all the non-deterministic inputs to 

reproduce bugs. However, it is difficult to emulate all non-

deterministic inputs. Furthermore, recording user input incurs 

serious privacy concerns.  

BugRedux [25] uses different execution data obtained by different 

level of instrumentations, and reproduces the crashes by 

performing symbolic execution over the synthesized traces. 

Conventional symbolic execution can infer program inputs by 

solving constraints along the paths. However, conventional 

symbolic execution often fails to solve certain path constraints 

due to various hard-to-resolve functions such as overly complex 

functions and nonlinear math functions [51, 52]. Therefore, the 

effectiveness of BugRedux can be further improved. 

In our work, we propose SymCon, a dynamic symbolic technique, 

which replaces hard-to-resolve functions with concrete runtime 

values and then performs symbolic execution. In this way, 

SymCon can solve more path constraints and improves the 

effectiveness of conventional symbolic execution. Based on 

SymCon, we present SymCrash, an automated capture-and-replay 

technique. SymCrash only selects hard-to-resolve functions to 

instrument and monitor. When a crash happens, SymCrash 

performs SymCon using the recorded data and generates test cases 

that can reproduce the crash. 

We also develop a tool, SymCrashJ, which implements SymCrash 

for Java programs. We evaluate SymCrashJ using 14 failures of 6 

real-world programs. SymCrashJ can successfully reproduce 13 

out of 14 crashes. We also evaluate the runtime performance and 

 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full 

citation on the first page. Copyrights for components of this work owned by others 

than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, 

or republish, to post on servers or to redistribute to lists, requires prior specific 

permission and/or a fee. Request permissions from permissions@acm.org. 

ASE�14, September 15–19, 2014, Vasteras, Sweden. 

Copyright © 2014 ACM 978-1-4503-3013-8/14/09…$15.00. 
http://dx.doi.org/10.1145/2642937.2642993 

 

791



privacy impact of SymCrashJ. Our results confirm that the 

proposed approach can achieve lower overhead and better privacy, 

when compared with the related approaches (BugRedux and 

Chronicler).  

This paper provides the following novel contributions: 

� We propose SymCon, a dynamic symbolic execution 

technique that improves the effectiveness of symbolic 

execution by replacing the hard-to-resolve functions with 

their concrete values obtained at program runtime. 

� We propose SymCrash, which performs selective recording 

of hard-to-resolve functions and reproduces crashes using 

SymCon. 

� We develop SymCrashJ, a tool that implements SymCrash 

for Java programs. We also evaluate the effectiveness, 

overhead, and privacy of SymCrashJ using real programs. 

The remainder of this paper is organized as follows. Section 2 

describes the background of crash reproduction and gives a 

motivating example. Section 3 introduces the background of 

symbolic execution and presents SymCon. We describe the 

SymCrash approach and the implementation details in Section 4. 

Section 5 describes our experimental evaluation and discusses the 

results. Section 7 surveys related work, followed by Section 8 that 

concludes the paper. 

2. BACKGROUND AND MOTIVATION 
Before discussing our approach, we briefly provide some 

necessary background information on general crash-reproducing 

methods and give a motivating example. 

2.1 Capture and Replay Methods 
In recent year, researches have proposed many crash reproduction 

methods. These methods share the similar process: first they 

capture the program execution information in the field at the time 

of crash, they then help developers reproduce the crash by 

replaying the recorded information in the lab. Figure 1 shows an 

overall structure of such a capture & replay framework.  

 

Figure 1. An overview of a crash reproduction 

We briefly introduce some of the main methods here: 

ReCrash [2, 3] generates multiple unit tests that reproduce a 

given program failure. It instruments a program to store partial 

copies of method arguments in memory, and deploys the 

instrumented program in the field. If the program crashes, 

ReCrash uses the saved information to create unit tests 

reproducing the crash. ReCrash can introduce high performance 

overhead because it captures the states of all objects [8]. Such a 

high overhead makes ReCrash difficult to be applied in practice.  

Chronicler [8] captures all the non-deterministic inputs (such as 

file, I/O, shared memory, etc.) during program execution and uses 

the collected data to reproduce the crashes in the lab. Unlike 

ReCrash, Chronicler performs a lighter recording while still 

supporting a complete reply.  However, the number of non-

deterministic methods Chronicler instruments could be 

overwhelming. Also, recording all non-deterministic inputs, 

including the user’s inputs, could bring serious privacy concerns 

in practice.  

BugRedux [25] collects program execution traces (such as call 

stacks, method call sequences, complete execution traces) 

obtained by different level of instrumentations. It can use the 

collected traces to mimic the observed field failures and to 

reproduce the crashing faults. Based on the program execution 

traces, BugRedux utilizes conventional symbolic execution to 

generate test inputs that can exercise the traces. Their 

experimental results showed that the method call sequence data 

are more efficient for crash reproduction. BugRedux may not 

always return results due to the limitations of conventional 

symbolic execution (which will be described in Section 3). 

2.2 A Motivating Example 
We adapt the WU_FTPD example described in [20] as a 

motivating example. The WU_FTPD program implements a file 

transfer server and has a known format string vulnerability. The 

original program of WU_FTPD is written in C. We modify the 

original C program (version 2.6.0) and port it into a Java program, 

as shown in Figure 2. The site_exec function allows uses to 

execute commands remotely. The parameter cmd contains the user 

specified command, such as "/usr/bin/helloworld -l *.c". This 

program throws an exception when the length of the command 

string exceeds 32. For example, when the input cmd is 

“!!!!!!!!!!!!!!!!!!!!”, the program crashes. 

1.      public static void site_exec(String cmd)       { 

2.     String PATH = "/home/ftp/bin"; 

3.          int sp = cmd.indexOf(' '); 

4.          double dsp=java.lang.Math.log(sp+2); 

5.      int j; String result; 

6.    if (dsp == 0) { 

7.          j = cmd.lastIndexOf('/'); 

8.          if (j > -1)   

9.                     result = cmd.substring(j); 

10.                else  

11.                     result = cmd; 

12.    } else { 

13.                     j = cmd.lastIndexOf('/', sp); 

14.                     result = cmd.substring(j); 

15.          } 

16.    if (result.length() + PATH.length() > 32) { 

17.         throw new RuntimeException ("Buffer overflow"); 

18.    } 

19.    String buf = PATH + result; 

20.          execute (buf); 

21.   } 

Figure 2. The site_exec function of the wu-ftpd program 

To reproduce the crash, ChroniclerJ requires to record user input, 

which can reproduce the crash but could violate user privacy. 

BugRedux uses symbolic execution to generate test input and can 

thus avoid the privacy concerns. However, BugRedux has 

limitations in handling certain functions due to the inherent 

limitations of conventional symbolic execution. For example, to 

symbolically execute the path along the lines 2-3-4-5-6-12-13-14-

16-17, an SMT constraint solver needs to solve the path 

constraints containing the return value of Math.log function. This 

function is a nonlinear function and takes a variable as a 

parameter. Its value cannot be easily determined by an SMT 
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constraint solver during symbolic execution. Therefore, 

BugRedux cannot reproduce this crash. 

In this work, we propose a new capture and replay technique, 

which only instruments the selected, hard-to-solve functions and 

enables symbolic execution to continue by utilizing their runtime 

values. Test input that reproduces the crashes can be generated 

from symbolic execution. Our approach can mitigate the privacy 

and overhead concerns and in the meantime improve the 

effectiveness of crash reproduction. 

3. SYMCON - SYMBOLIC EXECUTION 

WITH CONCRETE VALUES 

3.1 Symbolic Execution 
Symbolic execution [28] is a program analysis technique, which 

can infer the program inputs through analyzing the program. 

During symbolic execution, an analyzer uses symbolic values 

instead of actual (concrete) values. The inputs are obtained by 

solving Path Conditions (PCs), which are conjunctions of 

constraints over symbolic expressions. The solutions to a PC are 

the inputs that drive the program through an execution path. A PC 

can be submitted to an off-the-shelf SMT constraint solver (such 

as Z3 [17] and Yices [19]), which returns a satisfying assignment 

for all variables appearing in formulas that can be proven 

satisfiable. If a path is infeasible, the solver returns unsatisfiable 

and no solution will be given. If the SMT solver cannot solve a 

path constraint, it returns unknown. 

In our work, we implement symbolic execution using the 

Symbolic Path Finder (SPF) tool [15, 5, 33], which is a symbolic 

extension of Java Path Finder [47]. SPF combines symbolic 

execution and model checking techniques to explore different 

program paths and to automatically generate test inputs. It also 

provides advanced features such as partial orders and symmetry 

reductions to handle the problem of state explosion.  

Although symbolic execution is effective in generating test inputs, 

it has limitations too. For example, it has problems in handling 

complex math operations and external library calls [15, 52]. These 

limitations are due to the path explosions and the inherent 

incompleteness in decision procedures. In this paper, we identify a 

set of functions that are hard to be solved by conventional 

symbolic execution tools and propose a technique that can address 

the limitations of symbolic execution by utilizing the runtime 

values. 

3.2 Hard-to-Resolve Functions 
Conventional symbolic execution adopts path-based program 

analysis, which models program behaviour as a path constraint 

along each execution path. The path constraint is later evaluated 

against a constraint solver. Path-based analysis offers high 

precision and is therefore widely adopted in program optimization 

and test case generation. However, in general, symbolic execution 

based on path constraint solving faces many intractable problems, 

including:  

· Limited support for the number of predicates along a path. 

Existing constraint solvers can only support a limited number 

of predicates in a path. Submitting overly complex path 

constraints to a solver could lead to state explosion. To 

address this problem, many tools, such as SPF, introduce an 

upper bound to limit the number of predicates along a path 

[33]. 

· Limit support for the number of paths in a control flow graph 

(CFG). In symbolic execution, the program branches, 

function calls and loops are exhaustively visited in a depth-

first manner. The symbolic execution terminates when the 

number paths it processes exceeds an upper bound. Therefore, 

many paths in a CFG may be failed to verify. To address this 

problem, many tools such as CUTE [34] and Pex [37] 

introduce an upper bound to limit the number paths for 

symbolic execution.  

· Limited support for loops/recursions. To overcome the state 

explosion issue caused by complex program structures like 

loops or recursive function calls, several advanced program 

analysis techniques are proposed, such as program 

abstraction [4, 30, 36] and loop summarizations [24]. The 

abstraction techniques can map a program with a large 

number of states into an abstracted model with limited states. 

Later symbolic execution can be applied to the abstracted 

model to reduce search cost.  Loop summarization 

techniques treat a loop as a block and summarize the loop’s 
data dependency impact as inferred invariants [24, 35]. 

However, not all the loop and recursive structures could be 

accurately abstracted or summarized. For example, the work 

in [35] summarizes loops by expressing certain important 

variables with loop counts, but it cannot handle cases where 

variables are not linearly updated with the corresponding 

loop count. Although many other techniques, such as search 

strategy (using search-guiding heuristics to guide path 

exploration) [53], have been proposed to address the loop 

problems, the problems still exist [51]. 

· Limited support for complex string operations. Modern SMT 

solvers are capable of solving string constraints by 

expressing the constraints in terms of bitvectors. Therefore, 

they support symbolic string analysis. However, these tools 

still cannot support all complex string operations due to 

possible state explosion. Redelinghuys [41] compared the 

ability of 7 different symbolic string analysis tools (including 

SPF and Pex) and pointed out their limitations in supporting 

various string operations. He found that some string 

operations, such as contains or startWith, are fully supported 

by all the tools. While other functions, such as split and 

valueOf, only receive partial support. 

· Limited support for native functions and external library calls. 

Symbolic execution may fail due to inherent complexity of 

native functions and external library calls [52]. SPF 

addresses these limitations by using the Model Java Interface 

(MJI) mechanism [15], which can model external libraries. 

However, traditional symbolic execution tools still cannot 

handle some of the native functions such as nonlinear math 

functions. This is because most of decision procedures and 

constraint solvers cannot fully support non-linear arithmetic 

operations. 

In our work, we heuristically identify the functions that could lead 

to the intractable problems. We treat them as hard-to-solve 

functions, which are hard to be resolved by a conventional SMT 

solver and can block a symbolic execution. The syntactical 

characteristics of these hard-to-resolve functions are as follows: 

· Deeply nested predicates: if a function contains deeply 

nested predicates, the number of paths and the number of 

predicates in a path may be large. Therefore, it is more likely 

to cause the state explosion problem. Existing symbolic 
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execution techniques impose a bound on the size of the 

search depth. Following the design of SPF [33], we 

heuristically consider a set of nested predicates with nested 

level deeper than 10 a hard-to-solve characteristic. 

· Loops/recursions: a program with loops may cause the 

number of paths to grow exponentially, and may cause 

symbolic execution to run out of resources. If a variable is 

not linearly updated within each iteration, it cannot be 

symbolically expressed by the loop count (the number of 

times the loop has executed) [35]. Therefore, we consider a 

loop containing the following characteristics a hard-to-solve 

one: a) it updates a variable v that is referenced by a path 

constraint, b) there is an inner loop that also updates v, or 

there are conditional branches within the loop along which 

the variable v is updated, c) the number of loop iterations 

depends on external input. Furthermore, we consider 

recursive functions as hard-to-resolve functions. 

· Complex string operations: in our work, we identify string 

operations that are not supported or partially supported by 

SPF [41], and treat them as hard-to-resolve ones. Examples 

include the replace, split, and valueOf functions. 

· Native functions and external library calls: we consider 

the native math functions whose parameters are dependent on 

external inputs as hard-to-resolve functions. We also 

consider third-party external library calls (whose source code 

is not available) as hard-to-resolve functions.  

The hard-to-resolve functions can be identified through relatively 

simple program analysis. Note that our approach also allows users 

to manually update the hard-to-resolve function list, so that they 

have flexibility in supporting their specific constraint solvers.  

3.3 SymCon 
In this work, we propose a dynamic symbolic execution method 

called SymCon, which can address the limitations of conventional 

symbolic execution by utilizing the concrete runtime values of the 

hard-to-resolve functions. The concrete values can be obtained 

through program instrumentation and are used in constraint 

solving, together with the symbolic values.  

More specifically, in SymCon, if a function M is a hard-to-resolve 

function, we use its return value at runtime, instead of treating it 

as a symbol. For example, the function Math.log is a hard-to-

resolve function because it implements nonlinear arithmetic 

operation. We obtain its return value at runtime via program 

instrumentation, and use this value in follow-up symbolic 

execution. If a function is not a hard-to-resolve function, we treat 

it as a symbol and perform usual symbolic execution. 

We use the program in Figure 1 as an example to illustrative 

SymCon. In this program, the string-related functions such as 

indexOf, lastIndexOf, length can be supported by a modern SMT 

solver, therefore we treat their return values symbolically. Line 4 

contains a hard-to-resolve function (Math.log). Suppose we can 

obtain the concrete value of the Math.log function at runtime, we 

can use this value to perform SymCon. For example, to 

symbolically execute the path along the lines 2-3-4-5-6-12-13-14-

16-17, the path condition to be resolved are as follows: 

sp == cmd.indexOf(‘  ’)  

ᴧ dsp == Math.log( sp + 2 )  

ᴧ dsp != 0  

ᴧ j == cmd.lastIndexOf('/', sp)  

ᴧ result == cmd.subString(j)  

 ᴧ  result.length() + PATH.length() > 32  

 ᴧ PATH.length() == 13 

This PC cannot be solved by an SMT constraint solver such as Z3 

due to the existence of a non-linear function Math.log (sp+2). 

Through program instrumentation, we know the latest return value 

of this function at the time of crash. So we use this concrete value 

to replace the Math.log( sp + 2 ) item in the PC, therefore 

enabling symbolic execution to continue. Finally, the solver 

returns �/testtest  testtest�, which satisfies the constraints and 

reproduces the crash. 

Note that the proposed SymCon is different from the mixed 

concrete-symbolic solving used in SPF [15]. SPF identifies 

SimplePC (which contains solvable constraints) and ComplexPC 

(which contains constraints that cannot be solved directly). SPF 

then forces the solver to generate solutions for the SimplePCs, 

and use the solutions to solve ComplexPCs. SymCon is also 

different from existing dynamic symbolic execution techniques 

such as DART [23], which use randomly generated inputs to 

enable symbolic executions to continue. SymCon uses the 

monitored runtime values of hard-to-resolve functions, therefore it 

can obtain more accurate values for crash reproduction. 

4. REPRODUCING CRASHES BASED ON 

SELECTIVE RECORDING 
We propose SymCrash, an approach that reproduces crashes 

based on SymCon. SymCrash instruments the applications to 

monitor the return values of hard-to-resolve functions in the field. 

Using the recorded data, SymCrash can generate test input for the 

crashes by performing SymCon. Figure 3 shows an overall 

process of our approach. 

SymCrash mainly consists of three parts. The first part is 

Instrumenter, which instruments the original application to collect 

program execution information. The second part is Logging, 

which monitors the program execution in the field and collects 

necessary log data. The third part is ReExecution, which 

reproduces crash via SymCon in the lab. During the ReExecution 

phase, SymCrash replaces the symbolic values of hard-to-resolve 

functions with the concrete values that are recorded in the log data. 

In this way, more symbolic executions can be completed and test 

data that leads to crashes can be generated. 

We have implemented a tool called SymCrashJ, which is a 

realization of SymCrash for Java programs. Note that our 

approach can be applied to programs written in other languages as 

well.  

 
Figure 3. An overview of SymCrash 
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4.1 Instrumentation and Logging 
SymCrashJ first identifies the hard-to-solve functions, which 

exhibit the characteristics described in Section 3.2 and can be 

hardly supported by conventional symbolic execution. It then 

instruments these functions to record the function return values 

and necessary program execution information. The 

instrumentation is implemented using the ASM bytecode 

framework [9]. The instrumented version is deployed in the field, 

which collects the runtime values of hard-to-resolve functions, 

generates specific logs according to the method sequence, and 

writes the log data to disk.  

Algorithm 1: ReExecution 
Input : cg : Call graph of program P 

goal_list: Methods in stack trace G0 G1 … Gn 

log_data : Log data 

method_list : A list of hard-to-resolve functions 

Output : input_test :  The test input 

1 begin 

2     cur_goal  G0 

3    state_set  ( P_entry, initial symbolic values, G0, true ) 

4     while true do 

5        cur_state  null 

6         while cur_state  null do 

7             cur_state  findNextState( state_set, cg,  cur_goal ) 

8             if cur_state == null then 

9                 if cur_goal == G0 then 

10                             return 

11                else 

12                    cur_goal  previous goal in goal_list 

13                    continue 

14                end 

15            end 

16        end 

17        if cur_state.m == cur_goal then  

18            if cur_goal  Gn then 

19                cur_goal  next goal in goal_list 

20                cur_state.m  cur_goal 

21            else  

22                input_test  solver.solve( cur_state.PC ) 

23                if input_test is found then  

24                    return input_test 

25                else 

26                    remove ( cur_state, state_set ) 

27                end 

28            end 

29        end 

30        updateSymCon ( cur_state, state_set , method_list ) 

31    end 

32 end     

Figure 4. The ReExecution algorithm 

There are several issues associated with log data. The first issue is 

about data type. For immutable types (such as Integer, Double, 

Float, Byte, Character, Long, String), SymCrashJ simply saves 

them as pointer references. Other data types require a full copy in 

order to ensure that the log data reflects the current state of the 

program, rather than the previous state. Following ChroniclerJ, 

SymCrashJ uses System.arrayCopy provided by JVM to copy 

arrays that contain immutable types and a runtime reflective 

cloning library [11] to copy other types. The second issue 

associated with log data is about log matching. Because the same 

method can be called multiple times, SymCrashJ does not simply 

record the method names, it also records the source code line 

number, the class name, the thread ID, and the current time. The 

third issue is about the constructor. Java constructor has no return 

value. As pointed out in [8], in some cases, calling a constructor 

does not generate a reference to the object. We need to monitor 

the state of the call stack, and then copy the newly created object 

until the object is used. In addition, we ensure the correctness of 

log data in a thread-safe way.  

SymCrashJ adopts a similar strategy for writing log data as 

ChroniclerJ does. Log data stored in memory is automatically 

saved to disk at regular intervals. Furthermore, log data is 

generated automatically when program crashes. SymCrashJ uses a 

daemon process for logging, so that the monitored program can 

execute normally. There are two disk formats of log data. Some 

log data can be serialized (such as basic type) and some cannot. 

Serializable type is saved using Java serialization mechanism and 

non-serializable type is saved in XML format. These techniques 

help improve the efficiency and reduce overhead. 

4.2 ReExecution 
SymCrashJ reproduces crashes using the log data collected 

through program instrumentation. It generates test inputs by 

performing SymCon. The test input leads to the crashes that the 

original crash stack traces represent.  

Figure 4 shows the ReExecution algorithm, which is similar to the 

test generation algorithm used in BugRedux [25]. The input of 

this algorithm includes goal_list (representing call sequence in 

crash stack), log_data (representing the logged data obtained 

through program instrumentation), method_list (representing the 

hard-to-resolve functions that are instrumented and monitored). 

The algorithm outputs the test data that can reproduce the crash as 

specified by the goal_list. 

Our algorithm works as follows. First, it performs initializations 

(lines 2-3), which set cur_goal (current goal) to the first goal G0  

in the goal_list. It then sets state_set, which contains quadruples 

(m, state, g, PC ), where m is the entry method, state is the current 

symbolic state, g is the current target goal, and PC is the current 

path condition. The initial value of m can be set by developers and 

is typically the program entry point.  

In lines 4-31, the algorithm performs symbolic execution based on 

the stack trace given in goal_list. It first initializes cur_state, 

which is an element of state_set and represents the current state of 

symbolic execution. The algorithm then finds out the next target 

state to be explored using the findNextState function. To reach the 

cur_goal from the current state, we use call graph, which depicts 

the caller-callee relationship at the method level. We also use the 

SOOT tool [44] to generate the call graph. For each state s in 

state_set, the findNextState function computes the shortest path 

from s.m to cur_goal in the call graph. It then returns the state that 

has minimum distance to cur_goal, and assigns it to cur_state. 

Once the cur_state is obtained, the ReExecution algorithm checks 

if its value is null. If it is null, it means that the current goal 

cannot be reached. The algorithm then backtracks to the previous 

goal in the goal_list (lines 8-16). For the new cur_state, the 

algorithm checks if cur_stat.m and cur_goal are the same. If the 

cur_stat.m and cur_goal are the same and Gn (the last goal) is 

reached, the symbolic execution stops and the current PC is 

submitted to an SMT constraint solver. Otherwise, the algorithm 

searches for the next goal in the goal_list (lines 19-20) and 

continues symbolic execution by calling the updateSymCon 
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function. The updateSymCon function implements SymCon as 

described in Section 3.3. Once a method M is encountered, 

updateSymCon checks if M is within the predefined hard-to-

resolve function list. If yes, it searches for the function return 

value recorded in the log file, and uses the return value at the time 

of crash to replace the symbolic value of M. Also, during the 

symbolic execution, the symbolic state cur_state and state_set are 

updated.  

The ReExecution algorithm terminates when a test input is found 

(i.e., the constraint solver finds a solution to satisfy the path 

constraints), or there are no more states to explore. 

In summary, our approach instruments a program, collects the 

concrete runtime values of hard-to-resolve functions, and 

performs SymCon to obtain test input that can lead to the same 

crash stack trace as the users observe. Unlike ReCrashJ, 

SymCrashJ does not record all the objects and therefore reduces 

overhead. Unlike BugRedux, SymCrashJ can reproduce more 

crashes because SymCon enables more constraints to be solved. 

Unlike ChroniclerJ, SymCrashJ does not record the user inputs, 

therefore mitigating the privacy concerns. 

5. EXPERIMENTS AND RESULTS 

5.1 Research Questions 
We perform experiments to evaluate the effectiveness, 

performance overhead, and privacy impact of the proposed 

approach. We aim to answer the following research questions: 

RQ1: How effective can SymCrashJ reproduce failures? 

This RQ evaluates the ability of SymCrashJ to successfully 

reproduce the observed crashes. We have selected 14 crashes of 6 

real-world Java applications, as shown in Table 1. Many of these 

crashes are also used in related work. We run SymCrashJ to see 

how many of them can be reliably reproduced. 

RQ2: What is the runtime overhead of SymCrashJ? 

This RQ evaluates if the performance overhead of SymCrashJ, 

introduced by its instrumentation mechanism, is suitable to be 

deployed in the field. To answer RQ2, we evaluate SymCrashJ’s 

performance overhead using the same subject programs as used in 

ReCrashJ [3]. We also run these programs to perform the same 

tasks as described in [3]. The programs and the tasks are shown in 

Table 2.  

Table 1. The crashes used in our study 

Program Size 

(KLOC) 

Description Bug 

ID 

Exception Reason Related 

Work 

BSTTree 0.04 An 

implementation 

of BST Tree 

algorithm 

1 ClassCastException Object type conversion CnC [13] 

2 ClassCastException Object type conversion CnC [13] 

Apache 

Commons 

Math 

48.21 

 

An 

implementation 

of math library 

645 MathRuntimeException Iterate on the original vector, not on the 

copy that is modified. 

ChroniclerJ 

[8] 

790 IllegalArgumentExcepti

on 

Intermediate integer values overflow when 

processing large datasets 

ChroniclerJ 

[8] 

803 Non-exception “X*0 == 0” returns false if X is an infinite 

number. 

ChroniclerJ 

[8] 

Apache 

Commons 

Lang 

27.91 

 

A library that 

provides helper 

utilities for 

Java.lang API  

72 NullPointerException When calling the function 

EqualsBuilder.append(Object[],Object[]) 

ChroniclerJ 

[8] 

84 Exception Missing boundary check when calling 

RandomStringUtils.randomAlphabetic 

N/A 

294 ArrayIndexOutOfBound

sException 

The indexOf(String str, int startIndex) 

function does not check whether it has 

gone over the actual size of the string 

being built. 

N/A 

300 NumberFormat 

Exception 

Invalid strings are passed to the 

NumberUtils.createNumber method 

ChroniclerJ 

[8] 

Ant 101.20 A Java-based 

build tool 

334

46 

NullPointerException The value.length() function throws an 

exception due to a null input value. 

Star [45] 

384

58 

NullPointerException The NullPointerException is thrown in 

Task.log. getProject().log(this, msg, 

msgLevel); 

Star [45] 

Apache 

Commons 

Collections 

13.61 An extension of 

java collections 

library 

28 NullPointerException The SequencedHashMap.indexOf(Object 

key) method fails when the object key is 

not in the map. 

Star [45] 

Joda Time 81.96 A date and time 

Java class 

library  

88 IllegalArgumentExcepti

on 

Invalid arguments for the constructor 

method 

N/A 

93 NullPointerException The variable weekyear is null N/A 
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Table 2. The programs used for evaluating the overhead of 

SymCrashJ 

Program Task File Size 

SVNKit 

Checkout 

Checking 

out a project 

880 44 Mb 

SVNKit  

Update 

Updating a 

project 

880 44 Mb 

Eclipse Content Compiling  Content.java 48 LOC 

Eclipse String Compiling  StringContent

.java 

99 LOC 

Eclipse Channel Compiling  ChannelIOSe

cure.java 

642 LOC 

Eclipse JLex Compiling  JLex version 

1.2.4 

841 LOC 

We also evaluate the overhead of SymCrashJ under two extreme 

scenarios: 1) heavy I/O workload, and 2) heavy string-processing 

workload. For scenario 1, we develop special programs to 

simulate the scenario. For scenario 2, we choose the DaCapo 

benchmark as used in [2, 8]. The overhead is computed as the 

percentage increase of the running time due to the instrumentation. 

RQ3: What is the impact of SymCrashJ on user privacy?  

Privacy concerns can adversely affect the usefulness of crash 

reproducing tools. Unlike ChroniclerJ, SymCrashJ records only 

the selected, hard-to-resolve functions, not all non-deterministic 

functions. In this RQ, we evaluate how SymCrashJ affects user 

privacy by comparing the original inputs that lead to crashes in 

Table 1 and the test inputs that reproduce these crashes. 

For all the RQs, we compare SymCrashJ with two recent work:  

BugRedux and ChroniclerJ. Because ReCrashJ can be hardly 

deployed in practice due to its high performance overhead [8], we 

did not compare with it in RQ1. For BugRedux, it supports four 

types of execution data (Point of Failure, Call Stack, Call 

Sequence, and Complete Trace). In our experiments, we only 

compare our tool with BugRedux instrumented with Call 

Sequence data, which is the most cost-effective realization of 

BugRedux as highlighted in [25]. Furthermore, as the original 

BugRedux supports only C programs, we also developed a Java 

version of BugRedux in order to perform the comparison. We 

perform all the experiments on a Windows 7 system, with 3GB 

RAM. 

5.2 Experimental Results 

RQ1 - Effectiveness 
We apply SymCrashJ, BugRedux, and ChroniclerJ to reproduce 

the 14 real crashes shown in Table 1. The experiment results are 

summarized in Table 3, which shows if the observed crashes can 

be successfully reproduced (“Y” or “N”). 

Table 3 shows that SymCrashJ can successfully reproduce 13 out 

of 14 crashes. The programs terminate with the same exceptions 

as users would observe.  

BugRedux only reproduces 9 crashes. Taking the Apache 

Commons Lang-294 bug as an example, this bug causes the 

following ArrayIndexOutOfBoundsException exception when the 

function StrBuilder.deleteAll is called: 

Exception in thread "main"  

java.lang.ArrayIndexOutOfBoundsException 

at java.lang.System.arraycopy(Native Method)

 at org.apache.commons.lang.text.StrBuilder. 

deleteImpl(StrBuilder.java:1114) 

 at org.apache.commons.lang.text.StrBuilder. 

deleteAll(StrBuilder.java:1188) 

 

The bug is within a user-defined indexOf function called by the 

deleteAll function, which does not check the boundary of the 

string being built properly. BugRedux cannot reproduce this crash 

because there are many complex string operations (such as 

arraycopy), which are hard-to-resolve functions that block 

traditional symbolic executions. SymCrashJ utilizes SymCon, 

therefore it can successfully reproduce this crash.  

Table 3. The results for evaluating the effectiveness of 

SymCrashJ 

Bug ID ChroniclerJ BugRedux SymCrashJ 

BSTTree-1 √ √ √ 

BSTTree-2 √ √ √ 

Math-645 √ √ √ 

Math-790 √ √ √ 

Math-803 √ × × 

Lang-72 √ √ √ 

Lang-84 × √ √ 

Lang-294 √ × √ 

Lang-300 √ √ √ 

ANT-33446 × × √ 

ANT-38458 √ × √ 

Collections-28 √ × √ 

Joda-Time-88 × √ √ 

Joda-Time-93 × √ √ 

The results also show that SymCrashJ outperforms ChroniclerJ, 

which can only reproduce 10 crashes. This could be due to the 

incomplete list of nondeterministic methods that ChroniclerJ 

instruments and monitors.  

0.00% 10.00% 20.00% 30.00% 40.00% 50.00%

SVNKit Checkout

SVNKit Update

Eclipse Content

Eclipse String

Eclipse Channel

Eclipse Jlex

RecrashJ ChroniclerJ SymCrashJ

 
Figure 5. The performance overhead of SymCrashJ 
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RQ2 - Overhead 
We have evaluated the runtime overhead of SymCrashJ using the 

benchmarks described in [2]. Figure 5 shows the comparison 

results. Because the Eclipse subjects are small, SymCrashJ and 

ChroniclerJ achieve similar overhead. The SVN projects are much 

larger and have a larger number of I/O operations. Therefore 

ChroniclerJ incurs much higher overhead, while SymCrashJ 

achieves lower overhead because it only monitors a limited 

number of hard-to-resolve functions. 

We also evaluate the performance of SymCrashJ under two 

extreme scenarios: 1) heavy I/O workload, and 2) heavy string-

processing workload. For scenario 1, we developed a program that 

reads characters from a disk file, using the read( ) function in the  

java.io.BufferedReader class. The number of characters to be read 

is a randomly generated number, ranging from 2MB to 1GB. We 

run this program 200 times and monitor its execution using 

SymCrashJ and ChroniclerJ. Figure 6 shows the average overhead 

of the 200-time executions. SymCrashJ achieves much lower 

overhead than ChroniclerJ (<2%), while ChroniclerJ causes 40%-

88% overhead. 
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Figure 7. The performance of SymCrashJ and the original 

program (for heavy string-processing workload) 

For scenario 2, we select 4 subject systems from the DaCapo 

Benchmarks [7], namely Fop, Luindex, Lusearch, and Tomcat. 

These subject systems are selected because they contain a lot of 

string-related operations such as text search, file processing, and 

webpage processing. We use these systems to test the performance 

of SymCrashJ under heavy string-processing workload. Figure 7 

shows the experimental results. SymCrashJ achieves similar 

performance as the original system’s, the overhead is less than 

6.5%. 

Our evaluation results show that SymCrashJ is a light-weight 

monitoring tool, which does not incur much performance 

overhead, even for systems involving heavy I/O and string-

processing work. 

RQ3 - Privacy 
Unlike ChroniclerJ, SymCrashJ records only the selected, hard-to-

resolve functions. It generates test data based on symbolic 

execution and recorded values of the selected functions. Therefore, 

SymCrashJ does not record all user inputs and the generated test 

cases could be different from the original user inputs. In this way, 

SymCrashJ mitigates the privacy issues. As an example, 

considering the Apache Commons Lang 294 bug, which leads to 

an ArrayIndexOutOfBoundsException exception when the string 

"\n%BLAH%" is input. Using SymCrashJ, we obtain the input 

string “\n” through symbolic execution, which can also lead to the 
same exception, therefore reproducing the crash using a different 

input, without violating the users’ privacy. 

Table 4. The results for evaluating the privacy of SymCrashJ 

Bug ID SymCrashJ ChroniclerJ Original Input 

BSTTree-1 "aaa" "gbk" "gbk" 

BSTTree-2 "aaa" "BSTTree" "BSTTree" 

Math-645 -1 0 0 

Math-790 1490 1600 1600 

Lang-72 3 2 2 

Lang-294 “\n” “\n%BLAH%” “\n%BLAH%” 

Lang-300 "2l" "1l" "1l" 

ANT-38458 0 82 82 

Collections-28 "test" "s" "s" 

 

For the 9 bugs that can be reproduced by both SymCrashJ and 

ChroniclerJ (Table 3), we compare the original inputs that caused 

the crashes and the test inputs generated by the tools. As 

ChroniclerJ is based on the recording of the user inputs, the test 

input generated by ChroniclerJ are exactly the same as the original 

inputs, while our approach can produce different inputs, therefore 

mitigating the privacy problem.  

5.3 Discussions of the Results 
Our evaluation shows that SymCrash is suitable for reproducing 

crashes, in terms of effectiveness, performance and privacy. 

SymCrash also outperforms the related methods such as 

BugRedux [25] and Chronicler [8]. BugRedux supports the 

collection of method call traces through instrumentations and the 

generation of test data that exercises the execution traces. Like 

BugRedux, SymCrash is also based on symbolic execution, but it 

addresses the limitation of conventional symbolic execution by 

considering the hard-to-resolve functions. Chronicler [8] 

reproduces crashes by recording nondeterministic functions 

including user inputs. Unlike Chronicler, SymCrash does not 

monitor all non-deterministic methods, instead it only monitors 

the functions that symbolic execution are likely to fail and 

generate test input through symbolic execution. Our experimental 
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results confirm that SymCrash improves crash reproducibility, 

reduces the overhead and mitigates the privacy concerns.  

Our approach has limitation too. Although SymCon can address 

the limitations of conventional symbolic execution by recording 

concrete values of hard-to-resolve functions, it may still fail to 

generate valid solutions. Even though each hard-to-resolve 

function is replaced with its concrete runtime value, the number of 

path conditions could be still large, especially for large programs. 

Symbolic execution could still fail to deal with the state explosion 

problem even advanced mechanisms (such as partial order, 

abstraction, loop summarization) are adopted [15, 51, 52]. 

Furthermore, symbolic execution tools often encounter the object-

creation problem, where they fail to generate desirable object 

states [52]. In Table 3, we show that SymCrashJ cannot reproduce 

the Apache Commons Math 803 crash. This program contains a 

function as shown below. This function takes an object of 

RealVector class as an input parameter, performs data copy 

operations over the object, and then returns an object of 

ArrayRealVector class. SymCon fails to process this function due 

to the complex nature of symbolic execution.  

1 public ArrayRealVector  ebeMultiply(RealVector v) { 

             … 

2           checkVectorDimensions(v); 

3           double[] out = data.clone(); 

4           for (int i = 0; i < data.length; i++) { 

5                 out[i] *= v.getEntry(i); 

6           } 

7          return new ArrayRealVector(out, false); 

8 } 

Our experimental results as shown in Figures 5-7 confirm that 

SymCrash achieves relatively low runtime overhead. To evaluate 

the overhead, we choose the same subject programs used by 

ReCrashJ and run these programs to complete certain tasks. These 

tasks include checking out, updating, and compiling a project. We 

also design experiments to evaluate our tool in the worst and best 

scenarios. However, it remains possible that there exist some 

special use cases of the programs that could lead to inconsistent 

results as we have obtained.  

Furthermore, our experimental results as shown in Table 4 

confirm that SymCrash can mitigate the privacy concerns. 

However, in some circumstances, SymCrash may still generate the 

same test input as users. For example, if the program only crashes 

at a certain input value, then the test input generated by symbolic 

execution should be the same as the original input, thus the user 

privacy could be violated. Furthermore, a hard-to-resolve function 

might return a value that includes part of the user input. How to 

further mitigate privacy concerns is an important future work. 

6. THREATS TO VALIDITY 
We have identified the following threats to validities: 

· Limited number of subjects. In our experiments, we 

evaluate SymCrashJ using 14 crashes of 6 real-world 

programs. Most of these subjects were also used in related 

works. These subjects were collected by studying bug reports, 

building the corresponding versions of the programs, and 

reproducing the crashes. Such a process is tedious and time-

consuming. Therefore the number of crashes we evaluated is 

rather limited and the bugs underlying the crashes may not be 

representative or comprehensive. We may have accidentally 

chosen bugs that lead to better (or worse) crash 

reproducibility.  

· Concurrency. So far, we have not evaluated our approach 

for concurrency related failures. Although the 

implementation of symbolic execution in our algorithm is 

based on Java Path Finder, which supports multi-threading, 

our approach does not monitor communications between 

threads and therefore does not necessarily reproduce races. It 

would be interesting to combine our approach with certain 

race-detection technology [32] or thread-level sequential 

path analysis techniques [42] to support concurrency. 

· User study. In our work, we evaluate our approach through 

in-house experiments. Although such evaluation is based on 

real-world crashes and programs, the ultimate usefulness and 

effectiveness of the proposed approach should be evaluated 

by real users. Conducting a user study and obtaining 

feedbacks from participants will be an important future work.  

7. RELATED WORK 

Crash Reproduction 

Software crashes are a major contributor to system down time and 

user dissatisfaction. In recent years, many studies have been 

dedicated to the analysis of crashes of real-world, large-scale 

software systems. For example, many crash reporting systems [1, 

22, 31] are deployed to automatically collect crash stack 

information from the field. Ganapathi et al. [21] performed an 

empirical study of Windows OS crashes and discussed major 

crash types. Several bucketing methods [16, 18, 29] were 

proposed to group similar crash reports based on call stack 

similarity. There are also methods for helping developers locate 

crashing faults based on collected crash stack traces [27, 48]. 

DebugAdvisor [6] helps developers find a solution to the reported 

failure by identifying similar problem reported before. 

One of the first steps to comprehend and diagnosis a failure is to 

reproduce the failure. Many crash reproduction techniques have 

been proposed. We have described BugRedux [25] and 

Chronicler [8] in Section 2 and compared SymCrash with them in 

our experiments. Orso et al. [26, 38] also proposed techniques for 

selectively capturing and replaying of program executions. Their 

techniques can be used to generate test cases from user executions 

and reproduce crash. However, their technique lets users specify a 

subsystem of interest, which requires the users to have prior 

knowledge about the possible problematic area. ESD [54] 

proposed by Zamfir et al. automatically synthesizes executions of 

the program and reproduces bug symptoms based on the point of 

failure (POF) information given in a bug report. It uses symbolic 

execution to try to generate inputs that would reach the POF. As 

we have shown in this paper, conventional symbolic execution 

has limitations in generating test data. Furthermore, as pointed out 

by Jin and Orso [25], POF-based crash reproduction is less 

effective than the method call trace based one. 

Our approach is essentially based on the concept of capture & 

replay. Roehm et al. [43] presented an approach that is 

complementary to existing capture & replay approaches. Their 

approach monitors high-level user interactions (such as editing 

operations or commands), and visualizes the monitored user 

interaction traces to help developers reproduce failures. 

Furthermore, our approach aims for helping developer debug field 

failures in the lab. Tucek et al. [46] proposed an approach to on-

site software failure diagnosis at the very moment of failure. Their 

tool employs lightweight monitoring to detect failures and collect 

additional information by re-execution on the user’s machine. 
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JCrasher [12] can generate unit test cases for finding crash-

inducing bugs based on randomly generated data. Later on, it is 

combined with a static analysis tool (ESC/Java) to generate better 

test cases [13]. They also proposed DSD-Crasher [14]: a tool that 

uses dynamic analysis to infer likely program invariants, explores 

the space defined by these invariants through static analysis, and 

finally produces and executes test cases. These tools focus on 

generating test cases to find crashing faults. Our work generates 

test cases that reproduce field failures. 

Static and Dynamic Symbolic Execution 

Symbolic execution has been widely used in software testing and 

verification. Static symbolic execution focuses on interpreting 

program behavior using symbolic expressions. An exemplar tool 

is SPF [15], which is an extension of Java Path Finder for 

symbolic execution. SPF targets to automatically generate test 

case for Java programs through model checking and constraint 

solving. It has good support for math constraints, string operations, 

data structures and arrays, and pre-conditions. Păsăreanu et al. [40] 

also proposed a framework that uses annotations in the form of 

method specifications and loop invariants. Their technique works 

backward from the property to be checked and systematically 

applies approximation to achieve termination.  

However, real-world programs are usually large and complex. As 

described in Section 3, in general, symbolic execution based on 

path constraint solving faces many intractable problems such as 

state explosion [15, 52]. To minimize the impact of such 

intractable problems, most existing symbolic execution 

approaches, including those reviewed above, are bounded: they 

provide parameters or mechanisms to limit the symbolic execution 

under a controllable range [15, 37]. 

To overcome the intractable problems of symbolic execution, 

Dynamic Symbolic Execution (DSE) techniques (also known as 

concolic execution or directed random testing) have been 

proposed [10, 23, 34]. DSE executes the program under test 

symbolically and replaces the hard-to-resolve expressions with the 

concrete values generated by random or default inputs. For 

example, DART [23] is a DSE technique that runs the program 

under test both concretely (executing the actual program with 

random inputs) and symbolically (calculating constraints on 

values at memory locations expressed in terms of input 

parameters). CUTE [34] is a DSE technique that attempts to cover 

all feasible paths: it traverses a program in a depth-first search, 

and generates path constraint along each traversed path. It forces 

symbolic operations to be performed as if some symbolic 

variables are temporarily concrete (non-symbolic). SymCon is 

also a DSE technique. However, it uses the monitored runtime 

values of hard-to-resolve functions, instead of using the values 

generated by random inputs.  

Pex [37] is a white-box test case generation tool, which explores 

programs under test by dynamic symbolic execution and builds 

automated tests with high code coverage. It supports reasoning 

over pointer arithmetic and object-oriented programs. To address 

the space-explosion issue in path exploration, Xie et al. [53] 

proposed an extension of Pex, which adopts a search strategy that 

uses state-dependent fitness values (computed through a fitness 

function) to guide path exploration. Recently, they also proposed 

to involve human cooperation in DSE. For example, in Pex4Fun 

[49] and CodeHunt [50], they allow programmers to modify the 

given working implementation to match the behavior of the secret 

implementation. 

8. CONCLUSIONS  
Reproducing field failures is an important step of debugging. In 

this paper, we first identify a set of methods that are hard to be 

solved by conventional symbolic execution. We then propose 

SymCon, a dynamic symbolic execution technique that replaces 

hard-to-resolve functions with concrete runtime values. Based on 

SymCon, we present SymCrash, which is an automated capture-

and-replay technique. SymCrash only instruments and monitors 

the selected, hard-to-solve functions. Developers can use the 

recorded log data to perform SymCon and to reproduce the 

crashes. We develop SymCrashJ, which is an implementation of 

SymCrash for Java. We have applied SymCrashJ to successfully 

reproduce 13 failures of 6 real-world programs. Our results also 

confirm that SymCrashJ can introduce less runtime overhead and 

achieves better privacy, when compared to the related tools.  

In the future, we will apply our tool to a variety of real programs 

to further evaluate and improve the tool, and to seek feedback 

from real developers. In addition, we will consider how to further 

reduce the impact of state explosion, through a combination of 

relevant work such as program annotation [40]. Other techniques 

such as random testing can be also used to complement symbolic 

execution. In this paper, we identify and instrument all the hard-

to-resolve functions. How to perform program instrumentation in 

order to achieve an optimal balance among effectiveness, 

overhead, and privacy is also an interesting future work. 
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