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ABSTRACT

This paper proposes SymDetector, a smartphone based appli-
cation to unobtrusively detect the sound-related respiratory
symptoms occurred in a user’s daily life, including sneeze,
cough, sniffle and throat clearing. SymDetector uses the built-
in microphone on the smartphone to continuously monitor
a user’s acoustic data and uses multi-level processes to de-
tect and classify the respiratory symptoms. Several practi-
cal issues are considered in developing SymDetector, such
as users’ privacy concerns about their acoustic data, resource
constraints of the smartphone and different contexts of the
smartphone. We have implemented SymDetector on Galaxy
S3 and evaluated its performance in real experiments involv-
ing 16 users and 204 days. The experimental results show
that SymDetector can detect these four types of respiratory
symptoms with high accuracy under various conditions.
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INTRODUCTION

Respiratory symptoms are related to illnesses, infections or
allergies. Among such symptoms, sound-related respiratory
symptoms, such as sneeze, cough, sniffle and throat clear-
ing, are commonly observed and useful in health-related re-
search. For example, by collecting self-reported flu symp-
toms including aforementioned ones from registered users
every week, a nationwide flu map is built in [6] to illustrate
how flu spreads. In [7], self-reported symptom data includ-
ing cough and dry throat is collected to study the relation-
ship between student health and indoor air quality in schools.
However, self-reporting, which has been commonly used in
the current research to collect respiratory symptom data, has
been shown to be inefficient and inaccurate in [30, 15].
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To deal with this issue, in this paper, we present a practi-
cal system SymDetector to help researchers collect accurate
sound-related respiratory symptom data from users by using
off-the-shelf smartphones. SymDetector leverages the built-
in microphone sensor to sense the phone’s acoustic context
and detect the user’s acoustic events which are related to respi-
ratory symptoms, including sneeze, cough, sniffle and throat
clearing. SymDetector can work in an unobtrusive way to
collect users’ symptoms for a long period and the detection
results can be provided to help medical research.

For certain types of symptoms such as sneeze and cough,
there has been some research on how to detect them [25,
13, 32, 24, 15]. However, approaches proposed in [25] and
[13] are not practical since users have to wear specialized sen-
sors (piezoelectric sensor in [25] and accelerometer in [13])
on their chests to detect coughs. Audio based schemes for
sneeze and cough detection have been proposed in [32] and
[24], but they need to record users’ audio data all day long
and cannot work in real time. Larson et al. [15] proposed a
real-time cough detection system by implementing machine
learning techniques on smartphones. However, to sample a
user’s acoustic data, the phone has to be in a specific position
(around the user’s neck), and their system consumes lots of
power (shown in Performance Evaluations).

Different from the aforementioned works, SymDetector de-
tects four types of respiratory symptoms (i.e., sneeze, cough,
sniffle and throat clearing) and considers several practical is-
sues, such as users’ privacy concerns about their acoustic data,
resource constraints of the smartphone and different contexts
of the smartphone. SymDetector consists of four components.
Audio Sampler reads audio samples from the microphone and
segments them as frames and windows. The windows which
may potentially contain respiratory symptoms are sifted out
by Symptom Detector and fed to Symptom Classifier, where
acoustic features are extracted and multi-level classifiers are
used to classify the respiratory symptoms. The detection re-
sults are then recorded in Symptom Recorder. SymDetec-
tor only buffers a window for a short time and the buffered
window is discarded after being processed. All the acoustic
data is processed locally and no raw data will be recorded
on the phone permanently. SymDetector is designed to be
lightweight and robust, so that it can work on a smartphone
for a long time and detect respiratory symptoms under various
contexts. We have implemented SymDetector on the Andorid
based phone Galaxy S3 and evaluated its performance in real
experiments involving 16 users and 204 days. The results
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Figure 1: The architecture of SymDetector.

show that our system can detect respiratory symptoms with
high accuracy under various conditions.

The rest of this paper is organized as follows. In the next
section, we discuss the design considerations in developing
SymDetector. Then, we present the system architecture and
illustrate the design details of each component in SymDetec-
tor. The implementation of SymDetector on Android based
phone and the evaluation of its performance in real experi-
ments are demonstrated in the following sections. Then the
implication is discussed and the related work is reviewed be-
fore concluding this paper.

DESIGN CONSIDERATIONS

SymDetector is designed to unobtrusively detect and record a
user’s respiratory symptoms occurred in his/her daily life us-
ing a smartphone. To achieve this goal, the following design
issues should be considered.

First, users’ privacy should be protected when SymDetector is
working. Since SymDetector needs to monitor users’ acous-
tic data, which may contain large quantities of personal and
private information (e.g., conversations or background noise
that may expose users’ locations or activities), users will be
concerned about how their acoustic data is sampled and used
in the application. To protect users’ privacy, no raw acoustic
data is permanently recorded in SymDetector. SymDetector
only stores a short period of samples temporarily to detect
whether any respiratory symptom exists or not, and then these
samples will be discarded. To prevent users’ acoustic data
from being disclosed, all the samples are processed locally
and no raw data is transferred to remote servers. Eventual-
ly, only the detection results (e.g., the occurrence time and
the type of each symptom) are kept and users can track them
locally or upload them to some trusted servers.

Second, SymDetector must be lightweight. Since it is hard to
know when a respiratory symptom will occur beforehand, the
microphone must keep sensing users’ acoustic data, which
requires SymDetector to be able to process a large amount
of raw acoustic data in real time. To preserve users’ privacy
[18, 17], all the sampled data must be processed locally on the
smartphone, which has limited resources. Thus, SymDetector
should be lightweight (i.e., it should consume less CPU and
power). Although there are some existing sneeze [32, 33]
and cough [15, 24, 23] detection schemes based on acous-
tic signal processing, they are not lightweight and cannot be
directly applied in SymDetector.

Third, the positions of the smartphone with respect to the user
(i.e., the context of the phone) should be considered to make
SymDetector work unobtrusively and robustly. Due to users’
different usage patterns, phones may work in various contexts.
For example, some users prefer to put their phones on the
desk when they work or study, while others prefer to put their
phones in pockets or backpacks when phones are not used.
Even for the same user, the context of his/her phone may
change within a day. For example, a user may put his phone
in the pocket when he works, but take it out of pocket when he
wants to use the phone (e.g., sending texts, checking emails,
playing games). According to the laws of acoustic wave prop-
agation, the acoustic samples recorded by a phone will be
affected by the context of the phone. Therefore, SymDetec-
tor should be able to detect respiratory symptoms in different
contexts.

SYSTEM DESIGN

In this section, we present the design of SymDetector consid-
ering the above issues. As shown in Figure 1, SymDetector
consists of four components. Audio Sampler is used to read
acoustic samples from the microphone and segment them as
frames and windows for further analysis. All windows of sam-
ples are processed by Symptom Detector. It sifts out the win-
dows which may potentially contain respiratory symptoms
and passes them to Symptom Classifier, where multi-level
classifiers are used to classify each respiratory symptom. The
detection results are recorded in Symptom Recorder. The de-
sign details of each component are described as follows.

Audio Sampler

The audio signals can be sampled at different sampling
rates. For example, the microphone on Samsung’s smart-
phone Galaxy S3 can work at 8 KHz, 11.025 KHz, 16 KHz,
22.05 KHz and 44.1 KHz. As the same in [10], the sampling
rate in SymDetector is set to 16 KHz. Audio signals are con-
tinuously sampled from the microphone and each sample is
represented by a 16-bit binary value.

The sampled audio stream is then segmented into non-
overlapped frames of 50 ms (i.e., 800 samples) for feature
extraction. As can be seen from Figure 2, which depicts the
distribution of the symptom length based on our preliminary
dataset, since respiratory symptoms may last for hundreds of
milliseconds and cover several frames, it is difficult to deter-
mine whether a symptom occurs or not and when it occurs
merely based on features extracted from one single frame.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Symptom length (sec)

P
e
rc

e
n
ta

g
e

Figure 2: The distribution of symptom length.

Therefore, several continuous frames are grouped together as
a window and each window is fed to the Symptom Detector
as a unit for processing. The window in SymDetector is set to
4 seconds (i.e., 80 frames) so that it is long enough to cover
the entire symptom and short enough to protect users’ priva-
cy. Since the windows are segmented based on the timeline,
it is possible that a symptom may start at somewhere in the
rear part of a window and end at the front part of the next
window. In this case, though the window is larger than the
event length, the entire event is not covered by any single
window, which makes it difficult to extract window-level fea-
tures correctly. In order to cover this window-crossing event
in one window, the windows are built to overlap each other.
As observed in Figure 2, even the longest symptom does not
last more than 1 second. Thus in SymDetector, the overlap
between windows is set to 1 second. Once a window of 64K
samples (16K from the previous window and 48K newly sam-
pled from microphone) is obtained, it is fed to the Symptom
Detector.

Symptom Detector

Symptom Detector is designed as a filter to sift out the win-
dows which potentially contain respiratory symptoms from
the audio stream. The aim of the Symptom Detector is to use
a lightweight scheme to filter out as many non-symptom win-
dows as possible, leaving only a small number of windows to
Symptom Classifier, where multi-level classifiers are used to
classify them as sneeze, cough, sniffle, throat clearing or non-
symptoms in a more precise way. Since in indoor environ-
ment, the predominant non-symptom windows are those con-
taining either ambient noises or continuous acoustic events
(e.g., talking or music), filtering out these windows are the
main purpose of Symptom Detector. For other non-symptom
windows which contain discrete acoustic events (e.g., knock-
ing on a desk), they will be filtered out in the next compo-
nent. In what follows, we introduce the time-domain features
used in Symptom Detector and illustrate how these features
are used to filter out non-symptom windows when the phone
works in various contexts.

Time-domain Features

Although time-domain features are not sufficient to identify
each kind of respiratory symptom, they can be used to fil-
ter out many of the windows without respiratory symptoms
and their calculation only consumes a little CPU and power.
Three time-domain features (one frame-level feature and two
window-level features) are used in Symptom Detector.

Root Mean Square (RMS): Let f denote a frame consisting
of n samples and let si denote the normalized amplitude value
(i.e., si is scaled from its original 16-bit binary value recorded
by microphone to [−1,1]) of the i-th sample in f , then frame
f ’s RMS is:

rms( f ) =

√

∑n
i=1 si

2

n

RMS [10] measures the energy contained in an acoustic frame
and the following two window-level features are calculated
based on it.

Above α-Mean Ratio (AMR): Let fi denote the i-th frame
in a window w consisting of m frames and given parameter α ,
w’s AMR is calculated as:

amr(α,w) =
∑m

i=1 ind[rms( fi)> α · rms(w)]

m

where rms(w) is the mean RMS of window w and ind() is the
indicator function which returns 1 if its argument is true and
0 otherwise.

AMR measures the ratio of the high-energy frames in a win-
dow and parameter α is used together with the window’s
mean RMS to set a threshold for distinguishing high-energy
frames from low-energy frames. Since in indoor environment
(e.g., office or home), acoustic event frames usually contain
much more energy than ambient noise frames, in a window
with discrete acoustic event, when α is set to close to 1, AMR
approximately reflects the proportion of the event frames in
the window. Given an appropriate α , windows containing dis-
crete acoustic events, continuous acoustic events and ambient
noises will return different AMR values and thus this feature
can be used to sift out windows with discrete acoustic events.
In SymDetector, the default value of α is set to be 0.5.

Average of Top k RMSs (ATR): Let fi denote the frame with
the i-th largest RMS in window w. Considering the top k
RMSs, ATR is calculated as:

atr(k,w) =
∑k

i=1 rms( fi)

k

ATR measures the average RMS of the first k frames with the
most energy. It is used to discern windows containing high-
energy events from windows containing low-energy events.
As shown in Figure 2, since more than 95% of the respiratory
symptoms last longer than 0.1 seconds (i.e., 2 frames), k is set
to 2 in SymDetector.

Adaptive Symptom Detection

Based on the extracted features, two steps are used to filter
out as many non-symptom windows as possible.

First, AMR is used to capture the windows with discrete
acoustic events. As shown in Figure 3, for an ambient noise
window, each frame has similar energy and thus when α is
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Figure 3: The RMS and AMR values of talking and flu symptoms when a phone
is put on the desk and in the pocket respectively.
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Figure 4: CDF of sneeze window ATR and
cough window ATR when a phone is put close
to the user and far away from the user respec-
tively.

set to 0.5, its AMR is close to 1. For a window containing dis-
crete acoustic event (e.g., any respiratory symptom, shutting
the door, knocking on the desk), its AMR is relatively small
since there are only a few number of acoustic event frames in
the window, whose RMS values are much larger than those of
the ambient noise frames. Similarly, the AMR of a window
containing continuous acoustic event (e.g., talking or music)
is smaller than 1 but larger than that of the discrete acoustic
event window. Specifically, a talking window has an AMR of
0.3 to 0.5 (shown in Figure 3) since the voiced frames occupy
30% to 50% in a fluent speech [20]. Comparing Figure 3b
with Figure 3a, although the energy contained in the sampled
event frames decreases when a smartphone is put in the pants
pocket, for the windows in the same category (i.e., ambient
noise window, discrete acoustic event window or continuous
acoustic event window), their AMR values do not change very
much. Therefore, AMR is a robust window-level feature to
classify windows into different categories regardless of the
contexts of the phone.

Second, since a user may spend much of his/her time using
the smartphone in a public area (e.g., offices, classes), acous-
tic events made by other people around him/her may also be
captured by the phone. In order to filter out windows with
these events, ATR is used after the first step. According to
the laws of acoustic wave propagation, an acoustic wave will
lose more energy when it propagates further. Therefore, in the
smartphone, the recorded acoustic events made by the user
who is much closer to the phone will have more energy than
those made by the people around him/her. ATR reflects the
energy contained in an event, thus it can be used by a phone
to discern nearby events from distant events. As shown in
Figure 4, the ATR of a distant event window is much smaller
than that of a nearby event window, and thus the distant event
window can be filtered out by an ATR threshold γ .

However, γ should not be set to a fixed value since the ener-
gy contained in an acoustic event captured by a phone will
be different under various contexts. For example, the ATR
of a window containing a user’s sneeze captured when the
phone is put in his/her pocket may not surpass the threshold γ

which is designed based on acoustic samples collected when
the phone is put on the desk, but this window should not be
discarded as a window containing a sneeze made by others.
Thus γ should be set adaptively to cope with different con-
texts. Since a talking window can be detected by using AMR
(shown in Figure 3), we use it to determine γ . When a window
w is classified as a talking window, its mean RMS rms(w) is
used to update the mean RMS of all the talking windows rms
as follows:

rms = rms+β · [rms(w)− rms] (1)

And then the ATR threshold γ is calculated as:

γ = η · rms (2)

In SymDetector, β and η are set to 0.5 and 1.2 respectively
based on our preliminary experimental results. According to
Equation 1 and 2, γ will be adaptively changed based on the
variation of the contexts, so Symptom Detector can sift out
windows containing a user’s respiratory symptoms robustly.
Figure 5 shows the ATR of the windows containing respira-
tory symptoms made by a user (denoted as user) and people
around him (denoted as others) in three weeks in different
phone contexts. The phone was put on the desk for the first
week, in the user’s pants pocket for the second week and in
his backpack for the third week. As can be seen, although the
ATR of the window containing a certain type of respiratory
symptom varies in different phone contexts, the ATR thresh-
old also changes adaptively, which makes Symptom Detector
be able to discern respiratory symptoms made by the user
from others. As shown in Figure 5, when the phone is put on
the desk, all the respiratory symptoms made by the user can
be sifted out. For the respiratory symptoms made by others,
except for a few sneezes, all the others can be filtered out cor-
rectly. When the phone is put in the user’s pants pocket or
backpack, except for a few sniffles and throat clearing symp-
toms, all the other symptoms made by the user can be dis-
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Figure 6: The calculation of SL and LRR for different types
of symptoms.

cerned from those made by others through the ATR threshold.
When a window is fed to Symptom Classifier, the threshold γ ,
which reflects the current signal intensity level, will also be
recorded for further processing.

Symptom Classifier

In Symptom Detector, most noise windows and continuous
acoustic event windows are filtered out. However, since only
a few features are used there, some windows which contain
other discrete acoustic events rather than respiratory symp-
toms (e.g., shutting the door, knocking on the desk) will also
be preserved. In order to classify the preserved windows into
different categories (i.e., sneeze, cough, sniffle, throat clear-
ing and non-symptoms), in Symptom Classifier more features
are extracted and multi-level classifiers are designed.

Feature Extraction

Both time-domain and frequency-domain features are extract-
ed in Symptom Classifier.

Symptom Length (SL): As shown in Figure 6, SL measures
the length of frame set Fe (Fe = { fs, fs+1, ..., fe}), which is the
largest continuous frame set covered by the accoustic event.
For a discrete acoustic event in window w, to decide its Fe, the

maximum RMS frame fm is located and put into Fe initially,
then the frames before and after this frame are continuously
added into Fe until the frames whose RMS values are less than
δ · rms(w) (δ is set to 0.5 in SymDetector) are met.

As observed in Figure 2, most of the symptoms last for 0.1
to 0.6 seconds (i.e., 2 to 12 frames), and thus SL can be used
to discern the non-symptoms whose lengths are out of this
range. Also, obtaining frame set Fe will save CPU and power
when calculating the resource-consuming frequency-domain
features since only frames in Fe, instead of frames in the en-
tire window, need to be considered.

Left to Right Ratio (LRR): LRR measures the ratio of the
area covered by the frames from fs to fm to the area from fm to
fe. As shown in Figure 6, sneeze and sniffle’s LRR values are
larger than 1, while cough and throat clearing’s LRR values
are less than 1.

Relative Maximum RMS (RMR): As shown in Figure 3 and
Figure 6, sneeze and cough contain much more acoustic en-
ergy than sniffle and throat clearing. RMR is used to reflect
this difference and it is calculated as:

rmr(w) = max
f∈w

rms( f )

γ

where γ is the ATR threshold when window w is processed in
Symptom Detector. Instead of absolute RMS, relative RMS
is used to avoid the affect caused by different contexts.

Zero Crossing Rate (ZCR): Let sgn() denote the sign func-
tion which returns 1 for a positive argument, 0 for 0 and -1
for a negative argument. Then frame f ’s ZCR [29] is:

zcr( f ) =
∑n

i=2 |sgn(si)− sgn(si−1)|

2(n−1)

ZCR is a good feature to detect percussive sounds. In Symp-
tom Classifier, the mean and variance of ZCR in Fe are used to
discern the non-symptoms whose ZCR values are out of the
range of the ZCR values calculated from respiratory symp-
toms.

Spectral Centroid (SC): Let pi (i = 1,2, ...,N) denote the
normalized magnitude of the i-th frequency bin obtained by
using Fast Fourier Transform (FFT) on frame f . f ’s SC [16]
is calculated as:

sc( f ) =
∑N

i=1 i · p2
i

∑N
i=1 p2

i

SC measures the centroid of the spectral energy distribution.

Bandwidth: Following the calculation of SC, f ’s Bandwidth
[16] bw is calculated as:

bw( f ) =
∑N

i=1(i− sc( f ))2 · p2
i

∑N
i=1 p2

i
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Bandwidth measures the flatness of the FFT spectrum.

λ th-percentile Spectral Rolloff (SR): Given parameter λ ,
f ’s SR is calculated as:

sr(λ , f ) = min(h|
h

∑
i=1

p2
i >

λ

100

n

∑
i=1

p2
i )

SR indicates the frequency bin below which it contains λ per-
cent of the total spectral energy. It reflects how a frame’s spec-
tral energy distributes. For example, SR of a frame whose
energy mostly concentrates on low-frequency band will be
small even for a large λ and SR of a high-frequency frame
will be large even for a small λ . In SymDetector, λ is set to
10, 50 and 90 when this feature is extracted.

The mean and variance of these spectral features of the frames
in Fe are calculated as window-level features.

Multi-level Classification

After extracting the above features from acoustic event win-
dows, a classifier can be trained to classify respiratory symp-
toms. However, although most ambient noise windows and
continuous acoustic event windows are filtered out in Symp-
tom Detector, many windows which do not actually contain
respiratory symptoms are still preserved (e.g., shutting the
door, knocking on the desk, turning the book). Since in peo-
ple’s daily lives, these events occur much more than respira-
tory symptoms, directly using a classifier on all the windows
preserved in Symptom Detector will cause the Class Imbal-
ance Problem [14]. Therefore, a coarse classifier is designed
in Symptom Classifier to filter out as many non-symptom win-
dows as possible and then Support Vector Machine (SVM) is
used to classify all the respiratory symptoms.

As shown in Figure 7, in the coarse classifier, RMR is used
to classify the events as two categories due to the higher en-
ergy level of sneeze and cough than that of sniffle and throat
clearing (shown in Figure 3, Figure 5 and Figure 6). Then SL
and ZCR are used since they are time-domain features and
many non-symptoms can be discerned by using them. For ex-
ample, as observed in our experimental data, the sound made
when one puts his coffee cup on the desk has low SL and the
sound of shutting a door has low ZCR. Lastly, SR with λ =
50 is used to filter out high-frequency events in the category
of sneeze and cough since both of them do not contain many
high-frequency energy.

After identifying most of the non-symptom windows and clas-
sifying the remaining as two categories in coarse classifier, a
finer classifier is used on both categories to classify the res-
piratory symptoms. In machine learning, SVM is shown to
be an effective supervised learning technique and has been
used in various classification problems [11, 5, 32]. Therefore,
we use SVM as the second-level classification in SymDetec-
tor. However, SVM is originally designed for binary classi-
fication. In our system, after running the coarse classifier,
three types of sounds need to be classified in each category
(i.e., sneeze, cough and non-symptom in one category; snif-
fle, throat clearing and non-symptom in the other category).
Thus, the basic SVM technique needs to be extended to clas-
sify multiple types of sounds. One-against-all [2] and one-
against-one [9] are two well-known strategies of using binary
SVM for multiclass classification. For k classes, although the
number of binary SVMs constructed by one-against-one (i.e.,
k(k−1)/2) is larger than that of one-against-all (i.e., k), one-
against-one yields higher classification accuracy in general
[11]. Since in our classification problem, each category only
has 3 types of sounds, we use one-against-one strategy and
use Radial Basic Function (RBF) as the kernel function when
training the binary SVMs.

There are some other classification schemes which can also
be used for symptom classification, such as Gaussian Mix-
ture Models (GMM) [8], k-nearest Neighbors (KNN) [19],
Hidden Markov Models (HMM) [1] and Random Forest (RF)
[15]. HMM and RF are used in [1] and [15] respectively to
detect coughs, and we will compare our system with theirs in
the performance evaluations.

Symptom Recorder

The classified respiratory symptoms are recorded in this com-
ponent. Since overlapped windows are used in SymDetector,
a respiratory symptom may be recorded twice. To remove
redundancy, fs and fe, which are obtained when extracting
SL, are recorded in terms of system time, and if two record-
ed respiratory symptoms are interleaved, the one with shorter
SL will be discarded. The recorded respiratory symptoms
can be accessed by the user locally or shared with medical
researchers with the permission of the user.

IMPLEMENTATION

SymDetector is implemented on Samsung’s smartphone
Galaxy S3, using Android OS 4.2.2. Acoustic samples are
continuously read by a sampling thread from the phone’s
built-in microphone at 16 KHz. After 64K samples (i.e., 4
seconds) are obtained, they are fed to a processing thread.
The sampling thread will start building the next window from
the 3rd second of the previous one so that these two windows
will have 1-second overlap. The processing thread segments
the window into frames of 800 samples and calculates each
frame’s RMS to get the window’s AMR and ATR. Symptom
Detector is implemented to decide if this window should be
discarded or preserved. If it is detected as a talking window,
ATR threshold γ will be updated based on Equation 1 and 2
before the window is discarded. If the window is preserved,
Symptom Classifier is implemented to classify it into one of
the categories (i.e., sneeze, cough, sniffle, throat clearing or



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
e

rc
e

n
ta

g
e

AMR

Figure 8: The percentage of respiratory symp-
toms that are recorded when differen AMR
thresholds are used based on the preliminary
dataset.
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Figure 9: Cough detection results of SymDetec-
tor, LCM and CoughSense.

User Days
Working

conditions
Sneeze Cough Sniffle

Throat
clearing

Non-
symptoms

1 28 office 41 44 61 91 814
2 24 office 55 64 15 42 726
3 17 office/home 36 27 14 4 660
4 16 office/home 40 23 12 3 562
5 15 office 26 7 5 16 413
6 14 office/home 10 21 48 65 632
7 14 office/home 14 3 12 4 465
8 14 office 13 2 6 3 357
9 13 office 8 36 10 13 437
10 7 office/home 14 78 1 28 272
11 7 office 10 7 1 3 263
12 7 office 12 3 0 7 176
13 7 office 8 2 0 0 230
14 7 office 18 0 2 5 216
15 7 office/home 7 1 0 2 325
16 7 office 17 2 0 0 169
total 204 - 329 320 187 286 6717

Table 1: Overview of the experiment and collected data.

non-symptoms). The occurrence time and features of the clas-
sified event are recorded by a recording thread. Then the pro-
cessed window is discarded and the processing thread ends.
SymDetector does not keep any raw acoustic data and it only
buffers 4-second data during the process. The system time
when a window is fetched is recorded to infer the starting and
ending time of the respiratory symptom if it exists in the win-
dow.

In the processing thread, if a window is preserved after Symp-
tom Detector, all its time-domain and frequency-domain fea-
tures mentioned before will be extracted. Then, a coarse cla-
ssifier is used to classify the window into one of the two cat-
egories as shown in Figure 7, and 6 binary SVMs are imple-
mented (3 for each category) to further classify the window
as one of the symptoms or non-symptom. In order to save the
smartphone’s CPU and power, we use Libsvm [4] to train the
6 SVMs offline, and then the support vectors and the coeffi-
cients are provided to the processing thread for classification.

SymDetector is easy to use since it is designed to work in an
unobtrusive way. After the program is started, the user can
use the phone just in his/her normal pattern and no special in-
structions need to be followed. SymDetector will stop when
the user is answering or making a phone call and resume after
that. We provide the user an access to his/her recorded data,
so the user can either track his/her respiratory symptoms dur-
ing a certain period locally or upload his/her respiratory symp-
tom data to a trustworthy server.

PERFORMANCE EVALUATIONS

In this section, we evaluate the performance of SymDetector
based on the data collected in real experiments.

Experimental Setup

We have two datasets: a preliminary dataset collected from
5 users which is used to study the features extracted from
respiratory symptoms and determine the parameters used in
our system, and a dataset collected from 16 users to evaluate
the performance of our system.

The preliminary acoustic dataset is collected from 5 users.
Each user was given a Galaxy S3 phone, which was carried
by them and recorded all the acoustic data around them from
9am to 12pm every experimental day as wav files. The expe-
riment lasted 7 days and after the experiment, a total length
of 105-hour audio clips were collected. We asked the users
to listen to the audio files to label all the sound events (e.g.,
conversations, respiratory symptoms made by themselves and
others). The labeled data is then used to study the features ex-
tracted from respiratory symptoms (e.g., the distribution of
symptom length in Figure 2) and further to determine the
parameters used in SymDetector (e.g., α , β and η used in
Symptom Detector).

This preliminary dataset is relatively small. This is because
increasing the number of users and recording their acoustic
data and then listening to them to label the ground-truth symp-
toms is very difficult and impractical. First, it is hard to recruit
users to participate in the experiment because they may feel
uncomfortable when knowing that all their acoustic data (in-
cluding their daily conversation) will be recorded. Second, it
will cost much time and labor to get the ground truth because
all the audio files must be played and listened in order to la-
bel respiratory symptoms and other acoustic events from the
collected audio data. Third, recording all the acoustic data
as wav or other playable audio files will consume much stor-



age and this will make it difficult to conduct the experiment
continuously for a long time because of the limited storage in
smartphones.

To overcome these problems, we design a data collection
scheme to reduce the audio data to be recorded without miss-
ing respiratory symptoms. Since the discrete acoustic events
(e.g., respiratory symptoms) can be distinguished from the
ambient noises and continuous acoustic events (e.g., conversa-
tions) by using AMR extracted in Symptom Detector (shown
in Figure 3), we can reduce the audio data by only recording
the discrete acoustic events. In our experiment, SymDetec-
tor is modified not to detect respiratory symptoms directly.
Instead, it records the 4-second window audio clips and the
cross-validated training and testing are done offline. For each
4-second window sampled in Audio Sampler, its AMR value
is calculated in real time. If the AMR is below a threshold,
this window will be recorded as a wav file to provide ground
truth; otherwise, it will be discarded. As shown in Figure
8, the experiment based on the preliminary dataset indicates
that all the respiratory symptoms can be safely recorded if
the AMR threshold is set appropriately (it is set to 0.5 in our
data collection). In the end, we collect the data from users
and listen to all these 4-second audio files to label respiratory
symptoms and other acoustic events manually.

Using the above scheme, we recruited 16 users and collect-
ed our second dataset. These users were asked to use the
smartphone with SymDetector running for at least 6 hours a
day. The numbers of respiratory symptoms and other acoustic
events (called non-symptoms) made by each user are shown
in Table 1. Among the 16 users ranging from 18 to 30 years
old (6 females and 10 males), 12 are graduate students who
spend most of their daily time in their offices. During the ex-
periment, two users (user 6 and user 10) reported that they
happened to catch a cold and two users (user 2 and user 4)
reported that they were troubled with pollen allergy. Since
SymDetector is designed for indoor environment, in our ex-
periment, the audio data is only collected from two common
indoor scenarios (i.e., office and home). As shown in column
3 of Table 1, some users only use it in their offices during the
day (office) and the others are asked to use SymDetector at
both offices and home (office/home). As can been seen from
Table 1, our design largely reduces the audio data recorded
for ground truth. For example, even for a 28-day experiment
(user 1), only 1051 audio clips (i.e., 136MB audio data) are
recorded. This also reduces the time spent on labeling the
ground-truth events. We only spent less than 15 hours to la-
bel all the respiratory symptoms monitored in 204 days.

After gathering data from users and labeling all the acous-
tic events, the classification performance of SymDetector is
cross validated under different conditions. Leave-one-user-
out strategy is used in our evaluation for cross validation
across users. Each time, data collected from 15 users is used
as training data to train the coarse classifier and SVM classi-
fier, and data gathered from the remaining user is used for
testing. This process is repeated so that each user’s data is
used exactly once as the testing data.

Overall Performance
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Figure 10: TPR and PPV of each type of acoustic event under
different working conditions.

Symptom TPR PPV
Sneeze 0.836 0.910
Cough 0.831 0.866
Sniffle 0.824 0.827

Throat clearing 0.867 0.914
Non-symptoms 0.991 0.985

Table 2: The detection results of respiratory symptoms based
on the data collected from 16 users and 204 days.

Table 2 shows the overall detection results of SymDetector
in terms of True Positive Rate (TPR) and Positive Predictive
Value (PPV). For a certain type of event, its TPR is defined as
the ratio of the number of true positives (i.e., the events which
are correctly identified as such type) to the number of actual
positives (i.e., such type of events which are actually in the
test set) and its PPV is defined as the ratio of the number of
true positives to the sum of the number of true positives and
false positives (i.e., the events which are identified as such
type but actually not). As can be seen, more than 82% of
respiratory symptoms are correctly classified and 99.1% of
non-symptoms are detected. The PPV value of respiratory
symptoms are larger than 82%, indicating that only a few of
acoustic events are misclassified as a certain type of respira-
tory symptom. Comparing with the other types of respirato-
ry symptoms, throat clearing is detected more accurately and
has fewer false positives due to its low-frequency character-
istic. The TPR and PPV of sniffle are not as large as those
of the other respiratory symptoms. This is because the dura-
tion of sniffle is very short and its frames contain little energy,
which makes it difficult to be distinguished from some non-
symptoms. Sneeze contains much more energy than many
other acoustic events occurred in a user’s daily life. Therefore,
only a small number of acoustic events are falsely classified
as sneeze and it has a large PPV value (91.0%).

Since there is no similar work on detection of all these four
types of respiratory symptoms, we only consider cough and
compare SymDetector with two cough detection systems (de-
noted as LCM [1] and CoughSense [15] respectively) by us-
ing the dataset collected from 16 users. LCM uses Hidden
Markov Models to detect coughs based on the audio data col-
lected from a microphone worn around a user’s neck. Cough-



Component CPU usage Power consumption
Audio Sampler 1.67% 621.72mJ

Symptom Detector 1.13% 130.28mJ
Symptom Classifier 2.73% 326.35mJ
Symptom Recorder 0.45% 105.44mJ

Table 3: CPU usage and power consumption of each compo-
nent in SymDetector when a respiratory symptom window is
processed.

Sense uses a smartphone to record the audio data and us-
es Random Forest to detect coughs. Both these schemes
are shown to be effective in detecting coughs. However, in
their experiments, the audio data is collected without consid-
ering different phone contexts. Therefore, we implemented
these two schemes and compared them with SymDetector. As
shown in Figure 9, SymDetector has larger TPR and PPV than
LCM and CoughSense. This is because both time-domain and
frequency-domain features are used in SymDetector and these
features are effective in cough detection, while in LCM and
CoughSense only frequency-domain features are used. Also,
SymDetector is designed to work in different contexts, while
LCM and CoughSense can only work when the microphone
is put in a specific position. Our experimental data is collect-
ed in various contexts, and thus SymDetector performs better
than the other two systems.

Working Conditions

As illustrated before, two groups of users are asked to test
SymDetector under different working conditions. Comparing
with office, in office/home, the phone’s working condition is
more complicated, and thus more non-symptoms are recorded
when a phone works in office/home. As observed in Table 1,
for a 7-day experiment, user 10 and 15 (office/home) collect-
ed more non-symptoms than the others (office). To compare
SymDetector’s performances under these two working con-
ditions, data collected in office and office/home is analyzed
respectively and Figure 10 shows their detection results on
sneeze, cough, sniffle, throat clearing and non-symptoms (de-
noted as sz, c, sf, t and n respectively). As observed in Figure
10a, more than 80% of the respiratory symptoms in each type
are correctly detected under both working conditions. Com-
paring Figure 10a with Figure 10b, for each type of respi-
ratory symptom, its TPR almost remains the same under di-
fferent working conditions, but its PPV is higher in office than
in office/home. This is because more different types of non-
symptoms occur in office/home than in office, which results in
more non-symptoms being misclassified as symptoms.

CPU Usage and Power Consumption

Table 3 shows the average CPU usage and power consump-
tion of each component in SymDetector when a respirato-
ry symptom window is processed. As can be seen, Symp-
tom Classifier consumes more CPU (2.73%) than any other
component. This is because it extracts many time-domain
and frequency-domain features and uses multi-level classifier-
s to detect respiratory symptoms. Comparatively, Symptom
Detector only extracts three time-domain features and thus
it consumes little CPU (1.13%) and power (130.28 mJ). In

System

CPU usage Power consumption
Ambient

noise
Cough

Ambient
noise

Cough

SymDetector 2.91% 5.72% 0.73J 1.25J
CoughSense 10.36% 13.28% 1.57J 1.93J

Table 4: CPU usage and power consumption of SymDetector
and CoughSense when processing an ambient noise window
and a cough window.

SymDetector, low-power Symptom Detector is used to pro-
cess all the windows and only a few number of windows
which contain discrete acoustic events are processed by the
resource-consuming Symptom Classifier.

Since CoughSense is also designed on smartphone, we com-
pare the average CPU usage and the power consumption of
SymDetector and CoughSense when different windows are
processed, and the results are shown in Table 4. As can be
seen, since CoughSense needs to extract frequency-domain
features for all the frames in a window, it consumes more
CPU and power than SymDetector in processing either an am-
bient noise window or a cough window. Our experimental re-
sult shows that on average, SymDetecor consumes 803.53 mJ
for processing a 4-second window and it can work for more
than 20 hours on a fully charged phone.

DISCUSSIONS

In the design of SymDetector, we consider users’ privacy,
power consumption and phone context to make it practical
to detect and record users’ respiratory symptoms for a long
time. Although users with respiratory diseases may have
many symptoms and the symptoms detected in our current
work may not be sufficient to exactly infer whether a user has
got certain disease or not, detecting these 4 types of sound-
related symptoms, which are commonly observed in many
respiratory diseases, will provide useful information for the
medical researchers. For example, these symptoms can be
collected in some surveillance systems to monitor the spread
of infectious diseases like flu [6] and may potentially help
with infectious disease containment [31]. Also, continuously
monitoring a specific user’s symptoms and comparing them
with his/her historical information will help to detect some
diseases in an early stage.

Although SymDetector is designed to work in different phone
contexts, its detection result may vary as the context changes.
In order to evaluate SymDetector’s performance in various
phone contexts, we collected three more weeks’ data from
user 1. For each week, we asked user 1 to put the phone on
the desk, in his pants pocket and in his backpack (the back-
pack was left close to the user during his working) respective-
ly (denoted as desk, pants pocket and backpack respectively).
Due to the small scale of our dataset, we train the classifiers
based on user 1’s acoustic data collected in Table 1 and show
the detection results in Figure 11. As observed in Figure 11a,
although the TPR values of all four types of respiratory symp-
toms in pants pocket and backpack are smaller than those of
desk, more than 75% of sneezes and coughs and more than
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Figure 11: TPR and PPV of each type of acoustic event in
different phone contexts.

55 % of sniffles and throat clearing symptoms in pants pock-
et and backpack are correctly detected. In pants pocket and
backpack, comparing with sneezes and coughs, less sniffles
and throat clearing symptoms are correctly detected because
these two types of symptoms contain less acoustic energy,
which makes them more likely to be filtered out in Symp-
tom Detector. As shown in Figure 11b, similar to TPR, for
each type of respiratory symptom, its PPV in pants pocket
and backpack is smaller than that of desk. However, com-
paring Figure 11b with Figure 11a, the PPV value difference
between pants pocket (or backpack) and desk for a certain
type of respiratory symptom is smaller than the correspond-
ing TPR value difference. This is because in the extracted
features, except for RMR, all the other features are not relat-
ed to the amount of energy contained in the acoustic events.
Although the energy contained in each respiratory symptom
in pants pocket and backpack is less than that of desk, it is
still hard for a non-symptom to be misclassified as a respira-
tory symptom.

The current SymDetector is designed to work in indoor envi-
ronment, where the ambient noise is relatively simple and in-
variant. However, in outdoor environment, the ambient noise
is much more complicated than that indoor and noises like
the sounds of birds, winds or vehicles may be collected in
the acoustic data as well. These noises are hard to be filtered
out in our current system, which makes the symptom detec-
tion even harder since the symptoms may be overlapped with
these unpredictable ambient noises. While users will spend
much of their time indoor, they may also go outdoor some-
times for walk, game or meal. As our future work, we will
study the ambient noise in outdoor environment and make
SymDetector work both indoor and outdoor.

RELATED WORK

By leveraging smartphones, many works have been proposed
to provide users health related applications. Shahriar et al.
[26] equipped a pair of sensors in the smartphone’s earphone
to monitor the user’s heart rate and suggest music for the
user to maintain the heart rate. Keally et al. [12] combined
TinyOS motes and Android smartphones together to build
Practical Body Networking (PBN) for recognizing people’s
daily activities. By processing the sensor data continuously
read from a smartphone’s accelerometer, Agata and Robert

[3] designed an algorithm for walk detection and step count-
ing. Having the similar goal with these research, we also
exploit the ubiquity of smartphones to obtain users’ health
information.

As a low-cost and common sensor on all kinds of mobile
phones, the microphone has been exploited in many applica-
tions. In [21], Hong et al. designed StressSense to evaluate
a user’s stress level by analyzing his/her speech. However, to
collect the user’s speech, the phone has to be attached to the
specific part of the user’s body. SoundSense [22], which uses
both supervised and unsupervised learning techniques to de-
tect and classify accoustic events occurred in one’s daily life,
considers various contexts of the phone, but it consumes lots
of power since it needs to extract many frequency-domain fea-
tures for each frame. By analyzing the acoustic data sensed
during a user’s sleep, Tian et al. [10] designed iSleep to eva-
luate the user’s sleeping quality in terms of the number of
his/her body movement, cough and snore at night. Howev-
er, their techniques cannot be directly applied in SymDetec-
tor since they assume that there are no other acoustic events
during one’s sleep except body movement, cough and snore,
which is quite different from the environment where SymDe-
tector works.

Audio based systems have been designed to collect people’s
health information in many previous works. In [23] and [24],
HMM based schemes are proposed to detect cough from con-
tinuous audio record. In [28] and [34], audio data is collect-
ed to analyze the lung sounds. However, these systems can-
not work in real time. In [27], a mobile sensing system is
proposed to detect various non-speech body sounds, but the
users have to wear specific sensors. Random Forest (RF) cla-
ssifier is implemented in [15] to detect a user’s cough. In [35],
BodyScope is designed to detect 12 non-verbal sounds includ-
ing cough. However, in these systems, the user has to wear
the phone (or microphone) around his/her neck. Also, the sys-
tem in [15] consumes much CPU and power since it needs to
calculate audio spectrogram for the entire audio sequence.

CONCLUSION

In this paper, we designed SymDetector, a smartphone based
application which can unobtrusively detect a user’s acous-
tic events related to respiratory symptoms, including sneeze,
cough, sniffle and throat clearing. Several practical issues,
such as users’ privacy concerns about their acoustic data, re-
source constraints of the smartphone and different contexts of
the smartphone, are considered in developing SymDetector.
We have implemented SymDetector on Galaxy S3 and eval-
uated its performance in real experiments involving 16 users
and 204 days. The experimental results show that SymDetec-
tor can detect the respiratory symptoms with high accuracy
under various conditions.
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