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The Maxwell equations and the constitutive relations describe the classical propagation of elec-
tromagnetic waves in continuous matter. Here, we investigate the effects stemming from extended
constitutive relations on the propagation of waves in bi-isotropic and bi-anisotropic media using
a classical general approach based on the evaluation of dispersion relations and refractive indices.
For the bi-anisotropic media, we specify two classes of magnetoelectric parameters represented by
symmetric and antisymmetric tensors. The three cases examined have provided real and distinct
refractive indices for two propagating modes, which implies birefringence. The propagating modes
were also carried out in all cases. The anisotropy or birefringence effect, given by the rotatory
power or phase difference, was evaluated in terms of the magnetoelectric parameters of the theory
in each case. The propagation orthogonal to the vectors used to parametrize the symmetric and
antisymmetric magnetoelectric tensors is described by distinct modes, representing a route to iden-
tify the kind of bi-anisotropic medium examined. The group velocity and Poynting vector were also
evaluated for all the cases examined to discuss the energy propagation in these anisotropic media.

PACS numbers: 41.20.Jb, 78.20.Ci, 78.20.Fm

I. INTRODUCTION

As is well known, the propagation of electromagnetic
waves in a continuous and infinite medium is described
by the standard Maxwell equations in the matter [1, 2],

k ·D = 0 , k×H + ωD = 0, (1a)

k ·B = 0 , k×E− ωB = 0, (1b)

where we use a typical plane wave ansatz, E =
E0e

i(k·r−ωt) and B = B0e
i(k·r−ωt). The electric displace-

ment and magnetic field, D and H, respectively, contain
the electromagnetic response of the matter in the form
of electric polarization and magnetization, respectively.
Besides, these phenomena are related to the constitutive
relations involving the fields (D,E) and (H,B). For lin-
ear, isotropic, and homogeneous dielectric matter, the
constitutive relations take on the usual form,

D = εE, H = µ−1B, (2)

where ε is the electric permittivity and µ is the mag-
netic permeability of the medium (constant parameters,
in this case), given by ε = ε0(1 + χE), µ = µ0(1 + χM ).
Here, χE and χM represent the electric and magnetic
susceptibility, respectively, contributing to the polariza-
tion, P = ε0χ

EE, and magnetization vector, M = χMH
[1–3]. The simplest configuration appearing in Eqs. (2)
describes a medium, like water and glass, where the phys-
ical properties do not depend on the direction of the wave
propagation.
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The complexity and diversity of electromagnetic phe-
nomena in matter are addressed by general permittivity
and permeability tensors, εij and µij , written as 3×3 ma-
trices. These tensors are suitable to describe interesting
scenarios endowed with anisotropy, where the constitu-
tive relations (2) read

Di = εijE
j , Hi = (µ−1)ijB

j , (3)

with

εij = ε0(δij + χEij), (4a)

µij = µ0(δij + χMij ), (4b)

and χEij and χMij representing the susceptibility tensors.
The expressions in Eqs. (4) include the polarization and
magnetization contributions, P i = ε0χ

E
ijE

j and M i =

χMij H
j , which usually appears in the constitutive rela-

tions as

Di = ε0E
i + P i, Bi = µ0H

i + µ0M
i. (5)

For anisotropic configurations, the tensor εij describes
uniaxial and biaxial crystals [3–6], which display optical
activity (chirality) [7] and birefringence [8, 9].

Effects of anisotropy may also appear in linear elec-
trodynamics with linear extended constitutive relations,
envisaged as

D = ε̂E + α̂B, (6a)

H = β̂E + ζ̂B, (6b)

where ε̂ = [εij ], α̂ = [αij ], β̂ = [βij ], and ζ̂ = [ζij ] repre-
sent, in principle, 3 × 3 complex matrices. Such expres-
sions above contain additional magnetoelectric responses
of the medium to electromagnetic fields: α̂ measures the
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electric response to the magnetic field and β̂ represents
the magnetic response to the electric field. In this gen-
eralized context, if the relations (5) remain valid, the
polarization and magnetization vectors receive contribu-
tions from the magnetic and electric sectors, respectively,
being given as

P i = ε0χ
E
ijE

j + αijB
j , (7a)

M i = χMij H
j + β̃ijE

j , (7b)

where it holds that ζ̂ = µ̂−1, β̂ = −µ0µ̂
−1β̃.

In order to ensure the energy conservation of the elec-
tromagnetic field in a medium where the constitutive re-
lations (6a) and (6b) prevail, the Poynting theorem leads
to the following set of relations for the complex matrices:

ε̂ = ε̂†, (8a)

µ̂−1 = (µ̂−1)†, (8b)

α̂ = −β̂†. (8c)

For details, see Sec. II and Refs. [10–12]. Relation (8c)
will be crucially relevant in the analysis of the present
work, as will be clear in the next sections.

The simplest version of the relations in Eqs. (6),(
D
H

)
=

(
ε α
β ζ

)(
E
B

)
, (9)

includes ε, α, β, and ζ as single parameters and describes
the physics of bi-isotropic media (the most general lin-
ear, homogenous and isotropic materials [10, 11]), cor-
responding to the case in which the matrices α̂ = [αij ],

β̂ = [βij ] are diagonal and isotropic. In this case, in order
to be consistent with energy conservation, the relations
(9) yield

α = −β∗. (10)

In the configuration the constitutive relations (9) have
the form D = εE + αH and B = βE + ζH, the con-
dition (10) becomes α = β∗ = ψ + iκ, where ψ is
the Tellegen coefficient and κ is the chirality coefficient
[19]. See Eqs. (C5) for details. The bi-isotropic rela-
tions (9) have been much studied in both theoretical
[13–17] and applied aspects [18–20], being also important
to address optical properties [21, 22] and other proper-
ties of topological insulators [23–29]. Bi-isotropic rela-
tions are relevant for axion electrodynamics [30–33], con-
struction of optical isolators from chiral materials [34],
the Casimir effect in chiral media [35], and other appli-
cations [36]. Furthermore, bi-anisotropic “chiral mate-
rials”, described by relations (6) involving anisotropic
tensors, were employed to investigate relativistic elec-
tron gas [37], time-dependent magnetoelectric parame-
ters [38], Weyl semimetals [39, 40], magnetized materials
[41, 42], and anisotropic dispersion relations [43, 44, 46].
It is also worthy to mention some effects engendered by

the anisotropic magnetoelectric parameters, correspond-
ing to the off-diagonal elements of the matrices α̂ = [αij ]

and β̂ = [βij ]. Nondiagonal terms, for instance, were ex-
amined in the discovery of electromagnons in perovskites,
which revealed an absorption difference of light propa-
gating in opposite directions (directional dichroism) [47].
Magnetoelectric diagonal (and anisotropic) coefficients
were investigated in the context of multiferroic materi-
als, where they induced a light polarization rotation an-
gle [48].

In extended scenarios, the constitutive tensors of re-
lations (6) may also depend on the space coordinates,
standing for the description of nonhomogeneous bi-
isotropic and/or bi-anisotropic media [49]. These tensors
can present dependence on the magnitude of the electro-
magnetic fields as well, ε̂ = ε̂(E,B) and µ̂ = µ̂(E,B),
a kind of approach which accounts for birefringence in
nonlinear electrodynamics [50], allowing to recover the
Kerr and Cotton-Mouton effects in particular configura-
tions [51]. A more involved and general nonlinear con-
struction, where the magnetoelectric coefficients exhibit
dependence at second order on the electromagnetic field
components, was recently examined [52].

Generalized constitutive relations can also be envis-
aged for the current density as an extension of the
standard Ohm’s law. Such relations can be written as
J i = σEi + σBijB

j , where σ is the usual Ohmic conduc-

tivity and σBij is a general magnetic conductivity ten-

sor. An isotropic tensor, σBij = Σδij , stands for the
chiral magnetic effect (CME) [53–55]. Isotropic and
anisotropic symmetric and antisymmetric conductivity
tensors were examined in Ref. [56]. The antisymmet-
ric parametrization of σBij also has found realization in
some Weyl semimetals [57].

Another possible extension occurs in the context of
a Lorentz-violating anisotropic electrodynamics [58, 59],
with constitutive relations written as(

D
H

)
=

ε1 + κ̂DE κ̂DB

κ̂HE µ−11 + κ̂HB

(E
B

)
, (11)

where κ̂DE , κ̂DB , κ̂HE , and κ̂HB are dimensionless 3× 3
matrices composed of vacuum, κ̂vacDE , κ̂vacDB , κ̂vacHE , and
κ̂vacHB , and matter pieces, κ̂matterDE , κ̂matterDB , κ̂matterHE , and
κ̂matterHB . These generalized scenarios lead to unusual
electrodynamics where magnetoelectric parameters stem-
ming from Lorentz symmetry violation appear in matter
or vacuum, giving rise to interesting effects potentially
related to the phenomenology of new materials. A clas-
sical field theory approach to the description of wave
propagation in a continuous chiral medium supporting
higher-order derivative Lorentz-violating electrodynam-
ics was recently examined [60].

In this work, we investigate the possible effects stem-
ming from extended linear constitutive relations (6a) and
(6b), assuming isotropic electric permittivity and mag-
netic permeability, ζij = µ−1δij , εij = εδij , and that the
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tensors αij and βij may be described by symmetric and
antisymmetric parametrizations. For the three cases in-
vestigated, we have obtained general dispersive equations
which provide the refractive indices for any propagation
direction. For the anisotropic magnetoelectric tensors,
we have worked out specific solutions for the particular
propagation axis in order to discuss the optical reper-
cussions. More specifically, the bi-anisotropic symmetric
constitutive relations are parametrized in terms of a 3-
vector d,

D = εE + α̃d(d ·B), H = µ−1B + β̃d(d ·E), (12)

for which we discuss the dispersion relations, refractive
indices, and birefringence for special configurations where
the propagation vector direction is along and perpendic-
ular to the vector d. The antisymmetric constitutive re-
lations are parametrized in terms of two 3-vectors a and
b,

D = εE + a×B, H = µ−1B + b×E, (13)

satisfying b = a∗ and used to describe the particular
scenarios where the propagation direction is longitudinal
and orthogonal to the vector a.

The paper is outlined as follows: In Sec. II, we present
the basic formalism for obtaining the dispersion relations
and refractive indices in a general scenario of extended
constitutive relations. In Sec. III, we discuss the electro-
magnetic wave propagation in the bi-isotropic case. In
the sequel, we focus on the isotropic-anisotropic consti-
tutive relations, examining symmetric (see Sec. IV) and
antisymmetric (see Sec. V) configurations for the tensors
αka and βka. Finally, in Sec. VI, we summarize our re-
sults. Throughout the paper, we use natural units.

II. DISPERSION RELATIONS FOR
BI-ISOTROPIC AND BI-ANISOTROPIC MEDIA

DESCRIBED BY EXTENDED LINEAR
CONSTITUTIVE RELATIONS

In this section, we start from the Maxwell equations in
a homogeneous ponderable nonconducting medium en-
dowed with general linear constitutive relations in order
to obtain the dispersion relations, which provide the re-
fractive index and the propagating modes. From Eq. (1),
Ampère’s law reads

εijkk
jHk + ωDi = 0, (14)

where εijk is the tridimensional Levi-Civita symbol.
Replacing the constitutive relations (6a) and (6b) in
Eq. (14), one has

εijkk
j (βkaE

a + ζkaB
a) + ωεijE

j + ωαijB
j = 0, (15)

Employing now Faraday’s law, ωB = k×E, one obtains
an equation totally in terms of the electric field,

0 = εijkεamnζkak
jkmEn + ω2εijE

j +

+ωεjmnαijk
mEn + ωεijkβkak

jEa. (16)

Let us consider that the medium has isotropic both the
electric permittivity and magnetic permeability,

ζka = µ−1δka, εij = εδij , (17)

in such a way that the anisotropy, typical of “chiral” me-
dia, is allowed to exist in the magnetoelectric coefficients.
Hence, Eq.(16) becomes

[k× (k×E)]
i
+ ω2µε̄ijE

j = 0, (18)

where

ε̄in(ω) = εδin −
1

ω
(βknεimk + αijεjmn) km, (19)

defines the frequency-dependent extended permittivity
tensor, which carries the electric and magnetic response
of the medium. Equation (18) is also cast in the form[

k2δij − kikj − ω2µε̄ij
]
Ej = 0. (20)

For a general anisotropic continuous scenario, we write
k = ωn where n is a vector pointing along the direc-
tion of the wave vector and yields the refractive index:
n = +

√
n2. Here we consider that the index n is nonneg-

ative and
√
n2 instead of |n|, in order to permit complex

refractive indices. The refractive indices with negative
real parts, related to metamaterials, are not considered
here. Hence, Eq.(20) becomes

MijE
j = 0, (21)

where the tensor Mij reads

Mij = n2δij − ninj − µε̄ij , (22)

and ε̄ij is given by Eq.(19). This set of equations has a
nontrivial solution for the electric field if the determinant
of the matrix Mij vanishes. Such a condition provides the
dispersion relations that govern the wave propagation in
the medium. In the case of standard media described by
anisotropic tensors εij and ζij , and with no extensions
on the constitutive relations, αij = 0 and βij = 0, the
dispersion relation can be found in Refs. [44, 46].

We next examine the propagation of electromagnetic
waves in a dielectric medium under the validity of
anisotropic extended dispersion relations of the form

Di = εδijE
j + αijB

j , (23a)

Hi = βijE
j + µ−1δijB

j , (23b)

where Eqs. (17) were considered. These relations may
be considered isotropic-anisotropic since they contain
isotropic electric permittivity and magnetic permeabil-
ity, but anisotropic magnetoelectric tensors, αij , βij .

First, we present the general conditions on the consti-
tutive tensors in order to ensure energy conservation in
the system. The Poynting theorem is given by [1]

∇ · S = − iω

2
(E ·D∗ −H∗ ·B)− (J∗ ·E)

2
, (23c)
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where

S =
1

2
(E×H∗) , (23d)

is the Poynting vector. The real part of Eq. (23c) yields
the energy conservation law for the system. In the ab-
sence of sources and considering there is no flux of energy
density, the energy conservation condition is

Re
[
iω
(
D†E−H†B

)]
= 0. (23e)

Depending on the form of the constitutive relations,
constraints on the parameters describing the medium
(compatible with energy conservation) are obtained. In-
deed, replacing the constitutive relations in Eqs. (23) into
Eq. (23e) yields

0 = E†
(
ε̂† − ε̂

)
E−B†

(
ζ̂† − ζ̂

)
B

+ B†
(
β̂ + α̂†

)
E−E†

(
β̂† + α̂

)
B, (23f)

which establishes a general relation involving all consti-
tutive tensors with the electromagnetic fields. A simple
route to ensure energy conservation is to set

ε̂† = ε̂, ζ̂† = ζ, β̂ = −α̂†. (23g)

The last condition will be relevant in the discussions of
the next sections, as we will see. In the following, we
write the dispersion relations from which we obtain the
refractive indices and the propagating modes for some
special configurations of αij , βij .

In the next sections, we study the dispersion rela-
tions, refractive indices, propagating modes, group ve-
locity, phase velocity, and Poynting vector of the elec-
tromagnetic waves for the bi-isotropic and bi-anisotropic
linear media.

III. BI-ISOTROPIC CASE

In the context of the constitutive relations (23), we
begin considering the total symmetric isotropic configu-

ration, where the quantities α̂ and β̂ are given by

αij = αδij , βij = βδij , (24)

with α, β ∈ C. The condition αij = −β†ij , when applied

on parametrization (24), yields

β∗ = −α. (25)

In this case, the constitutive relations take on the typical
bi-isotropic form,

D = εE + αB, (26a)

H =
1

µ
B + βE, (26b)

which represent the simplest linear connection between
(D,H) and (E,B). As already mentioned, such relations

play a relevant role in topological insulators [21, 23–28]
and axion systems [30, 32, 33].

Inserting Eq. (24) in Eq. (19), one obtains

ε̄ij = εδij + (α+ β)εijmnm, (27)

where the last term on the right-hand side represents
the “magnetic-electric” response of the medium. As we
have started with isotropic tensors, εδij , µ

−1δij , αδij ,
and βδij , any effective arising anisotropy comes from the
extended structure of the constitutive relations (26). In
this case, the tensor Mij [Eq. (22)] has the form

M ≡ [Mij ] = N − µ(α+ β)

 0 n3 −n2
−n3 0 n1
n2 −n1 0

 , (28)

where

N =

n22 + n23 − µε −n1n2 −n1n3
−n1n2 n21 + n23 − µε −n2n3
−n1n3 −n2n3 n21 + n22 − µε

 .

(29)
Requiring det[Mij ] = 0, one gets

n4 − n2
[
2µε− µ2(α+ β)2

]
+ µ2ε2 = 0. (30)

Solving for n2, we obtain the following refractive indices

n2± =µε− 2Z ± iµ(α+ β)
√
µε− Z, (31)

where

Z =
µ2(α+ β)2

4
. (32)

Thereby the corresponding n± read

n± =
√
µε− Z ± i

√
Z, (33)

where we have considered only the indices with a posi-
tive real piece in order to avoid metamaterial behavior.
The refractive indices (33) are valid (and are equal) for
any propagation direction since the bi-isotropic case does
not have a preferred direction that could be represented
by a constant vector. In spite of that, the system may
manifest anisotropic effect (circular birefringence) due to
the way the fields are coupled. Such an effect will be
examined ahead.

The refractive indices can also be obtained by diago-
nalizing the electric permittivity and setting each eigen-
value equal to n2/µ. The eigenvalues εa (a = 1, 2, 3)
fulfill ε̄ije

j
a = εae

i
a, where ea represent the eigenvectors.

Diagonalizing the matrix of the operator ε̄ [Eq. (27)], one
finds the following eigenvalues:

ε1 = ε, (34)

ε2,3 ≡ ε± = ε± i(α+ β)n, (35)
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associated with the eigenvectors

e1 =
n

n
, (36)

e2(3) =
1

n
√

2(n21 + n23)

 n3n± in1n2
∓i(n21 + n23)
±in2n3 − n1n

 . (37)

Eigenvalues (34) and (35) are associated with the refrac-
tive indices

n2 = µε, (38)

n2± = µε± iµ(α+ β)n. (39)

We note that Eq.(38) represents the refractive index of an
isotropic dielectric medium. On the other hand, Eq.(39)
recovers the result of Eq. (33), meaning that only the
eigenvalues ε2 and ε3 correspond to the refractive in-
dices of the medium n+ and n−, respectively. This ap-
proach of finding the refractive indices n via the relation
n2 = µεa(n), where εa stands for the eigenvalues of the
electric permittivity ε̄ij , only works when the electric field
is orthogonal to the propagation direction. Here, such a
condition is guaranteed by the Gauss’ law k · D = 0,
where the electric displacement vector, given by

D = εE +
α

ω
k×E, (40)

provides k·E = 0. Then for a general vector n = k/ω, the
related propagating electric field, Ea, satisfies n ·Ea = 0.
This way, Eqs.(21) and (22) simplify to[

n2δij − µε̄ij
]
Ej = 0, (41)

or n2δij = µε̄ij , creating the straightforward correspon-
dence between n2 and ε̄ij eigenvalues, that is, n2 =
µεa(n). This is the reason by which the eigenvectors (ea)
represent the electric field modes, Ea ∼ ea. Note that
it also holds that n · ea = 0. This situation is clearly
illustrated in the present case. In fact, the three normal-
ized eigenvectors given in Eqs. (36) and (37) are linearly
independent and obey

e1 · e∗2 = e1 · e∗3 = e2 · e∗3 = 0. (42)

In particular, e2 and e3 are orthogonal to e1 ∼ n, thus
indicating the transversality of the propagating modes,
E2 ∼ e2, E3 ∼ e3, whose eigenvalues yield the correct
refractive indices n± [see Eq.(33)]. On the other hand,
n ·e1 is nonzero, meaning that the eigenvalue ε1 does not
yields a physical refractive index.

A. Propagation modes

As already explained, the electric field of the propa-
gating modes is given by solution (37). So, let us choose
a a convenient coordinate system where

n = (0, 0, n3), (43)

with which the eigenvectors (37) are

e2(3) =
1√
2

 1
∓i
0

 , (44)

where −i represents a right-handed circular polarization
(RCP) and +i a left-handed circular polarization (LCP),
respectively. We can easily show that the same result
stems directly from (21). By replacing the simple choice
of Eq.(43) in the matrix (28),

M =

 n23 − µε −µ(α+ β)n3 0
µ(α+ β)n3 n23 − µε 0

0 0 −µε

 , (45)

and implementing the refractive indices (31), the condi-
tion MijE

j = 0 provides the following normalized solu-
tions of the electric field of the propagating modes:

Ê± =
1√
2

 1
±i
0

 , (46)

where Ê+ and Ê− represent the LCP and RCP vectors,
respectively. Solution (46) does not depend on the nature
(real or complex) of the parameters α and β, in such a
way it will be valid for all the cases examined in this
section. The equality between solution (46) and Eq. (44),

e3(2) ≡ Ê±, confirms the approach here developed.
We point out that the circular polarization solution

(46) is not exclusive of the z-propagation direction. In-
deed, taking on the propagation in the x-axis, n =
(n1, 0, 0), matrix (28) takes the form,

M =

−µε 0 0
0 n21 − µε −µ(α+ β)n1
0 µ(α+ β)n1 n21 − µε

 , (47)

whose associated modes,

Ê± =
1√
2

 0
±i
1

 , (48)

also correspond to transversal circularly polarized waves.

B. Optical effects of complex magnetoelectric
parameters in dielectrics

Since we have already found the refractive indices and
the polarization of the propagating modes, it is necessary
to examine the physical behavior brought about by the
constitutive relations (26a) and (26b) on a conventional
dielectric substrate. In the limit (α+β)→ 0, one recovers
the refractive index of an isotropic dielectric medium,
given by Eq. (38),

n2± = µε. (49)
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Equation (33) provides

n± =

√
µε− µ2(α+ β)2

4
± i

µ(α+ β)

2
. (50)

Now we examine the refractive indices (50) in two
cases: (a) α, β ∈ C and (b) α, β ∈ R. For α and β
complex, one can write

α = α′ + iα′′, β = β′ + iβ′′, (51)

where α′ = Re[α], α′′ = Im[α], β′ = Re[β] and β′′ =
Im[β]. Condition (25) implies

α′ = −β′, α′′ = β′′, (52)

so that α+ β = 2iα′′. Therefore, Eq. (50) is rewritten as

n± =

√
µε+ µ2α′′2 ∓ µα′′, (53)

which are real, positive, and cause birefringence. Since
the polarization modes are circularly polarized vectors
[see Eq. (46)], the birefringence effect can be evaluated
in terms of the rotatory power (see Appendix A), defined
as

δ = − [Re(n+)− Re(n−)]ω

2
(54)

Hence, using indices (53), the rotatory power is

δ = µωα′′. (55)

Such a birefringence effect [Eq. (55)] is a consequence
of (α + β) = 2iα′′. Therefore, it only occurs when the
constitutive parameters possess an imaginary piece. On
the other hand, for α, β ∈ R, one has simply β = −α,
α′′ = 0, and no birefringence takes place. This is the case
of the topological insulators bi-isotropic scenario [21, 23–
28], whose constitutive relations are

D = εE− α0B, (56a)

H =
B

µ
+ α0E, (56b)

with α0 = e2/4π~ and e being the elementary electric
charge. For Eq.(56), one has (α + β) = 0, so that no
birefringence is provided.

Concerning topological insulators, quantum effects of
bulk interband excitations may generate strong Faraday
rotation associated with a type of optical activity de-
scribed by the Verdet constant [61, 62]. The quantum
origin of this effect does not represent a contradiction
with the classical absence of birefringence for topological
insulators here remarked.

C. Group velocity, phase velocity, and Poynting
vector

Using n = k/ω in Eq. (33), one finds

ω± =
k

√
µε− Z ± i

√
Z
. (57)

To assess the group and phase velocities, we need to con-
sider the nature (real or complex) of the magnetoelectric
parameters.

• For α, β ∈ C, it holds that (α + β) = 2iα′′ and
Z = −µ2α′′2, so that

ω± =
k√

µε+ µα′′2 ∓ µα′′
. (58)

In this case, ω± > 0 which guarantees propagation of
physical modes for all values of k. The phase and group
velocities are equal,

vph(±) ≡
ω±
k

=
1√

µε+ µα′′2 ∓ µα′′
, (59)

vg(±) ≡
∣∣∣∣∂ω±∂k

∣∣∣∣ =
1√

µε+ µα′′2 ∓ µα′′
. (60)

• For α, β ∈ R, (α+ β) = Z = 0, one has

ω± =
k
√
µε
, (61)

which yields

vph(±) = vg(±) =
1
√
µε
. (62)

Since vg(±) < 1 in both cases i) and ii), the classical
causality is ensured for all k and any value of α′′.

To examine the energy flux propagation direction, we
implement Faraday’s law and the constitutive relation
(26b) in the Poynting vector (23d), yielding

S =
1

2µ

[
n|E|2 − (n ·E)E∗

]
+
β∗

2
(E×E∗). (63)

In the absence of sources, the Gauss law (k · D = 0),
taking into account Eq. (40), provides k · E = 0. Thus
Eq. (63) is rewritten as

S =
1

2µ
n|E|2 +

β∗

2
(E×E∗). (64)

The real part of Eq. (64) provides the time-averaged
Poynting vector, that is,

〈S〉 =
1

2µ
n|E|2 + Re

[
β∗

2
(E×E∗)

]
, (65)

where we have used Re[n] = n = nn̂, since the refractive
indices are real. Using the property Re[z] = (z + z∗)/2,
with a complex z, E = E′ + iE′′, and β = −α∗, the
simplified Poynting vector takes the form

〈S〉 =
1

2µ
n|E|2 − α′′(E′ ×E′′). (66)

The Gauss law, n · E = 0, implies n · E′ = 0 and
n · E′′ = 0, so both vectors E′ and E′′ are in the plane
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orthogonal to n. This way, the product E′ × E′′ is par-
allel or antiparallel to n. Therefore, in this bi-isotropic
medium, the energy flux propagates along the same di-
rection of the electromagnetic wave, independently of the
value of the magnetoelectric parameter, α′′, responsible
for the birefringence.

IV. BI-ANISOTROPIC CASE WITH
SYMMETRIC PARAMETERS

Now we explore the scenario where αij and βij are
nondiagonal symmetric tensors, while the electric per-
mittivity, ε, and the magnetic permeability, µ, are sim-
ple numbers. They can be easily parametrized by using
a single 3-vector d, that is,

αij = α̃didj , βij = β̃didj , (67)

in such a way that the constitutive relations take the form

D = εE + α̃d(d ·B), (68a)

H =
1

µ
B + β̃d(d ·E). (68b)

The parameters αij and βij in Eqs. (67) represent sym-

metric matrices with trace given by α̃d2 and β̃d2, re-
spectively. These 3 × 3 matrices contain off-diagonal el-
ements that could yield anisotropy. This is a bold dif-
ference in relation to the bi-isotropic configuration (24),
examined in Sec. III. For a matter of generality, we sup-
pose αij , βij ∈ C, which is compatible with d ∈ R3 and

α̃, β̃ ∈ C. This way, in accordance with condition (8c),
the parameters (67) should obey

β̃ = −α̃∗, (69)

which implies

α̃′ = −β̃′, α̃′′ = β̃′′, (70)

for α̃′ = Re[α̃], α̃′′ = Im[α̃], β̃′ = Re[β̃] and β̃′′ = Im[β̃].
The constitutive relation (68a) allows us to write the

displacement vector in the form

D = εE +
α̃

ω
d [d · (k×E)] . (71)

The Gauss law, k ·D = 0, requires electric field configu-
rations satisfying

[εn + α̃(n · d)(d× n)] ·E = 0, (72)

for k = ωn.
In the case d and n are parallel vectors, Eq.(72) implies

transversal electric field modes, n·E = 0. For nonparallel
vectors d and n, the electric field may be written as in Eq.
(A1) of Appendix A, which does not supply, in general,
transversal modes, that is, n · E 6= 0; see Eq. (A4).

Furthermore, for orthogonal vectors, n · d = 0, Eq. (72)
yields again transversal modes, n·E = 0, with the electric
field expressed as in Eq. (A6).

Replacing relations (67) in the permittivity tensor (19),
ones writes

ε̄ij = εδij −
1

ω

(
β̃εimnkmdndj + α̃εamjdidakm

)
, (73)

in such a way the tensor Mij , Eq. (22), provides

M = N − µ(D + E), (74)

with N of Eq.(29), containing the usual constitutive el-
ements, while the magnetoelectric contributions are dis-
played in the following:

D = −(α̃− β̃)diag (D1, D2, D3) , (75a)

E =

 0 ε12 ε13
ε21 0 ε23
ε31 ε32 0

 , (75b)

where

D1 = d1(d2n3 − d3n2), (75c)

D2 = d2(d3n1 − d1n3), (75d)

D3 = d3(d1n2 − d2n1), (75e)

and

ε12 = −β̃d2(d3n2 − d2n3) + α̃d1(d1n3 − d3n1), (76a)

ε13 = −β̃d3(d3n2 − d2n3) + α̃d1(d2n1 − d1n2), (76b)

ε21 = −β̃d1(d1n3 − d3n1) + α̃d2(d3n2 − d2n3), (76c)

ε23 = −β̃d3(d1n3 − d3n1) + α̃d2(d2n1 − d1n2), (76d)

ε31 = −β̃d1(d2n1 − d1n2) + α̃d3(d3n2 − d2n3), (76e)

ε32 = −β̃d2(d2n1 − d1n2) + α̃d3(d1n3 − d3n1). (76f)

Evaluating det[Mij ] = 0, we obtain the dispersion rela-
tion,

ε
(
n2 − µε

)2
+ α̃β̃µ

[
µεd2 − (n · d)2

]
(d× n)

2
= 0, (77)

where (d× n)
2 ≡ d2n2 − (d · n)

2
.

Relation (69) provides α̃β̃ = −|α̃|2. Furthermore, im-
plementing n · d = nd cosϕ, Eq.(77) yields

n2± =
1

s

[
N ± µ|α̃|d2 sin2 ϕ

√
µε+

µ2|α̃|2d4
4

]
, (78)

or

n± =

√
N + µε

√
s

2s
±
√
N − µε

√
s

2s
, (79)

where

N = µε+
µ2|α̃|2d4

2
sin2 ϕ. (80a)

s = 1 +
µ

ε
|α̃|2d4 sin2 ϕ cos2 ϕ. (80b)
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We notice in Eq.(79) two distinct refractive indices,
both real and positive, n± > 0, in such a way that bire-
fringent electromagnetic propagation is expected in this
medium. We also highlight that Eq. (78) holds for any
propagation direction in relation to the vector d, gener-
ally expressed in terms of the angle ϕ, the relative angle
between the vector d and the propagation direction.

The behavior of n± [Eq. (79)] in terms of ϕ ∈ [0, π] and
the dimensionless parameter |α̃| ∈ [0, 1] is illustrated in
Figs. 1 and 2. The anisotropy effect manifests itself by
means of the angular dependence of n± on ϕ. Notice the
nonlinearity of n±, which behaves as a sinusoidal func-
tion, increasing with |α̃|.

FIG. 1. Refractive index n+ of Eq. (79) with µ = 1, ε = 2,
and d = 1. The parameters ε, µ, and |α̃|d2 are dimensionless.

FIG. 2. Refractive index n− of Eq. (79) with µ = 1, ε = 2,
and d = 1. The parameters ε, µ, and |α̃|d2 are dimensionless.

In the following, we address the propagating modes
and examine birefringence effects for some specific prop-
agation directions.

A. Propagation modes

To examine the propagating modes, we first pay atten-
tion to the angle between n and d. For the configurations
where n and d are in the same direction, Eq.(78) yields

n± =
√
µε, which is the usual scenario. Modified scenar-

ios arise when n and d are not aligned. To obtain the
modes, we choose a simplified coordinate system where
the vector n is along the z-axis, that is, n = (0, 0, n). For
such a choice, we investigate a configuration where the
background vector is longitudinal and orthogonal to n.

1. d-Longitudinal configuration:

We begin examining the d-longitudinal configuration,

d = (0, 0, d), (81)

for which Eq.(78) yields

n2 = µε. (82)

For this case, matrix (74) is rewritten as

M =

n2 − µε 0 0
0 n2 − µε 0
0 0 −µε

 , (83)

in such a way that MijE
j = 0 provides generic orthogo-

nal modes

E =

ExEy
0

 , (84)

representing a transversal wave with undefined polariza-
tion (linear, circular, or elliptical). It is interesting to
note that only one positive refractive index was deter-
mined and it does not depend on the propagation direc-
tion, which is a signal of isotropy. This means that the
d-direction defines the optical axis of the medium.

2. d-transversal configuration

We follow writing the d-transversal configuration,

d = (d1, d2, 0), (85)

for which s = 1 and N = µε+|α̃|2µ2d4/2, so that Eq. (78)
yields

n2± = µε+
µ2|α̃|2d4

2
± µ|α̃|d2

√
µε+

µ2|α̃|2d4
4

, (86)

and

n± =

√
µε+

µ2|α̃|2d4
4

± µ|α̃|d2

2
. (87)

By using Eq. (87) we rewrite Eq. (86) as

n2± = µε± µ|α̃|d2n±. (88)
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Matrix (74) now is

M =

n2± − µε+Ωn± −µn±(β̃d22 + α̃d21) 0

µn±(β̃d21 + α̃d22) n2± − µε−Ωn± 0
0 0 −µε

 ,

(89)
or better,

M =

(±µ|α̃|d2 +Ω)n± −µn±(β̃d22 + α̃d21) 0

µn±(β̃d21 + α̃d22) (±µ|α̃|d2 −Ω)n± 0
0 0 −µε

 ,

(90)
where we have used Eqs.(70) and (88), writing

Ω = µ(α̃− β̃)d1d2 = 2µα̃′d1d2. (91)

The condition MijE
j = 0 yields

E± = E0


1

µ
(
β̃d21 + α̃d22

)
Ω ∓ µ|α̃|d2

0

 , (92)

with an appropriately chosen amplitude E0. For d1 = 0,
we achieve

E± = E0

 1

∓ α̃

|α̃|
0

 =
1√
2


1

∓ α̃
′ + iα̃′′

|α̃|
0

 , (93)

which represents linear polarizations for α̃′′ = 0 or circu-
lar polarizations for α̃′ = 0.

As Eq.(87) exhibits two real refractive indices, a sce-
nario with birefringence is set. The modes (93), however,
do not represent RCP or LCP vectors, so the birefringent
propagation cannot be suitably described in terms of the
rotatory power (54). Rather, it can be characterized in
terms of the phase shift arising from the distinct phase
velocities of the propagating modes, given by

∆ =
2π

λ0
l(n+ − n−), (94)

where λ0 is the vacuum wavelength of incident light, l
is the thickness of the medium or the distance traveled
by the wave, and n+ and n− are the refractive indices
of the medium. Note that this is the same expression
that controls the phase shift caused by “retarders” (for
details, see Chap. 8 of Ref. [9]). Using Eq.(87), one finds
the corresponding phase shift per unit length as

∆

l
=

2π

λ0
µ|α̃|d2. (95)

As the phase shift depends on the modulus of α̃, the
birefringence now takes place for both real and imagi-
nary magnetoelectric parameters. This is a difference in
relation to the bi-isotropic case (26), in which the bire-
fringence occurs only for imaginary parameters, as shown
in Eq.(55).

3. d-general configuration

Now, let us analyze the mixed case where the vector d
has orthogonal and longitudinal components relative to
the propagation direction, n. In this sense, one can set

d = (0, d2, d3). (96)

The refractive indices (78) are rewritten as

n2± =
1

s

(
µε+ Λ± sin2 ϕ

)
, (97)

where s is given by Eq. (80b) and Λ± is defined as

Λ± =
µ2|α̃|2d4

2
± µ|α̃|d2

√
µε+

µ2|α̃|2d4
4

. (98)

For the coordinate system where n = (0, 0, n3) and d
is given by Eq.(96), matrix (74) takes the form

M =

 n23 − µε −µβ̃d22n3 −µβ̃d2d3n3
+µα̃d22n3 n23 − µε 0

+µα̃d2d3n3 0 −µε

 , (99)

which becomes

M =


1/Υ± −µβ̃d22n3 −µβ̃d2d3n3

+µα̃d22n3 1/Υ± 0

+µα̃d2d3n3 0 −µε

 , (100)

when Eq.(97) is taken into account and we have defined

Υ± =
s

µε (1− s) + Λ± sin2 ϕ
. (101)

The condition MijE
j = 0 yields

E± = E0

 1
−µ (α̃′ + iα̃′′) d22n±Υ±
+ (α̃′ + iα̃′′) d2d3n±/ε

 , (102)

where n± represents n3±. Differently from the previ-
ous d-longitudinal or d-orthogonal cases, modes (102)
are endowed with a longitudinal component, a feature of
general solutions for ϕ 6= 0, π or ϕ 6= π/2.

The polarization of modes (102) can be read off
their transversal sectors. Since the transversal piece of
Eq.(102) is neither RCP nor LCP, being linearly (for
α̃′′ = 0) or elliptically polarized (for α̃′ = 0), the bire-
fringence effect is expressed by means of the phase shift
per unit length defined in Eq.(94), here carried out as

∆

l
=

4π

λ0

√
N − µε

√
s

2s
, (103)

where we used Eq. (79). In Fig. 3 we have plotted the
phase shift (103) per unit length in terms of ϕ and |α̃|.
We notice that the birefringence effect is maximal for
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FIG. 3. Phase shift factor per unit length of Eq. (103). Here,
we have used µ = 1, ε = 2, and d = 1.

ϕ = π/2, which corresponds to configurations where n+
and n− have maxima and minima values, respectively.

As a final comment, note that for d2 = 0 or d =
(0, 0, d3) the field (102) simplifies as

E± =

1
0
0

 , (104)

which corresponds to the d-longitudinal case, whose
mode is given by Eq.(84), being compatible with the re-
sult (104). On the other hand, for the transversal con-
figuration, d3 = 0 or d = (0, d2, 0), the field (102) yields

E± = E0

 1
−µ (α̃′ + iα̃′′) d22n±Υ±

0

 . (105)

For this transversal configuration it holds that Υ± =
1/Λ± and Λ± = µ|α̃|d2n±. With that, solution (105)
recovers the one of Eq.(93).

B. Group velocity, phase velocity, and Poynting
vector

The dispersion equation (77) can be rewritten in the
form

ω4 − 2ω2

{
k2

µε
+
|α̃|2d2

2ε2
(d× k)2

}
+

+
µ

ε

|α̃|2

µ2ε2
(k · d)2(d× k)2 +

k4

µ2ε2
= 0, (106)

whose solutions for ω,

ω2
± =

k2

µε
+
|α̃|
ε

(d× k)2

[
|α̃|d2

2ε
∓

√
1

µε
+
|α̃|2d4

4ε2

]
.

(107)

provide the phase and group velocities,

vph(±) ≡
ω±
k

=

√
1

µε
+
|α̃|
ε

(d× k̂)2
(
|α̃|d2

2ε
∓fα

)
,

(108)

vig(±) =
ki

µεω±
+
|α̃|
εω±

[
d2ki − (d · k)di

]( |α̃|d2
2ε
∓fα

)
,

(109)

with

fα =

√
1

µε
+
|α̃|2d4

4ε2
. (110)

Both vph(±) and vg(±) are valid for general configurations,
i. e., for any relative orientation between the vectors d
and n, for which the group velocity is no longer parallel to
n, due to its component along the d vector. Considering
now the special cases discussed in Sec. IV A, we state the
following:

• For the d-longitudinal scenario where d · k̂ = d,
Eqs. (108) and (109) provides

vlong.ph(±) =
1
√
µε
, vlong.

g(±) =
k̂
√
µε
. (111)

• For the d-transversal case where d · k̂ = 0, one
obtains

vtrans.ph(±) =

√
1

µε
+
|α̃|2d4

4ε2
∓|α̃|d

2

2ε
, (112)

vtrans.
g(±) =

[√
1

µε
+
|α̃|2d4

4ε2
∓|α̃|d

2

2ε

]
k̂. (113)

The magnitude of the group velocity (113) is depicted in
terms of the magnetoelectric parameter in Fig. 4.
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0.0

0.5
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FIG. 4. Group velocity vg(±) [Eq. (113)] of d-transversal
case. The blue dot-dashed curve indicates vg(+), while the red
solid line represents vg(−). The vertical dashed line indicates
|α̃| = 1, corresponding to the value of the critical factor αc

[Eq. (114)] for the choices µ = 1, ε = 2 and d = 1, the ones
adopted in this plot.
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We note that vg(−) > 1 occurs for |α̃| > αc, where the
critical value αc is given by

αc =
µε− 1

µd2
. (114)

Such a mode with vg(−) > 1 is related to the refractive
index n− of Eq. (79), which can assume values n < 1 (see
Fig. 2).

Let us now evaluate the Poynting vector. Using the
constitutive relation (68b), we obtain

S =
1

2µ
n|E|2 − 1

2µ
(n ·E)E∗ +

β∗

2
(E× d)(d ·E∗).

(115)

As the Gauss law yields εk · E = −α̃(k · d)(d · B), Eq.
(115) takes the form

S =
1

2µ
n|E|2 +

α̃

2µε
(n · d) [E · (d× n)]E∗+

+
β̃∗

2
(E× d)(d ·E∗). (116)

Considering β̃ = −α̃∗ and E = E′ + iE′′, the time-
averaged Poynting vector, obtained from the real part
of Eq. (116), is given by

〈S〉 =
1

2µ
n|E|2 +

α̃′

2µε
(n · d)

{
E′ [E′ · (d× n)] +

+E′′ [E′′ · (d× n)]} − α̃′′

2µε
(n · d)

{
E′ [E′′ · (d× n)] +

−E′′ [E′ · (d× n)]} − α̃′

2
[(d ·E′)(E′ × d)+

+(d ·E′′)(E′′ × d)] +
α̃′′

2
[(d ·E′)(E′′ × d)+

−(d ·E′′)(E′ × d)] , (117)

or, equivalently,

〈S〉 =
1

2µ
n|E|2 +

(n · d)

2µε
(α̃′f ′ − α̃′′f ′′) +

− 1

2
(α̃′g′ − α̃′′g′′) , (118)

where

f ′,′′ = E′ [E′,′′ · (d× n)]±E′′ [E′′,′ · (d× n)] , (119)

g′,′′ = (d ·E′)(E′,′′ × d)± (d ·E′′)(E′′,′ × d). (120)

In the case d and n are parallel vectors, Eq. (72) implies
transversal electric field modes, n ·E = 0, then d ·E = 0.
In this case, we have f ′,′′ = 0 and g′,′′ = 0 yielding simply
〈S〉 = n|E|2/2µ, and the energy flux propagates along the
same direction of n.

For the case that the vectors d and n are mutually
orthogonal, n · d = 0, Eq. (72) also provides n · E = 0,
so that

〈S〉 =
1

2µ
n|E|2 − 1

2
(α̃′g′ − α̃′′g′′) . (121)

This scenario is such that the vectors d, E′, and E′′ are
in the same plane orthogonal to n. This way, the vectors
E′ × d and E′′ × d are along the n-direction or are both
null (when E and d are parallel vectors). Consequently,
the vectors g′,′′ come out parallel (or antiparallel) to n.
Thus, in this case, the energy flux also propagates along
the same propagation direction of the electromagnetic
wave, whatever the α̃′, α̃′′ parameters values.

For the general case in which n and d are not collinear
or perpendicular, the energy flux is no longer parallel to
the propagation direction of the electromagnetic wave.

V. BI-ANISOTROPIC CASE WITH
ANTISYMMETRIC PARAMETERS

Now we analyze the case where the magnetoelectric pa-
rameters are described by antisymmetric tensors, written
as

αij = εijkak, (122a)

βkn = εknrbr, (122b)

where a = (ax, ay, az) and b = (bx, by, bz) are fixed and,
in principle, complex 3-vectors, which induce preferred
direction in the system, while εijk represents the usual
Levi-Civita symbol in three dimensions. In order to sat-
isfy Eq. (8c), the following condition should hold:

b∗ = a. (123)

In the case the vectors a and b are real, this condition
reduces merely to b = a.

Under the validity of relations (122a) and (122b), the
electric displacement field and the magnetic field are
given by

D = εE + a×B, (124)

H =
1

µ
B + b×E. (125)

Some analog antisymmetric constitutive relations have
found application in the description of electron gas sys-
tems [37] and in the investigation of electromagnetic
propagation in time-dependent media with an antisym-
metric magnetoelectric coupling and an isotropic time-
dependent permittivity [38].

In the momentum space, Eq.(124) provides

D = εE +
1

ω
a× (k×E) , (126)

D =

(
ε− a · k

ω

)
E +

a ·E
ω

k, (127)

where a× (k×E) = (a ·E)k− (a · k)E. From the rela-
tion k ·D = 0, for k = ωn, we obtain

[εn + n× (a× n)] ·E = 0. (128)
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In general, the propagating modes are no longer
transversal. Yet, when a and n are parallel vectors, Eq.
(128) becomes

εn ·E = 0, (129)

recovering a transversal electric field.
Replacing Eqs. (122a) and (122b) in Eq. (19), one ob-

tains the following extended electric permittivity tensor:

ε̄ij =

(
ε− a · k

ω
− b · k

ω

)
δij +

bikj
ω

+
ajki
ω

, (130)

where there appear direction dependent terms: (a · k),
(b · k), aikj , ajki. Now the matrix Mij is written as

M = N + µ[(a + b) · n]13×3 − µ (A+ B) , (131)

where N is given by Eq.(29), and

A = diag
(

(b1 + a1)n1, (b2 + a2)n2, (b3 + a3)n3

)
,

(132a)

B =

 0 b1n2 + a2n1 b1n3 + a3n1
b2n1 + a1n2 0 b2n3 + a3n2
b3n1 + a1n3 b3n2 + a2n3 0

 .

(132b)

For det[Mij ] = 0, the following dispersion equation is
attained:

0 =
[
n2 − µε+ µ(c · n)

] {[
n2 − µε+ µ(c · n)

]
+
µ

ε

[
(a · b)n2 − (a · n)(b · n)

]}
, (133)

which can be cast in the form:[
n2 − µε+ µ(c · n)

] [
nT Q̃n + µ(c · n)− µε

]
= 0,

(134)
where c = a+b is always a real vector [due to Eq. (123)]
and Q is a complex (3× 3) self-adjoint matrix defined by

Q = 1 +
µ (a · b)

ε
−
µ
(
abT + baT

)
2ε

. (135)

The first dispersion relation, expressed as(
n +

µc

2

)2
= µε+

µ2c2

4
, (136)

describes a sphere centered in n0 = −µc/2 with radius√
µε+ µ2c2/4. The second dispersion relation is

nTQn + µ(a + b) · n = µε. (137)

The eigenvalues of Q determine the surface described by
the dispersion relation. If all eigenvalues are positive, the
surface becomes an ellipsoid whose center is not at the
origin [if (a+b) ·n = 0, it is centered at the origin], with

the principal axes oriented along the respective eigenvec-
tors. When there are at least two distinct eigenvalues,
the medium produces birefringence.

A. Propagation properties of magnetoelectric
parameters in dielectrics

In order to investigate the electromagnetic propaga-
tion in a dielectric medium governed by the constitutive
relations (124) and (125), we suppose that the magneto-
electric parameters are constrained by relation (123). In
the case the vectors a and b have a complex piece, that
is

a = a′ + ia′′, b = b′ + ib′′, (138)

one writes a′ = b′ and a′′ = −b′′, as a consequence of
Eq. (123). In this case, we have

(a + b) · n = 2(a′ · n), (139)

(a · n)(b · n) = (a′ · n)2 + (a′′ · n)2, (140)

a · b = a′
2

+ a′′
2

= |a|2, (141)

for a real n vector. We also suppose that the 3-vector a
fulfills a′ · n = a′n cosϕ, a′′ · n = a′′n cosϕ, so that the
involved relation (133) provides,

[
n2 − µε+ 2µa′n cosϕ

]
= 0 (142a)[

n2
(
ε+ µ|a|2 sin2 ϕ

)
+ 2µεa′n cosϕ− µε2

]
= 0, (142b)

from which the following (positive) indices are achieved:

n(1) = µ

√
a′2 cos2 ϕ+ ε/µ− µa′ cosϕ, (143)

n(2) =
1

r

(√
µε+ µ2a′2 + µ2a′′2 sin2 ϕ− µa′ cosϕ

)
,

(144)

where

r = 1 +
µ

ε
|a|2 sin2 ϕ. (145)

Above, we have retained only the roots corresponding to
positive refractive indices, since we are not addressing
metamaterials. The general behavior of n(1,2) is illus-
trated in Figs. 5 and 6 in terms of ϕ ∈ [0, π] and the
dimensionless parameter a′ ∈ [0, 1].
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FIG. 5. Refractive index n(1) of Eq. (143) in terms of ϕ and
a′. Here we have set µ = 1 and ε = 2. The parameters ε, µ,
and a′ are dimensionless.

FIG. 6. Refractive index n(2) of Eq. (144) in terms of ϕ and
a′. We have used µ = 1, ε = 2 and a′′ = 1. The parameters
ε, µ, and a′ are dimensionless.

The anisotropy effect is described by the angular de-
pendence on ϕ, not exactly equal for n(1) and n(2). In
fact, note that by setting a′ 7→ 0, one obtains n1 7→

√
µε,

a constant value which corresponds to the straight bor-
der line of Fig. 5 (for a′ = 0). Under such a limit,

n2 7→ µε
(
µε+ µ2a′′2 sin2 ϕ

)−1/2
, which is represented by

the sinusoidal border line at a′ = 0 in Fig. 6. Further-
more, the border behavior at a′ = 1 is also distinct for
the two plots. Both n(1) and n(2) have maximal values
at ϕ = π.

It is important to mention that both Eq. (133) as the
refractive indices (143) and (144) hold for any propaga-
tion direction in relation to the vector a, parametrized by
the angle ϕ. Now, we investigate propagation for some
special angles between a and n.

1. Particular case 1: a-orthogonal configuration.

We begin bychoosing a scenario where the vector a is
orthogonal to the propagation axis, that is, a · n = 0 (or
ϕ = π/2). Thus, the dispersion relation (142) provides

two solutions for the refractive index,

n(1) =
√
µε, (146)

n(2) =

√
µε√

1 + (µ/ε)|a|2
. (147)

The two refractive indices are real. Therefore, there oc-
curs birefringence but not absorption. To obtain the
propagating modes, we take the vector n along the z-
axis, that is, n = (0, 0, n3). Orthogonal to it, we set
a′ = (a1, a2, 0), a′′ = (a1, a2, 0). This choice leads to a
very simple expression for the matrix of Eq. (131), that
is,

M =

n23 − µε 0 −µa∗1n3
0 n23 − µε −µa∗2n3

−µa1n3 −µa2n3 −µε

 . (148)

Replacing index (146) in matrix (148), the condition
MijE

j = 0 provides as a solution a transversal mode,

E(1) =
1

|a|

 a2
−a1

0

 , (149)

with |a| =
√
|a1|2 + |a2|2. Now, replacing relation (147)

in matrix (148), one has −µεfa 0 −µa∗1n3
0 −µεfa −µa∗2n3

−µa1n3 −µa2n3 −µε

ExEy
Ez

 = 0, (150)

whose solution is

E(2) =
1

|a|
√

1 + fa

 a∗1
a∗2

−|a|
√
fa

 , (151)

with

fa =
(µ/ε)|a|2

1 + (µ/ε)|a|2
. (152)

We note that Eq.(151) represents a mixed mode, endowed
with a longitudinal component. In this case, it is not
possible to find a pure transversal mode for the field E(2).
The transversal mode E(1) and the transversal sector of
the mixed mode E(2) could exhibit linear polarization,
or circular or elliptical polarization. Indeed, in principle
one writes the a-vector components as a1 = (a′1 + ia′′1),
a2 = (a′2 + ia′′2). One notices that for either a′′1 = a′′2 = 0
or a′1 = a′2 = 0, Eq. (149) and the transversal part of
Eq. (151) yield linearly polarized modes. On the other
hand, for either a′1 = a′′2 = 0 or a′′1 = a′2 = 0, that is, for
a1 = a′1, a2 = ia′′2 , or a1 = ia′′1 , a2 = a′2, the polarization
is elliptical. Circularly polarized modes only occur when
either a′1 = a′′2 = 0 and a′2 = a′′1 or a′′1 = a′2 = 0 and
a′1 = a′′2 .

After finding the refractive indices (146) and (147),
and the corresponding modes (149) and (151), we need
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to discuss the physical effects on wave propagation. In
the case the associated modes are linearly or elliptically
polarized, the implied birefringence is expressed in terms
of the phase shift (94), namely,

∆ =
2π

λ0
l[n(1) − n(2)] , (153)

where n1 and n2 are the refractive indices (146) and
(147), respectively. The phase shift per unit length is

∆

l
=

2π

λ0

√
µε

[
1− 1√

1 + (µ/ε)|a|2

]
, (154)

which, for (µ/ε)|a|2 � 1, simplifies as

∆

l
=
πµ|a|2

λ0
. (155)

2. Particular case 2: a-longitudinal configuration.

Let us now consider the case where the vectors a and
n point along the same direction, a · n = an, for which
Eq. (133) is written as(

n2 + 2µa′n− µε
)2

= 0, (156)

which involves the square of a quadratic polynomial in
n. Thus, there is a doubly degenerate refractive index,
namely,

n =

√
µε+ µ2a′2 − µa′. (157)

The latter corresponds exactly to the solutions of
Eqs. (143) and (144) for ϕ = 0, as expected.

To obtain the propagating modes, we take the vector
n along the z-axis, that is, n = (0, 0, n3), in such a way
that a = b∗ = (0, 0, a′3 + ia′′3). It leads to a simple form
of the matrix of Eq.(131), that is,

M =

n23 − µε+A 0 0
0 n23 − µε+A 0
0 0 −µε

 , (158)

where A = 2µna′3. With index (157), matrix (158) reads
simply as

M =

0 0 0
0 0 0
0 0 −µε

 , (159)

and provides generic transversal modes,

E =

ExEy
0

 , (160)

with arbitrary Ex and Ey. Note this transversality oc-
curs in accordance with Eq. (129). The solution (160)
may represent a linear, circular, or elliptic polarization
mode, depending on the nature and relation between Ex
and Ey. As this relation is not supplied by the features
examined so far, we conclude that the a-longitudinal con-
figuration allows any polarization, in principle. Further-
more, only one refractive index expression was achieved,
with no signal of anisotropy. Thus, we conclude that the
a direction defines the optical axis of the medium.

It is worthwhile to observe that the complex vectors a
and b, given in Eq. (138), yield real refractive indices as it
happens in the case of real vectors. For the a-orthogonal
configuration, the complex vectors of Eq. (138) may pro-
vide circular or elliptical polarization (in its transversal
sector), besides the linear one.

B. Group velocity, phase velocity, and Poynting
vector

From Eq. (133), we can write down two dispersion
equations,

0 = ω2 − 2
ω

ε
(a′ · k)− k2

µε
, (161)

0 = ω2 − 2
ω

ε
(a′ · k)−

(
1

µε
+
|a|2

ε2

)
k2 +

(a′ · k)2

ε2
+

+
(a′′ · k)2

ε2
, (162)

which provide, respectively, the following solutions for ω
(with ω > 0):

ω(1) =

√
k2

µε
+

(a′ · k)2

ε2
+

(a′ · k)

ε
, (163)

ω(2) =

√(
1

µε
+
|a|2
ε2

)
k2 − (a′′ · k)2

ε2
+

(a′ · k)

ε
. (164)

The phase and group velocities are given by

vph(1) =

√
1

µε
+

(a′ · k̂)2

ε2
+

(a′ · k̂)

ε
, (165)

vph(2) =

√
1

µε
+
|a|2
ε2
− (a′′ · k̂)2

ε2
+

(a′ · k̂)

ε
, (166)

vg(1) = fa′

[
k

µε
+

(a′ · k)

ε2
a′
]

+
a′

ε
, (167)

vg(2) = fa′′

[(
1

µε
+
|a|2

ε2

)
k− (a′′ · k)

ε2
a′′
]

+
a′

ε
, (168)
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with

fa′ =

[
k2

µε
+

(a′ · k)2

ε2

]−1/2
, (169)

fa′′ =

[(
1

µε
+
|a|2

ε2

)
k2 − (a′′ · k)2

ε2

]−1/2
. (170)

Relations (167) and (168) reveal that the group veloc-
ity is in general not parallel to n. Starting from Eqs.
(163) and (164), we now particularize the phase and
group velocities for propagation orthogonal and longitu-
dinal to a′.

• For the a-orthogonal case where a′ ·k = a′′ ·k = 0,
one finds

vorthph(1) =

√
1

µε
, vorth

g(1) = k̂

√
1

µε
, (171)

vorthph(2) =

√
1

µε
+
|a|2
ε2

, vorth
g(2) = k̂

√
1

µε
+
|a|2
ε2

. (172)

• For the a-longitudinal scenario a′,′′ · k = a′,′′k, we
obtain

vlongph(1) = vlongg(1) =

√
1

µε
+
a′2

ε2
+
a′

ε
, (173)

vlongph(2) = vlongg(2) =

√
1

µε
+
a′2

ε2
+
a′

ε
, (174)

with

vorth
g(1) = vorthg(1) k̂, vorth

g(2) = vorthg(2) k̂. (175)

In Fig. 7 we plot the group velocities vg(1,2) of both a-
longitudinal and a-orthogonal cases in terms of the pa-
rameter a′.

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

��
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FIG. 7. Group velocities for a-longitudinal and a-orthogonal
cases. The blue solid line indicates vlong.g(1,2) of Eqs. (173) and

(174). The red curve illustrates vorth.g(1) of Eq. (171), and the

green line represents vorth.g(2) of Eq. (172). The gray dashed

vertical lines indicate the values of a′ ∈ {1/2, 1} above which
the group velocities become greater than 1, in agreement with
Eqs. (176), and (177), respectively. Here we have used µ = 1,
ε = 2 and a′′ = 1.

We notice the group velocities can be greater than 1
depending on the values of a′.

• For the a-longitudinal case, in order to ensure
vlongg < 1, the following must occur:

a′ <
µε− 1

2µ
. (176)

• For the a-orthogonal configuration, one finds that
vorthg(2) < 1 only when

|a| <
√
ε

µ
(µε− 1). (177)

These results are important to constrain the magneto-
electric parameters in ranges suitable to ensure group
velocity smaller than 1.

With the constitutive relation (125), the Poynting vec-
tor is

S =
1

2µ
(n + µa)|E|2 − 1

2µ
(n ·E)E∗ − 1

2
(a ·E)E∗.

(178)

By considering a = a′ + ia′′ and E = E′ + iE′′, we
firstly analyze the case a′,a′′ parallel to n. From Eq.
(128) we obtain n · E = 0, i.e., n · E′ = 0 = n · E′′
implying a′ · E = 0 = a′′ · E or a · E = 0. This way Eq.
(178) simplifies to

Slong. =
1

2µ
(n + µa)|E|2, (179)

whose time-averaged form becomes

〈S〉long. =
1

2µ
(n + µa′)|E|2. (180)

As a′ ‖ n, the energy flux propagates along the wave
propagation direction in this situation.

For a general case, the time-averaged Poynting vector
is

〈S〉 =
1

2µ
(n + µa′)|E|2+

+
1

2
(F1E

′ − F2E
′′) [(a′ ·E′) + (a′′ ·E′′)] +

+
1

2
(F1E

′′ + F2E
′) [(a′ ·E′′)− (a′′ ·E′)] , (181)

where

F1 =
n2

µ

[ε− (n · a′)]
∆

− 1, F2 =
n2

µ

(n · a′′)
∆

, (182)

with

∆ = [ε− (n · a′)]2 + (n · a′′)2 . (183)
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In particular, by considering a′,a′′ orthogonal to n, we
obtain

〈S〉orth. =
1

2µ
(n + µa′)|E|2 +

(n2 − µε)
2µε

[
(a′ ·E′)E′+

+ (a′′ ·E′′)E′ + (a′ ·E′′)E′′ − (a′′ ·E′)E′′
]
,

(184)

which yields a propagation not aligned to n. This result
is consistent with the group velocities (167) and (168),
which contain a piece not belonging to the n axis.

Finally, we note that for a′,a′′ nonparallel to n, the
energy flow does not propagate along the propagation
axis because there is a contribution along the electric
field direction.

VI. FINAL REMARKS

In this work, we have examined the propagation of
electromagnetic waves in bi-isotropic and bi-anisotropic
matter. As for the bi-anisotropic scenarios, we have taken
isotropic electric permittivity and magnetic permeability
tensors, while the magnetoelectric parameters were sup-
posed as symmetric and antisymmetric anisotropic com-
plex tensors. As an initial action, a modified permittivity
tensor was written as part of the matrix equation, which
allowed us to obtain the dispersion equations and refrac-
tive indices.

The symmetric magnetoelectric tensors were
parametrized in terms of a single 3-vector, d, and
two complex scalars, α̃, β̃. For propagation along the
z-axis, n = (0, 0, n), arbitrary transversal propagating
modes were obtained for the d-longitudinal configu-
ration. The d axis coincides with the optical axis of
the medium. On the other hand, when the d-vector
is orthogonal to the propagation axis, the associated
modes are also transversal, with polarization linear or
elliptical.

The antisymmetric magnetoelectric tensors were
parametrized in terms of two 3-vectors, a and b, re-
lated by b∗ = a. We have considered complex vec-
tors and obtained real and positive refractive indices [see
Eqs. (143) and (144)]. For the a-longitudinal configura-
tion, arbitrary transversal propagating modes, associated
with one unique refractive index, were obtained for the
propagation along the z axis, n = (0, 0, n). Therefore,
in this case, the vector a determines the optical axis of
the medium. For the a-orthogonal configuration, there
appears a transversal and a mixed mode, composed of a
longitudinal and a transversal piece, associated with two
refractive indices. The polarization may be linear, ellip-
tical, or circular. The birefringence effect was evaluated
in terms of the a-vector magnitude.

In both symmetric and antisymmetric cases, the prop-
agation along the d or a directions is isotropic, since they
define the optical axis of the medium. On the other hand,

the propagation orthogonal to the magnetoelectric vec-
tors d or a provides a route of phenomenological distinc-
tion between the symmetric [Eq. (67)] or antisymmetric
tensor [Eq. (122)], due to the observed difference between
the associated propagating modes. See Eqs. (93) and
(151). We have also evaluated the group velocities for the
bi-isotropic and bi-anisotropic cases examined. In the bi-
isotropic case, the phase and group velocities turned out
equal. For the bi-anisotropic configurations, these veloc-
ities are different. The general group velocities present
a component along the 3-vectors d or a, being no longer
necessarily parallel to n in these cases. We have also
carried out the Poynting vector, observing that the elec-
tromagnetic energy flux does not occur along the wave
propagation direction for general configurations. The
energy flux direction coincides with the n axis in the fol-
lowing situations: when d is parallel or orthogonal to n
(in the symmetric case) and when a′ and a′′ are parallel
to n (in the antisymmetric case).

As a final remark, we may try to state a parallel be-
tween our results and the physics of anisotropic media
described by constitutive relations (3), with permittiv-
ity and permeability described by general tensors εij and
µij . This is the case examined in Refs. [44, 45]. The
general anisotropic dispersion relations of these refer-
ences are different from our relations, which are based
on isotropic permittivity and permeability, εij = εδij
and µij = µδij , and non-null magnetoelectric parame-
ters, αij and βij . These basic distinctions, consequently,
do not favor straightforward comparisons between such
anisotropic systems.
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Appendix A: Vector evaluation for the electric field
of the modes

In this Appendix, we present an alternative route for
carrying out the electric field of the propagating modes
in the symmetric and antisymmetric constitutive param-
eters.
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1. Symmetric parameters case

For non-parallel vectors d and n, the electric field may
be written as

E =
E1

|d× n|
d× n +

E2

n |d× n|
n× (d× n)

− E1

εn2
α̃(n · d) |d× n|n, (A1)

which does not supply, in general, transversal modes,
that is, n · E 6= 0. However, for orthogonal vectors,
n · d = 0, Eq. (72) yields transversal modes, n · E = 0,
whose electric field can be written as

E = E1(d̂× n̂) + E2d̂, (A2)

where d̂ = d/|d| and n̂ = n/|n|. In general, E1 and
E2 are arbitrary constants, and for a normalized electric
field, they satisfy |E1|2 + |E2|2 = 1.

For n and d nonparallel, the equation ME = 0, with
the electric field given in Eq. (A1), sets

E2 = E1
µα̃(d2 sin2 ϕ)n±

n2± − µε
= E1µα̃(d2 sin2 ϕ)Υ±n±,

(A3)
where we have used Eqs. (97) and (101), and n± is given
by Eq. (79). So the electric field [Eq. (A1)] reads

E± = E0
d× n±
|d× n±|

+ E0
µα̃(d2 sin2 ϕ)Υ±
|d× n±|

n±× (d× n±)

−E0
α̃d2 cosϕ sinϕ

ε
n±, (A4)

setting E1 = E0. It provides the same conclusions ob-
tained in Sec. IV A 3 for the general d configuration.

For n and d orthogonal vectors, Eq. (A3) simplifies as

E2 = E1
µα̃d2n±
n2± − µε

= ± α̃

|α̃|
E1. (A5)

where n± is now given by Eq. (88). So the electric field
[Eq. (A4)] becomes written as

E± = E0
d× n±
|d× n±|

± E0
α̃

|α̃|
d

d
, (A6)

providing the same conclusions obtained in the particular
case of Sec. IV A 2.

The vector formalism can also be used to alternatively
express the permittivity tensor and the dispersion rela-
tion. In fact, replacing relations (67) in the permittivity
tensor (19), one writes

ˆ̄ε = ε1−α̃d (d× n)
T

+ β̃ (d× n)dT , (A7)

with ˆ̄ε = [ε̄ij ]. In such a way the tensor M = [Mij ]
[Eq. (22)], takes the form

M = (n2 − µε)1− nnT+µα̃d(d× n)T − µβ̃(d× n)dT .
(A8)

Evaluating detM = 0, we read the dispersion relation (77)
in the form,

ε
(
n2 − µε

)2
+ α̃β̃µ

[
µεd2 − (n · d)2

]
|d× n|2 = 0. (A9)

2. Antisymmetric parameters case

For nonparallel a and n, the electric field is expressed
as

E =
E1

|a× n|
(a× n)− εE3

n |a× n|2
n× (a× n) +

E3

n
n.

(A10)
The equation ME = 0 with the matrix (131) and the

electric field given in Eq. (A10) provides the equations

E1

[
n2 − µε+ 2µa · n

]
= 0, (A11)

E3

[
ε
(
n2 − µε+ 2µa · n

)
+ µ |a× n|2

]
= 0. (A12)

where the expressions in the brackets are the dispersion
relations obtained in Eq. (133) when b = a.

If the dispersion relation in Eq. (A11), n2−µε+ 2µa ·
n = 0, is valid, then E1 remains arbitrary and E3 = 0.
Thus, the electric field mode (A10) becomes transversal
to the propagation direction, that is,

E =
E1

|a× n|
(a× n), (A13)

being in accordance with the result (149) of the case an-
alyzed in Sec. V A 1. On the other hand, if the disper-
sion relation in Eq. (A12) holds, ε

(
n2 − µε+ 2µa · n

)
+

µ |a× n|2 = 0, then E1 = 0 and E3 remains arbitrary, so
that the electric field modes (A10) are no longer trans-
verse,

E = − εE3

n |a× n|2
n× (a× n) +

E3

n
n. (A14)

It is in accordance with the result (151) of the case ana-
lyzed in Sec. V A 1.

Replacing Eqs. (122a) and (122b) in Eq. (19), one ob-
tains the following extended electric permittivity tensor:

ε̄ = (ε− c · n) 1 + bnT + naT , (A15)

where c = a + b is a real vector [see Eq. (123)]. All
the pieces of the new electric permittivity coming from
antisymmetric parameters contain direction-dependent
terms: (c · n), binj , niaj . Now, the explicit form of the
matrix M = [Mij ] is

M = [n2−µε+µ(c ·n)]1−nnT −µbnT −µnaT . (A16)

Appendix B: Rotatory power and dichroism
coefficient

Relation (54) holds for the situation that the propagat-
ing modes are given by circularly polarized waves (LCP
and RCP). To examine the effect of the optical activity
on the modes, we start from a linearly polarized wave
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propagating through a medium along the z axis. As is
well known, a wave with linear polarization,

Ei = E0ie
i(kz−ωt) , (B1a)

can be split into two circularly polarized waves,

E0i =

1
0
0

 =
1

2

 1
−i
0

+
1

2

1
i
0

 , (B1b)

corresponding to the sum of RCP and LCP waves, respec-
tively. After the initial wave passes through a distance z
in the medium, the final electric field can be obtained as
the combination of two components, E+ and E−, with
the wave vectors k+ and k−, respectively. One then has

Ef = E+ei(k+z−ωt) + E−ei(k−z−ωt)

=
1

2

1
i
0

 eik+ze−iωt +
1

2

 1
−i
0

 eik−ze−iωt , (B2)

which can be cast into the form

Ef =
1

2
eiψe−iωt

e−iθ

1
i
0

+ eiθ

 1
−i
0


= eiψe−iωt

cos θ
sin θ

0

 , (B3a)

with the quantities

θ = − (k+ − k−)z

2
, (B3b)

ψ =
(k+ + k−)z

2
. (B3c)

Notice that Eq. (B3a) describes a linearly polarized wave
whose polarization vector is rotated by an angle θ. From
Eq. (B3b), one obtains

θ = − (n+ − n−)zω

2
, (B4)

where we have used k = ωn. In general, the refractive
indices can be complex quantities. Because of this, one

can infer from Eq. (B4)

θ

z
= −ω

2
[Re(n+) + iIm(n+)− Re(n−)− iIm(n−)] ,

(B5)
from which we define the specific rotatory power,

δ = − [Re(n+)− Re(n−)]ω

2
, (B6)

as well as the dichroism coefficient,

δd = − [Im(n+)− Im(n−)]ω

2
. (B7)

Notice that when the medium is nonbirefringent, θ = 0
and ψ = kz. Then, the form (B1a) is recovered from
Eq.(B3a).
Appendix C: Relations for constitutive parameters

The energy conservation in electromagnetic systems
is established by the Poynting theorem, presented in
Eq. (23e) as

Re [iω (E ·D∗ −H∗ ·B)] = 0, (C1)

or

Re
[
iω
(
D†E−H†B

)]
= 0. (C2)

We can now consider a medium described by the follow-
ing constitutive relations

D = ε̂E + λ̂H, (C3a)

B = µ̂H + γ̂E. (C3b)

with ˆ̃ε, λ̂, µ̂ and γ̂ being nonsingular 3× 3 complex ma-
trices. Following the same previous procedure, Eq. (C2)
yields

E†
(
ε̂† − ε̂

)
E + H†

(
µ̂† − µ̂

)
H+

+H†
(
λ̂† − γ̂

)
E−E†

(
λ̂− γ̂†

)
H = 0. (C4)

In this case, for arbitrary fields, in order to be consistent
with Eq. (C4), one finds

ε̂† = ε̂, µ̂† = µ̂, λ̂ = γ̂†, (C5)

conditions compatible with energy conservation.
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