
International Electronic Journal of Pure and Applied Mathematics
——————————————————————————————
Volume 7 No. 3 2014, 99-107
ISSN: 1314-0744
url: http://www.e.ijpam.eu
doi: http://dx.doi.org/10.12732/iejpam.v7i3.1

FIXED-POINTS AND UNIQUENESS OF

ENTIRE AND MEROMORPHIC FUNCTIONS

Harina P. Waghamore1, A. Tanuja2 §, N. Shilpa3

1,2Department of Mathematics
Central College Campus
Bangalore University

Bangalore, 560 001, INDIA
3Department of Mathematics

M.E.S. Degree College
Malleswaram, Bangalore, 560 003, INDIA

Abstract: In this paper, we deal with the uniqueness problems on entire and
meromorphic functions concerning differential polynomials that share fixed-points.
These results improve and extend those given by Xiaojuan Li and C. Meng, see [2].

AMS Subject Classification: 30D35
Key Words: entire functions, meromorphic functions, fixed-points, uniqueness

1. Introduction

In this paper, we use the standard notations and terms in the value distribution
theory [4]. For any nonconstant meromorphic function f(z) on the complex plane
C, we denote by S(r, f) any quantity satisfying S(r, f) = o{T (r, f)}, as r → +∞,
except possibly for a set of r of finite linear measures. A meromorphic function a(z)
is called a small function with respect to f(z) if T (r, a) = S(r, f). Let S(f) be the
set of meromorphic function in the complex plane C which are small functions with
respect to f . Set E(a(z), f) = {z : f(z) − a(z) = 0}, a(z) ∈ S(f), where a zero
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point with multiplicity m is counted m times in the set. If these zero points are only
counted once, then we denote the set by E(a(z), f). Let k be a positive integer. Set
Ek)(a(z), f) = {z : f(z) − a(z) = 0, ∃i, 1 ≤ i ≤ k, such that, f (i)(z) − a(i)(z) 6= 0},
where a zero point with multiplicity m is counted m times in the set.

Let f(z) and g(z) be two transcendental meromorphic functions, a(z) ∈ S(f) ∩
S(g). If E(a(z), f) = E(a(z), g), then we say that f(z) and g(z) share the value a(z)
CM, especially, we say that f(z) and g(z) have the same fixed points when a(z) = z.
If E(a(z), f) = E(a(z), g), then we say that f(z) and g(z) share the function a(z)
IM. If Ek)(a(z), f) = Ek)(a(z), g), we say that f(z)−a and g(z)−a have same zeros
with the same multiplicities ≤ k.

Moreover, we also use the following notations.
We denote by Nk)(r, f) the counting function for poles of f(z) with multiplicities

≤ k, and byNk)(r, f) the corresponding one for which the multiplicity is not counted.
Let N(k(r, f) be the counting function for poles of f(z) with multiplicities ≥ k, and

let N (k(r, f) be the corresponding one for which the multiplicity is not counted. Set

Nk(r, f) = N(r, f) +N (2(r, f) + ...+N (k(r, f).
Similarly, We have the notations

Nk)

(

r,
1

f

)

, Nk)

(

r,
1

f

)

, N(k

(

r,
1

f

)

,

N (k

(

r,
1

f

)

, Nk

(

r,
1

f

)

.

Let f(z) and g(z) be two nonconstant meromorphic functions and E(1, f) =

E(1, g). We denote by NL

(

r, 1
(f−1)

)

the counting function for 1-points of both

f(z) and g(z) about which f(z) has larger multiplicity than g(z), with muliplicity

not being counted, and denote by N1]

(

r, 1
(f−1)

)

the counting function for common

simple 1-points of both f(z) and g(z) where multiplicity is not counted. Similarly,

we have the notation NL

(

r, 1
(g−1)

)

.

In 2009, Xiaojuan Li and C. Meng[2] proved the following two theorems.

Theorem A. Let f and g be two non-constant entire functions. Let P (f) =
amfm + am−1f

m−1 + ...+ a1f + a0, (am 6= 0), and ai is the first nonzero coefficient
from the right, and n, m, k be a positive integer with n(> 2k+m+4). If [fnP (f)](k)

and [gnP (g)](k) share the value 1 CM, then:

(1) If 0 ≤ i < m, then either f(z) ≡ g(z) or f , g satisfy the algebraic equation
R(f, g) ≡ 0, where R(ω1, ω2) = ωn

1P (ω1)− ωn
2P (ω2).

(2) If i = m, then either f(z) ≡ tg(z), where t is a constant satisfying tn+m = 1
or f(z) = c1e

cz, g(z) = c2e
−cz, where c1, c2 and c are three constants satisfying

(−1)ka2m(c1c2)
n+m[(n +m)c]2k = 1.In
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Theorem B. Let f and g be two non-constant transcendental entire functions.
Let P (f) = amfm + am−1f

m−1 + ... + a1f + a0, (am 6= 0), and ai is the first
nonzero coefficient from the right, and n, m, k be a positive integer with n +m >

(5k + 7)(m+ 1). If [fnP (f)](k) and [gnP (g)](k) share the value 1 IM, then:

(1) If 0 ≤ i < m, then either f and g satisfy the algebraic equation R(f, g) ≡ 0,
where R(ω1, ω2) = ωn

1P (ω1)− ωn
2P (ω2).

(2) If i = m, then either f(z) ≡ tg(z), where t is a constant satisfying tn+m = 1
or f(z) = c1e

cz, g(z) = c2e
−cz, where c1, c2 and c are three constants satisfying

(−1)ka2m(c1c2)
n+m[(n +m)c]2k = 1.

One may ask the following question which is the motivation of the paper: Is it
possible that value 1 can be replaced by a fixed-point z in the above theorem and if
possible how far? We now state the following two theorems.

Theorem 1.1. Let f(z) and g(z) be two nonconstant entire functions and
P (z) = amzm + am−1z

m−1 + ... + a1z + a0, where a0 6= 0, a1,...,am−1, am 6= 0 are
complex constants. If El(z, [f

nP (f)](k)) = El(z, [g
nP (g)](k)):

i) If l ≥ 2 and n > 2k + 3m+ 4;

ii) If l = 1 and n > 3k + 4m+ 5;

iii) If l = 0 and n > 5k + 6m+ 7.

Then either f ≡ tg for a constant t such that td = 1, where d = (n +m, ...n +
m− i, ...n), am−i 6= 0 for some i = 0, 1...m, or f and g satisfy the algebraic equation
R(f, g) ≡ 0, where R(ω1, ω2) = ωn

1P (ω1)− ωn
2P (ω2).

Theorem 1.2. Let f(z) and g(z) be two nonconstant meromorphic functions
and P (z) = amzm + am−1z

m−1 + ... + a1z + a0, where a0 6= 0, a1,...,am−1, am 6= 0
are complex constants. If El(z, [f

nP (f)](k)) = El(z, [g
nP (g)](k)):

i) If l ≥ 2 and n > 3k + 3m+ 8;

ii) If l = 1 and n > 5k + 4m+ 10;

iii) If l = 0 and n > 9k + 6m+ 14.

Then either f ≡ tg for a constant t such that td = 1, where d = (n +m, ...n +
m− i, ...n), am−i 6= 0 for some i = 0, 1...m, or f and g satisfy the algebraic equation
R(f, g) ≡ 0, where R(ω1, ω2) = ωn

1P (ω1)− ωn
2P (ω2).
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2. Some Lemmas

In this section, we present some lemmas which are needed in the sequel.

Lemma 2.1. (see [3]) Let f(z) be a nonconstant meromorphic function and
let a0, a1,...,an be finite complex numbers, an 6= 0. Then

T (r, anf
n + an−1f

n−1 + ...+ a1f + a0) = nT (r, f) + S(r, f).

Lemma 2.2. (see [4]) Let f be a nonconstant meromorphic function, let k be
a positive integer, and let c be a nonzero finite complex number. Then

T (r, f) ≤ N(r, f) +N

(

r,
1

f

)

+N

(

r,
1

f (k) − c

)

−N

(

r,
1

f (k+1)

)

+ S(r, f)

≤ N(r, f) +Nk+1

(

r,
1

f

)

+N

(

r,
1

f (k) − c

)

−N0

(

r,
1

f (k+1)

)

+S(r, f).

where N0

(

r, 1
f(k+1)

)

is the counting function which only counts those points such

that f (k+1) = 0 but f(f (k) − c) 6= 0.

Lemma 2.3. (see [1]) Let f and g be two nonconstant meromorphic functions,
k(≥ 1), l(≥ 0) be integers. Suppose that El(1, f

k(z)) = El(1, g
k(z)). If one of the

following conditions holds, then f(z) ≡ g(z) or f (k)(z)g(k)(z) ≡ 1.

i) l ≥ 2 and

(k + 2)Θ(∞, g) + 2Θ(∞, f) + Θ(0, f) + Θ(0, g) + δk+1(0, f) + δk+1(0, g)

> k + 7;

ii) l = 1 and

(k + 2)Θ(∞, g) + (k + 3)Θ(∞, f) + Θ(0, f) + Θ(0, g) + 2δk+1(0, f) + δk+1(0, g)

> 2k + 9;

iii) l = 0 and

(2k + 4)Θ(∞, f) + (2k + 3)Θ(∞, g) +Θ(0, f) +Θ(0, g) + 3δk+1(0, f) + 2δk+1(0, g)

> 4k + 13.

Lemma 2.4. Let f and g be two non-constant meromorphic functions, and let
n(≥ 1), k(≥ 1) and m(≥ 1) be a integers. Then [fnP (f)](k)[gnP (g)](k) 6= z2.In
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FIXED-POINTS AND UNIQUENESS OF... 103

Proof. Let

[fnP (f)](k)[gnP (g)](k) ≡ z2. (2.1)

Let z0 be a zero of f of order p0. From (2.1) we get z0 is a pole of g. Suppose that
z0 is a pole of g of order q0. Again by (2.1), we obtain

np0 − k = nq0 +mq0 + k,

i.e.

n(p0 − q0) = mq0 + 2k.

The last equality implies that q0 ≥
n−2k
m

and so we have p0 ≥
n+m−2k

m
.

Let z1 be a zero of f − 1 of order p1, then z1 is a zero of [fnP (f)](k) of order
p1 − k. Therefore from (2.1) we obtain

p1 − k = nq1 +mq1 + k,

i.e.

p1 ≥ (n+m)s+ 2k.

Let z2 be a zero of f ′ of order p2 that is not a zero of fP (f), then from (2.1) z2
is a pole of g of order q2. Again by (2.1) we get

p2 − (k − 1) = nq2 +mq2 + k

i.e.

p2 ≥ (n +m)s+ 2k − 1.

In the same manner as above, we have similar results for the zeros of [gnP (g)](k).

On other hand, suppose that z3 is a pole of f . From (2.1), we get that z3 is the
zero of [gnP (g)](k).

Thus

N(r, f) ≤ N

(

r,
1

g

)

+N

(

r,
1

g − 1

)

+N

(

r,
1

g′

)

≤
1

p0
N

(

r,
1

g

)

+
1

p1
N

(

r,
1

g − 1

)

+
1

p2
N

(

r,
1

g′

)

≤

[

m

n+m− 2k
+

1

(n+m)s+ 2k
+

2

(n+m)s+ 2k − 1

]

T (r, g)

+ S(r, g).

(2.2)

By second fundamental theorem and equation (2.2), we have

T (r, f) ≤ N

(

r,
1

f

)

+N

(

r,
1

f − 1

)

+N(r, f)
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≤
m

n+m− 2k
N

(

r,
1

f

)

+
1

(n+m)s+ 2k
N

(

r,
1

f − 1

)

+

[

m

n+m− 2k
+

1

(n+m)s+ 2k
+

2

(n +m)s+ 2k − 1

]

T (r, g)

+S(r, g) + S(r, f).

T (r, f) ≤

[

m

n+m− 2k
+

1

(n+m)s+ 2k

]

T (r, f)

+

[

m

n+m− 2k
+

1

(n+m)s+ 2k
+

2

(n+m)s+ 2k − 1

]

T (r, g)

+ S(r, g) + S(r, f).

(2.3)

Similarly, we have

T (r, g) ≤

[

m

n+m− 2k
+

1

(n+m)s+ 2k

]

T (r, g)

+

[

m

n+m− 2k
+

1

(n+m)s+ 2k
+

2

(n+m)s+ 2k − 1

]

T (r, f)

+ S(r, g) + S(r, f).

(2.4)

Adding (2.3) and (2.4) we get

T (r, f) + T (r, g) ≤

[

2m

n+m− 2k
+

2

(n +m)s+ 2k
+

2

(n+m)s+ 2k − 1

]

{T (r, f) + T (r, g)} + S(r, g) + S(r, f).

which is a contradiction. Thus Lemma proved.

3. Proof of the Theorem

In this section we present the proof of the main result.

Proof of Theorem 1.2. Let F = fnP (f), G = gnP (g).
By Lemma 2.1 we can easily we get

Θ(0, F ) = 1− lim sup
r→∞

N
(

r, 1
F

)

T (r, F )
≥ 1−

m+ 1

n+m

Similarly, we have
Θ(0, G) ≥ 1− m+1

n+m
, Θ(∞, F ) ≥ 1− 1

n+m
, Θ(∞, G) ≥ 1− 1

n+m

Moreover,

δk+1(0, F ) = 1− lim sup
r→∞

Nk+1

(

r, 1
F

)

T (r, F )
≥ 1−

m+ k + 1

n+mIn
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Similarly, we have,

δk+1(0, G) ≥ 1−
m+ k + 1

n+m
.

Since El(1, f
k) = El(1, g

k). We can discuss the following three cases:

i) l ≥ 2. Because n > 3k + 3m+ 8, we have

(k + 2)Θ(∞, G) + 2Θ(∞, F ) + Θ(0, F ) + Θ(0, G) + δk+1(0, F ) + δk+1(0, G)

≥ (k + 4)

(

1−
1

n+m

)

+ 2

(

1−
m+ 1

n+m

)

+ 2

(

1−
m+ k + 1

n+m

)

> k + 7.

ii) l = 1. Because n > 5k + 4m+ 10, we have

(k + 2)Θ(∞, G) + (k + 3)Θ(∞, F ) + Θ(0, F ) + Θ(0, G) + 2δk+1(0, F ) + δk+1(0, G)

≥ (2k + 5)

(

1−
1

n+m

)

+ 2

(

1−
m+ 1

n+m

)

+ 3

(

1−
m+ k + 1

n+m

)

> 2k + 9.

iii) l = 0. Because n > 9k + 6m+ 14, we have

(2k+3)Θ(∞, G)+ (2k+4)Θ(∞, F )+Θ(0, F )+Θ(0, G)+ 3δk+1(0, F )+ 2δk+1(0, G)

≥ (4k + 7)

(

1−
1

n+m

)

+ 2

(

1−
m+ 1

n+m

)

+ 5

(

1−
m+ k + 1

n+m

)

> 4k + 13.

Therefore, by Lemma 2.3, we deduce that either F (k)G(k) ≡ z2 or F ≡ G.
If F (k)G(k) ≡ z2, that is

[fn(amfm+am−1f
m−1+ ...+a1f+a0)]

(k)[gn(amgm+am−1g
m−1+ ...+a1g+a0)]

(k)

≡ z2, (3.1)

then by Lemma 2.4 we can get a contradiction.
Hence, we deduce that F ≡ G, that is

fn(amfm+am−1f
m−1+...+a1f+a0) = gn(amgm+am−1g

m−1+...+a1g+a0). (3.2)

Let h = f
g
. If h is a constant, then substituting f = gh in (3.2) we obtain

amgn+m(hn+m − 1) + am−1g
n+m−1(hn+m−1 − 1) + ...+ a0g

n(hn − 1) = 0,

which implies hd = 1, where d = (n + m, ..., n + m − i, ...n), am−1 6= 0 for some
i = 0, 1, ...m. Thus f ≡ tg for a constant t such that td = 1, where d = (n +
m, ..., n +m− i, ...n), am−i 6= 0 for some i = 0, 1, ...m.In
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106 H.P. Waghamore, A. Tanuja, N. Shilpa

If h is not a constant, then we know by (3.2) that f and g satisfy the algebraic
equation R(f, g) = 0, where R(ω1, ω2) = ωn

1P (ω1)− ωn
2P (ω2).

This completes the proof of Theorem 1.2.

Proof of Theorem 1.1. Since f and g are entire functions we have N(r, f) =
N(r, g) = 0. Proceeding as in the proof of Theorem 1.2 we can easily prove Theorem
1.1.

4. Remark

It follows from the proof of Theorem 1.1 and Theorem 1.2 that if ”z” is replaced by
”a(z)” in Theorems 1.1 and Theorem 1.2, where a(z) is a meromorphic function such
that a 6= 0,∞ and T (r, a) = o{T (r, f), T (r, g)}, then the conclusions of Theorems
1.1 and Theorem 1.2 still hold. So we obtain the following results.

Theorem 4.1. Let f(z) and g(z) be two nonconstant entire functions and
P (z) = amzm + am−1z

m−1 + ... + a1z + a0, where a0 6= 0, a1,...,am−1, am 6= 0 are
complex constants. If El(a(z), [f

nP (f)](k)) = El(a(z), [g
nP (g)](k)):

i) If l ≥ 2 and n > 2k + 3m+ 4;

ii) If l = 1 and n > 3k + 4m+ 5;

iii) If l = 0 and n > 5k + 6m+ 7.

Then either f ≡ tg for a constant t such that td = 1, where d = (n +m, ...n +
m− i, ...n), am−i 6= 0 for some i = 0, 1...m, or f and g satisfy the algebraic equation
R(f, g) ≡ 0, where R(ω1, ω2) = ωn

1P (ω1)− ωn
2P (ω2).

Theorem 4.2. Let f(z) and g(z) be two nonconstant meromorphic functions
and P (z) = amzm + am−1z

m−1 + ... + a1z + a0, where a0 6= 0, a1,...,am−1, am 6= 0
are complex constants. If El(a(z), [f

nP (f)](k)) = El(a(z), [g
nP (g)](k)):

i) If l ≥ 2 and n > 3k + 3m+ 8;

ii) If l = 1 and n > 5k + 4m+ 10;

iii) If l = 0 and n > 9k + 6m+ 14.

Then either f ≡ tg for a constant t such that td = 1, where d = (n +m, ...n +
m− i, ...n), am−i 6= 0 for some i = 0, 1...m, or f and g satisfy the algebraic equation
R(f, g) ≡ 0, where R(ω1, ω2) = ωn

1P (ω1)− ωn
2P (ω2).

Obviously, we can use the analog method of Theorems 1.1 and Theorem 1.2 to
prove Theorems 4.1 and Theorem 4.2 easily. Here, we omit them.In
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