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Abstract. In model-based segmentation, automated region identifica-
tion is achieved via registration of novel data to a pre-determined model.
The desired structure is typically generated via manual tracing within
this model. When model-based segmentation is applied to human cortical
data, problems arise if left-right comparisons are desired. The asymmetry
of the human cortex requires that both left and right models of a struc-
ture be composed in order to effectively segment the desired structures.
Paradoxically, defining a model in both hemi-spheres carries a likelihood
of introducing bias to one of the structures. This paper describes a novel
technique for creating a symmetric average model in which both hemi-
spheres are equally represented and thus left-right comparison is possible.
This work is an extension of that proposed by Guimond et al [I]. Hip-
pocampal segmentation is used as a test-case in a cohort of 118 normal
eld-erly subjects and results are compared with expert manual tracing.

1 Introduction

Non-subjective segmentation of sub-cortical structures from MRI has plagued
the automated analysis of large clinical data sets. This is especially true when
dealing with cohorts of patients exhibiting widely varying anatomical structure.
Methods involving manual tracing suffer from inter- and intra-operator variabil-
ity [2] and the increase in tracing effort required for high resolution data sets.
Automated segmentation allows consistent analysis of structure volumes to be
performed thus enabling non subjective estimates of atrophy in cohorts. Model
based segmentation relies upon a pre-existing notion or manual delineation of
the chosen structure on an average model of anatomy that represents the pa-
tient population being studied. The notion of an anatomical model is by no
means new, digital atlases of both the human and animal cortices have been
available for some time. Early instances of such models include a rat brain [3],
a human model from CT data [4], and others [Bl6]. Many of these early models
were derived from a single subject’s data, and therefore could not represent the
anatomical variability present in a population. Toga et al [7] provides a good
summary of these recent developments.
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In order to build these models various linear and non-linear registration tech-
niques have been developed to align individual subject data that constitutes the
average. These registration techniques also allow labels that have been defined
on models to be transformed onto individual patients anatomy by using the in-
verse of the subject-to-model transformation. Gee et al [§] proposed a system
whereby 3D atlases of anatomy could be matched to anatomical images.

Both Thompson [9] and Davatzikos [10] proposed a more sophisticated method
whereby the cortex of individuals could be modeled via a deformable model.
Despite the differences in methodology, the eventual goal of all these methods is
to produce an average model that can accurately both show the similarities in
the group and exclude the effect of anatomic variance.

Wang and Joshi et al [T1] expanded upon these methods in order to determine
left-right differences of the hippocampus (HC). An inherent problem with the
current approach to average modeling used in these methodologies to determine
initial struc-ture size is the asymmetry in the cortex. As such, if a structure is
outlined in both the left and right sides or left/right comparisons are required in
a model, a bias will be introduced if the initial delineations on the model differ
in shape or volume. This bias will be made apparent during the fitting of novel
data to a model as the individual hemispheres will require differing parameters
to achieve a robust fit. In a normal aver-age model of cortical structure this will
be the case [12].

Here an approach that annuls this effect without compromising the auto-
matic seg-mentation performance is presented. In this methodology, images are
iteratively matched linearly and non-linearly to an evolving model of average
structure. This is similar to the procedure described by Guimond [I]. At each
stage a new model is built by averaging the current registration results. The
technique presented here is different in that at each stage images are matched
to the model in both their original and (Left-Right) mirrored orientation.

The aims of this methodology were to:

1. Build a high resolution symmetric atlas from a population.

2. Automatically extract sub-cortical structures in a population.

3. Allow left-right volumetric comparisons to be made without bias.
4. Eliminate subjective error.
2 Methods

For this work, 153 T1-volumetric brain MRI scans from the Oxford Project to
Investi-gate Memory and Ageing (OPTIMA) were used. These data-sets were
acquired on a 1.5T System with a spatial resolution of 0.86x 0.86 x 2mm.

2.1 Data Pre-processing

The data was converted to the MINC format and intensity corrected using his-
togram spline sharpening [I3]. Image intensity was then clamped between the
0.1st and 99.9th percentile and this range of values is rescaled between 0 and
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100. In this case the chosen range is arbitrary. Clamping is performed to reduce
image artifacts (typically high-signal background noise) and bring images into
approximate intensity alignment. After the first generation model was created,
the individual volume intensities were normalized against the model based on
the median intensity values [17].

2.2 Registration Methods

The linear and non-linear registration methods used in this paper are slight
modifica-tions of the non-linear matching strategy (mritotal + ANIMAL) pro-
posed by Collins et al [I4], the only difference being in the number of iterations
used during each stage of non-linear fitting (as shown in Table 1). As proposed by
[14], the ANIMAL algo-rithm comprises a hierarchical approach to registration.
An initial linear fit is per-formed followed by progressively higher-resolution non-
linear fits. This procedure results in an affine transformation with an associated
vector-volume to describe the non-linear component of the fit. The objective
function used in the fitting is primarily cross-correlation and the regularization
model is linear-elastic.

2.3 Symmetric Model Generation

In iteration 0 each aligned subject data-set is linearly registered to the initial
model (ICBM152 - symmetric [packages.bic.mni.mcgill.ca]) in order to bootstrap
the model using the hierarchical fitting procedure mritotal. The resulting linear
transformation, TA, is flipped about the X-axis and used as the initial transfor-
mation for registering the mirror image to the ICBM152 model yielding TF. TF
is then flipped about the X-axis in order to be averaged with TA. Afterwards,
the averaged transformation is applied to the aligned data-set and the flipped
averaged transformation to the mirror image. Then all the resulting data-sets
were averaged as well as all transformations. The inverted average scaling factor
is then applied to the averaged data-set which generates the next generation
model. This is done in order to scale the model into the average size of all data-
sets used. Iteration 1 performs the same fitting procedure as iteration 0 to the
model generated in iteration 0.

A general overview of the slightly different non-linear fitting process which
starts at iteration 2 is shown in Fig. 1. Here all subject data-sets (aligned and
flipped) are non-linearly matched to the model generated in the previous iter-
ation where the linear transformations created in iteration 1 are used as initial
transformations. For each subject, the resulting transformations TA and TF are
combined by flipping TF and averaging them ignoring the linear component. This
averaged transformation is then concatenated with the linear transform (created
in iteration 1) and the inverse of the scaling factor described with iteration 0
(Fig. 1. index I).

The composed transformation TX is then applied to aligned subject data and
a flipped version of the transformation to the flipped data (see Fig. 1. index J).
The resulting volumes are then averaged separately (Fig. 1. indexes K); aligned
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Fig. 1. Schmatic of non-linear fitting and averaging procedure

and flipped. In order to generate the next generation model the average of the
aligned transformations (linear component ignored, Fig. 1. index L) must be in-
verse applied to the average aligned volume (Fig. 1. index M) and respectively
to the flipped data. The results of these transformations are averaged (Fig. 1. in-
dex N) which represents the next gen-eration model. In this work, the non-linear
fitting process was repeated nine times by constantly increasing the registration
resolution. Table 1 shows detailed information regarding the registration process.

Table 1. Number of iterations used during each stage of non-linear fitting. Iterations
0 and 1 are linear, iterations 2 to 10 are non-linear with a deformation grid resolution
from 16mm to lmm.

Iteration Target Model 16-168 /[8,4]4 /42212 /2,21
0 symmetric ICBM152 - - - - -
1 model generated in iteratoin 0 - - - - -
2 model generated in iteratoin 1 35 - - - -
3,4 model generated in iteratoin 2,3 35 35 - - -
5,6,7 model generated in iteratoin 4,5,6 35 35 25 - -
8,9 model generated in iteratoin 7,8 35 35 25 10 -
10 model generated in iteratoin 9 35 35 25 10 5

2.4 Manual Hippocampus Segmentation

The HC was manually traced in 118 of the patient data sets in both hemispheres
using the method described by Pruessner et al [15]. In brief the method consists
of: aligning all images to ICBM space via a linear transformation to assist with
orientation during tracing, isotropic resampling of all data to 1mm and tracing
the chosen structure via the use of simultaneous coronal, transverse and sagittal
views.
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2.5 Comparison; Manually Traced - Automatically Segmented
Hippocampi

As all patient data sets have now been non-linearly matched to the final average
model-based automated segmentations of regions that exhibit sufficient image
contrast such as the hippocampus are possible as per Collins et al [I4]. To com-
pare manually traced hippocampi against automatically segmented ones, the first
half of 118 manually traced hippocampi is transformed on the non-linear average
model (using the subject data to model transformations that were obtained in
the last iteration of model generation) to create a HC on the target volume. This
HC model is then back-transformed onto the individual patients anatomy of the
second half. Kappa correlation is used as a measure of agreement between the
manually traced hippocampus and the automatic segmented one for each sub-
ject. This process is repeated by transforming the second half of the manually
traced hippocampi on the non-linear average and back-transforming the average
to onto the individual subjects of the first half.

3 Results

Fig. 2 demonstrates the registration results of two aligned subjects during the
progres-sion towards a symmetric average model. In this series of images the
shift towards symmetry is very apparent in the later iterations. This effect is first
exhibited in larger structures (e.g. ventricles) followed by more local structures
(e.g. smaller sulci). The last iterations demonstrate the ability of the non-linear
matching methodology to find a mean between different patients anatomy. The
effect of anatomical normalization can easily be seen by comparing the anatomy
of patient 1 and 2 (Fig. 2) in iterations 1 and 10. After non-linear registration
the different anatomies (iteration 1) have become very similar (iteration 10).

The effect of normalization of anatomy can also be seen in the associated
average images, here the most obvious effect during the iteration towards a
symmetric model is the reduction in variance associated with increase in contrast
as the model evolves. This effect can be seen in Fig. 3 as a reduction in standard
deviation. It should also be noted that in later iterations the mean image contains
more anatomical information as more and more structures are matched. This
is also reflected in the standard deviation images. Automatic segmentation as
described in section 2.5 was compared against expert manual delineation [I5] of
the hippocampus in 118 non-demented community volunteers.

The Kappa mean value (for the process where the average hippocampus cre-
ated from the second half of the data-set cohort was back-transformed to the
individual patient data-sets of the first half) was 0.770 accompanied by a stan-
dard deviation of 0.027. For the process which was done in the opposite way, the
Kappa mean was 0.789 with a standard deviation of 0.032. However, it must be
noted that left/right comparisons in the proposed methodology will be without
bias. For this subject cohort, left/right comparison of the hippocampus volume
shows no significant difference. Fig. 4 (a) shows the non-liner model in which
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Fig. 2. Registration results for two patients during a stepwise matching to the evolving
model of average structure

the averaged hippocampus is outlined, a randomly selected example for manu-
ally tracing is shown in (b) and (c) outlines the correspond-ing automatically
segmented hippocampus.

4 Discussion

This paper has presented a method whereby automated model based segmenta-
tion of symmetric structures is made possible. This is done by registering com-
plementary original and flipped images to a target simultaneously, this feature
is important to ensure bias is not introduced at any stage of the model genera-
tion. It is also important to note that during iterations registration begins with
each of the images in their initial space. This constraint ensures that no bias is
introduced towards a particular interme-diate model during the construction of
the final model.

It should be noted that this work embodies a small extension to the work done
by Guimond on iterative atlasing, there are however two critical differences. The
first is that after each interation of model building, the inverse of the average
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Iter: 1 3 7 10

Fig. 3. Successive, reduction in variance and increase in contrast as the model evolves.
Top row: Mean images of 153 averages (aligned data-sets), bottom row: Standard de-
viation images (aligned data-sets)

(a) () (c)

Fig.4. Comparison of manually tracing and automatic segmentation; (a) non-liner
model, (b) manually tracing - and (c) automatic segmentation of the hippocampus

transformation is applied to the model, this controls for possible bias in the
chosen method of registration. The second is that in this case we are building a
symmetric model. Whilst a comparison of the two methods for segmenting sub-
structures would seem a logical test for the new method, the results will be of
little utility if only because only the results obtained using the new method will
be unbiased towards the left or right sub-structure thas has been chosen. That
said, givan that both approaches use the same underlying registration technique,
the reults will be very similar.

During the generation of the model it was found that a hierarchical approach
to fitting as detailed in Table 1 is critical. As such only structures that exhibit
high anatomic consistency (eg motor strip, ventricles) across a population are
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evident in the eventual model. Due to the nature and extent of processing re-
quired to build such a model the computing time taken to generate this model
is large. Approximately 2 weeks of dedicated processing time on a cluster of 16
Linux machines. Whilst this may seem an inordinate amount of processing time,
it must be noted that once a model is built, the time taken to then match a
novel subjects anatomy to the model is on the order of minutes.

For the chosen registration techinque (ANIMAL) it was found that the num-
bers of iterations given in Table 1 were optimal for our dataset and thus likely
for most elderly T1 data. Clearly this number of iterations will need to be tuned
for data that is not of this type. In our case, an iterations fitting was continued
untill the Standard Deviation image stabilised for that particular stage. Once
this was achieved only then was fitting allowed to progress a finer scale.

The utility of a method whereby features can be automatically identified and
ex-tracted from cortical data is far reaching but can be problematic [16]. One of
these problems is the issue of symmetric bias when comparing structures left-
right. The methodologies presented in this paper are intended to enhance the
existing methods whereby models are built using non-linear registration with no
corresponding impact on accuracy of automated segmentation. The most obvious
benefit is the ability to perform comparisons of structures that are by nature
asymmetric but posses enough symmetry to allow left-right comparisons to be
made.
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