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Abstract. We study the L
p-boundedness of linear and bilinear multipliers for the

symmetric Bessel transform.

1. Introduction. Bessel functions occur in the analysis of radial prob-
lems. The simplest case is the analysis of structures on Rn which are invari-
ant under the action of the orthogonal group O(n). In the present paper
we are concerned with radiality on matrix spaces Mp,q = Mp,q(F) over one
of the skew-fields F = R, C or H, as invariance under the left action of the
unitary group Up = Up(F),

Up ×Mp,q →Mp,q, (u, x) 7→ ux.

Note that in [FT], the authors gave the basic elements of radial analysis
in Mp,q. The mapping Upx 7→

√
x⋆x establishes a homeomorphism between

the space of Up-orbits in Mp,q and the cone Πq = Πq(F) of positive semi-
definite hermitian q × q-matrices over F. Radial functions on Mp,q can thus
be considered as functions on the cone Πq and the Fourier transform of a
radial function can be expressed in terms of a generalized Hankel transform
involving Bessel functions of a matrix argument. These functions occur in
the theory of multi-variable hypergeometric functions of Dunkl type. Let
G = U(p, q) denote the indefinite unitary group of index (p, q) over F. Its
maximal compact subgroup is naturally isomorphic to Up × Uq. We may
identify Mp,q with the tangent space of the Riemannian symmetric space
G/K at the coset eK. This action induces an action of Up ×Uq on Mp,q via

((u, v), x) 7→ uxv−1, u ∈ Up, v ∈ Uq.

The associated orbit space is canonically parameterized by the possible sin-
gular spectra of matrices from Mp,q and is homeomorphic to

Ξq = {ξ = (ξ1, . . . , ξq) ∈ R
q : ξ1 ≥ · · · ≥ ξq ≥ 0},

which is a Weyl chamber of type Bq.
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DOI: 10.4064/cm126-2-2 [155] c© Instytut Matematyczny PAN, 2012



156 K. HOUISSA AND M. SIFI

Let

Mq := {pd/2 : p = q, q + 1, . . . } ∪ ]ρ− 1,∞[, d = dimR F = 1, 2, 4,

where ρ = d(q−1/2)+1 is a real parameter. M. Rösler [R3] has shown that
for µ ∈ Mq the set Ξq is a locally compact Hausdorff space endowed with a
convolution structure ◦µ : M b(Ξq) ×M b(Ξq) → M b(Ξq) such that (Ξq, ◦µ)
is a hypergroup. The characters of Ξq were identified with multi-variable
Bessel functions of Dunkl type which are associated with root system of
type Bq,

ξ 7→ J
Bq

k (ξ, iη), η ∈ Ξq.

These functions satisfy the positive product formula

JB
k (ξ, z)JB

k (η, z) =
�

Ξq

JB
k (ζ, z) d(δξ ◦µ δη)(ζ), ξ, η ∈ Ξq, z ∈ C

q.

This allows us to introduce the symmetric Bessel translation and symmetric
Bessel convolution on Ξq by

(τηf)(ξ) =
�

Ξq

f(ζ) d(δξ ◦µ δη)(ζ), f ∈ Cc(Ξq),

and

(f ◦µ g)(ξ) =
�

Ξq

(τξf)(η)g(η) dω̃µ(η), f ∈ Cc(Ξq).

By analogy with the ordinary Fourier analysis, one can define the symmetric
Bessel transform on Ξq by

f̂(η) =
�

Ξq

f(ξ)JB
k (ξ, iη) dω̃µ(ξ)

where ω̃µ is a Haar measure on Ξq.
Let m : Rq → C be a bounded function and define the linear multiplier

operator Tm associated with m by Tm(f) = F−1(mFf), where F denotes
the ordinary Fourier transform on Rq. The multiplier theorem of Hörmander
[Ho] gives a sufficient condition on m guaranteeing the boundedness of Tm
on Lp(Rq) for 1 < p < ∞. It states that is enough for m to be a bounded
Cℓ-function satisfying

( �

R/2≤|ξ|≤R

|∂sξm(ξ)|2dξ
)1/2

≤ CRq/2−|s| for all R > 0,

where ℓ is the least integer greater than q/2 and s = (s1, . . . , sq), |s| =
s1 + · · ·+ sq ≤ ℓ.

Anker [A] proves a result analogous to the Hörmander–Mikhlin mul-
tiplier theorem on a general Riemannian symmetric space G/K of non-
compact type. Next, Gosselin and Stempak [GS] develop Hörmander’s orig-
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inal technique to establish an analogous multiplier theorem with respect to
the Fourier–Bessel transform.

The aim of this work is to prove the Hörmander multiplier theorem for
the symmetric Bessel transform by using Hörmander’s technique. This is
done in our Theorem 3.1.

The second part of this paper is devoted to the study of Lp-boundedness
of bilinear multiplier operators for the symmetric Bessel transform. By
means of Littlewood–Paley theory we establish the analogue of Coifman
and Meyer’s result for a smooth multiplier. Analogous results were obtained
in [AGS] for the Dunkl transform in the one-dimensional case.

This paper is organized as follows. In Section 2, we collect the important
results of [R3] about the hypergroup (Ξq, ◦µ). Next, we introduce Bessel
functions associated with root systems, and we identify the characters of
the hypergroup Ξq with Bessel functions of Dunkl type associated with a
root system of type Bq. We define a translation operator τη, η ∈ Ξq, which
satisfies, for f ∈ Cc(Ξq) (the space of continuous functions on Ξq with
compact support),

�

Ξq

(τηf)(ξ) dω̃µ(ξ) =
�

Ξq

f(ξ) dω̃µ(ξ), η ∈ Ξq.

Next we define the convolution of two functions on Ξq. We give the prop-
erties of the translation operator and convolution on Ξq. This provides a
handy tool for extending some results from the classical Fourier transform
to the symmetric Bessel transform. In Section 3, we prove the Hörmander
multiplier theorem in greater generality for the symmetric Bessel transform
by using Hörmander’s techniques. Section 4 is devoted to the study of bilin-
ear multiplier operators for the symmetric Bessel transform.

In what follows, C represents a suitable positive constant which is not
necessarily the same at each occurrence. Furthermore, we denote by

• D(Rq) the space of C∞-functions on Rq with compact support;
• S(Rq) (rep. S(Ξq)) the space of Schwartz functions on Rq (resp. Ξq);
• ‖ · ‖p,µ the usual norm of Lp(ω̃µ).

2. The symmetric Bessel hypergroup (Ξq, ◦µ)
2.1. Preliminaries. In this subsection we collect some basic notation

and facts about matrix Bessel hypergroups associated with rational Dunkl
operators of type Bq (see [FK], [BH], [J], [R3]).

Let V denote a simple Euclidean Jordan algebra of rank q and of di-
mension constant d corresponding to the symmetric cone Ω. Then the hy-
pergeometric function 0F

α
1 (µ; · ) essentially coincides, for α = 2/d, with the

Bessel function Jµ associated with Ω in the sense of [FK]. Indeed, the latter
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is defined by

Jµ(x) =
∑

λ≥0

(−1)|λ|

(µ)λ|λ|!
Zλ(x), x ∈ V,

where (µ)λ is the generalized Pochhammer symbol, Zλ = cλΦλ with con-
stants cλ > 0 are the normalized spherical polynomials, and µ ∈ C is an
index with (µ)λ 6= 0 for a partition λ ≥ 0.

In this paper we shall work with Bessel functions of two variables,

Jµ(x, y) =
∑

λ≥0

(−1)|λ|

(µ)λ|λ|!
Zλ(x)Zλ(y)

Zλ(e)
, x, y ∈ V,

where e is the unit of V . For x, y ∈ V with eigenvalues ξ = (ξ1, . . . , ξq) and
η = (η1, , . . . , ηq) respectively, we thus have

Jµ(x, y) = 0F
2/d
1 (µ; iξ, iη).

We consider in this work the set Hq of Hermitian q × q matrices over
F and regard it as a Euclidean vector space with scalar product (x | y) =
Re tr(xy), where tr denotes the trace onMq(F). The dimension of Hq over R
is n = q+ d

2q(q− 1) where d = dimR F . With the above scalar product and

the Jordan product x ◦ y = 1
2(xy + yx), the space Hq becomes a Euclidean

Jordan algebra with unit I = Iq. The set Ω = Ωq of positive definite matrices
from Hq is a symmetric cone.

The following properties summarize the important results shown in [R3]:

Properties.

(i) For each µ ∈ Mq, the set Ξq carries a commutative hypergroup
structure with convolution

(δξ ◦µ δη)(f) :=
�

Uq

(f ◦ π)(ξ ∗µ uηu−1) du, f ∈ C(Ξq).

The neutral element of the hypergroup Ξq,µ := (Ξq, ◦µ) is 0 ∈ Ξq

and the involution is given by the identity mapping.
(ii) A Haar measure on Ξq is given by

ω̃µ = dµhµ(ξ) dξ, with hµ(ξ) =

q∏

i=1

ξ2γ+1
i

∏

i<j

(ξ2i − ξ2j )
d

and a constant dµ > 0.
(iii) The characters of the hypergroup Ξq are all defined by

ψξ(η) :=
�

Uq

ϕξ(uηu
−1) du, ξ ∈ Ξq,

where ϕξ(r) = Jµ(
1
4rξ

2r), and ψξ ∈ Cb(Ξq). We easily verify that
ψξ(η) = ψη(ξ) for all ξ, η ∈ Ξq.
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The dual space of the hypergroup Ξq = (Ξq, ◦µ) is given by

Ξ̂q,µ = {ψξ : ξ ∈ Ξq}.
(iv) The hypergroup Ξq is self-dual via the homeomorphism Ξq → Ξ̂q,

ξ 7→ ψξ. Under this identification, the Plancherel measure π̃µ of Ξq

coincides with the Haar measure ω̃µ.
(v) For ξ, η ∈ Ξq, we have the integral representation

ψξ(η) =
�

Uq

Jµ

(
1

4
ξuη2u−1ξ

)
du = Jµ(ξ

2/2, η2/2).

2.2. Dunkl theory and Dunkl Bessel functions. Let G be a finite
reflection group on Rq equipped with the usual scalar product 〈·, ·〉, and R
be a reduced root system of G. From now on we assume that R is normalized
in the sense that 〈α, α〉 = 2 for all α ∈ R; this simplifies formulas, but is no
loss of generality. We extend the action of G to Cq and 〈·, ·〉 to a bilinear
form on Cq ×Cq. The Dunkl operators associated with R can be considered
as perturbations of the usual partial derivatives by reflection parts. These
reflections parts are coupled by means of parameters, which are given in
terms of multiplicity functions:

A function k : R → C which is invariant under G is called a multiplic-

ity function on R. For a finite reflection group G and a fixed multiplicity
function k on its root system, the associated (rational) Dunkl operators are
defined by

(Tnf)(x) =
∂f

∂xn
(x) +

1

2

∑

α∈R

k(α)αn
f(x)− f(σαx)

〈α, x〉 , 1 ≤ n ≤ q, x ∈ R
q;

here σα denotes the reflection in the hyperplane perpendicular to α and the
action of G is extended to functions on Cq via g.f(x) := f(g−1x) (see [D]
and [DO] for more properties of Tn, 1 ≤ n ≤ q). Moreover, for each fixed
ω ∈ Cq, the joint eigenvalue problem

Tnf = ωnf, f(0) = 1, 1 ≤ n ≤ q, ξ ∈ C
q,

has a unique holomorphic solution f(z) = Ek(z, ω) called the Dunkl kernel .
It is symmetric in its arguments and satisfies Ek(λz, ω) = E(z, λω) for all
λ ∈ C as well as Ek(gz, ω) = E(z, gω) for all g ∈ G. The generalized Bessel

function

(2.1) Jk(z, ω) :=
1

|G|
∑

g∈G

Ek(z, gω)

is G-invariant in both arguments. Moreover, g(z) = Jk(z, ω) is the unique
holomorphic solution of the Bessel system

p(T )f = p(ω)f, g(0) = 1, p ∈ PG,
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where T = (T1, . . . , Tq) and PG denotes the subalgebra of G-invariant poly-
nomials in P (see [O]). The Dunkl kernel Ek gives rise to an integral trans-
form on Rq called the Dunkl transform. Let ωk denote the weight function

ωk(x) =
∏

α∈R

|〈α, x〉|2k(α)

on Rq.
Let us denote by JB

k the Dunkl type Bessel function associated with the
root system R = Bq, given by

Bq = {±ej : 1 ≤ j ≤ q} ∪ {±ei ± ej : 1 ≤ i < j ≤ q},
where (ei)1≤i≤q is the canonical basis of Rq and k = (k1, k2) a multiplicity
function, and by [·, ·]Bk the associated Dunkl pairing (see [D], [R2]). For
z = (z1, . . . , zq) ∈ Cq we put z2 = (z21 , . . . , z

2
q ).

The key result of [R3] identifies JB
k with a generalized 0F1 hypergeomet-

ric function of two arguments: For z, ω ∈ Cq, we have

JB
k (z, ω) = 0F

α
1 (µ; z

2/2, ω2/2) with α =
1

k2
, µ = k1 + (m− 1)k2 + 1/2.

As a consequence, Bessel functions associated with a symmetric cone can be
identified with Dunkl Bessel functions of type Bq with specific multiplicities.

Let Ω be an irreducible symmetric cone in a Euclidean Jordan algebra
of rank q. Then for r, s ∈ Ω with eigenvalues ξ = (ξ1, . . . , ξq) and η =
(η1, . . . , ηq) respectively, we have

Jµ(r
2/2, s2/2) = JB

k (ξ, iη)

where k = k(µ, d) = (µ− (d/2)(q − 1)− 1/2, d/2).
A consequence of the above identification can be formulated in two ways:
1) The characters of the hypergroup Ξq,µ, µ ∈ Mq, are given by

ψη(ξ) = JB
k (ξ, iη), η ∈ Ξq,

with multiplicity k = k(µ, d) as above.
2) Consider a root system of type Bq with multiplicity k = (k1, k2)

where k2 = d/2, d ∈ {1, 2, 4}, and k1 = (d/2)(p − q + 1) − 1/2 for integer
p ≥ q or arbitrary k1 ≥ 1

2(dq − 1). Then the associated Dunkl type Bessel

functions ξ 7→ JB
k (ξ, iη) are the characters of the hypergroup (Ξq, ◦µ), where

µ = k1 + (q− 1)k2 + 1/2 and the convolution ◦µ is defined over F = R,C,H
depending on the value of d. In particular we have

Theorem 2.1 ([R3]). The Bessel function JB
k satisfies the positive prod-

uct formula

(2.2) JB
k (ξ, z)JB

k (η, z) =
�

Ξq

JB
k (ζ, z) d(δξ ◦µ δη)(ζ), ξ, η ∈ Ξq, z ∈ C

q.

We shall need the following anti-symmetry of Dunkl operators ([R2]).
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Proposition 2.2. Let k ≥ 0 and 1 ≤ n ≤ q. Then for every F ∈ S(Rq)
and G ∈ C1

b (R
q),

�

RN

(TnF )(x)G(x)ωk(x) dx = −
�

RN

F (x)(TnG)(x)ωk(x) dx.

Proposition 2.3. In our situation, i.e. for the Haar measure ω̃µ,�

Ξq

(Tnf)(η)g(η) dω̃µ(η) = −
�

Ξq

f(η)(Tng)(η) dω̃µ(η), 1 ≤ n ≤ q.

Proof. Recall that dω̃µ(η) = dµhµ(η)dη. Notice that hµ coincides up to a
constant factor with ωk for k = k(µ, d). As ωk is Bq-invariant, we therefore
have

Tnf = TnF |Ξq , 1 ≤ n ≤ q,

where F (resp. G) is the Bq-invariant extension of f (resp. g ) to Rq.

The Dunkl transform is defined on L1(Rq, ωk) by

f 7→ f̂k, f̂k(ξ) = c−1
k

�

Rq

f(x)Ek(−iξ, x)ωk(x) dx, ξ ∈ R
q,

with the constant
ck :=

�

Rq

e−|x|/2ωk(x) dx

(see [dJ1] and [dJ2] for more details). It shares many properties with the
usual Fourier transform to which it reduces in case k = 0. In particular, the
Dunkl transform (as normalized above) extends to an isometric isomorphism
of L2(Rq, ωk), and

(T̂ηf)
k(ξ) = iξnf̂

k(ξ)

for differentiable f of sufficient decay.
The symmetric Bessel transform on Ξq is given by

f̂(η) =
�

Ξq

f(ξ)JB
k (ξ, iη) dω̃µ(ξ).

As ωk is Bq-invariant, we have f̂(η) = const ·F̂ k(η), where F denotes the

Bq-invariant extension of f to Rq and F̂ k its Dunkl transform. Using the
Plancherel theorem for the Dunkl transform and the identification of Ξq

with its dual we obtain

f̂ = F̂ k|Ξq and dµ =
( �

Ξq

hµ(x)e
−|x|2/2 dx

)−1
.

The symmetric Bessel transform has the following properties:

(i) For f ∈ L1(ω̃µ) we have

(2.3) ‖f̂‖∞,µ ≤ ‖f‖1,µ.
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(ii) For f ∈ S(Ξq) we have

(2.4) p̂(T )f(η) = p(−iη)f̂(η), p ∈ PG.

(iii) ˆ: f 7→ f̂ is a topological automorphism of S(Ξq).

(iv) ˆ: f 7→ f̂ is an isometric automorphism of L2(ω̃µ) and we have the
Parseval and Plancherel formulas: If f, g ∈ L1(ω̃µ) ∩ L2(ω̃µ), then�

Ξq

fḡ dω̃µ =
�

Ξq

f̂ ĝ dω̃µ, ‖f̂‖2,µ = ‖f‖2,µ.

(v) (Inversion formula) For f ∈ L1(ω̃µ) such that f̂ ∈ L1(ω̃µ) we have

(2.5) f(η) =
�

Ξq

f̂(ξ)JB
k (ξ, iη) dω̃µ(ξ).

For more details about these properties see [BH, Section 2.2, Chap 2].
(We shall apply the results of this section to our hypergroup Ξq where its
characters for µ ∈ Mq are given by ψη(ξ) = JB

k (ξ, iη) and the Plancherel
measure coincides with ω̃µ under the natural identification of Ξq with its
dual.)

2.3. Symmetric Bessel translation and symmetric Bessel con-

volution

Definition 2.4. For ξ, η ∈ Ξq and a continuous function f on Ξq, we
put

(τηf)(ξ) =
�

Ξq

f(ζ) d(δξ ◦µ δη)(ζ),

and call τη the symmetric Bessel translation operator on Ξq.

The symmetric Bessel translation operator has the following properties.

Properties.

(1) τη is a continuous linear operator from Cc(Ξq) into itself.
(2) For ξ, η ∈ Ξq and f ∈ Cc(Ξq), we have

(τηf)(ξ) = (τξf)(η), τη ◦ τξ = τξ ◦ τη,
(τ0f)(ξ) = f(ξ), Tn ◦ τη = τη ◦ Tn.

(3) For all ξ ∈ Ξq, the operator τξ can be extended to Lp(ω̃µ) (p ≥ 1)
and for f ∈ Lp(ω̃µ) we have

‖τξf‖p,µ ≤ ‖f‖p,µ.
(4) (Product formula) For all ξ, η, ζ ∈ Ξq,

τξ(J
B
k (·, ζ))(η) = JB

k (ξ, ζ)JB
k (η, ζ).
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(5) Let f, g be two measurable and positive functions on Ξq and let
ξ ∈ Ξq. If either f or g is σ-finite with respect to ω̃µ, then�

Ξq

(τξf)(η)g(η) dω̃µ(η) =
�

Ξq

f(η)(τξg)(η) dω̃µ(η).

(6) For all ξ, η ∈ Ξq and f ∈ L1(ω̃µ), we have

τ̂ξf(η) = JB
k (ξ, iη)f̂(η).

Definition 2.5. Let f and g be two continuous functions on Ξq with
compact support. Then we define the convolution of f and g by

(f ◦µ g)(ξ) =
�

Ξq

(τξf)(η)g(η) dω̃µ(η), a.e. ξ.

Properties.

(1) The convolution ◦µ is associative and commutative.
(2) Let p, q, r ∈ [1,∞] be such that 1/p+ 1/q = 1/r. The map (f, g) 7→

f ◦µ g, defined on Cc(Ξq) × Cc(Ξq), extends to a continuous map
from Lp(ω̃µ)× Lq(ω̃µ) to L

r(ω̃µ), and

‖f ◦µ g‖r,µ ≤ ‖f‖p,µ‖g‖q,µ.
(3) If f ∈ L1(ω̃µ) and g ∈ L2(ω̃µ), then

(2.6) f̂ ◦µ g = f̂ · ĝ.
(4) If supp(f) ⊂ {x : |x| ≤ a} and supp(g) ⊂ {x : b ≤ |x| ≤ c} with

0 < a < b < c, then

(2.7) supp(f ◦µ g) ⊂ {x : b− a ≤ |x| ≤ c+ a}.

3. Hörmander multiplier theorem. Let m : Ξq → C be a bounded
measurable function. We define a linear transformation Tm on L2(ω̃µ) ∩
Lp(ω̃µ) by

T̂mf(ξ) = m(ξ)f̂(ξ).

We shall say that m is an Lp(ω̃µ) multiplier if

(3.1) ‖Tmf‖p,µ ≤ Ap‖f‖p,µ.
The smallest Ap for which (3.1) holds will be called the norm of the multi-
plier. We denote by Mp the class of Lp(ω̃µ) multipliers with the indicated
norm. It is clearly a Banach algebra under pointwise multiplication.

Theorem 3.1. Suppose that m is a bounded Cℓ-function on Ξq \ {0},
where ℓ is the least integer such that ℓ > µq, satisfying the Hörmander

condition: For every differential monomial ∂sξ , s = (s1, . . . , sq) with |s| =
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s1 + · · ·+ sq ≤ ℓ, and every 0 < R <∞,

(3.2)
( �

R/2≤|ξ|≤2R

|∂sξm(ξ)|2 dω̃µ(ξ)
)1/2

≤ CRµq−|s|,

where C is a constant. Then m ∈ Mp, 1 < p <∞, that is,

‖Tmf‖p,µ ≤ Ap‖f‖p,µ.
Remark 3.2. Theorem 3.1 gives a sufficient condition for a function m

to be a G-invariant Dunkl multiplier of the root system Bq.

The condition (3.2) is satisfied if for ℓ an integer greater than µq, m is a
Cℓ-function on Ξq \{0} satisfying

|∂sξm(ξ)| ≤ C/|ξ||s| whenever |s| ≤ k.

The following theorem plays a crucial role in the proof of Theorem 3.1.

Theorem 3.3. Let h ∈ L2(ω̃µ) be such that its symmetric Bessel trans-

form ĥ is essentially bounded. Put H(ξ, η) = (τξh)(η) and suppose that
�

|ξ−η|≥2|η−η0|

|H(ξ, η)−H(ξ, η0)| dω̃µ(ξ) ≤ C, η, η0 ∈ Ξq.

Let T be a bounded linear transformation mapping L2(ω̃µ) to itself, such that

for f ∈ L1 ∩ Lp(ω̃µ), we have

(3.3) (Tf)(ξ) =
�

Ξq

H(ξ, η)f(η) dω̃µ(η)

for a.e. ξ ∈ Ξq. Then there exists a constant Ap such that

‖Tf‖p,µ ≤ Ap,µ‖f‖p, 1 < p ≤ 2.

One can thus extend T to all of Lp(ω̃µ) by continuity. The constant Ap

depends only on p, C, and the rank q. In particular it does not depend on
the L2 norm of h.

Remark 3.4. The assumption that h ∈ L2(ω̃µ) is made for the purpose
of having a direct definition of Tf on a dense subset of Lp(ω̃µ) (in this case
L1∩Lp(ω̃µ)) and it could be replaced by other assumptions. In applications
this hypothesis is of no consequence since it can be dispensed with by an
appropriate limiting process; this is because the final bounds in Theorem 3.3
do not depend on the L2 norm of h.

We first note that (Ξq, ω̃µ) is a space of homogeneous type ([S2, Ch. I]),
that is, there is a fixed constant C > 0 such that

ω̃µ(Bq(x, 2r)) ≤ Cω̃µ(Bq(x, r)), x ∈ Ξq, r > 0,

where Bq(x, r) is the intersection of Ξq with the closed ball of radius r
centered at x. Then we can adapt to our context the classical technique.
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We shall need the following lemma.

Lemma 3.5. Let f be a nonnegative integrable function on Rq and α be

a positive constant. Then there exists a decomposition of Rq so that

(i) Rq = F ∪Ω, F ∩Ω = ∅.
(ii) f(ξ) ≤ α almost everywhere on F .
(iii) Ω is the union of cubes, Ω =

⋃
kQk, whose interiors are disjoint,

and for each Qk there exist constants A and C (depending only on

the dimension q) such that

ω̃µ(Ω) ≤ A

α
‖f‖1,µ,

1

ω̃µ(Qk)

�

Qk

f(ξ) dω̃µ(ξ) ≤ Cα.

Proof. The proof is similar to that of Theorem 4 of [S1, p. 17]. In fact,
it suffices to replace the Lebesgue measure by ω̃µ.

Proof of Theorem 3.3. First, for f ∈ L1 ∩ L2(ω̃µ), we have

T̂ f(ζ) = ĥ(ζ)f̂(ζ).

The Plancherel theorem gives

‖Tf‖2,µ ≤ C‖f‖2,µ,
which implies that T has a unique extension to all L2(ω̃µ), where the above
inequality still valid. For α > 0, we obtain

ω̃µ({ξ ∈ Ξq : |(Tf)(ξ)| > α|}) ≤ C2

α2

�

Ξq

|f |2 dω̃µ, f ∈ L2(ω̃µ).

Thus T is of weak type (2, 2).

Now, to prove Theorem 3.3 it suffices to prove that T is of weak type
(1, 1) and conclude by the Marcinkiewicz interpolation theorem. For this it
suffices to replace, in the proof of Theorem 3 of [S2, p. 20], q by 2, B⋆

k by
Qk and B⋆ ⋆

k by Q⋆
k, so F

⋆ = (
⋃
B⋆ ⋆

k )c.

Before proving Theorem 3.1, we need two lemmas.

In the first lemma, we prove a Bernstein inequality for the symmetric
Bessel translation. An analogous result has been proved in [GS] for the
generalized translation associated with the Bessel operator.

Lemma 3.6 (Bernstein’s inequality). Let λ > 0 and f ∈ L1(ω̃µ) be such

that f̂ is supported in Bλ = {|ξ| ≤ λ}. Then for all x, y ∈ Ξq,

‖τxf − τyf‖1,µ ≤ Cλ|x− y| ‖f‖1,µ.
Proof. Let h ∈ S(Ξq) be a radial function satisfying ĥ = 1 in B1 and let

hλ(x) = λµqh(λx); then ĥλ(x) = ĥ(x/λ) = 1 in Bλ.
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An explicit formula for τxh, due to Rösler [R1], with h(y) = h̃(|y|), is

(τxh)(y) =
�

Ξq

h̃(A(x,−y, η)) dνx(η),

where νx is a probability measure supported in the convex hull co(Gx) and

A(x, y, η) =
√

|x|2 + |y|2 − 2〈y, η〉.
Writing

τxf − τyf = hλ ◦µ (τxf − τyf) = (τxhλ − τyhλ) ◦µ f,
we obtain

‖τxf − τyf‖1,µ ≤ ‖τxhλ − τyhλ‖1,µ‖f‖1,µ = ‖τλxh− τλyh‖1,µ ‖f‖1,µ.
Let x, y ∈ Ξq. Then

‖τxh− τyh‖1,µ =
�

Ξq

|(τxh)(z)− (τyh)(z)| dω̃µ(z)

=
�

Ξq

|(τzh)(x)− (τzh)(y)| dω̃µ(z)

≤
�

Ξq

�

Ξq

|h̃(A(z,−x, η))− h̃(A(z,−y, η))| dνz(η) dω̃µ(z)

≤
�

Ξq

�

Ξq

1�

0

|h̃′(A(z,−x+ s(x− y), η))|

×
∣∣∣∣
d

ds
A(z,−x+ s(x− y), η)

∣∣∣∣ ds dνz(η) dω̃µ(z).

As
∣∣ d
dsA(z,−x+ s(x− y), η)

∣∣ ≤ |x− y|, it follows that

‖τxh− τyh‖1,µ ≤ |x− y|
�

Ξq

sup
s∈[0,1]

sup
η∈Rq

|h̃′(A(z,−x+ s(x− y), η))| dω̃µ(z).

Thus
‖τxf − τyf‖1,µ ≤ Cλ|x− y| ‖f‖1,µ.

Lemma 3.7. Assume m satisfies the condition (3.2). Then there exists

a locally integrable function h ∈ Ξq\{0} such that for all ξ ∈ (supp(f))c,

(Tmf)(ξ) =
�

Ξq

H(ξ, η)f(η) dω̃µ(η)

where H is given by H(ξ, η) = (τξh)(η), ξ 6= η.

Proof. In the whole proof C will denote constants depending only on q
which may have different values in different formulas.
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Let ϕ ∈ D(Ξq) be a function supported in {1/2 < |ξ| < 2} such that

+∞∑

j=−∞

ϕj(ξ) = 1, ξ 6= 0,

where we put ϕj(ξ) = ϕ(2−jξ)1Ξq(ξ) = ϕ(2−jξ1, . . . , 2
−jξq)1Ξq(ξ1, . . . , ξq).

Let mj(ξ) = m(ξ)ϕj(ξ). The support of mj is contained in the spherical
crown {2j−1 < |ξ| < 2j+1}. Leibniz’s formula gives, for 1 ≤ n ≤ q,

(3.4) ∂sξmj(η) =
∑

a+b=s

2−j|b|∂aξm(ξ)∂bξϕ(2
−jη).

Using (3.2) with R = 2j and the fact that the derivatives of ϕ are bounded,
we obtain �

2j−1≤|ξ|≤2j+1

∑

|s|≤k

|2j|s|∂sξmj(ξ)|2 dω̃µ(ξ) ≤ C · 2jµq.

Let hj be the inverse symmetric Bessel transform of mj . Plancherel’s theo-
rem and (2.4) yield

‖(−|η|2)|s|hj(η)‖2,µ = ‖∆|s|
κ mj‖2,µ, |s| ≤ ℓ,

where ∆κ =
∑q

n=1 T
2
n is the Dunkl laplacian.

We shall now prove the estimate

(3.5) ‖∆|s|
κ mj‖2,µ ≤ C · 2j(µq−|s|), |s| ≤ ℓ.

The Dunkl operator is given by

Tn =
∂

∂xn
+

∑

α∈R

aα,n
id− σα
〈α, ·〉 .

where aα,ξ = 1
2k(α)αn. Recall that for α ∈ R, σα is the reflection in the

hyperplane perpendicular to α. Since Ξq is a Weyl chamber (see [R3]), if
η ∈ Ξq, then for all α ∈ R, σαη /∈ Ξq; thus mj(σαη) = 0. Therefore the
Dunkl operator is reduced to

(Tnmj)(η) =
∂

∂ηn
mj(η) +

∑

α∈R

aα,n
1

〈α, η〉mj(η).

Since ∂/∂ηn and id /〈α, ·〉 do not commute, we cannot apply the binomial
formula. A straightforward calculation gives, for η 6= 0 and r ∈ N,

(T r
nmj)(η) =

∂r

∂ηrn
mj(η) +

∑

a+b<r

Cα,n,a,b
∂a

∂ηan

(
1

〈α, η〉

)
∂b

∂ηbn
mj(η)

+

(∑

α∈R

aα,n
1

〈α, η〉

)r

·mj(η).
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Then by (3.4) and (3.2), we immediately obtain
�

Ξq

|(T r
nmj)(η)|2 dω̃µ(η) ≤ C · 22j(µq−r).

By (2.4) and Plancherel’s theorem, we obtain for |s| ≤ ℓ,

‖∆|s|
κ mj‖2,µ = ‖(−|η|2)|s|hj‖2,µ ≤ C · 2j(µq−|s|).

Applying this formula with |s| = 0 and |s| = ℓ, we find that the series

−1∑

j=−∞

‖hj‖2,µ and

+∞∑

j=0

‖(−|η|2)|s|hj‖2,µ

are convergent and
∑+∞

j=−∞ |hj(η)| is convergent for a.e. η 6= 0.

Now, using the fact that if x /∈ supp(f), then 0 /∈ supp(τxf), we obtain,
by Cauchy–Schwarz’s inequality,

�

Ξq

|(τξf)(η)|
−1∑

j=−∞

|hj(η)| dω̃µ(η) ≤ ‖τξf‖2,µ
−1∑

j=−∞

‖hj‖2,µ <∞,

�

Ξq

|(τξf)(η)|
+∞∑

j=0

|hj(η)| dω̃µ(η) ≤
∥∥∥∥
(τξf)(η)

(−|η|2)ℓ
∥∥∥∥
2,µ

+∞∑

j=0

‖(−|η|2)ℓhj(η)‖2,µ <∞.

Putting h =
∑+∞

j=−∞ hj , we can write

(Tmf)(ξ) =
�

Ξq

h(η)(τξf)(η) dω̃µ(η) =
�

Ξq

H(ξ, η)f(η) dω̃µ(η).

This completes the proof.

Proof of Theorem 3.1. The adjoint operator T ∗
m is the multiplier operator

associated with m and

(T ∗
mf)(ξ) =

�

Ξq

H(η, ξ)f(η) dω̃µ(η).

From this and a duality argument, it suffices to show that the function H
satisfies

(3.6)
+∞∑

j=−∞

�

||ξ|−|η||>2|η−η0|

|(τηhj)(ξ)− (τη0hj)(ξ)| dω̃µ(ξ) ≤ C, η0 ∈ Ξq.

To simplify we can assume that η0 = 0; then we have |η− η0| = |η| = t, and∣∣|ξ| − |η|
∣∣ > 2|η − η0| can be replaced by |ξ| > 2t. So (3.6) becomes

(3.7)

+∞∑

j=−∞

�

|ξ|>2t

|(τηhj)(ξ)− hj(ξ)| dω̃µ(ξ) ≤ C.
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Now to prove (3.7), we need the estimates

(3.8)
�

Ξq

|hj(ξ)| dω̃µ(ξ) ≤ C,
�

|ξ|>t

|hj(ξ)| dω̃µ(ξ) ≤ C(2jt)µq−|s|.

Cauchy–Schwarz’s inequality, Parseval’s formula and (3.5) give�

Ξq

|hj(ξ)| dω̃ξ(η) ≤ ‖(1 + |η|2)−ℓ‖2,µ‖(1 + |η|2)ℓhj‖2,µ

≤ C · 2−jµq
ℓ∑

b=0

(
ℓ

b

)
2jb‖∆b

κmj‖2,µ ≤ C.

Note that this also shows that |mj | = |ĥj | ≤ C almost everywhere, hence
|∑mj | ≤ 2C since at most two mj can be 6= 0 at any point. In the same
way we obtain�

|ξ|>t

|hj(ξ)| dω̃µ(ξ)

≤ ‖(1 + 2j |ξ|2)ℓhj(ξ)‖2,µ
( �

|ξ|>t

((1 + 2j |ξ|2)ℓ)−2ℓ dω̃µ(ξ)
)1/2

≤ C(2jt)µq−|s|,

proving (3.8).
Write

MN =
N∑

j=−N

mj , HN =
N∑

j=−N

hj .

Then |MN | ≤ 2C, hence

‖HN‖2,µ = ‖MN‖2,µ ≤ 2C.

Let us estimate �

|ξ|>2t

|(τηHN )(ξ)−HN (ξ)| dω̃µ(ξ), |η| ≤ t.

The second inequality of (3.8) gives�

|ξ|≥2t

|(τηhj)(ξ)− hj(ξ)| dω̃µ(ξ) ≤ C(2jt)µq−|s|,

which is a good estimate when 2jt ≥ 1. Further, the first inequality of (3.8)
and Bernstein’s inequality give�

Ξq

|(τηhj)(ξ)− hj(ξ)| dω̃µ(ξ) ≤ C · 2j+1t, |η| ≤ t,

since the spectrum of hj is contained in the ball with radius 2j+1. Thus,
when |η| ≤ t,

�

|ξ|>2t

|(τηHN )(ξ)−HN (ξ)| dω̃µ(ξ) ≤ C
+∞∑

j=−∞

min(2jt, (2jt)µq−|s|)
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and since the sum is obviously a bounded function of t, we get
�

|ξ|>2t

|(τηHN )(ξ)−HN (ξ)| dω̃µ(ξ) ≤ C, |η| ≤ t.

As HN converges to h =
∑+∞

j=−∞ hj and by continuity of τη, we obtain
�

|ξ|>2t

|(τηh)(ξ)− h(ξ)| dω̃µ(ξ) ≤ C, |η| ≤ t.

This completes the proof of Theorem 3.1.

4. Bilinear multiplier operator. Now consider m in L∞(Rq × Rq),
smooth away from the origin and satisfying

(4.1) |∂rξ∂sηm(ξ, η)| ≤ Cr,s(|ξ|+ |η|)−(|r|+|s|)

for all r, s ∈ Nq. It is associated with the multiplier bilinear operator

Cm(f, g)(x) =
�

Rq

�

Rq

m(ξ, η)f̂(ξ)ĝ(η)eix(ξ+η)dξ dη

where f and g are Schwartz functions.

The known result of Coifman and Meyer [CM1] says that Cm is bounded
from Lp1×Lp2 into Lp3 whenever 1 < p1, p2, p3 <∞ and 1/p1+1/p2 = 1/p3.

In this section, we are concerned with an analogous bilinear operator
associated with the symmetric Bessel transform, defined on S(Ξq)× S(Ξq)
by

Bm(f, g)(x) =
�

Ξq

�

Ξq

m(ξ, η)f̂(ξ)ĝ(η)Jk(ξ, ix)Jk(η, ix) dω̃µ(ξ) dω̃µ(η).

Theorem 4.1. Let m be a bounded C∞-function on Ξ2
q \ {(0, 0)}

satisfying (4.1). Then Bm can be extended to a bounded operator from

Lp1(ω̃µ) × Lp2ω̃µ) into Lp3(ω̃µ) whenever 1 < p1, p2, p3 < ∞ and 1/p1 +
1/p2 = 1/p3.

For the proof we adopt the same strategy as in [CM2]. The idea is to
split the multiplier m into mj , j = 1, 2, 3, where mj is supported in an
appropriate cone set. One then invokes Littlewood–Paley theory to establish
the assertion for each mj .

As a preliminary step we collect some standard facts from Littlewood–
Paley theory, extended to the Dunkl Bessel setting.

To begin, let φ ∈ D(Ξq) be supported in {1/2 ≤ |ξ| ≤ 2} and such that

+∞∑

j=−∞

φ(2−jξ) = 1, ξ 6= 0.
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For f ∈ S(Ξq) and j ∈ Z, let

(Sjf)(x) =
�

Ξq

φ(2−jξ)f̂(ξ)Jk(ξ, ix) dω̃µ(ξ).

Hence one can write

f(x) =

∞∑

j=−∞

(Sjf)(x) a.e. x.

We define the Littlewood–Paley square function by

Sf =
( +∞∑

j=−∞

|Sjf |2
)1/2

.

As in the classical theory, using Theorem 3.1 and Khintchine’s inequal-
ity [Ha], we get the following fundamental Lp-inequalities:

(4.2) C ′
p‖f‖p,µ ≤ ‖Sf‖p,µ ≤ Cp‖f‖p,µ

for all f ∈ S(Ξq) and any 1 < p <∞. As a consequence of (4.2) we have

Lemma 4.2. Let 0 < a ≤ b < ∞ and 1 < p < ∞. Then there exists

a constant Cp > 0 such that if (fj)j∈Z is a sequence of functions in S(Ξq)

with supp(f̂j) ⊂ {a2j ≤ |ξ| ≤ b2j} and
∑

j fj is convergent in Lp(ω̃µ), then

∥∥∥
∞∑

j=−∞

fj

∥∥∥
p,µ

≤ Cp

∥∥∥
( ∞∑

j=−∞

|fj |2
)1/2∥∥∥

p,µ
.

Now, let ϕ ∈ D(Ξq). For f ∈ S(Ξq), j ∈ Z and λ ∈ Ξq, we define
fj,λ = fϕ,j,λ by

f̂j,λ(ξ) = ϕ(2−jξ)Jk(λ, i2
jξ)f̂(ξ).

Lemma 4.3. Let ϕ ∈ D(Ξq) with 0 /∈ supp(ϕ) and let ℓ ∈ N (ℓ > µq).
Then for all 1 < p < ∞ there exists a constant Cp > 0 such that for all

λ ∈ Ξq,

(4.3)
∥∥∥
( ∞∑

j=0

|fj,λ|2
)1/2∥∥∥

p,µ
≤ Cp(1 + |λ|2)ℓ‖f‖p,µ for all f ∈ S(Ξq).

Proof. Consider the multiplier operator associated with

mN,λ(ξ) = (1+|λ|2)−ℓ
N∑

j=−N

εjϕ(2
−jξ)Jk(λ, iξ2

−j), εj ∈ {+1,−1}, N ∈ N.

Using (2.1) and the properties of the Dunkl kernel (see [D] or [R2]), we can
easily see that mN,λ satisfies (3.2) uniformly in λ, N and in the choice
of εj . Then an application of Khintchine’s inequality and Theorem 3.1
gives (4.3).
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Lemma 4.4. Let ϕ∈D(Ξq) and ℓ∈N (large enough). Then for 1<p<∞
there exists a constant Cp > 0 such that for all λ ∈ Ξq,∥∥∥ sup

j
|fj,λ|

∥∥∥
p,µ

≤ Cp(1 + |λ|2)ℓ‖f‖p,µ.(4.4)

Proof. One can write

fj,λ = 22jµqψλ(2
j ·) ◦µ f

where ψ̂λ(·) = Jk(λ, i ·)ϕ(·), which satisfies the estimate

|ψλ(x)| ≤ C
(1 + |λ|2)ℓ
(1 + |x|2)ℓ , ℓ ∈ N.

Thus

|fj,λ| ≤ 22jµqψe
λ(2

j ·) ◦µ f e

where he(x) =
∑

g∈G |h(gx)|. So, (4.4) can be deduced from (2.1) and The-

orems 6.1 and 6.2 of [TX].

Lemma 4.5. Let m be a C∞-function on Ξq×Ξq, satisfying (4.1). Then

|T r
n,ξT

s
ℓ,ηm(ξ, η)| ≤ Cr,s

(|ξ|+ |η|)r+s
(4.5)

for any r, s ∈ N where

Tn,ξf(ξ) =
∂

∂ξn
f(ξ) +

∑

α∈R

κ(α)αn
f(ξ)− f(σα(ξ))

〈α, ξ〉 .

Proof. Let us remark that for f ∈ E(R), we can write

(Tnf)(x) =
∂

∂xn
f(x) +

∑

α∈R+

k(α)αn

1�

0

∂xf(x− t〈α, x〉α) dt.

Applying this successively to the function m(ξ, ·) and using (4.1), we get
∣∣∣∣|ξ|j+s ∂

j

∂ξjn
T s
n,ηm(ξ, η)

∣∣∣∣ ≤ Cj,s for all j, s ∈ N.(4.6)

However,

|ξ|r+sT r
n,ξT

s
ℓ,ηm(ξ, η) =

r∑

j=0

(
|ξ|j+s ∂

j

∂ξjn
aj

∑

g∈G

T s
ℓ,ηm(gξ, η)

)
,

where aj is a constant. So by (4.6) we obtain
∣∣|ξ|r+sT r

n,ξT
s
ℓ,ηm(ξ, η)

∣∣ ≤ Cr,s.(4.7)

Similarly
∣∣|η|r+sT r

n,ξT
s
ℓ,ηm(ξ, η)

∣∣ ≤ Cr,s.(4.8)
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Combining (4.7) and (4.8) yields

|T r
n,ξT

s
ℓ,ηm(ξ, η)| ≤ Cr,s

|ξ|r+s + |η|r+s
≤ Cr,s

(|ξ|+ |η|)r+s
.

Here Cr,s is a constant depending on r, s.

Proof of Theorem 4.1. Given γ ∈ D(Ξq) supported in
[
− 1

65 ,
1
65

]
with

γ(x) = 1 in
[
− 1

257 ,
1

257

]
, put

m1(ξ, η) = m(ξ, η)γ

(
η2

ξ2 + η2

)
,

m2(ξ, η) = m(ξ, η)

(
1− γ

(
η2

ξ2 + η2

))
γ

(
ξ2

ξ2 + η2

)
,

m3(ξ, η) = m(ξ, η)

(
1− γ

(
η2

ξ2 + η2

))(
1− γ

(
ξ2

ξ2 + η2

))
.

We note that mj , j = 1, 2, 3, satisfy the condition (4.1), since every ho-
mogenous function of degree 0 does. We are therefore reduced to proving
the boundedness of Bm for supp(m) ⊂ Dj , j = 1, 2, 3, where

D1 =
{
(ξ, η) : |η| ≤ 1

8 |ξ|
}
,

D2 =
{
(ξ, η) : |ξ| ≤ 1

8 |η|
}
,

D3 =
{
(ξ, η) : 1

16 |ξ| ≤ |η| ≤ 16|ξ|
}
.

Suppose that supp(m) ⊂ D1. We begin by decomposing m, using a dyadic
partition of unity given by taking ϕ ∈ D(Ξq) supported in {1/2 ≤ |ξ| ≤ 2}
such that

∞∑

j=−∞

ϕ(2−jξ) = 1, ξ 6= 0.

Then one can write m =
∑∞

j=−∞mj with mj(ξ, η) = m(ξ, η)ϕ(2−jξ), so

mj is supported in {(ξ, η) : 2j−1 ≤ |ξ| ≤ 2j+1, |η| ≤ 1
4 · 2j}. Note that mj

satisfies (4.1) uniformly in j, and similarly for (4.5). Next put, for j ∈ N,

hj(y, z) =
�

Ξq

�

Ξq

mj(2
jξ, 2jη)Jk(ξ, iy)Jk(η, iz) dω̃µ(ξ) dω̃µ(η).(4.9)

Since for all r, s ∈ Nq we have

(−1)|r|+|s||y|2|r||z|2|s|hj(y, z)
= 22j(|r|+|s|)

�

Ξq

�

Ξq

∆|r|
κ ∆

|s|
κ mj(2

jξ, 2jη)Jk(ξ, iy)Jk(η, iz) dω̃µ(ξ) dω̃µ(η),

using (4.5) we deduce that, for all N ∈ N,

(1 + |y|2)N (1 + |z|2)N |hj(y, z)| ≤ CN .(4.10)
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Here CN is a constant independent of j. A remarkable consequence of the
estimate (4.10) is that (4.9) can be inverted; by the inversion formula,

(4.11) mj(ξ, η) =
�

Ξq

�

Ξq

hj(y, z)Jk(y, i2
−jξ)Jk(z, i2

−jη) dω̃µ(y) dω̃µ(z).

Now, let θ, χ ∈ D(Ξq) be respectively supported in {x : 7/16 ≤ |x| ≤ 3}
and {x : |x| ≤ 5/16}, with θ(x) = 1 in {x : 1/2 ≤ |x| ≤ 2} and χ(x) = 1
in {x : |x| ≤ 1/4}. For j ∈ Z and y, z ∈ Ξq define the functions fj,y, gj,z
∈ S(Ξq) by

f̂j,y(ξ) = θ(2−jξ)f̂(ξ)Jk(y, i2
−jξ), ξ ∈ Ξq,

ĝj,z(η) = χ(2−jη)ĝ(η)Jk(z, i2
−jη), η ∈ Ξq.

In view of (4.11), we obtain

Bm(f, g)(x) =
�

Ξq

�

Ξq

∞∑

j=−∞

hj(y, z)fj,y(x)gj,z(x) dω̃µ(y) dω̃µ(z).

We note that
∑

jhj(y, z)fj,y(x)gj,z(x) converges in L
2(ω̃µ). Indeed, by (4.10),

∞∑

j=−∞

‖hj(y, z)fj,ygj,z‖2,µ ≤ C

∞∑

j=−∞

‖fj,ygj,z‖2,µ.

However, from (2.3), (2.4) and (2.6),

‖fj,ygj,z‖2,µ ≤ C‖fj,y‖∞‖gj,z‖2,µ ≤ C‖f̂j,y‖1,µ‖ĝ‖2,µ.
Moreover,

‖f̂j,y‖1,µ ≤ C
�

{ 7

16
·2j≤|ξ|≤3·2j}

|f̂(ξ)| dω̃µ(ξ),

which implies the convergence of
∑∞

j=−∞ ‖f̂j,y‖1,µ and
∑∞

j=−∞ ‖fj,ygj,z‖2,α.
Next, in view of (2.6) and (2.7), f̂j,ygj,z = f̂ ◦µ ĝ is supported in {2j−3 ≤

|ξ| ≤ 2j+2}. Then, by using (4.10), Hölder’s inequality, and Lemmas 4.2–4.4,
we get

∥∥∥
∞∑

j=−∞

hj(y, z)fj,ygj,z

∥∥∥
r,µ

≤ C
∥∥∥
( +∞∑

j=−∞

|hj(y, z)fj,ygj,z|2
)1/2∥∥∥

r,µ

≤ CN

(1 + |y|2)N (1 + |z|2)N
∥∥∥
( ∞∑

j=−∞

|fj,y|2
)1/2∥∥∥

p,µ

∥∥∥ sup
j

|gj,z|
∥∥∥
q,µ

≤ CN
(1 + |y|2)ℓ(1 + |z|2)ℓ
(1 + |y|2)N (1 + |z|2)N ‖f‖p,µ‖g‖q,µ.

Since N and ℓ are arbitrary large integers, we can choose N > 2µq + ℓ to
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obtain

‖Bm(f, g)‖r,µ ≤ CN‖f‖p,µ‖g‖q,µ
�

Ξq

(1 + |y|2)ℓ(1 + |z|2)ℓ
(1 + |y|2)N (1 + |z|2)N dω̃µ(y) dω̃µ(z)

≤ C‖f‖p,µ‖g‖q,µ.
Thus the boundedness of Bm is proved.

As D1 and D2 are symmetric with respect to the origin, if supp(m) ⊂ D2

the boundedness of Bm follows by similar arguments.
Now suppose that supp(m) ⊂ D3. Proceeding as in the first case and

considering θ, χ ∈ D(Ξq) respectively supported in {x : 1/3 ≤ |x| ≤ 3} and
{x : 1/48 ≤ |x| ≤ 48} with θ(x) = 1 in {x : 1/2 ≤ |x| ≤ 2} and χ(x) = 1 in
{x : 1/32 ≤ |x| ≤ 32}, by Cauchy–Schwarz’s inequality, Hölder’s inequality
and Lemma 4.3, we get
∥∥∥

∞∑

j=−∞

hj(y, z)fj,ygj,z

∥∥∥
r,µ

≤ CN

(1 + |y|2)N (1 + |z|2)N
∥∥∥
( ∞∑

j=−∞

|fj,y|2
)1/2∥∥∥

p,µ

∥∥∥
( ∞∑

j=−∞

|gj,z|2
)1/2∥∥∥

q,µ

≤ CN
(1 + |y|2)ℓ(1 + |z|2)ℓ
(1 + |y|2)N (1 + |z|2)N ‖f‖p,µ‖g‖q,µ.

Again, choosing N > 2µq + ℓ we deduce the boundedness of Bm, which
completes the proof of the theorem.
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multilinéaires, Ann. Inst. Fourier (Grenoble) 28 (1978), no. 3, 177–202.
[dJ1] M. F. E. de Jeu, The Dunkl transform, Invent. Math. 113 (1993), 147–162.
[dJ2] M. F. E. de Jeu, Paley–Wiener theorems for the Dunkl transform, Trans. Amer.

Math. Soc. 358 (2006), 4225–4250.
[D] C. F. Dunkl, Differential-difference operators associated to reflection groups,

Trans. Amer. Math. Soc. 311 (1989), 167–183.
[DO] C. F. Dunkl and E. M. Opdam, Dunkl operators for complex reflection groups,

Proc. London Math. Soc. 86 (2003), 70–108.

http://dx.doi.org/10.1007/s00009-010-0057-9
http://dx.doi.org/10.2307/1971430
http://dx.doi.org/10.5802/aif.708
http://dx.doi.org/10.1007/BF01244305
http://dx.doi.org/10.1090/S0002-9947-06-03960-2
http://dx.doi.org/10.1090/S0002-9947-1989-0951883-8
http://dx.doi.org/10.1112/S0024611502013825


176 K. HOUISSA AND M. SIFI
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