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ABSTRACT. Using reversible Hadamard difference sets, we construct symmet-
ric Bush-type Hadamard matrices of order 4m? for all odd integers m.

1. INTRODUCTION

A Hadamard matriz of order n is an n by n matrix H with entries +1, such that
HH' =nlI,,

where I, is the identity matrix of order n. It can be easily shown that if n is
the order of a Hadamard matrix, then n = 1, 2 or n = 0 (mod 4). The famous
Hadamard matrix conjecture states that for every positive integer n divisible by
4, there exists a Hadamard matrix of order n. This conjecture is far from being
proved. We refer the reader to [I3] for a recent construction of a Hadamard matrix
of order 428 (the smallest order for which an example of a Hadamard matrix was
not known for many years). In this note, we concentrate on a class of Hadamard
matrices of highly specialized form, namely the Bush-type Hadamard matrices.

Let n be a positive integer and let J;, denote the matrix of order 2n with all
entries being ones. A Hadamard matrix H = (H;;) of order 4n?, where H;; are
2n x 2n block matrices, is said to be of Bush-type if

(1.1) Hii = Jgn and HijJQn = JgnHij = 07

for i # j, 1 <4i,5 < 2n. K. A. Bush [3] proved that the existence of a projective
plane of order 2n implies the existence of a symmetric Bush-type Hadamard ma-
trix of order 4n?. So if one can prove the nonexistence of symmetric Bush-type
Hadamard matrices of order 4n?, where n is odd, then the nonexistence of a pro-
jective plane of order 2n, where n is odd, will follow. This was Bush’s original
motivation for introducing Bush-type Hadamard matrices. Wallis [I8] showed that
n — 1 mutually orthogonal Latin squares of order 2n lead to a symmetric Bush-type
Hadamard matrix of order 4n?. Goldbach and Claasen [7] also proved that cer-
tain 3-class association schemes can give rise to symmetric Bush-type Hadamard
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matrices. More recently, Kharaghani and his coauthors [15, @, 10, 11, 12] rekin-
dled the interest in Bush-type Hadamard matrices by showing that these matrices
are very useful for constructions of symmetric designs and strongly regular graphs.
Kharaghani [I5] conjectured that Bush-type Hadamard matrices of order 4n? exist
for all n. While it is relatively easy to construct Bush-type Hadamard matrices of
order 4n? for all even n for which a Hadamard matrix of order 2n exists (see [14]),
it is not easy to decide whether such matrices of order 4n? exist if n > 1 is an
odd integer. In a recent survey [12], Jungnickel and Kharaghani wrote “Bush-type
Hadamard matrices of order 4n?, where n is odd, seem pretty hard to construct.
Examples are known for n = 3, n = 5, and n = 9 (see [9], [I0], and [II] re-
spectively); all other cases are open”. In this note, we will show that symmetric
Bush-type Hadamard matrices of order 4m* exist for all odd m.

We first note a relation between symmetric Bush-type Hadamard matrices and
strongly regular graphs with certain properties. The following lemma is well known.
A weaker form of the lemma appeared in [I8]. For convenience of the reader, we
provide a proof.

Lemma 1.1. There ezists a symmetric Bush-type Hadamard matriz of order 4n?
if and only if there exists a strongly reqular graph (SRG in short) with parameters

v=4n? k=2n?—n, /\:u:ng—n,

and with the additional property that the vertex set can be partitioned into 2n dis-
joint cocliques of size 2n.

Proof. It H = (H,j), where H;; are 2n x 2n block matrices, is a symmetric Bush-
type Hadamard matrix of order 4n?, then the matrix A = (J — H) is symmetric
and satisfies

A? =0’ + (n* —n)J.

Moreover the 2n x 2n block matrices on the main diagonal of A are all zero matrices.
Hence A is the adjacency matrix of an SRG with parameters v = 4n?, k = 2n? —
n,A = u = n? — n, and with the additional property that the vertex set can be
partitioned into 2n disjoint cocliques of size 2n. Conversely, if A is the adjacency
matrix of such an SRG, then the matrix H = J — 24 is symmetric and satisfies
H? = 4n?I. Since the vertex set of the SRG can be partitioned into 2n cocliques,
each of size 2n, we may arrange the rows and columns of H so that we can partition
H into H = (H;j), where the H;; are 2n x 2n block matrices and H;; = Ja,. It
remains to show that H;;Jo, = Jo,H;; = 0 for i # j, 1 <4,j < 2n. Noting that
the SRG has the smallest eigenvalue —n, we see that the cocliques of size 2n of
the SRG meet the Delsarte bound (sometimes called the Hoffman bound also). By
Proposition 1.3.2 [2, p. 10], every vertex in the SRG outside a coclique is adjacent
to exactly n vertices of the coclique. This proves that H;jJo, = JonH;; = 0 for
1 # j, 1 <4i,j <2n. The proof is complete. O

2. SYMMETRIC BUSH-TYPE HADAMARD MATRICES FROM REVERSIBLE
HADAMARD DIFFERENCE SETS

We start with a very brief introduction to difference sets. For a thorough treat-
ment of difference sets, we refer the reader to [I, Chapter 6]. Let G be a finite group
of order v. A k-element subset D of G is called a (v, k, \) difference set in G if the
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list of “differences” d;ds5 1, di,de € D, dy # do, represents each non-identity ele-
ment in G exactly A times. Using multiplicative notation for the group operation,
D is a (v, k, \) difference set in G if and only if it satisfies the following equation

in Z[G:
(2.1) DDY = (k= \)1g + A\G,

where D = 3", pd, DD =3, d~!, and 1¢ is the identity element of G. A
subset D of G is called reversible if D) = D. Note that if D is a reversible
difference set, then

(2.2) D? = (k—N)lg + \G.

If furthermore we require that 1g ¢ D, then from (Z2]) we see that the Cayley
graph Cay(G, D), with vertex set G and two vertices « and y being adjacent if and
only if zy~! € D, is an SRG with parameters (v, k, A, \).

The difference sets considered in this note have parameters

(v,k,\) = (4n?,2n% — n,n? — n).

These difference sets are called Hadamard difference sets (HDS), since their (1, —1)-
incidence matrices are Hadamard matrices. Alternative names used by other au-
thors are Menon difference sets and H-sets. We will show that reversible HDSs give
rise to symmetric Bush-type Hadamard matrices.

Proposition 2.1. Let D be a reversible HDS in a group G with parameters (4n?,
2n2 —n,n? —n). If there exists a subgroup H < G of order 2n such that DNVH = (),
then there exists a Bush-type symmetric Hadamard matriz of order 4n?.

Proof. First note that the Cayley graph Cay(G, D) is strongly regular with param-
eters v = 4n? —n,k = 2n? — n, A = ;1 = n? — n. The cosets of H in G partition G.
Let Hg be an arbitrary coset of H in G. Then any two elements x,y € Hg are not
adjacent in Cay(G, D) since xy~! € H and DN H = (). Therefore the vertex set of
Cay (G, D) can be partitioned into 2n disjoint cocliques of size 2n. By Lemma [IT]
the (1, —1)-adjacency matrix of Cay(G, D) is a symmetric Bush-type Hadamard
matrix of order 4n?2. 0

Let G = K x W where K = {go = 1,91, g2, 93} is a Klein four group and W is a
group of order n2. Each subset D of G has a unique decomposition into a disjoint
union D = Ufzo(gi, D;) where D; C W. Note that if D is a reversible HDS in G,
then (g;,1)D are also reversible HDSs for all 4, 0 <4 < 3. This observation implies
the following.

Proposition 2.2. Let K = {go = 1,91,92,93} be a Klein four group. Let D =
U?:O(gg,Dg) be a reversible Hadamard difference set in the group G = K x W,
where Dy C W and |W| = n?. If there exists a subgroup P < W of order n such
that PND; = PND; =0 for some i # j, 0 < 1,5 < 3, then there exists a symmetric
Bush-type Hadamard matriz of order 4n?.

Proof. Let E = (g;,1)D. By the above observation, E is a reversible HDS in G. Let
H = (go,1)P U (gig;,1)P. Then H is a subgroup of G of order 2n and HNE = .
By Proposition 2., E gives rise to a symmetric Bush-type Hadamard matrix of
order 4n?. (]
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3. CONSTRUCTION OF SYMMETRIC BUSH-TYPE HADAMARD MATRICES
OF ORDER 4m* FOR ALL ODD m

A symmetric Bush-type Hadamard matrix H of order 4 is exhibited below:
1 1 1 -1

1
1 -1 1 1
1

So we will only be concerned with constructions of symmetric Bush-type Hadamard
matrices of order 4m* for odd m > 1. We will first construct symmetric Bush-type
Hadamard matrices of order 4p*, where p is an odd prime, from certain (4p*, 2p* —
p?, p*—p?) HDS. To this end, we need to recall a construction of an HDS with these
parameters from [19]. Let p be an odd prime and PG(3,p) be a three-dimensional
projective space over GF(p). We will say that a set C' of points in PG(3,p) is of

type Q if
| = ' —1)
Alp—1)
(1) (p+1)*

and each plane of PG(3, p) meets C'in either **~~ points or ~*7 points. For each

set X of points in PG(3, p) we denote by X the set of all non-zero vectors v € GF (p)*
with the property that (v) € X, where (v) is the 1-dimensional subspace of GF(p)*
generated by v.

Let S = {L1,Lo,...,Ly241} be a spread of PG(3,p) and let Cp, C; be two sets
of type Q in PG(3, p) such that
p—; ! and Vsi1<i<os [C1NL;| = ]%1,

(3.1) Vi<i<s [Co N Ly =

where s := L;l. (We note that if we take S to be the regular spread in PG(3, p),
then examples of type Q sets Cp,Cy in PG(3,p) satisfying ([BI) were first con-
structed in [20] when p = 3 (mod 4), in [0, [19] when p = 5,13,17, and in [4] for all
odd primes p.) As in [19] we set

02 = (Llu...ULS)\Co,

Cg = (LS+1 U...u Lgs) \Cl
Note that Co UCs = L1 U...ULgs and C; UCs = Lgy1 U... U Los.

Let A (respectively B) be a union of (s —1)/2 lines from {Ls1, ..., Las } (respec-
tively {L1, ..., Ls}). Let K = {go = 1,91,92,93} and W = (GF(p)?, +). Denote

DO = ag)U;{,
Dy = CyUA,
D, = C,UB,
Ds = W\ (C5UB).
Then A ) A )
Do| = 1Dy| = D] = 222y = 222

By Theorem 2.2 [19] the set
D := (g0, Do) U (91, D1) U (g2, D2) U (g3, D3)
is a reversible (4p*, 2p* — p?, p* — p?) difference set in the group K x W.
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Pick an arbitrary line, say L, from the set {Lsy1, ..., Las} such that L,NA = 0.
Then P := f; U {0} is a subgroup of W of order p? such that PN Dy = PN Dy = ().
Now Proposition implies that there exists a symmetric Bush-type Hadamard
matrix of order 4p*. Therefore we have proved

Theorem 3.1. There exists a symmetric Bush-type Hadamard matriz of order 4p*
for every odd prime p.

In order to build a symmetric Bush-type Hadamard matrix of order 4m* for
arbitrary odd m > 1 we need to use Turyn’s composition theorem [I7]. We also
need the following simple

Proposition 3.2. There exists a subgroup Q < W of order p* such that Q C Ds
and QN Dy = 0.

Proof. Pick an arbitrary line L; from {Li,..., Ly} such that L, N B = () and set
Q@ := {0} U L;. The conclusion of the proposition follows. O

Next we recall Turyn’s composition theorem. We will use the version as stated
in Theorem 6.5 [5] p. 45]. For convenience we introduce the following notation. Let
W1, W5 be two groups. For A, B C Wy and C,D C W5, we define the following
subset of W7 x Ws:

V(A,B;C, D) := ((ANB) xC")U((A'nB")x C)U((ANB") x D") U ((A'NB) x D),
where A’ =W\ A, B =W\ B, C' = W)\ C, and D' = W5\ D.

Theorem 3.3 (Turyn [I7)). Let K = {go,91,92,93} be a Klein four group. Let
E, = Ufzo(gi, A;) and By = U?:O(gi, B;) be reversible Hadamard difference sets in
groups K x Wy and K x Wy, respectively, where |W1| = w? and |Ws| = w2, wy and
wy are odd, A; C W1 and B; C Ws, and

w? —w w? +w
|Ao| = |A1] = |A2] = 1717 |As| = 171,
w2 4+ w w2 —w
|Bol = ===, |B1| = |Ba| = |Bs| = =-—
2 2
Define
E = (g0,V(Ao, A1;Bo, B1)) U (g1, V(Ag, A1; Ba, Bs))
U (92, V(A2, A3; By, B1)) U (g3, V(A2, As; Ba, Bs)).
Then

wiwi +wiw
|V(A0a Ala BOa Bl)| = %127
wiwd — wiw
|V (Ag, A1; By, Bs)| = |V (As, As; By, By)| = |V(Ag, As; By, Bs)| = %12
and E is a reversible (4w?w3, 2w?w3 — wiws, wiw? — wiws) Hadamard difference

set in the group K x Wi x Ws.

Proposition 3.4. With the assumptions as in Theorem B3], let Q < Wi and
P < W5 be such that Q N Ay = 0,Q C A3 and PN By = 0,PN B3 = (). Then
(Q X P) N V(AQ,A;g;Bo,Bl) =0 and (Q X P) N V(AQ,AS;BQ,BS) = (.
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Proof. 1t follows from the intersections

Q N(A2NA3) = 0,
N(AnA) = 0
(Ag N A/ ) - @,
N (A;N A3) = Q

x (BiNP) = ¢ and V(Az, As; B2, B3)N

that V(Ag, As; By, B1) N (Q p) =
(QxP):QX(BgﬂP) 0.

Theorem 3.5. There exists a symmetric Bush-type Hadamard matriz of order 4m*
for all odd m.

O

Proof. We only need to prove the theorem for odd m > 1. Let K = {g0, 91, 92,93}
be a Klein four group. Let p and ¢ be two odd primes, not necessarily distinct,
and let W; = (GF(p)*,+) and Wy = (GF(q)%,+). By the construction before the
statement of Theorem [B.I] we can construct a reversible HDS

E1 = (g0, Ao) U (91, A1) U (g2, A2) U (g3, 43)
in K x W7 such that
P+ p?
2 2
and there exists a subgroup Q < W, of order p? with the property that Q N Ay =
0,Q C As. (See Proposition Note that here the A; are a renumbering of the

D;; any renumbering of the D; still yields a reversible difference set.) Also we can
construct a reversible HDS

E3 = (90, Bo) U (91, B1) U (g2, B2) U (g3, B3)
in K x Wy such that

2
Aol = |A1] = |As| = 224y =

4 2 4 2
q"+q q —9q
—, |B1| = |B2| = B3| = 5

and there exists a subgroup P < W5 of order ¢ with the property that PN B; =
), PN By = (see the paragraph before the statement of Theorem B]). Now we
apply Theorem to Eq and E5 to obtain a reversible HDS

E = (907V(A07A1;B0a31)) U (glav(AOaAl;B27B3))
U (g2, V(A2, A3; Bo, B1)) U (g3, V(A2, A3; Ba, B3))

of size 2p*q* — p?¢? in K x Wy x Wy. By Proposition 3.4], we have
(32) (Q X P) M V(A27A3;B0,B1) = @, (Q X P) N V(AQ,A3;B2,B3) = @

| Bo| =

By Proposition [Z.2] there exists a symmetric Bush-type Hadamard matrix of order
4( ) NOW note that |Q><P‘ = 2 2 |V(A2,A3;B0,Bl)| = |V(A2,A3;Bg733)| =
w , and F satisfies property (B:ZI) We can repeatedly use the above process
to produce a reversible HDS satisfying the condition of Proposition 2.2} hence there
exists a symmetric Bush-type Hadamard matrix of order 4m* for all odd m > 1.
The proof is complete. O

Kharaghani [I5] [16] showed how to use Bush-type Hadamard matrices to simplify
Tonin’s method [§] for constructing symmetric designs. Based on his constructions
in [15] [16], we draw the following consequences of Theorem
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Theorem 3.6. Let m be an odd integer. If ¢ = (2m? —1)? is a prime power, then
there exist twin symmetric designs with parameters

L =1
qg—1
for every positive integer €.

v =4m ck=¢"@2m* —m?), X = ¢ (m* —m?),

Theorem 3.7. Let m be an odd integer. If ¢ = (2m? + 1) is a prime power, then
there exist Siamese twin symmetric designs with parameters

4(q£+1—1) ¢ 4 2 0y, 4 2
v=4m 1 ak:q(2m +m>7)‘ZQ(m +m)a
q—

for every positive integer £.
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