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SYMMETRIC BUSH-TYPE HADAMARD MATRICES
OF ORDER 4m4 EXIST FOR ALL ODD m

MIKHAIL MUZYCHUK AND QING XIANG

(Communicated by John R. Stembridge)

Abstract. Using reversible Hadamard difference sets, we construct symmet-
ric Bush-type Hadamard matrices of order 4m4 for all odd integers m.

1. Introduction

A Hadamard matrix of order n is an n by n matrix H with entries ±1, such that

HH� = nIn,

where In is the identity matrix of order n. It can be easily shown that if n is
the order of a Hadamard matrix, then n = 1, 2 or n ≡ 0 (mod 4). The famous
Hadamard matrix conjecture states that for every positive integer n divisible by
4, there exists a Hadamard matrix of order n. This conjecture is far from being
proved. We refer the reader to [13] for a recent construction of a Hadamard matrix
of order 428 (the smallest order for which an example of a Hadamard matrix was
not known for many years). In this note, we concentrate on a class of Hadamard
matrices of highly specialized form, namely the Bush-type Hadamard matrices.

Let n be a positive integer and let J2n denote the matrix of order 2n with all
entries being ones. A Hadamard matrix H = (Hij) of order 4n2, where Hij are
2n × 2n block matrices, is said to be of Bush-type if

(1.1) Hii = J2n and HijJ2n = J2nHij = 0,

for i �= j, 1 ≤ i, j ≤ 2n. K. A. Bush [3] proved that the existence of a projective
plane of order 2n implies the existence of a symmetric Bush-type Hadamard ma-
trix of order 4n2. So if one can prove the nonexistence of symmetric Bush-type
Hadamard matrices of order 4n2, where n is odd, then the nonexistence of a pro-
jective plane of order 2n, where n is odd, will follow. This was Bush’s original
motivation for introducing Bush-type Hadamard matrices. Wallis [18] showed that
n−1 mutually orthogonal Latin squares of order 2n lead to a symmetric Bush-type
Hadamard matrix of order 4n2. Goldbach and Claasen [7] also proved that cer-
tain 3-class association schemes can give rise to symmetric Bush-type Hadamard
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matrices. More recently, Kharaghani and his coauthors [15, 9, 10, 11, 12] rekin-
dled the interest in Bush-type Hadamard matrices by showing that these matrices
are very useful for constructions of symmetric designs and strongly regular graphs.
Kharaghani [15] conjectured that Bush-type Hadamard matrices of order 4n2 exist
for all n. While it is relatively easy to construct Bush-type Hadamard matrices of
order 4n2 for all even n for which a Hadamard matrix of order 2n exists (see [14]),
it is not easy to decide whether such matrices of order 4n2 exist if n > 1 is an
odd integer. In a recent survey [12], Jungnickel and Kharaghani wrote “Bush-type
Hadamard matrices of order 4n2, where n is odd, seem pretty hard to construct.
Examples are known for n = 3, n = 5, and n = 9 (see [9], [10], and [11] re-
spectively); all other cases are open”. In this note, we will show that symmetric
Bush-type Hadamard matrices of order 4m4 exist for all odd m.

We first note a relation between symmetric Bush-type Hadamard matrices and
strongly regular graphs with certain properties. The following lemma is well known.
A weaker form of the lemma appeared in [18]. For convenience of the reader, we
provide a proof.

Lemma 1.1. There exists a symmetric Bush-type Hadamard matrix of order 4n2

if and only if there exists a strongly regular graph (SRG in short) with parameters

v = 4n2, k = 2n2 − n, λ = µ = n2 − n,

and with the additional property that the vertex set can be partitioned into 2n dis-
joint cocliques of size 2n.

Proof. If H = (Hij), where Hij are 2n × 2n block matrices, is a symmetric Bush-
type Hadamard matrix of order 4n2, then the matrix A = 1

2 (J − H) is symmetric
and satisfies

A2 = n2I + (n2 − n)J.

Moreover the 2n×2n block matrices on the main diagonal of A are all zero matrices.
Hence A is the adjacency matrix of an SRG with parameters v = 4n2, k = 2n2 −
n, λ = µ = n2 − n, and with the additional property that the vertex set can be
partitioned into 2n disjoint cocliques of size 2n. Conversely, if A is the adjacency
matrix of such an SRG, then the matrix H = J − 2A is symmetric and satisfies
H2 = 4n2I. Since the vertex set of the SRG can be partitioned into 2n cocliques,
each of size 2n, we may arrange the rows and columns of H so that we can partition
H into H = (Hij), where the Hij are 2n × 2n block matrices and Hii = J2n. It
remains to show that HijJ2n = J2nHij = 0 for i �= j, 1 ≤ i, j ≤ 2n. Noting that
the SRG has the smallest eigenvalue −n, we see that the cocliques of size 2n of
the SRG meet the Delsarte bound (sometimes called the Hoffman bound also). By
Proposition 1.3.2 [2, p. 10], every vertex in the SRG outside a coclique is adjacent
to exactly n vertices of the coclique. This proves that HijJ2n = J2nHij = 0 for
i �= j, 1 ≤ i, j ≤ 2n. The proof is complete. �

2. Symmetric Bush-type Hadamard matrices from reversible

Hadamard difference sets

We start with a very brief introduction to difference sets. For a thorough treat-
ment of difference sets, we refer the reader to [1, Chapter 6]. Let G be a finite group
of order v. A k-element subset D of G is called a (v, k, λ) difference set in G if the
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list of “differences” d1d
−1
2 , d1, d2 ∈ D, d1 �= d2, represents each non-identity ele-

ment in G exactly λ times. Using multiplicative notation for the group operation,
D is a (v, k, λ) difference set in G if and only if it satisfies the following equation
in Z[G]:

(2.1) DD(−1) = (k − λ)1G + λG,

where D =
∑

d∈D d, D(−1) =
∑

d∈D d−1, and 1G is the identity element of G. A
subset D of G is called reversible if D(−1) = D. Note that if D is a reversible
difference set, then

(2.2) D2 = (k − λ)1G + λG.

If furthermore we require that 1G �∈ D, then from (2.2) we see that the Cayley
graph Cay(G, D), with vertex set G and two vertices x and y being adjacent if and
only if xy−1 ∈ D, is an SRG with parameters (v, k, λ, λ).

The difference sets considered in this note have parameters

(v, k, λ) = (4n2, 2n2 − n, n2 − n).

These difference sets are called Hadamard difference sets (HDS), since their (1,−1)-
incidence matrices are Hadamard matrices. Alternative names used by other au-
thors are Menon difference sets and H-sets. We will show that reversible HDSs give
rise to symmetric Bush-type Hadamard matrices.

Proposition 2.1. Let D be a reversible HDS in a group G with parameters (4n2,
2n2−n, n2−n). If there exists a subgroup H ≤ G of order 2n such that D∩H = ∅,
then there exists a Bush-type symmetric Hadamard matrix of order 4n2.

Proof. First note that the Cayley graph Cay(G, D) is strongly regular with param-
eters v = 4n2 − n, k = 2n2 − n, λ = µ = n2 − n. The cosets of H in G partition G.
Let Hg be an arbitrary coset of H in G. Then any two elements x, y ∈ Hg are not
adjacent in Cay(G, D) since xy−1 ∈ H and D∩H = ∅. Therefore the vertex set of
Cay(G, D) can be partitioned into 2n disjoint cocliques of size 2n. By Lemma 1.1,
the (1,−1)-adjacency matrix of Cay(G, D) is a symmetric Bush-type Hadamard
matrix of order 4n2. �

Let G = K ×W where K = {g0 = 1, g1, g2, g3} is a Klein four group and W is a
group of order n2. Each subset D of G has a unique decomposition into a disjoint
union D =

⋃3
i=0(gi, Di) where Di ⊂ W . Note that if D is a reversible HDS in G,

then (gi, 1)D are also reversible HDSs for all i, 0 ≤ i ≤ 3. This observation implies
the following.

Proposition 2.2. Let K = {g0 = 1, g1, g2, g3} be a Klein four group. Let D =⋃3
�=0(g�, D�) be a reversible Hadamard difference set in the group G = K × W ,

where D� ⊆ W and |W | = n2. If there exists a subgroup P ≤ W of order n such
that P ∩Di = P ∩Dj = ∅ for some i �= j, 0 ≤ i, j ≤ 3, then there exists a symmetric
Bush-type Hadamard matrix of order 4n2.

Proof. Let E = (gi, 1)D. By the above observation, E is a reversible HDS in G. Let
H = (g0, 1)P ∪ (gigj , 1)P . Then H is a subgroup of G of order 2n and H ∩ E = ∅.
By Proposition 2.1, E gives rise to a symmetric Bush-type Hadamard matrix of
order 4n2. �
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3. Construction of symmetric Bush-type Hadamard matrices

of order 4m4
for all odd m

A symmetric Bush-type Hadamard matrix H of order 4 is exhibited below:

H =

⎛
⎜⎜⎝

1 1 1 −1
1 1 −1 1
1 −1 1 1
−1 1 1 1

⎞
⎟⎟⎠

So we will only be concerned with constructions of symmetric Bush-type Hadamard
matrices of order 4m4 for odd m > 1. We will first construct symmetric Bush-type
Hadamard matrices of order 4p4, where p is an odd prime, from certain (4p4, 2p4 −
p2, p4−p2) HDS. To this end, we need to recall a construction of an HDS with these
parameters from [19]. Let p be an odd prime and PG(3, p) be a three-dimensional
projective space over GF(p). We will say that a set C of points in PG(3, p) is of
type Q if

|C| =
(p4 − 1)
4(p − 1)

and each plane of PG(3, p) meets C in either (p−1)2

4 points or (p+1)2

4 points. For each
set X of points in PG(3, p) we denote by X̃ the set of all non-zero vectors v ∈ GF(p)4

with the property that 〈v〉 ∈ X, where 〈v〉 is the 1-dimensional subspace of GF(p)4

generated by v.
Let S = {L1, L2, . . . , Lp2+1} be a spread of PG(3, p) and let C0, C1 be two sets

of type Q in PG(3, p) such that

(3.1) ∀1≤i≤s |C0 ∩ Li| =
p + 1

2
and ∀s+1≤i≤2s |C1 ∩ Li| =

p + 1
2

,

where s := p2+1
2 . (We note that if we take S to be the regular spread in PG(3, p),

then examples of type Q sets C0, C1 in PG(3, p) satisfying (3.1) were first con-
structed in [20] when p ≡ 3 (mod 4), in [6, 19] when p = 5, 13, 17, and in [4] for all
odd primes p.) As in [19] we set

C2 := (L1 ∪ ... ∪ Ls) \ C0,
C3 := (Ls+1 ∪ ... ∪ L2s) \ C1.

Note that C0 ∪ C2 = L1 ∪ ... ∪ Ls and C1 ∪ C3 = Ls+1 ∪ ... ∪ L2s.
Let A (respectively B) be a union of (s−1)/2 lines from {Ls+1, ..., L2s} (respec-

tively {L1, ..., Ls}). Let K = {g0 = 1, g1, g2, g3} and W = (GF(p)4, +). Denote

D0 := C̃0 ∪ Ã,

D2 := C̃2 ∪ Ã,

D1 := C̃1 ∪ B̃,

D3 := W \ (C̃3 ∪ B̃).

Then

|D0| = |D1| = |D2| =
p4 − p2

2
, |D3| =

p4 + p2

2
.

By Theorem 2.2 [19] the set

D := (g0, D0) ∪ (g1, D1) ∪ (g2, D2) ∪ (g3, D3)

is a reversible (4p4, 2p4 − p2, p4 − p2) difference set in the group K × W .
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Pick an arbitrary line, say La, from the set {Ls+1, ..., L2s} such that La ∩A = ∅.
Then P := L̃a∪{0} is a subgroup of W of order p2 such that P ∩D0 = P ∩D2 = ∅.
Now Proposition 2.2 implies that there exists a symmetric Bush-type Hadamard
matrix of order 4p4. Therefore we have proved

Theorem 3.1. There exists a symmetric Bush-type Hadamard matrix of order 4p4

for every odd prime p.

In order to build a symmetric Bush-type Hadamard matrix of order 4m4 for
arbitrary odd m > 1 we need to use Turyn’s composition theorem [17]. We also
need the following simple

Proposition 3.2. There exists a subgroup Q ≤ W of order p2 such that Q ⊆ D3

and Q ∩ D1 = ∅.

Proof. Pick an arbitrary line Lb from {L1, ..., Ls} such that Lb ∩ B = ∅ and set
Q := {0} ∪ L̃b. The conclusion of the proposition follows. �

Next we recall Turyn’s composition theorem. We will use the version as stated
in Theorem 6.5 [5, p. 45]. For convenience we introduce the following notation. Let
W1, W2 be two groups. For A, B ⊆ W1 and C, D ⊆ W2, we define the following
subset of W1 × W2:

∇(A, B; C, D) :=
(
(A∩B)×C ′)∪(

(A′∩B′)×C
)
∪

(
(A∩B′)×D′)∪(

(A′∩B)×D
)
,

where A′ = W1 \ A, B′ = W1 \ B, C ′ = W2 \ C, and D′ = W2 \ D.

Theorem 3.3 (Turyn [17]). Let K = {g0, g1, g2, g3} be a Klein four group. Let
E1 =

⋃3
i=0(gi, Ai) and E2 =

⋃3
i=0(gi, Bi) be reversible Hadamard difference sets in

groups K ×W1 and K ×W2, respectively, where |W1| = w2
1 and |W2| = w2

2, w1 and
w2 are odd, Ai ⊆ W1 and Bi ⊆ W2, and

|A0| = |A1| = |A2| =
w2

1 − w1

2
, |A3| =

w2
1 + w1

2
,

|B0| =
w2

2 + w2

2
, |B1| = |B2| = |B3| =

w2
2 − w2

2
.

Define
E := (g0,∇(A0, A1; B0, B1)) ∪ (g1,∇(A0, A1; B2, B3))

∪ (g2,∇(A2, A3; B0, B1)) ∪ (g3,∇(A2, A3; B2, B3)).

Then

|∇(A0, A1; B0, B1)| =
w2

1w
2
2 + w1w2

2
,

|∇(A0, A1; B2, B3)| = |∇(A2, A3; B0, B1)| = |∇(A2, A3; B2, B3)| =
w2

1w
2
2 − w1w2

2
,

and E is a reversible (4w2
1w

2
2, 2w2

1w
2
2 − w1w2, w

2
1w

2
2 − w1w2) Hadamard difference

set in the group K × W1 × W2.

Proposition 3.4. With the assumptions as in Theorem 3.3, let Q ≤ W1 and
P ≤ W2 be such that Q ∩ A2 = ∅, Q ⊆ A3 and P ∩ B1 = ∅, P ∩ B3 = ∅. Then
(Q × P ) ∩∇(A2, A3; B0, B1) = ∅ and (Q × P ) ∩∇(A2, A3; B2, B3) = ∅.
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Proof. It follows from the intersections

Q ∩ (A2 ∩ A3) = ∅,
Q ∩ (A′

2 ∩ A′
3) = ∅,

Q ∩ (A2 ∩ A′
3) = ∅,

Q ∩ (A′
2 ∩ A3) = Q

that ∇(A2, A3; B0, B1) ∩ (Q × P ) = Q × (B1 ∩ P ) = ∅ and ∇(A2, A3; B2, B3)∩
(Q × P ) = Q × (B3 ∩ P ) = ∅. �

Theorem 3.5. There exists a symmetric Bush-type Hadamard matrix of order 4m4

for all odd m.

Proof. We only need to prove the theorem for odd m > 1. Let K = {g0, g1, g2, g3}
be a Klein four group. Let p and q be two odd primes, not necessarily distinct,
and let W1 = (GF(p)4, +) and W2 = (GF(q)4, +). By the construction before the
statement of Theorem 3.1, we can construct a reversible HDS

E1 = (g0, A0) ∪ (g1, A1) ∪ (g2, A2) ∪ (g3, A3)

in K × W1 such that

|A0| = |A1| = |A2| =
p4 − p2

2
, |A3| =

p4 + p2

2
,

and there exists a subgroup Q ≤ W1 of order p2 with the property that Q ∩ A2 =
∅, Q ⊂ A3. (See Proposition 3.2. Note that here the Ai are a renumbering of the
Di; any renumbering of the Di still yields a reversible difference set.) Also we can
construct a reversible HDS

E2 = (g0, B0) ∪ (g1, B1) ∪ (g2, B2) ∪ (g3, B3)

in K × W2 such that

|B0| =
q4 + q2

2
, |B1| = |B2| = |B3| =

q4 − q2

2
,

and there exists a subgroup P ≤ W2 of order q2 with the property that P ∩ B1 =
∅, P ∩ B3 = ∅ (see the paragraph before the statement of Theorem 3.1). Now we
apply Theorem 3.3 to E1 and E2 to obtain a reversible HDS

E = (g0,∇(A0, A1; B0, B1)) ∪ (g1,∇(A0, A1; B2, B3))
∪ (g2,∇(A2, A3; B0, B1)) ∪ (g3,∇(A2, A3; B2, B3))

of size 2p4q4 − p2q2 in K × W1 × W2. By Proposition 3.4, we have

(3.2) (Q × P ) ∩∇(A2, A3; B0, B1) = ∅, (Q × P ) ∩∇(A2, A3; B2, B3) = ∅.
By Proposition 2.2, there exists a symmetric Bush-type Hadamard matrix of order
4(pq)4. Now note that |Q×P | = p2q2, |∇(A2, A3; B0, B1)| = |∇(A2, A3; B2, B3)| =
p4q4−p2q2

2 , and E satisfies property (3.2). We can repeatedly use the above process
to produce a reversible HDS satisfying the condition of Proposition 2.2; hence there
exists a symmetric Bush-type Hadamard matrix of order 4m4 for all odd m > 1.
The proof is complete. �

Kharaghani [15, 16] showed how to use Bush-type Hadamard matrices to simplify
Ionin’s method [8] for constructing symmetric designs. Based on his constructions
in [15, 16], we draw the following consequences of Theorem 3.5.
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Theorem 3.6. Let m be an odd integer. If q = (2m2 − 1)2 is a prime power, then
there exist twin symmetric designs with parameters

v = 4m4 (q�+1 − 1)
q − 1

, k = q�(2m4 − m2), λ = q�(m4 − m2),

for every positive integer �.

Theorem 3.7. Let m be an odd integer. If q = (2m2 + 1)2 is a prime power, then
there exist Siamese twin symmetric designs with parameters

v = 4m4 (q�+1 − 1)
q − 1

, k = q�(2m4 + m2), λ = q�(m4 + m2),

for every positive integer �.
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