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Summary. We show that symmetric Cauchy stresses do not imply symmetric Biot strains in weak formulations

of finite isotropic hyperelasticity with exact rotational degrees of freedom. This is contrary to claims in the

literature which are valid, however, in the linear isotropic case.

1 Introduction

This article is motivated by the numerous contributions which propose to introduce rotational

degrees of freedom in a classical finite elasticity context in order to improve the numerical

approximation of classical solutions [2]–[4], [7], [15], [16], [18], [19]. We refer to the introductions

in [2] and [7] for the historical development of this specific approach to the numerics of classical

finite elasticity1 and the relevance it has, e.g., in the numerical simulation of thin structures ([5] and

[22]). The general idea underlying the approach is to approximate the classical formulation by a

weak formulation in which rotational degrees of freedom (also called drilling degrees of freedom)

appear as a dedicated numerical intermediary device. Hence, no physical meaning is ascribed to

them, as opposed to, e.g., in a Cosserat theory. The contributions of Bufler [2] and [3] are

fundamental for the finite strain development in this respect.

The introduction of rotational degrees of freedom gives, in general, rise to a possible asymmetry

of the relaxed Biot stretches. In an anisotropic setting, therefore, it is necessary to augment the

energetic formulation with a term penalizing this possible asymmetry [3, Eq. (2.9)] in order to still

approximate classical solutions with symmetric Biot stretch tensor U ¼
ffiffiffiffiffiffiffiffiffi

FTF
p

:
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However, in the pioneering contribution of Bufler [3, p. 26] it is claimed that this penalization

is unnecessary in the case of finite isotropic hyperelasticity similar to the case of isotropic linear

elasticity with infinitesimal rotations. From a purely mathematical viewpoint the argument is that

all roots of a certain (cubic) polynomial matrix equation are guaranteed to lie in the space of

symmetric matrices. Due to the specific structure of the very equation one is intuitively led to accept

the correctness of this claim. Had we not a counterexample at our disposal, we admit, our intuition

might have led us to the very same belief. From the viewpoint of mechanics, the above mentioned

claim amounts to the statement that for an isotropic formulation the moment equilibrium equation

enforces automatically the symmetry of the relaxed Biot stretch. Furthermore, it is this automatism

which adds to the attractiveness of the numerical proposal [3, Rem. 2].

In this note we clarify that, contrary to appearance and in a certain way counter-intuitive,

penalization is necessary even in the isotropic case, in order to compute approximately symmetric

Biot stretches, i.e., to recover the classical situation.

The paper is organized as follows. Firstly, we recall the isotropic hyperelastic formulation of

elasticity in the classical symmetric Biot stretch and derive the corresponding Euler-Lagrange

equations. Then, we introduce the formulation with rotational degrees of freedom and establish

various connections between solutions of the different models. Moreover, we exhibit the well-known

relation of the relaxed model to a finite-strain Cosserat model without curvature energy, see, e.g., the

pseudo-polar continuum in [7, p. 158].

By way of a counterexample we show then that symmetry of the relaxed Biot stretch may not be

obtained without sufficient penalization. It is noted that in a linearized, isotropic setting the former

cannot happen: satisfaction of moment equilibrium (symmetric Cauchy-stresses) implies symmetric

infinitesimal stretch in the presence of infinitesimal skew-symmetric degrees of freedom for isotropy

[4], [5].

2 The classical finite strain isotropic Biot model

2.1 The finite strain isotropic Biot model in variational form

For simplicity we restrict the exposition throughout to zero body forces. In a variational framework,

the task is to find a deformation u : X � R
3 7! R

3 minimizing the energy functional I,

IðuÞ ¼
Z

X

WðruÞdV 7!min: w:r:t: u; ð2:1Þ

together with the Dirichlet boundary condition of place for the deformation u on some part C of the

boundary qX: u|C ¼ gd. In the Biot approach, the special constitutive assumptions are

WðFÞ ¼ W ]ðUÞ: ð2:2Þ

The strain energy W depends on the deformation gradient F ¼ ru 2 GLþð3Þ only through the

objective symmetric continuum Biot stretch tensor U ¼ RTF ¼
ffiffiffiffiffiffiffiffiffi

FTF
p

: TxX 7! TxX; where

R ¼ polarðFÞ : TxX 7! TuðxÞuðXÞ is the orthogonal part of the polar decomposition of F, i.e., the

continuum rotation and U is positive definite symmetric. It is well known that every objective free

energy, i.e., V Q [ SO(3): W(Q F) ¼ W(F), can be expressed in this way by a function W ] defined

on the classical stretch U alone, see, e.g., [6].

In the case of material isotropy, the free energy W should be right-invariant under the group of

special rotations SO(3), i.e.,
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8 Q 2 SOð3Þ : WðFQÞ ¼ WðFÞ ,
8 Q 2 SOð3Þ : W ]ðQTUQÞ ¼ W ]ðUÞ:

ð2:3Þ

For example, the most general isotropic quadratic energy in U with zero stresses in the reference

configuration is given by

W]ðUÞ ¼ lkU � 1k2 þ k
2
tr½U � 1�2; ð2:4Þ

where the parameters l, k > 0 are the Lamé constants of classical isotropic elasticity.

2.2 The Euler-Lagrange equations of the finite Biot model

The following considerations are facilitated by using the representation U(F) ¼ R(F)T
F ¼

polar(F)T
F. Moreover, let v 2 C10 ðX;R3Þ: Taking free variations w.r.t. u in the energy leads to

d

dtjt¼0

Iðuþ tvÞ ¼
Z

X

hDFWðruÞ;rvidV ¼
Z

X

hDF ½W ]ðUðFÞÞ�;rvidV

¼
Z

X

hDUW ]ðUÞ;DFUðFÞ:rvidV ¼
Z

X

hDUW]ðUÞ;DF½RðFÞTF�:rvidV

¼
Z

X

hDUW ]ðUÞ; ½DFRðFÞ:rv�TF þ RðFÞTrvidV

¼
Z

X

hDUW ]ðUÞ; ½dRðF;rvÞ�TRðFÞRðFÞTF� þ RðFÞTrvidV

¼
Z

X

hRðFÞDUW]ðUÞ;rvi þ hDUW ]ðUÞ; ½dRðF;rvÞ�TRðFÞRðFÞTF�idV

¼
Z

X

hRðFÞDUW]ðUÞ;rvi þ hDUW ]ðUÞUT ; ½dRðF;rvÞ�TRðFÞ�idV :

ð2:5Þ

Now, we use that on the one hand DUW]ðUÞUT is symmetric for isotropic W] and that on the other

hand [dR(F, !v)]T
R(F) is always skew-symmetric. This implies that the product between them

vanishes. Therefore, we obtain in equilibrium

0 ¼ d

dtjt¼0

Iðuþ tvÞ ¼
Z

X

hRðFÞDUW ]ðUÞ;rvidV

¼
Z

X

hDiv½RðFÞDUW]ðUÞ�; vidV 8 v 2 C
1
0 ðX;R3Þ;

ð2:6Þ

where we have used the divergence theorem. Thus, the strong form of equilibrium for the classical

Biot model reads

Div S1ðFÞ ¼ Div½RðFÞDUW ]ðUÞ� ¼ 0; ð2:7Þ

with the first Piola-Kirchhoff tensor S1ðFÞ ¼ RðFÞDUW ]ðUÞ: Since the second Piola-Kirchhoff

tensor is defined as S2(F) ¼ F
�1

S1(F), it holds
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S2ðFÞ ¼ F�1S1ðFÞ ¼ F�1RðFÞDUW ]ðUÞ ¼ U�1DUW ]ðUÞ 2 Sym ð2:8Þ

from the fact that for isotropic W ] the tensors DUW] and U
�1 commute and are each symmetric. If

we define the Biot stress tensor by T ¼ DUW(U), then the following relation between the Biot

stresses (living on the reference configuration) and the Cauchy-stresses in the actual configuration

holds:

r ¼ 1

det½F�RTFT ¼ 1

det½F�FS2ðFÞFT 2 Sym: ð2:9Þ

We note that the classical Biot model is not known to be well-posed when Eq. (2.4) is used. In this

case Legendre-Hadamard ellipticity is lost [1].

Using the polar decomposition we may write equivalently

Div½RDUW ]ðRTFÞ� ¼ 0; R ¼ polarðFÞ: ð2:10Þ

A weaker formulation is obtained by replacing the constraint R ¼ polar(F) in Eq. (2.10) into

Div½RDUW ]ðRTFÞ� ¼ 0; RTF 2 Sym: ð2:11Þ

The difference between Eq. (2.11) and (2.10) is that in (2.10) the stretch U ¼ R
T

F is not only

symmetric, but also positive definite symmetric. In fact it holds

8 R 2 SOð3Þ; F 2 GLþð3Þ : RTF 2 Sym, R ¼ Qi polarðFÞ; ð2:12Þ

for

Q1 ¼ 1; Q2 ¼ diagð1;�1;�1Þ; Q3 ¼ diagð�1; 1;�1Þ; Q4 ¼ diagð�1;�1; 1Þ: ð2:13Þ

Thus every solution to Eq. (2.10) is a solution to Eq. (2.11) but not vice versa. Despite the difference

between the formulations (2.10) and (2.11) it is (2.11) which is sought to be approximated by a

formulation with rotational degrees of freedom which we introduce presently.

3 The Biot model with rotational degrees of freedom

The Biot model with rotational degrees of freedom is obtained by formally relaxing the constraint on

the rotations R in the previous approach to coincide either with the polar-decomposition or to make

U ¼ R
T

F symmetric. Instead, one introduces an independent rotation field �R : X 7! SOð3Þ and

writes, cf. [3, 2.3]

Irelðu; �RÞ ¼
Z

X

W]ð�RTruÞdV 7! min: w:r:t: ðu; �RÞ; ð3:1Þ

taking free variations w.r.t u and �R: Let us abbreviate �U ¼ �R
T
F; which is in general non-symmetric.

Repeating the same steps as before leads us to the balance of forces equation

0 ¼ d

dtjt¼0

Irelðuþ tv; �RÞ ¼
Z

X

hDF ½W]ð�RTruÞ�;rvidV ¼
Z

X

hD�UW]ð�RTruÞ;RTrvidV

¼
Z

X

hRD�UW ]ð�UÞ;rvidV ¼
Z

X

hDiv½�RD�UW]ð�UÞ; vidV ; 8 v 2 C10 ðX;R3Þ:
ð3:2Þ
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Free variation w.r.t. to the independent rotations �R leads to an algebraic side condition. Since
�R

T �R ¼ 1 we have d�R
T �R ¼ A 2 soð3Þ for some arbitrary skew-symmetric matrix A. Thus for all

variations d�R

0 ¼ hD�R½W ]ð�RT
FÞ; d�Ri ¼ hDW ]ð�RT

FÞ; d�R
T
Fi ¼ hD�UW]ð�RT

FÞ; d�R
T �R

|fflffl{zfflffl}

A

�R
T
Fi

¼ hD�UW]ð�RT
FÞ; A�Ui ¼ hD�UW]ð�UÞ�UT

; Ai
ð3:3Þ

and balance of angular momentum follows as

8 A 2 soð3Þ : 0 ¼ hDUW ]ð�UÞ�UT
;Ai , D�UW ]ð�UÞ�UT 2 Sym: ð3:4Þ

Gathering the Euler-Lagrange equations we have for the model with rotational degrees of

freedom

0 ¼ Div½�RD�UW ]ð�UÞ�; D�UW]ð�UÞ�UT 2 Sym: ð3:5:1; 2Þ

4 The relaxed Biot model for a classical isotropic material

Any classical objective and isotropic strain energy density W ] can be expressed as depending on the

basic invariants (the coefficients of the characteristic polynomial) of the classical symmetric right

stretch tensor U. We follow here closely the notation in [3]. Thus

W ]ðUÞ ¼ WðI1ðUÞ; I2ðUÞ; I3ðUÞÞ ¼ UðUÞ;

I1ðUÞ ¼ tr½U�; I2ðUÞ ¼ tr½CofU� ¼ 1

2
tr½U�2 � tr½U2�
h i

; I3ðUÞ ¼ det½U�:
ð4:1Þ

We note that, cf. [3, 2.21](including the case that X 62 SymÞ

oI1ðXÞ
oX

¼ 1;
oI2ðXÞ

oX
¼ tr½X�1� XT ¼ I1ðXÞ � XT ; ð4:2:1; 2Þ

o det X½ �½ �
oX

¼ CofX ¼ det½X�X�T ¼ oI3ðXÞ
oX

¼ I2ðXÞ1� I1ðXÞXT þ X2;T : ð4:2:3Þ

.
Observe that I3(�R X) ¼ I3(X) for all �R [ SO(3). Thus only derivatives of W with respect to I1, I2

need to be taken into account for balance of moment considerations or stated alternatively,

oI3ð�UÞ
o�U

�U
T ¼ det½�U�1 2 Sym: ð4:3Þ

This can, of course, also be seen from the right hand side in (4.2.2) by considering the Cayley-

Hamilton theorem for X
T.

For the following discussion we consider for arbitrary numbers 0 � lc� l

WðI1; I2; I3Þ ¼
l� lc

2
½I2

1 � 2I2� � 2lI1: ð4:4Þ

This form is motivated from
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kX þ XT � 21k2 ¼ kX þ XTk2 � 2hX þ XT ; 21i þ 4 � 3

¼ 2kXk2 þ 2hX;XTi � 8tr½X� þ 12

¼ 2kXk2 þ 2tr½X�2 � 4tr½CofX� � 8tr½X� þ 12;

kX � XTk2 ¼ 2kX2k � 2hX;XTi ¼ 2kXk2 � ½2tr½X�2 � 4tr½CofX��;

l
4
kX þ XT � 21k2 þ lc

4
kX � XTk2

¼ l
2
kXk2 þ l

4
½2tr½X�2 � 4tr½CofX�� � 2ltr½X� þ 3l

þ lc

2
kXk2 � lc

4
½2tr½X�2 � 4tr½CofX��

¼ lþ lc

2
kXk2 þ l� lc

4
½2tr½X�2 � 4tr½CofX�� � 2ltr½X� þ 3l

¼ lþ lc

2
kXk2 þ l� lc

2
½I1ðXÞ2 � 2I2ðXÞ� � 2lI1ðXÞ þ 3l

¼ lþ lc

2
kXk2 þWðI1ðXÞ; I2ðXÞ; I3ðXÞÞ þ 3l: ð4:5Þ

Abbreviating, as in [3, 2.25],

b1 ¼
oW
oI1
¼ ðl� lcÞI1 � 2l;

b2 ¼
oW
oI2
¼ �ðl� lcÞ;

c1 ¼ b1 þ b2I1 ¼ ðl� lcÞI1 � 2lþ ½�ðl� lcÞ�I1 ¼ �2l;

c2 ¼ �b2 ¼ ðl� lcÞ;

ð4:6Þ

leads to the moment-equation [3, 2.25]

0 ¼ c1
�U � �U

T
� �

þ c2
�U

2 � �U
2;T

� �

,

0 ¼ �2l �U � �U
T

� �

þ ðl� lcÞ �U
2 � �U

2;T
� �

;
ð4:7Þ

which is nothing else than Eq. (3.5.2) for W]ð�UÞ ¼ WðI1ð�UÞ; I2ð�UÞ; I3ð�UÞÞ and W as in Eq. (4.4). We

will come back to the possible (non-symmetric) solutions of Eq. (4.7) in Section 6 following

Eq. (6.4).

If we take instead an isotropic potential which is linear in the basic invariants, i.e.,

WðI1; I2; I3Þ ¼ b1I1 þ b2I2 þ b3I3; ð4:8Þ

with constants b1, b2, b3, then the moment equation is equivalent to (b3 disappears)

0 ¼ ðb1 þ b2tr½�U�Þ �U � �U
T

� �

� b2
�U

2 � �U
2;T

� �

: ð4:9Þ

In this case the Eq. (4.9) really seems to have only symmetric solutions. Note that the statement of

moment of momentum can always be rephrased as a stationarity condition of W w.r.t. rotations �R as

a function �R 7! WðI1ð�R
T
FÞ; I2ð�R

T
FÞÞ at given deformation gradient F. Passing therefore to an

appropriate energy expression which delivers the same moment equation, we can show that for b1,

b2� 0, the polar rotation polar(F) indeed realizes the global minimum w.r.t. �R 2 SOð3Þ: To see this,

consider the energy in �U ¼ �R
T
F
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b1kU � 1k2 þ b2kCof �U � 1k2

¼ b1k�Uk2 þ b2kCof �Uk2 þ 3ðb1 þ b2Þ � 2 b1tr½U� þ b2tr½Cof �U�
� �

¼ b1kFk2 þ b2kCofFk2 þ 3ðb1 þ b2Þ � 2WðI1ð�UÞ; I2ð�UÞÞ: ð4:10Þ

Since the first terms are invariant w.r.t. �R it is obvious that this energy delivers the same stationarity

condition as W does, hence the same moment equation. Moreover,

inf
R2SOð3Þ

b1kU � 1k2 þ b2kCofU� 1k2
� �

� inf
R2SOð3Þ

b1kU � 1k2 þ inf
R2SOð3Þ

b2kCofU� 1k2

¼ b1kU � 1k2 þ b2kCofU � 1k2;

ð4:11Þ

since both minimum problems are solved by the same �R ¼ polarðFÞ: For the second term this

follows from the optimality of the polar rotation in the sense that

inf
R2SOð3Þ

kCofU � 1k2 ¼ inf
R2SOð3Þ

kRT
CofF � 1k2

¼ inf
R2SOð3Þ

kCof F � Rk2 ¼ inf
R2SOð3Þ

kdet½F�F�T � Rk2

¼ kdet½F�F�T � polarðdet½F�F�TÞk2 ¼ kdet½F�F�T � polarðF�TÞk2

¼ kdet½F�F�T � polarðFÞk2 ¼ kpolarðFÞTCof F � 1k2

¼ kCof polarðFÞTF � 1k2 ¼ kCofU � 1k2:

ð4:12Þ

The same consideration for the first term is simpler. Thus polar(F)T
F ¼ U is the energy optimal

symmetric solution of Eq. (4.9). This suggests that Bufler in [3, 2.25] considered in fact the special

situation of Eq. (4.8).

The proposed relaxed Biot model with independent rotations can be viewed as a special case of a

nonlinear Cosserat continuum. To see this let us continue by introducing a finite strain Cosserat

model.

5 The finite strain Cosserat model in variational form

In [11] and [12] a finite-strain, fully frame-indifferent, three-dimensional Cosserat micropolar model

is introduced, cf. [21], [17]. The two-field problem has been posed in a variational setting. The task is

to find a pair ðu; �RÞ : X � R
3 7!R

3 � SOð3Þ of deformation u and independent Cosserat rotation2

�R 2 SOð3Þ; minimizing the energy functional I,

Iðu; �RÞ ¼
Z

X

WmpðR
TruÞ þWcurvð�R

T
Dx

�RÞdV 7!min: w:r:t: ðu;RÞ; ð5:1Þ

together with the Dirichlet boundary condition of place for the deformation u on C: u|C ¼ gd and

Neumann conditions on the Cosserat rotations �R everywhere on qX. The constitutive assumptions

are

2 The Cosserat rotation �R is a homogenized field defined on the macroscale.
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�RðxÞ : TxX 7!TuðxÞuðXÞ; �UðxÞ :¼ �R
TðxÞFðxÞ : TxX 7!TxX;

Wmpð�UÞ¼lksymð�U�1Þk2þlckskewð�U�1Þk2þk
4

 

det½U��1Þ2þ
 

1

det
½U��1

!2!

;

F¼ru; WcurvðDx
�RÞ¼lLq

ckCurl �Rkq; ð5:2Þ

under the minimal requirement q� 2. The total elastically stored energy W ¼ Wmp + Wcurv depends

on the generalized stretch �U and on the curvature measure Curl �R [14] which describe the

interaction of the microstructure on the macroscale. The strain energy Wmp depends on the

deformation gradient F¼ru and the Cosserat rotations �R2SOð3Þ; which do not necessarily

coincide with the continuum rotations R¼ polarðFÞ :TxX 7!TuðxÞuðXÞ:3 In general, the micro-

polar stretch tensor �U is not symmetric and does not coincide with the symmetric continuum stretch

tensor U¼RTF¼
ffiffiffiffiffiffiffiffiffi

FTF
p

: TxX 7!TxX:
Here C�qX is that part of the boundary, where Dirichlet conditions gd for deformations are

prescribed. The parameters l, k > 0 are again the Lamé constants of classical isotropic elasticity, the

additional parameter lc � 0 is called the Cosserat couple modulus. For lc > 0 the elastic strain

energy density Wmpð�UÞ is uniformly convex in �U and satisfies the standard growth assumption

8F 2 GLþð3Þ : Wmpð�UÞ ¼ Wmpð�R
T
FÞ�minðl; lcÞkR

T
F � 1k2 ¼ minðl; lcÞkF � �Rk2

� minðl; lcÞ inf
R2Oð3Þ

kF � Rk2 ¼ minðl; lcÞdist2ðF;Oð3ÞÞ

¼ minðl; lcÞdist2ðF; SOð3ÞÞ ¼ minðl; lcÞkF � polarðFÞk2

¼ minðl; lcÞkU � 1k2;

ð5:3Þ

where dist : M3�3 7!R is the Euclidean distance function on second order tensors. In contrast, for

the case lc ¼ 0 the strain energy density is only convex w.r.t. F and does not satisfy (5.3).4

The parameter Lc > 0 (with dimension length) introduces an internal length which is

characteristic for the material, e.g., related to the grain size in a polycrystal. The internal length

Lc > 0 is responsible for size effects in the sense that smaller samples are relatively stiffer than larger

samples.

In the Cosserat model it is still possible to compute a tensor, formally taking on the role of the

Cauchy-stresses:

r ¼ 1

det½F�S1ðF; �RÞFT ¼ 1

det½F�DFWðF; �RÞFT

¼ 1

det½F�
�RD�UWð�UÞFT ¼ 1

det½F�
�RTð�UÞFT :

ð5:4Þ

It is of prime importance to realize that a linearization of this isotropic Cosserat bulk model

with lc ¼ 0 for small displacement and small Cosserat rotations completely decouples the two

fields of deformation u and Cosserat rotations �R and leads to the classical linear elasticity

problem for the deformation. In [9] it is nevertheless shown that lc ¼ 0 is a reasonable choice.5

3 The continuum rotation and the Cosserat rotation rotate infinitesimal volumina and move base points.
4 The condition F [ GL

+

(3) is necessary, otherwise kF � polarðFÞk2 ¼ distk2ðF;Oð3ÞÞ\dist2ðF; SOð3ÞÞ; as can be

easily seen for the reflection F ¼ diag(1, �1, 1).
5 Thinking in the context of an infinitesimal-displacement Cosserat theory one might believe that lc > 0 is necessary

also for a ‘‘true’’ finite-strain Cosserat theory.
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For more details on the modelling of the three-dimensional Cosserat model we refer the reader

to [11]. Extensions to a micromorphic model have been given in [13]. The Cosserat model is

well-posed in the sense that the existence of minimizers is obtained for various combinations of

constitutive parameters [8], [10], including lc ¼ 0, provided that Lc is strictly positive.

The Biot model with independent rotations is obtained from the Cosserat model by neglecting the

curvature, i.e., setting Lc ¼ 0. By a scaling argument it is easy to see that Lc ¼ 0 corresponds to the

limit of arbitrarily large samples. Therefore, the proposed Cosserat model can be seen as a

regularization of the Biot model with independent rotations. For Lc ¼ 0, balance of angular

momentum is equivalently expressed as r [ Sym.

6 Symmetry of stresses versus symmetry of stretches

Let us now return to the Euler-Lagrange equations for the Biot model with rotational degrees of

freedom (3.5)

0 ¼ Div½�RD�UW ]ð�UÞ�; D�UW]ð�UÞ�UT 2 Sym: ð6:1Þ

As already remarked, Bufler considers the restricted case W ]ð�UÞ ¼ WðI1ð�UÞ; I2ð�UÞ; I3ð�UÞÞ: We can

be slightly more general by assuming that W ] also depends on additional invariants intervening for

non-symmetric �U: In either case, using the representation theorems for isotropic functions of non-

symmetric tensor arguments [20] it is easy to see that for isotropic W] and for symmetric �U the

balance of angular momentum (3.4) is automatically satisfied, see, e.g. [18]. We observe, following

the fundamental contribution [3] that a (not necessarily unique) solution ðu; �RÞ of (3.5) cannot solve

(2.11) unless �U is symmetric.

However, in [3] Bufler proceeds and arrives at

c1ð�U � �U
TÞ þ c2ð�U

2 � �U
T;2Þ þ c3ð�U

3 � �U
T;3Þ ¼ 0;

[3] Eq. (2.25)) for some scalar functions ci ¼ ciðI1ð�UÞ; I2ð�UÞ; I3ð�UÞ: He concludes: ‘‘The moment

equilibrium ... leads to the symmetry condition �U ¼ �U
T
: This result, . . ., can be explained as follows:

For an isotropic material the stretch �U and the stress r ð¼ D�UW]ð�UÞ our addition) are coaxial;

consequently the moment equilibrium in (2.19) is satisfied identically for every symmetrical �U: Vice

versa the moment equilibrium condition enforces this symmetry under the assumption of an isotropic

material as demonstrated in (2.25).’’

This statement is only partially true: symmetric �U satisfies, for isotropic W ]; always the moment

equilibrium (3.4). The converse is, however, not necessarily the case. To see this, choose e.g.

W]ð�UÞ ¼ lksymð�U � 1Þk2 þ lckskewð�U � 1Þk2 þ k
4
ðdet½�U� � 1Þ2 þ 1

det
½U� � 1

� 	2	

;

 

ð6:2Þ

as in the Cosserat model (5.2). Clearly, W] is an isotropic scalar valued function of the non-

symmetric tensor argument �U: Since the volumetric term is independent of �R we can concentrate for

balance of angular momentum on

Wl;lc
ðF; �RÞ :¼ lksymð�U � 1Þk2 þ lckskewð�U � 1Þk2: ð6:3Þ

Balance of angular momentum reads now
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D�UW ]ð�UÞ�UT 2 Sym , D�UWl;lc
ð�UÞ�UT 2 Sym

, 2lðsymð�U � 1ÞÞ þ 2lc skew�U

 �

�U
T 2 Sym

, lð�U þ �U
T � 21Þ þ lcð�U � �U

TÞ
h i

�U
T 2 Sym ð6:4Þ

, ðl� lcÞ�U �U � 2l�U 2 Sym

, ðl� lcÞ½�U
2 � �U

T;2� � 2l½�U � �U
T � ¼ 0:

Note that the last equation coincides with Buflers original equation (4.7). Obviously, for lc ¼ l the

symmetric solution is unique. Therefore, assume presently that 0 � lc < l but we note that the

choice lc ¼ 0 is not necessary. Define q :¼ 2l
l�lc

and set

F ¼
k1 0 0

0 k2 0

0 0 1

0

B

@

1

C

A

; k1 þ k2 [ q;

�R ¼
cos a � sin a 0

sin a cos a 0

0 0 1

0

B

@

1

C

A

; a ¼ arc cos
q

k1 þ k2

� 	

2 0;
p
2

h i

: ð6:5Þ

This yields the explicit forms

�R ¼

q
k1þk2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q2

ðk1þk2Þ2
q

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q2

ðk1þk2Þ2
q

q
k1þk2

0

0 0 1

0

B

B

B

@

1

C

C

C

A

;

�U ¼ �R
T
F ¼

q k1

k1þk2
k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q2

ðk1þk2Þ2
q

0

�k1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q2

ðk1þk2Þ2
q

q k2

k1þk2
0

0 0 1

0

B

B

B

@

1

C

C

C

A

; ð6:6Þ

as can be easily seen from a straight forward calculation. It is obvious that �U is in general not

symmetric. On the other hand, we obtain

�U � �U
T ¼

0 ðk1 þ k2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q2

ðk1þk2Þ2
q

0

�ðk1 þ k2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q2

ðk1þk2Þ2
q

0 0

0 0 0

0

B

B

B

B

@

1

C

C

C

C

A

;

�U
2 � �U

T;2 ¼
0 q ðk1 þ k2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q2

ðk1þk2Þ2
q

0

�q ðk1 þ k2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q2

ðk1þk2Þ2
q

0 0

0 0 0

0

B

B

@

1

C

C

A

: ð6:7Þ

Thus, �U
2 � �U

T;2 ¼ 2l
l�lc

ð�U � �U
TÞ from which we readily infer

ðl� lcÞ½�U
2 � �U

T;2� � 2l½�U � �U
T � ¼ 0:

Hence, �U ¼ �R
T
F 62 Sym; but satisfies the equilibrium equation of angular momentum.

Furthermore, it can be shown by simple evaluation of the corresponding energy levels, that the

given rotation �R is not only a solution of the balance of momentum equation D�UW ]ð�UÞ�UT 2 Sym
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but beats the classical symmetric solution energetically. That the given rotation �R realizes indeed the

global minimum w.r.t. �R of the energy W ] at given deformation gradient F will be the subject of a

forthcoming contribution.6

Moreover, inspection of (6.6) shows that if |k1�k2| < q, then hn; U:ni
R

3 defines a positive definite

quadratic form. It should also be noted that the always possible classical symmetric solution
�R ¼ polarðFÞ need not even be a local minimizer. Stability considerations do not speak in favour of

the polar rotation!

Interestingly enough, if in the former, we choose lc � l (a specific kind of penalty) then it is not

too difficult to see that the only solution of balance of momentum is indeed a symmetric �U: Here, the

penalty term enforces exactly the symmetry and not only approximately.

Gathering our findings shows that the remark 2 in [3]: ‘‘The governing variational principle (2.15)

and variational equation (2.16), respectively, with displacement- and rotational degrees of freedom can

serve as a basis for a discretization in the case of an isotropic material. The corresponding numerical

solution approximates not only the force equilibrium condition but also the symmetry of the stretch. This

relaxed symmetry proves to be the most advantageous because the strict one would result in a complex

coupling of the displacement- and rotation fields u and u.’’, must be read with the precaution to use only

isotropic free energies in the special format7 W ]ð�UÞ ¼ WðI1ð�UÞ; I2ð�UÞ; I3ð�UÞÞ as in Section 4 which

have the exceptional property to lead automatically to symmetric relaxed Biot stretches.

7 Conclusion

Summarizing the situation, we can say: the Cosserat model turns into a Biot model with independent

rotations whenever the internal length scale is absent, i.e., Lc ¼ 0. Even in the case of isotropy the

equilibrium solutions of the model (3.5) are not necessarily equilibrium solutions of the weak Biot model

(2.11). If it is intended to approximate classical solutions by the model with independent rotations, then a

sufficiently large penalty term lckskew�Uk2
needs to be added. In the investigated isotropic case (6.2), a

finite penalty parameter lc � l is sufficient to enforce symmetry of the relaxed Biot stretches exactly.

If the penalty parameter lc is small or absent the relation of the relaxed Biot model with independent

rotations to the classical isotropic Biot model is lost. Since in the classical Biot model the stretches are

not only symmetric but positive definite, the solutions of the relaxed Biot model with sufficient penalty

need to be checked w.r.t. positive definiteness in order to maintain their physical relevance.

It remains to find a sufficiently large class of isotropic free energies such that moment equilibrium

in the relaxed formulation implies automatically the symmetry of the relaxed Biot stretch �U: This

question seems to be a formidable challenge. A partial positive answer is provided by restricting

attention to energies whose part, effectively depending on rotations, is a linear combination of the

three classical invariants I1, I2, I3.
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6 This statement is also true with respect to the energy W(I1, I2, I3) since the difference to W] in (6.2) is only an additive

term k�Uk2 ¼ kRT
Fk2 ¼ kFk2

and an additive volumetric contribution which are both invariant w.r.t. rotations �R:
7 Every classical isotropic free energy defined on U can be used and extended in this way to an isotropic function of the

non-symmetric �U; but not every isotropic free energy in terms of �U has such a representation, since other invariants

operating on the skew-symmetric parts of �U may intervene.
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