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ABSTRACT Digital physiological signals in telecare medicine information systems have been widely

applied in remote medical applications, such as telecare, tele-examination, and telediagnosis, via computer

networking transmission or wireless communication. However, these medical records need to ensure

authorization demands in the channel model for human body communication and remote medical servers and

enhance the confidentiality, recoverability, and availability of transmission data. Hence, this study proposes a

symmetric cryptography scheme with a chaotic map and a multilayer machine learning network (MMLN) to

achieve physiological signal infosecurity. A chaotic pseudorandom number generator within specific control

parameters can dynamically produce unordered sequence numbers to set the secret keys for a regular secret

key update, thereby improving the security of private cipher codes. The chaotic map is quickly iterated to

produce a pseudorandom key stream for real-time applications, and the private cipher codes are selected

using the initial and specific control parameters at the data emitter and receiver ends. A general regression

neural network is used to map the high-dimensional input–output pair of cipher codes for substitution and

permutation processes. Its adaptive MMLN with an optimization algorithm can rapidly train the random

cipher code protocol to achieve an encryptor and a decryptor for a regular encrypted communication.

Using the Massachusetts Institute of Technology–Beth Israel Hospital (MIT–BIH) Arrhythmia Database,

100 electrocardiogram fragments are used to verify the proposed model, and the peak signal-to-noise

ratio (PSNR) as a quantitative quality metric is used to evaluate the visual quality after encryption and

decryption processes for further diagnosis applications. Experimental results show that the proposed scheme

has a higher mean PSNR (35.26 ± 3.77 dB) and shorter mean executing time (0.16 ± 0.01 s) compared with

traditional cryptography protocol schemes.

INDEX TERMS Symmetric cryptography, chaotic map, general regression neural network, optimization

algorithm, peak signal-to-noise ratio.

I. INTRODUCTION

In the human body communication (HBC) channel, phys-

iological signals are obtained via biopotential electrodes

and transducers over time, digitized by an analog-to-digital

The associate editor coordinating the review of this manuscript and

approving it for publication was Jun Wang .

conversion (ADC), and stored in amemory unit. Signals, such

as bioelectrical, biomagnetic, and bioacoustic signals, can

be applied in healthcare and homecare applications for dis-

ease prevention, treatment cost reduction, and remote cardiac

diagnosis [1], [2]. For example, an electrocardiogram (ECG)

is commonly used to monitor the human heart’s internal elec-

trical activities for applications in computer-aided diagnosis
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systems. The raw data collected by ECG can be used to ana-

lyze heart rate variability (HRV), detect cardiac arrhythmia,

diagnose cardiovascular diseases, recognize emotions, and

screen obstructive sleep apnea [3]–[7]. For cardiac arrhyth-

mia detection, various QRS waveforms are used to identify

the normal beat (•), atrial premature beat (A), ventricular

premature contraction (V), right/left bundle branch block

beat (R/L), paced beat (P), and fusion of ventricular and

normal beats (F) [6], [8], [9]. These symptom signals can be

transmitted via wired (computer networks) or wireless com-

munication for applications in remote cardiac diagnosis. For

example, the IEEE 802.15 standard [10], [11] and physical

layer security [12], [13] for signal transmission have defined

the physical layer and media access control specification for

wireless connection with a fixed, portable, or mobile device

within an individual operating space in a body area network

(BAN). However, the security and privacy of personal phys-

iological data should be protected while being transmitted in

public communication channel.

Hence, the Health Insurance Portability and Accountabil-

ity Act has recommended communication networks as a

medium to transmit digital physiological data with proper

security and privacy to ensure confidentiality, integrity,

and availability [14], [15], which is portrayed as a small-

scale telecare medicine information system, as seen in

Figure 1(a).

For communication techniques in telecare applications,

a set of body sensors has been applied for pervasive and real-

time healthcare monitoring; these sensors are used to collect

patients’ health states, such as vital signs, texts, images, and

multimedia information. This wireless-based system consists

of handheld mobile devices (smart phones or iPads) and

remote sensors [16]–[19], which are either worn or implanted

on the body for the monitoring of heart rate, blood pressure,

oxygen saturation, temperature, and body motion states in a

wireless BAN [11], [20]. These electronicmedical records are

private and confidential for be available by authorized people.

For example, radio frequency identification (RFID) technol-

ogy can link physical objects to the Internet for exchanging

data and is also used for healthcare applications (industrial,

scientific, andmedical band; range: 1–12m). This technology

consists of a tag, reader, and backend server. Passive RFID

has low storage and low computational capabilities and thus

suffers from many security drawbacks and privacy issues,

such as simple bitwise operations and pseudorandom num-

ber generators in RFID authentication protocols. A scalable

pseudorandom mutual authentication scheme [21] is used

to encrypt information with symmetric secret keys, random

number generators, and hash functions. RFID tag authentica-

tion uses uniformly distributed random variables to produce

random numbers for setting a secret key and then transmits

data during communication transmission, which need to be

independent and updated, resulting in a significant increase

in signaling overhead and reduction of the overall throughput

of the system. Its technique also has limited storage resources

in the tag and low capacity of processing complex operations.

In addition, similar with most electronics and network, the

RFID system is susceptible to active and passive attacks.

Hackers may take apart the knowledge about protocols and

determine how its system operates to steal information, gain

access, or tamper information.

In medical signal and image security, encryption algo-

rithmswith permutation and substitutionmethods or a combi-

nation of both have been proposed for digital medical records;

these methods include (1) rearranging numerical / pixel posi-

tions and (2) changing numerical / pixel values [22]–[26].

The methods based on permutation cipher can rearrange their

positions without changing the numerical / pixel values in

an encrypted data sequence. By contrast, substitution cipher-

based methods replace plain messages with letters, numbers,

or specific symbols, which modify the numerical / pixel

values in the entire encrypted data sequence by using the

transformation function or combining the substitution and

transposition methods. Methods, such as shift cipher, affine

cipher, exclusive (XOR), Hill cipher, Playfair cipher, and

hash function methods, can also combine a multi-round cryp-

tography protocol to improve communication security [22],

[26]. However, encrypted messages that use the permutation

or substitution methods with fixed secret keys as constant

control parameters in the symmetric cryptography protocol

can easily be broken by active or passive hacker attacks,

which intercept the content of messages to modify, steal, and

copy by unauthorized actions, resulting in thefts and security

threats. Hence, a secrecy performance evaluation of cryptog-

raphy schemes and techniques is required to quantify secrecy

performance metrics, such as the signal-to-interference-plus-

noise ratio-based metric, bit error rate-based metric, and

packet error rate-based metric, and fractional equivocation-

basedmetric, which define the maximum secrecy rate (capac-

ity), secrecy throughput, and secrecy outage probability at

which the message is reliably recovered at the data receiver

end [12], [13], [27], [28]. Combining the permutation and

substitution process with chaotic secret keys [22]–[24], [29],

[30] ensures the improved security of encrypted messages.

Thus, to combat passive attacks, chaos-based dynamical sys-

tems or chaotic map- based methods have randomness and

nonperiodicity to generate unordered sequences for setting

unpredictable cryptography protocols.

One-dimensional chaotic map-based pseudorandom num-

ber generators, such as Arnold, sine, circle, tent, and logis-

tic maps [29]–[33], has been designed to generate secret

keys for protecting patients’ digital medical data in wire-

less communication networks. Its technique uses the initial

conditions and control (bifurcation) parameters to perform

pure shuffling processes of row and columns for rearranging

pixel positions or to modify the gray values of cluttered

pixels, and has high security levels for gray and colored

medical images. These chaotic map-based methods use dif-

ferent initial conditions and the specific control parameters to

determine whether a dynamic system stabilizes at a constant

value or periodic values or becomes chaotic behaviors. Its

pseudorandom number generator offers a fast and easy way
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FIGURE 1. Telecare medicine information system and ECG sequence record (approximately 30 s of recording). (a) Architecture of bioelectrical
signal security in a telecare medicine information system, (b) Original ECG raw data, (c) Encoded ECG data in 0–255 level.

to select the finite data length using chaotic iterations for

setting secret keys as chaotic cipher codes, such as 8-bit,

56-bit (for data encryption standard), or 256-bit (for advanced

encryption standard) key space. For example, a key is 8-bit

long (key space = 28), with possible secret keys encoding

from value 0 to value 255. To prevent any brute-force attack

or statistical attack, a 256-bit key space is designed to ran-

domly select from the possible key permutations. Thus, these

unordered cipher codes can be used to train an encryptor

and a decryptor using artificial neural network (ANN)-based

models and optimization algorithms.

Each pair of cryptography protocol is a cipher codes

as the ‘‘ordered sequence numbers (0−255) referring to

the nonordered sequence numbers (chaotic cipher codes)

for encryption process, or the non-ordered sequence num-

bers referring to the ordered sequence numbers (0−255) for
decryption process. In this study, a general regression neural

network (GRNN)-based [34]–[37] multilayer machine learn-

ing network (MMLN) is used to establish nonlinear mapping

between high-dimensional feature space and complex input

and output relationships for nonlinear curve-fitting applica-

tions. These nonlinear mapping feature patterns with a finite

number of training patterns will cause practical difficulties in

an estimator design using traditional ANN, such as multilayer

perceptron neural network (MPNN). MPNN-based estima-

tors use the back- propagation algorithm to adjust the over-

all network connecting weights to reduce the generalization

error and complete the complexity input and output map-

ping relationships. However, MPNN’s model performance

is significantly affected by the numbers of hidden nodes

and layers, initialized random connecting weights, learning

rates, and convergent condition [34]–[37]. This complexity

model will increase the computational time consumption and

design cycle. The proposed GRNN model uses the number

of input–output pairs of training patterns to establish the

architecture of MMLN, including input nodes in the input

layer, hidden nodes in the pattern layer, and outputs nodes

in the output layer. Hence, GRNN can rapidly construct a

multilayer connecting network, as shown in Figure 1(a). For

a regular secret key update, to produce a new cryptogra-

phy protocol with the logistic map function [30], [33], [38],

GRNN-based models with an optimization algorithm, such

as the particle swarm optimization (PSO) search algorithm

[34]–[36], [39], can rapidly adjust the network parameters

to minimize the generalization error and achieve the near

global minimum, which will be trained for implementing an

encryptor and a decryptor for physiological signal infose-

curity. Its adaptive scheme has a fast operation time in the

learning and recall stages at a regular secret key update.

The adaptive training scheme of the proposed model can

overcome the shortcomings of permutation or substitution

methods with fixed secret keys. Through methodology verifi-

cation using the Massachusetts Institute of Technology–Beth

Israel Hospital (MIT–BIH) database [40], we will suggest
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promising parameters, including chaotic control and PSO

parameters, to model the encryptor and decryptor for online

applications. For 100 ECG fragments, peak signal-to-noise

ratio (PSNR) [41], [37] is used to evaluate the decrypted per-

formance of the proposed symmetric cryptographic method.

Experimental results indicate that we can obtain good-quality

decrypted ECG signals without hacker attacks and noise,

with a mean PSNR ≥ 30 dB. Hence, the recoverable ECG

signal is reliable and lossless for further disease diagnostic

applications.

The remainder of this article is organized as follows:

Section II describes the methodology, including ECG sig-

nal collection, chaotic secret key generation, encryptor

and decryptor modeling, and recovery quality evalua-

tion. Section III describes encryptor and decryptor training,

experimental tests with MIT–BIH ECG data, and perfor-

mance comparison with traditional cryptographic methods.

Section IV concludes the study.

II. METHODOLOGY

A. ECG RAW DATA ENCODING

An ECG signal is a sequence record used to determine the

heart’s electrical activities as indications for chest pain, sus-

pected myocardial infarction, cardiac electrophysiology, and

medication monitoring [6], [42], [43]. Its record can be per-

formed as a short-duration tracing or continuous monitoring

by 12-lead ECG measurements, including limb leads (leads I

to III), augmented limb leads (leads aVR, aVL, and aVF), and

precordial leads (leads V1 to V6) [44]. In each ECG raw data,

each beat is labeled by two cardiologists in accordance with

the Association for the Advancement of Medical Instrumen-

tation standard. After ADC, we converted the discrete values

of ECG raw data

into positive values (unsigned data) as

ECG = ECGorg + abs(argmin(ECGorg)), (1)

where ECGorg is the ECG raw data, argmin(•) is the function
to find the minimal value, and abs(•) is the function to return
the absolute value. Then, with a resolution of 8 bits to encode

an ‘‘ECG raw data’’ once in 256 levels for the encryption

process (8 bits), the voltage scale can be represented from

value 0 to value 255 as

801 = ECG
(28 − 1)

VFSR
(2)

801 =
[

φ01,1, φ01,2, φ01,3, · · · , φ01,N

]

(3)

where VFSR is the full-scale range of voltage magnitude

(VFSR = 5.0 mV in this study), N is the number of sampling

points in ECG sequence data, and 801 is the ‘‘plain sequence

data.’’ Figures 1(b) and 1(c) show the ECG sequence data

(approximately 30 s of recording) from original ECG signal

to encoded signal. These sequence data could be used to

evaluate the performance of the proposed symmetric crypto-

graphic method.

B. CHAOTIC SECRET KEY GENERATION

For data substitution and permutation, the discrete chaotic

dynamic manner, such as sine, circle, tent, and logistic maps

[18]–[24], has been proposed to generate one-dimensional

random numbers in nonperiodic chaotic sequences. Its gen-

eration process has a randomness function, and its chaotic

trajectories are controlled by initial condition and control

parameters. For example, a logistic map is used to generate a

nonperiodic chaotic

sequence cn between 0 and 1 and can be presented as

cn+1 = r · cn(1 − cn), n = 0, 1, 2, . . . , nc (4)

where parameter r is the control (bifurcation) parameter; c0
is the initial condition, as 0< c0 <1; and nc is the sequence

length. With the bifurcation parameter (0< r ≤4) and

initial condition (c0 = 0.5), Figures 2(a) and 2(b) show the

bifurcation diagram from 0 to 4 and the chaotic trajectories

over 2 × 104 iteration numbers, respectively. The figures

also show that amplitude and frequency are highly random.

The Lyapunov exponent (LE) is used to observe the adequate

interval of control parameters.

LE t =
1

nc

nc
∑

n=1

log(abs(rt − 2rtcn))(dB) (5)

rt = rt−1 + 1r, 1r = 0.0010, t = 1, 2, 3, . . . , nr (6)

where r0 is the initial control parameter, nr is the number of

control parameters, and nc is the number of sequence length.

As shown in Figure 2(c), given the parameters r0 = 3.500,

nr = 501, and nc = 2 × 104, the estimated values of the

LE = −1.3274 dB can be used to validate the chaotic phe-

nomenon [40]. With the control parameter values in the range

of 3.8320–4.0000, the dynamic behavior will become more

chaotic in nature and suggests that the control parameters

must be set in this specific range.

Hence, in consideration of this specific range of control

parameters (as indicated by the red dash-line box), the gen-

erated sequence values are in interval (0, 1) and then trans-

formed into unsigned integer numbers by multiplying the

sequence value cn with 255, resulting in sequence

values ranging from value 0 to value 255.

scn = mod(round(255 · cn), 256), n = 1, 2, . . . , nc (7)

where round(•) is the function to return the nearest integer,

and function mod(•) is the modulo operation. Hence, in this

study, the chaotic key generator (CKG) can be implemented

as follows:

Step 1) random sequence numbers scn, n = 1, 2, . . . , nc, are

generated using the logistic map function with the different

initial condition c0 and specific control parameters within the

interval (3.8320, 4.0000).

Step 2) Nonordered sequence numbers (no repeating) are

selected in 256 data length to set the secret keys (SK), SK

= [ck1, ck2, ck3, . . . , ck256], k = 1, 2, 3, . . . , 256.

26454 VOLUME 9, 2021



C.-H. Lin et al.: Symmetric Cryptography With a Chaotic Map and a MMLN for Physiological Signal Infosecurity: Case Study

FIGURE 2. Chaotic map. (a) Bifurcation diagram of logistic map, (b) Chaotic trajectories over 2 × 104 iteration numbers, (c) Estimated values of
Lyapunov exponent versus control parameters with interval (3.50, 4.00), (d) Two pairs of cipher codes as secret keys for encryption and decryption
processes.

FIGURE 3. Randomness chaotic secret keys with five rounds of preliminary tests for regular secret key update.

Step 3) two pairs of cipher codes are set for encryption and

decryption stage, as shown in Figure 2(d), and are defined as

follows:

• cipher codes for encrypted keys: SK1 = [0, 1, 2, . . . ,

255] refers to SK2 = [ck1, ck2, ck3, . . . , ck256]

• cipher codes for decrypted keys: SK1 = [ck1, ck2, ck3,

. . . , ck256] refers to SK2 = [0, 1, 2, . . . , 255].

For example, with theCKG, we can randomly generate five

rounds of cipher codes with different initial conditions and

control parameters for encryption and decryption. As shown

in Figure 3, five pairs of cipher codes are different for setting

symmetric SK and can be changed for regular secret key

update duration communication authentication. Hence, these

unpredictable randomness chaotic SK with strong crypto-

graphic permits can be preliminarily validated for physiolog-

ical signal infosecurity.

C. GRNN BASED ENCRYPTOR AND DECRYPTOR

After SK generation, we can obtain two pairs of cipher codes

to train the GRNN-based encryptor and decryptor, as cipher

code protocol following:
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FIGURE 4. (a) Architecture of GRNN-based encryptor and decryptor, (b) Flowchart of cryptography protocol for ECG signal infosecurity, including the
ECG ADC, encryptor and decryptor training, and ECG sequence encryption and decryption processes.

• first pair of cipher codes for encryption: the input-output

pair is SK1 = [0, 1, 2, . . . , 255] referring to SK2 = [ck1,

ck2, ck3, . . . , ck256], where SK2 is randomly produced by

CKG.

• second pair of cipher codes for decryption: the input–

output pair is SK2 = [ck1, ck2, ck3, . . . , ck256] referring

to SK1 = [0, 1, 2, . . . , 255].

In this study, two GRNNs, which consist of an input layer,

a pattern layer, a summation layer, and an output layer, were

used to create an encryptor and a decryptor, as shown in

Figure 4(a), with one input and corresponding one output.

The number of pattern nodes is determined by the dimension

of the cipher code vector; thus, 256 pattern nodes are set in the

pattern layer. Each GRNN-based model is a nonlinear regres-

sion model that maps the nonlinear relationship between

SK1 and SK2 (for encryption process) or SK2 and SK1 (for

decryption process) as a nonlinear curve-fitting application.

Then, the optimization method is used to refine the network

parameter in the pattern layer, thus improving the model

performance. To create a curve- fitting model, the nonlinear

regression algorithm can be expressed as follows:

Step 1) two cipher codes are used to set the connecting

matrixW IP of encryptor and decryptor between the input and

pattern layers, respectively, as

• for encryption process : W IP = [wk1]
T = [

k − 1

255
]T (8)

• for decryption process : W IP = [wk1]
T = [

ckk

255
]T (9)

In the above equations,K is the number of pattern nodes; k =
1, 2, 3, . . . , K , K = 256 in this study, and the dimension of

the matrixW IP is K ×1. Then, the connecting matrixWPS =
[wkj], j = 1, 2 is set between the pattern and summation

layers, as

• for encryption process : WPS = [wk1, wk2 ]
T

= [
ckk

255
, 1]T (10)

• for decryption process : WPS = [wk1, wk2 ]
T

= [
k − 1

255
, 1]T (11)

where two nodes in the summation layer, and the dimension

of the matrixWPS is K × 2.
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Step 2) the training data 81 or 82 are fed to the pattern

layer, and the output of the pattern layer is calculated as

follows:

gk = exp[−
K

∑

k=1

(φik − wk1)
2

2σ 2
k

], i = 1, 2 (12)















φ1k =
k − 1

255

φ2k =
ckk

255

, k = 1, 2, 3, . . . , 256 (13)

where 81 = [φ11, φ12, . . . , φ1k , . . . , φ1K ] is the training data

for an encryptor; 82 = [φ21, φ22, . . . , φ2k , . . . , φ2K ] is the

training data for a decryptor; σk is the smoothing parameter,

k = 1, 2, 3, . . . , K , and all smoothing parameters in the

pattern layer are equal to the same value σ . The optimal

smoothing parameter σopt can be obtained using the optimiza-

tion method.

Step 3) the output of the pattern layer is fed to the summa-

tion layer, and the output yk in the output layer is computed

as

yk =
K

∑

k=1

wk1gk

/

K
∑

k=1

wk2gk (14)

The final output of GRNN can be computed by

Yk = 255yk (15)

In Equation (13), given an optimal smoothing parameter

σopt, the GRNN can increase the prediction accuracy; hence,

it requires the refinement of the optimal parameter to

minimize the mean squared error (MSE).

MSE =
1

K

K
∑

k=1

(Yk − Tk )
2 ≤ ε (16)

where Tk is the desired target for the kth training data, and

ε is the specified tolerance error (convergent condition) to

terminate the training stage.

D. PSO OPTIMIZATION METHOD

In this study, the PSO algorithm [34]–[36], [39] was

used to tune the optimal smoothing parameter, σopt ,

through an iterative computation and minimize the MSE,

as


































1σg(p+ 1) = 1σg(p)

+ · · · c1rand1(σbestg − σ (p))

+c2 rand2(σbest − σg(p)) (17)

c1 = (b1 − a1)
p

pmax
+ a1, c2 = (b2 − a2)

p

pmax
+ a2 (18)

σg(p+ 1) = σg(p) + 1σg(p+ 1) (19)

where σg(p) is the gth particle at the pth search stage and

particle population size, g = 1, 2, 3, . . . , G; σbest is the

global best in the particle population; σbestg is the individual

best at the pth search stage, p = 1, 2, 3, . . . , pmax ; c1 and

c2 are the adaptive acceleration factors that vary with the

iterative computation; pmax is the maximum iteration number,

as the term p/pmax is used to control the acceleration factors;

and rand1 ∈(0, 1) and rand2 ∈ (0, 1). As second and third

terms in Equation (17), a1, b1, a2, and b2 are constant values,

of which the experienced values are c1 from 2.5 to 0.5 and

c2 from 0.5 to 2.5 [34]–[36], [39]. By monotonously varying

c1 and c2, Equation (17) gradually narrows down the search

region and approaches the optimal solution σopt as fine-

tuning the smoothing parameter at each search stage. After

achieving the convergent condition, we terminated the itera-

tive computations, and then fed the plain ECG 801 = [φ01,1,

φ01,2, . . . , φ01,n, . . . , φ01,N ] or encrypted ECG 802 = [φ02,1,

φ02,2, . . . , φ02,n, . . . , φ02,N ] to the encryptor and decryp-

tor, respectively, perform the encryption or decryption tasks,

as follows:

gk = exp[−
K

∑

k=1

(φ0i,n − wk1)
2

2σ 2
opt

], i = 1, 2 (20)

yin = 255(

K
∑

k=1

wk1gk

/

K
∑

k=1

wk2gk ), i = 1, 2 (21)

where Y1 = [y11, y12, . . . , y1n, . . . , y1N ] is the ECG-encrypted

sequence; Y2 = [y21, y22, . . . , y2n, . . . , y2N ] is the ECG-

decrypted sequence; and connecting-weight values wk1 and

wk2 are set using Equations (8) and (10) for encryption

process and Equations (9) and (11) for decryption process.

The flowchart of the cryptography protocol is shown in

Figure 4(b); it includes the ECGADC, encryptor and decryp-

tor training, and ECG sequence encryption and decryption

processes.

E. EVALUATION OF THE DECRYPTION PERFORMANCE

After ECG encryption and decryption, the PSNR index [41],

[37] is used to evaluate the distortion degree between the plain

ECG 801 = [φ01,1, φ01,2, φ01,3, . . . , φ01,N ], and decrypted

ECG Y2 = [y21, y22, y23, . . . , y2N ], as

MSEECG(801,Y2) =
1

N

N
∑

n=1

(φ01,n − y2n)
2, (22)

PSNR(801,Y2) = 10 · log(
MAX2

ECG

MSEECG
)

= 20 · log(
MAXECG√
MSEECG

), (23)

Index =

{

0, 0 < PSNR < 30dB

1, PSNR ≥ 30dB
(24)

where MAXECG is the maximum value in sequence Y2,

as MAXECG = max(Y2). Index PSNR (in dB), PSNR > 0 dB,

indicates the similarity degree between the plain ECG and

decrypted ECG, which is also an index for human percep-

tion of recovery quality. When the PSNR has a high value,

the plain ECG and decrypted ECG are similar. After the

encryption and decryption processes, the larger the PSNR

value, the smaller the loss is, which means that the proposed

decryptor has a good recovery quality without involving
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noise interferences or any hacker attack. If the PSNR index

is higher than 30 dB, then Index has value ‘‘1.’’ The

value 0 dB < PSNR < 30 dB reflects an ECG sequence

with the active attack, transformation errors, or transmission

noises, as Index with value ‘‘0’’ implies the bad quality of

decrypted ECG. Hence, the PSNR index offers a quantitative

indication to evaluate the recovery quality for inspecting

cardiac arrhythmias and diseases from the decrypted ECG

sequence.

III. EXPERIMENTAL RESULTS AND DISCUSSION

This section presents the experiment results to validate the

effectiveness of the proposed symmetric cryptography pro-

tocol for ECG infosecurity in computer networks (IEEE

802.3 standard [45]) or wireless communication networks

(IEEE 802.15 standard[10]), including (1) the ECG ADC

process, (2) the encryptor and decryptor training, (3) the

ECG encryption and decryption processes, and (4) recov-

ery quality evaluation. The proposed GRNN-based encryp-

tor and decryptor were designed on a tablet PC using a

high-level graphical programming language in LabVIEWand

MATLAB software (NITM, Austin, Texas, USA). Experimen-

tal ECG records were collected from archived files from

MIT#100 to MIT#234 in the MIT–BIH arrhythmia database

[40], including 22 women (aged 23 to 89 years) and 25 men

(32 to 89 years); approximately 60% of these records was

obtained from inpatients and 20 major classes. Some typi-

cal classes are shown in the left- hand side of Figures 5(a)

and 5(b), which are represented in vector or matrix forms,

respectively, including •, V, A, R, L, F, and P. The feasibility
of the proposed cryptographic methods was validated. Details

are provided in the subsequent sections.

A. GRNN-BASED ENCRYPTOR AND DECRYPTOR

TRAINING

In the ECG cryptography protocol, at the data emitter

end, before transiting the cipher ECG data, we could ran-

domly generate the nonperiodic chaotic sequences using

the CKG with control parameters within the interval,

r ∈ (3.8320, 4.0000) and initial condition, c0 = 0.5, and

select nonordered 256 numbers in 256 data length (no repeat-

ing) for setting the secret keys. Authorized persons at both

data emitter and receiver end can mutually agree on spe-

cific control parameter to generate the two pairs of chaotic

secret keys. Then, we could obtain the ordered sequence

SK1 = [0, 1, 2, . . . , 255], referring to the nonordered sequence

SK2 = [ck1, ck2, ck3, . . . , ck256] for the encryption process;

SK2 referred to SK1 for the decryption process, as shown

in the randomness chaotic secret keys in Figure 3. Two

GRNNs were used to train an encryptor and a decryptor

at the data emitter end and data receiver end, respectively.

Hence, an encryptor and a decryptor had one input node in

input layer, 256 pattern nodes in pattern layer, two summation

nodes, and one output node in output layer, as shown in

Figure 4(a). Then, the PSO algorithm was used to find the

optimal smoothing parameter, σopt , by using the adaptive

acceleration factors (as in Equation (18)), particle population

size G = 10–30, convergent condition, ε ≤10−2, and a

maximum iteration number of pmax = 50. In the training

stage, given G = 10, 20, and 30, we randomly produced

multi-smoothing parameters (multi particles) in the search

space and monotonously to minimize the generalization error

by refining the optimal parameter.

As shown in Figures 6(a) and 6(d), the near-optimal

smoothing parameters, σopt = 0.0238 and 0.0289, were guar-

anteed to minimize the MSE for training the encryptor and

decryptor, respectively, as shown by the convergent curves

in Figures 6(b) and 6(e). When the particle population size

was increased from 10 to 30 particles, the numerical compu-

tations and mean CPU executing time increases, as shown in

Figures 6(c) and 6(f), respectively. For the same convergent

condition, the iteration computing process required< 15 iter-

ative computations (150−450 numerical computations) and

a CPU executing time of < 15 s to achieve the convergent

condition. In addition, two MPNNs were used to train the

encryptor and decryptor, respectively; each MPNN topology

(1-20–20-1) consists of an input layer, two hidden layers

(20 hidden nodes in the first and second hidden layers), and

output layer. The back-propagation algorithm was used to

adjust the network parameters (440 parameters) to minimize

the MSE [36]–[37], with the randomly initializing network

parameters, learning rates η of 0.1 –0.5, desired convergent

condition ε ≤ 10−2, and maximum iteration number of 400.

With the gradual increase in the learning rates from 0.1 to 0.5,

the iteration computation processes took 100 –400 iterative

computations to reach the convergent condition, as shown

in the solution lists in Figures 7(a) and 7(c). The optimal

solution lists were also monotonously decreased to mini-

mize the MSE and were guaranteed to reach the convergent

condition. Regarding the learning speed and generalization

capability, we suggested selecting the learning rate η ≥0.5 for

training theMPNN-based estimator. Their iteration computa-

tions would take approximately < 20 s CPU execution time

to determine the optimal network parameters and required

iteration computations < 100, as shown in Figures 7(b)

and 7(d). However, the MPNN model needed a trial-and-

error procedure to determine the adequate network connect-

ing topology and parameters for training the encryptor and

decryptor.

In summary, for online nonlinear curve-fitting applications

and computation resource reduction, the PSO algorithm

with adaptive acceleration factors and particle popula-

tion size G = 20 is suggested to train the encryp-

tor and decryptor, which could rapidly search the optimal

smoothing parameter (<6 iterative computations and <6 s

CPU executing time, as shown in Figures 6(c) and 6(f),

respectively). Hence, the proposed symmetric cryptography

protocol could quickly change the secret keys with the

chaotic-map function through an authorized person, and the

GRNN-based encryptor and decryptor could also be quickly

retrained using the PSO algorithm for on line infosecurity

applications.
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FIGURE 5. Experiment results in vector and matrix forms for seven typical classes. (a) Experiment results in vector forms, including ECG encoding
from value 0 to value 255, ECG encryption, and ECG decryption for seven typical classes, (b) Results of ECG encryption and decryption using the
proposed GRNN-based encryptor and decryptor, (c) Results of ECG encryption and decryption using a chaotic synchronization system with a fuzzy
rule-based controller.
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FIGURE 6. Solution lists of the GRNN based encryptor and decryptor. (a) and (b) Solution lists for training encryptor, (c) Mean executing time for
training encryptor, (d) and (e) Solution lists for training decryptor, (f) Mean executing time for training decryptor.

FIGURE 7. Solution lists of the MPNN-based encryptor and decryptor. (a) and (b) Solution lists and mean execution time for training the
encryptor. (c) and (d) Solution lists and mean executing time for training the decryptor.

B. EXPERIMENTAL RESULTS OF ECG ENCRYPTION AND

DECRYPTION

In the ECG encryption process, approximately 30 s-long

raw data with 10,000 sampling points (333.33 Hz sampling

rate) were used to verify the proposed encryptor and decryp-

tor, which might contain typical classes, such as ventricular

arrhythmias, bundle branch ectopic beats, fusion, and paced

ectopic beats (•, V, A, R, L, F, and P). As shown in Figure 5,
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FIGURE 8. Heart rate analysis for paced ectopic beats and normal heart beats. (a) Heart rate analysis for the ventricular premature contraction (V).
(b) Heart rate analysis for the normal heart beat (•).

the specific fragments in seven archived files (MIT#100,

MIT#119, MIT#208, MIT#210, MIT#214, MIT#217, and

MIT#231 [40]) were randomly selected to validate the fea-

sibility of the proposed cryptography protocol. For exam-

ple, in consideration of seven ECG fragments (represented

as vector (1 × 10,000) and matrix (100 × 100) forms

in the left-hand side of Figures 5(a) and 5(b)), the seven

plain ECG sequences had been encoded from value 0 to

value 255 using Equations (2) and (3). The middle part results

in Figures 5(a) and 5(b) showed the encrypted ECG in vec-

tor and matrix forms; the plain and encrypted ECGs were

not related at all in visual inspection and did not indicate

any information about plain ECG data as looking like noise

signals. The right-hand side results in Figures 5(a) and 5(b)

showed the decrypted ECGs with the decrypted SK, which

indicated that the plain and decrypted ECGs were almost

identical. The proposed GRNN-based encryptor and decryp-

tor could recover the plain ECG without hacker attacks and

transmission noises in the vector and matrix forms, as the

recovery quality was 35.48, 31.80, 32.10, 29.13, 34.31, 34.13,

and 36.81 dB for seven ECG fragments, respectively. The

mean PSNR = 33.39 dB ≥ 30.00 dB was obtained to qualify

the recovered quality for all testing ECG fragments after the

decryption process. This finding indicated that the recover-

able ECGs were reliable and lossless and can be used for

further time-domain heart rate analysis and cardiac arrhyth-

mia diagnostic applications, such as the mean heart rates

and standard deviation of the R–R interval for V and •beats
presented in Figure 8. The decrypted ECG sequences pre-

sented recovery qualities of 30.5575 and 30.4242 dB (slight

errors), respectively, to measure the beat-to-beat changes

within the duration of the R–R (peak-to-peak) intervals in

the time domain, where the R–R intervals, as R-R(n) and

R-R(n− 1), n = 1, 2, 3, . . . , N , can be calculated using the

R-peak detection algorithm [6], [46]. For the HRV analysis,

the mean heart rates and the mean and standard deviation of

the R–R interval can be obtained from the decrypted ECG

in the timing series. The decrypted ECG sequence offers
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FIGURE 9. Scenario studies for suffering transmission noises and active hacker attacks.

promising messages to plot the R–R interval histogram for

visually inspecting normal and ectopic beats to classify the

classes.

However, ciphering ECG sequences can suffer from trans-

mission noises and hacker attacks at any routing patch,

as shown in Figures 9(a), 9(b), and 9(c), respectively. In these

cases, the encrypted ECG could not appropriately recover

the well quality of the original plain messages for clinical

diagnostic applications. The PSNR declined in the range

of 0–30 dB, with 23.8402 dB for transmission noises and

14.2539 and 5.6862 dB for active hacker attacks. The PSNR

index indicates the value ‘‘0’’ as the warning sign for autho-

rized people and required retransmission of cipher messages

from the data emitter end and data receiver end under the

transmission control protocol (TCP) system [45]. For the

random selection of 100 ECG fragments without interfer-

ences, the experimental results exhibited well recoverability,

as shown in Table 1. The mean PSNR = 35.26 ±3.77 dB

was used to evaluate the recovered capability before and after

encryption and decryption for overall ECG fragments. The

mean CPU execution time for completing the encryption and

decryption processes was 0.16±0.01 s. Hence, the feasibil-

ity of the proposed symmetric cryptographic methods was

validated.

C. COMPARISON WITH THE TRADITIONAL

CRYPTOGRAPHIC METHODS

In this study, a chaotic synchronization system (CSS) was

also applied to ECG encryption and decryption [47]–[49].

The CCS could randomly change the positions and amplitude

values in the matrix form of ECG data and mix their relations

between the plain and cipher ECG, as shown in Figure 5(c).

A CSS consists of a master chaotic system (MCS), a slave

chaotic system (SCS), and a controller. The controller was

used to synchronize the trajectories of the MCS and SCS,

as seen in the synchronization control responses in Figures

10(a) to 10(b), such as the proportional–integral–derivative

(PID) controller, sliding mode controllers, optimization

method (such as PSO algorithm), and fuzzy rule-based con-

troller, which were used to control the CSS parameters to

achieve a two-system synchronization at approximately 4,000
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FIGURE 10. Experimental results for CSCS control responses and histogram plots. (a) and (b) Response of CSCS synchronization control,
(c) Response of dynamic errors, (d) Plain ECG histogram, (e) Encrypted ECG histogram, (f) Decrypted ECG histogram.

TABLE 1. Experimental results of recoverability evaluation for the proposed GRNN-based encryptor and decryptor.

TABLE 2. Experimental results of recoverability evaluation for the CSCS based encryptor and decryptor.
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FIGURE 11. Mean PSNR (dB) for ECG decryption with and without
transmission noises and active hacker attacks.

computations (each step = 0.001). The response of dynamic

errors between MCS and SCS decreased and approached

zero, as shown in Figure 10(c). Hence, a CSS and a fuzzy

rule-based controller were integrated into a chaotic synchro-

nization cryptographic system (CSCS) for ECG encryption

and decryption. For the same 100 ECG fragments, as shown

in the experimental results in Table 2, the mean PSNR =
32.19 ± 1.41 dB was also greater than 30.00 dB and was

achieved for recovering the cipher ECG. The mean execution

time for completing the entire cryptographic processes was

20.39 ± 1.24 s. Experimental results indicated that the CSCS

with a fuzzy rule-based controller had promising feasibility

for the issue of physiological signal infosecurity. Figures

10(d)–10(f) showed that compared with that of plain and

decrypted ECG, the histogram plot of encrypted ECG was

fairly uniform and flat (as shown in Figure 10(e)) when using

the CSCS method. This finding indicates that the plain and

encrypted ECG were uncorrelated and perceptually different

in the proposed method and the CSCS method, as shown in

the middle part of Figures 5(b) and 5(c).

However, the CSCS method using a fuzzy rule-based

controller needed to assign suitable system parameters

(Duffing–Holmes system was used in this study, MCS and

SCS parameters, a = −1.00, b = 0.25, and disturbance =
0.3cos(t)), fuzzy controller parameters, and initial conditions.

For example, the CSS system parameters needed to assign

specific constraint constant values in accordance with the

desired control object, and the fuzzy rule-based controller

required a trial-and-error procedure to determine the suitable

membership functions and control rules. In this study, we had

two input variables with 14 input membership functions and

one output variable with seven output membership functions,

representing seven fuzzy partitions as negative big, nega-

tive medium, negative small, zero, positive small, positive

medium, and positive big. Overall, 49 fuzzy rule-based con-

trollers were used to adjust the control parameters and achieve

MCS and SCS synchronization. Thus, in contrast to the CSCS

control scheme, the proposed GRNN-based method could

reduce the CPU execution time and computational resources

and obtained promising results for physiological signal infos-

ecurity. In addition, the GRNN-based and CSCS- basedmeth-

ods have good recovery quality without transmission noises

and active hacker attacks, and the decrypted ECGs can be

interpretable for diagnostic applications, as presented by the

mean PSNR ≥ 30 dB, and 0< PSNR <30 dB for transmis-

sion noises and slight / serious active attacks, as shown in

Figure 11.

IV. CONCLUSION

In this study, GRNN-based encryptor and decryptor were pro-

posed for application in physiological signal infosecurity in

a small-scale computer networks or wireless communication

networks. After the digital signaling process, an ECG signal

sequence was encoded in values ranging from 0 to 255, and

then these digital data were randomly permutated by chaotic

secret keys, which were produced by a logistic map function.

Before transiting ECG fragments at the data emitter end,

authorized people could quickly set the random secret keys

with the logistic map function; subsequently, the two GRNN-

based MMLNs (as identical architecture) were used to train

an encryptor and decryptor using two pairs of symmetric

cryptography protocols. After encrypting the ECG fragment,

the visual uncorrelation between the plain and cipher ECG

was presented in vector or matrix forms. Through selected

100 ECG fragments from the MIT–BIH database, the mean

PSNR = 35.26± 3.77dB was used to qualify the recovery

quality of the decryption process for physiological signal

infosecurity, which required a mean CPU execution time of

0.16 ± 0.01 s (less than CSCS’s execution time) to complete

encryption and decryption. With the same ECG fragments,

the proposed method surpassed the CSCS method in terms

of recovery quality and computational speed. We also sug-

gested the learning parameters for training GRNN with the

PSO algorithm, including specific particle population size

(G = 20), maximum iteration number (pmax = 25), and

convergent condition (ε ≤ 10−2), to model the encryptor

and decryptor. Its adaptive learning scheme did not require

the following: (1) specific system parameter assignment, (2)

inference control rule assignment, (3) inference membership

function assignment, and (4) too many numerical opera-

tions in the encryption and decryption processes for online

application. Hence, the proposed cryptography protocol
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provides a promising model to speed up the encryption

and decryption operations and enhances the confidentiality,

recoverability, and availability of physiological signal infose-

curity in tele- examination and telediagnosis applications; the

method can also be applied to biomagnetic and bioacoustic

signals.

ABBREVIATIONS

HBC Human Body Communication

BAN Body-Area Network

WBAN Wireless BAN

RFID Radio Frequency Identification

ISM Industrial Scientific Medical

ECG Electrocardiogram

MITBIH Massachusetts Institute of Technology–Beth

Israel Hospital

ADC Analog-to-Digital Conversion

XOR Exclusive

SINR Signal-to-Interference-and-Noise Ratio

BER Bit Error Rate

PER Packet Error Rate

FE Fractional Equivocation

PSNR Peak Signal-to-Noise Ratio

ANN Artificial Neural Network

GRNN General Regression Neural Network

MMLN Multilayer Machine Learning Network

MPNN Multilayer Perceptron Neural Network

PSO Particle Swarm Optimization

LE Lyapunov Exponent

CKG Chaotic Key Generator

SK Secret Key

MSE Mean Squared Error

HRV Heart Rate Variability

RR Peak- to-Peak

TCP Transmission Control Protocol

CSS Chaotic Synchronization System

MCS Master Chaotic System

SCS Slave Chaotic System

PID Proportional–Integral–Derivative

CSCS Chaotic Synchronization Cryptographic

System

.• Normal Beat

A Atrial Premature Beat

V Ventricular Premature Contraction Beat

R Right Bundle Branch Block Beat

L Left Bundle Branch Block Beat

P Paced Beat

F Fusion of Ventricular and Normal Beats
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