
����������
�������

Citation: Cai, C.; Wang, L.; Ying, S.

Symmetric Diffeomorphic Image

Registration with Multi-Label

Segmentation Masks. Mathematics

2022, 10, 1946. https://doi.org/

10.3390/math10111946

Academic Editor: Jakub Nalepa

Received: 17 May 2022

Accepted: 1 June 2022

Published: 6 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Symmetric Diffeomorphic Image Registration with Multi-Label
Segmentation Masks

Chenwei Cai 1, Lvda Wang 2 and Shihui Ying 1,*

1 Department of Mathematics, School of Sciences, Shanghai University, Shanghai 200444, China;
chenweicai@shu.edu.cn

2 Beijing Institute of Computer Technology and Applications, Beijing 100036, China; wanglvda@casic.com.cn
* Correspondence: shying@shu.edu.cn

Abstract: Image registration aims to align two images through a spatial transformation. It plays a
significant role in brain imaging analysis. In this research, we propose a symmetric diffeomorphic
image registration model based on multi-label segmentation masks to solve the problems in brain
MRI registration. We first introduce the similarity metric of the multi-label masks to the energy
function, which improves the alignment of the brain region boundaries and the robustness to the
noise. Next, we establish the model on the diffeomorphism group through the relaxation method
and the inverse consistent constraint. The algorithm is designed through the local linearization
and least-squares method. We then give spatially adaptive parameters to coordinate the descent of
the energy function in different regions. The results show that our approach, compared with the
mainstream methods, has better accuracy and noise resistance, and the transformations are more
smooth and more reasonable.

Keywords: image registration; diffeomorphic; brain MRI; multi-label segmentation masks; spatially
adaptive parameters

MSC: 68U10

1. Introduction

Image registration plays a crucial role in biomedical imaging applications, especially
brain imaging analysis. It aims to find a spatial transformation to align datasets across
subjects, modalities, or times geometrically. A variety of imaging processing approaches re-
quire registration as a preprocessing step. For example, a considerable amount of structural
or functional information can be obtained from the brain atlases established from images of
a large population [1]. However, it is a great challenge to find potential links between the
images because they are of different people, ages, or modalities. We can settle these images
through image registration into a standard space where shapes and structures are well
aligned. Many subsequent analyses, such as the analysis of anatomical and connectivity
patterns, can be performed after image registration [2].

Image registration can be divided into linear and non-linear according to the repre-
sentation of the transformation. Linear registration methods compute affine transforma-
tions. Nevertheless, linear registration generally fails to meet the demands of processing.
The reason is that the physiological movements of human bodies may lead to the organs’
unregulated changes in position, volume, and shape. Therefore, scholars focus their eyes
on non-linear registration because affine transformations cannot describe these changes [3].
Non-linear registration methods are classified into two categories: model-driven and
data-driven methods [4]. Model-driven means establishing the explicit expressions of
optimization models and then obtaining transformations through optimization methods.
In contrast, data-driven approaches do not require explicit expressions. Their main task is
to compute the mappings from the image pairs to the transformations [5].
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We focus on model-driven methods in our study. The reason is that data-driven
methods are prone to overfitting due to the high dimensionality of medical images and the
small number of training samples. Under model-driven settings, the transformations can
be expressed as simple parametric functions, such as B-spline functions [6–8], radial basis
functions [9–11], and thin-plate spline functions [12–14]. The registration models are then
turned into parametric optimization models by doing this. The non-parametric treatment
is also currently popular. Non-parametric methods consider the registration models as
variational problems in which Euler–Lagrange equations should be solved. There are
several common non-parametric approaches, such as large deformation diffeomorphic
metric mapping (LDDMM) [15–18], elastic registration [19–21], fluid registration [22–24],
and diffusion registration [25–27].

Non-parametric methods are more suitable than parametric methods for our research
topic on brain magnetic resonance imaging (MRI) registration. We have known a lot of
effective methods for brain MRI registration [28–31], which shows that non-parametric
methods perform better than parametric methods. The main reason is that non-parametric
methods set independent transformation functions at every pixel. Therefore, they have
far higher degrees of freedom than parametric methods and can describe the complex
deformation of structures in the brain more easily. Moreover, non-parametric methods
have many acceleration techniques [32–34], which save the computational time greatly.

However, the existing methods for brain MRI registration have several disadvantages.
These methods pay closer attention to the intensity-based local similarity of the images
than to the boundary alignment of the brain regions. The complex features of the brain,
such as the sulcus gyrus of the cerebral cortex [35], may pull the optimization into local
minima. Furthermore, the terminal conditions of these models are based on the average
level of the global energy function descent. It easily leads to the situation that some brain
regions have not yet been aligned when the iteration stops. Additionally, there is noise in
the image acquisition process. These models do not emphasize the robustness to the noise,
which can affect the performance in practice.

In this study, we propose a symmetric diffeomorphic image registration method based
on multi-label segmentation masks to compensate for the above shortcomings. Firstly, we
introduce the similarity metric of the multi-label segmentation masks, i.e., the segmentation
result of large regions, into the energy function, which strengthens the alignment of the
region boundaries and improves the noise resistance. The acquisition of the masks is not
difficult because today’s deep learning-based segmentation models [36] offer significant
improvements in accuracy and computation time compared to traditional segmentation
methods [37–39]. Secondly, we give a selection of spatially adaptive parameters based on
the masks. It can prioritize the optimization of both the image similarity metric in the
aligned regions and the mask similarity metric in the unaligned regions, so it coordinates
the decline of the energy function spatially. Thirdly, we design an effective approximation
algorithm through model relaxation, least-squares method, etc. We validate the effective-
ness of our method in three different experiments. The results show that our method has
better accuracy and robustness compared to the mainstream approaches, and meanwhile,
the deformation field retains excellent reversibility, smoothness, and reasonableness.

2. Materials and Methods
2.1. Mathematical Background Knowledge

Let F, M : Ω → [0, 1] denote the fixed image and the moving image, respectively.
The domain of the images is Ω ⊂ Rn, where n = 2 for 2D images and n = 3 for 3D
images. The task of the non-linear image registration is to compute a deformation field
(transformation) ϕ : Ω→ Ω to make the warped moving image M ◦ ϕ as similar as possible
to the fixed image F. In the setting of non-parametric registration, the deformation field
is expressed as ϕ = Id− u, where Id is the identity map and u is called the displacement
field of ϕ.
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The accuracy of the transformation is measured by a similarity metric E1, which often
takes the form of the sum of squared difference (SSD) E1(ϕ) = ‖M ◦ ϕ− F‖2

L2
. In addition,

the transformation is required to have the presupposed properties, which are measured
by a regularization term E2. The most common property is the global smoothness, i.e., L2

regularization expressed as E2(ϕ) = ‖∇ϕ‖2
L2

. The registration problem is written as

min
ϕ

E(ϕ) =
1
σ2 E1 + E2 =

1
σ2 ‖M ◦ ϕ− F‖2 + ‖∇ϕ‖2, (1)

where 1/σ2 is a positive number that controls the balance between E1 and E2. We omit the
notation L2 for simplicity.

The solution space of this problem can be restricted to the diffeomorphism group
Diff(Ω) =

{
ϕ|ϕ−1 exists and ϕ, ϕ−1 ∈ C∞(Ω, Ω)

}
, which is a Lie group. Any tangent

vector v ∈ V of ϕ0 = Id is a vector field on Ω, where V = TIdDiff(Ω) is a Lie algebra. We
often call v a velocity field in the research fields of registration [4]. A diffeomorphism can
be generated by the exponential map on Diff(Ω), i.e., ϕ = exp(v). It provides the intrinsic
update step [40,41] on the diffeomorphism group:

ϕ← ϕ ◦ exp(v), (2)

where v is the velocity field update, and ◦ is both the function composition and the
multiplication on the Lie group.

A practical method to compute the exponential map of vector fields, given by Ar-
signy et al. [42], is based on the idea of “scaling and squaring” [43]. For any integer
N, it holds exp(v) =

(
exp

(
N−1v

))N because of the property of the exponential map,
i.e., exp((t1 + t2)v) = exp(t1v) · exp(t2v) for any t1, t2 ∈ R. Suppose v is a small vector
field, it is reasonable to use the first-order approximation of the exponential map. We
denote w = exp(v) as the result transformation, and the algorithm of the exponential map
is described as follows (Algorithm 1).

Algorithm 1 The first-order algorithm for the exponential map of vector fields

Choose a proper N such that 2−Nv is close enough to 0, e.g., maxx
∥∥2−Nv(x)

∥∥ ≤ 0.5.
Implement the first-order integration: w(x) = 2−Nv(x) for every x ∈ Ω.
Do N recursive squarings: w← w ◦ w.

Therefore, in the above setting, the velocity field update of each iteration is selected
in V discretely, and the result velocity field is regarded as a constant. We often call it a
stationary velocity field (SVF). By contrast, the velocity field of LDDMM [15–18] varies
over time, i.e., v = vt is a continuous curve in V. The SVF methods, such as Diffeomorphic
Demons [27] and Log-domain Diffeomorphic Demons [44], do not optimize the global
variational problem like LDDMM because they do not update the velocity field in the
whole time flow. However, the SVF methods have less computational cost and can thus
obtain a diffeomorphism quickly.

2.2. The Reassignment of the Segmentation Masks

We can improve the boundary alignment of brain regions and the robustness to the
noise through the multi-label segmentation masks of large regions, which are the regions
of white matter (WM), grey matter (GM), and cerebrospinal fluid (CSF). The masks are
available easily because there is an obvious difference in the intensity values (see Figure 1).
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Figure 1. A T1 MRI human brain image, tissue segmentation, and corresponding intensity distribu-
tions are shown.

We propose reassigning the intensity values on the masks. Suppose there are m images
participating in the registration, we set the intensity value of the r-th region to be

Br =
1
m

m

∑
j=1

1

|Ωj
r|

∫
Ωj

r

Ij(x)dx, (3)

where B is the segmentation mask, Ij is the j-th image, and Ωj
r is the r-th region on Ij. It

means we first average the intensity value on the region of one image and then average
among different images. For example, we assume to use only two images I1, I2, and
there are two regions on the images. The average intensity values of the first region of
I1, I2 are B1

1 = 1
|Ω1

1|
∫

Ω1
1

I1(x)dx, B2
1 = 1

|Ω2
1|
∫

Ω2
1

I2(x)dx, respectively. We then obtain the

average intensity value on the first region, i.e., B1 = 1
2
(

B1
1 + B2

1
)
. Therefore, we calculate

the intensity values of the segmentation masks once throughout the process. Significantly,
we need histogram matching [45] on the images before the reassignment because we should
avoid the gap of the intensity values in the same region among different images.

We add the information of the average intensity values of the regions to the masks
through the reassignment. Consequently, the intensity magnitude of the masks coincides
with that of the images. The spatial information of the region boundaries is also retained.
Furthermore, we can improve the robustness to the noise by the reassignment. The reason
is that the intensity values of the contaminated pixels are pulled back towards the average
values on the regions when we introduce the similarity metric of the masks to the energy
function. Therefore, the influence of the noise is weakened, and we improve the anti-noise
ability of the model by doing this.

2.3. The Proposed Model

Firstly, we take the SSD as the similarity metric and the L2 smoothness as the regular-
ization term. In the integral form, the energy function is

E(ϕ) =
1
σ2 E1 + E2 =

∫
Ω

1
σ2 ‖M(ϕ(x))− F(x)‖2 + ‖∇ϕ(x)‖2dx. (4)

We restrict the solution space to the diffeomorphism group Diff(Ω). Therefore, we
introduce the energy of the inverse transformation to ensure reversibility. The energy
function is then extended to a symmetric form with the transformation and the inverse
transformation as variables. We denote ψ as the slack variable of ϕ−1 and reformulate the
energy function, Equation (4), as

E(ϕ, ψ)=
∫

Ω

1
σ2

(
‖M(ϕ(x))− F(x)‖2+‖F(ψ(x))−M(x)‖2

)
+‖∇ϕ(x)‖2+‖∇ψ(x)‖2dx, (5)

s.t. ϕ ◦ ψ = Id, ψ ◦ ϕ = Id, ϕ, ψ ∈ Diff(Ω). (6)

Next, we penalize Equation (6) to the energy function Equation (5), i.e., we add the
inverse consistent constraint [46,47]

E3(ϕ, ψ) =
∫

Ω
‖(Id− ϕ ◦ ψ)(x)‖2 + ‖(Id− ψ ◦ ϕ)(x)‖2dx. (7)
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We tie ϕ and ψ together in the energy function by doing this. ‖(Id− ϕ ◦ ψ)(x)‖2 and
‖(Id− ψ ◦ ϕ)(x)‖2 are of no difference mathematically because of ϕ ◦ ψ = ψ ◦ ϕ = Id.
However, we should retain both of them because there is an error between ψ and ϕ−1,
which will be amplified during calculation. Moreover, keeping E3 symmetric can reduce
the difficulty of solving because we can divide them into two subproblems later.

After that, we introduce the similarity metric of the multi-label segmentation masks.
We denote BF, BM : Ω → [0, 1] as the segmentation masks of the fixed image F and the
moving image M, respectively. The magnitude of BF and BM is consistent with that of the
images because we have carried out the reassignment of the masks. We use the symmetric
SSD form, i.e.,

E4(ϕ, ψ) =
∫

Ω
‖BM(ϕ(x))− BF(x)‖2 + ‖BF(ψ(x))− BM(x)‖2dx. (8)

Minimizing E4 helps the alignment of the region boundaries. It should be noted that
the segmentation masks are different from the images even if they both take the SSD form.
The reason is that the intensity value of the segmentation masks is a constant within one
region, leading to E4 = 0. Therefore, there is little force to cause deformation in the overlap
of BF and BM when E1 is not involved in the registration.

Finally, we integrate Equations (5), (7) and (8) to formulate our model:

min
ϕ,ψ

E =
1
σ2

1
E1 + E2 +

1
σ2

3
E3 +

1
σ2

2
E4 (9)

where 1/σ2
1 , 1/σ2

2 and 1/σ2
3 are positive numbers controlling the influence of E1, E4 and

E3, respectively.

2.4. Numerical Implementation

Firstly, we split the registration problem Equation (9) into two subproblems so that
the alternating iteration strategy can be applied.

ψk+1 = arg min
ψ

Hk
1 :=

∫
Ω

1
σ2

1
‖F(ψ(x))−M(x)‖2 +

1
σ2

2
‖BF(ψ(x))− BM(x)‖2

+
1
σ2

3

∥∥∥(Id− ϕk ◦ ψ
)
(x)
∥∥∥2

+ ‖∇ψ(x)‖2dx, (10)

ϕk+1 = arg min
ϕ

Hk
2 :=

∫
Ω

1
σ2

1
‖M(ϕ(x))− F(x)‖2 +

1
σ2

2
‖BM(ϕ(x))− BF(x)‖2

+
1
σ2

3

∥∥∥(Id− ψk ◦ ϕ
)
(x)
∥∥∥2

+ ‖∇ϕ(x)‖2dx. (11)

where k is the number of external iterations.
Next, we consider only the subproblem Equation (11) in the following steps because

Equation (10) can be solved in the same way. We introduce a slack variable c to avoid hard
point-to-point correspondences following the strategy of Cachier et al. [48]. Consequently,
we turn the subproblem Equation (11) into

min
ϕ,c

Hk
2 :=

∫
Ω

1
σ2

1
‖M(c(x))− F(x)‖2 +

1
σ2

2
‖BM(c(x))− BF(x)‖2 +

1
σ2

3

∥∥∥(Id− ψk ◦ c
)
(x)
∥∥∥2

+
1
σ2

x
‖(ϕ− c)(x)‖2 + ‖∇ϕ(x)‖2dx. (12)
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where 1
/

σ2
x controls the spatial correspondence error. We can separate Equation (12)

further into two new subproblems:

ck,l+1 = arg min
c

Lk,l
1 :=

∫
Ω

1
σ2

1
‖M(c(x))− F(x)‖2 +

1
σ2

2
‖BM(c(x))− BF(x)‖2

+
1
σ2

3

∥∥∥(Id− ψk ◦ c
)
(x)
∥∥∥2

+
1
σ2

x

∥∥∥(ϕk,l − c)(x)
∥∥∥2

dx, (13)

ϕk,l+1 = arg min
ϕ

Lk,l
2 :=

∫
Ω

1
σ2

x

∥∥∥(ϕ− ck,l+1)(x)
∥∥∥2

+ ‖∇ϕ(x)‖2dx, (14)

where l is the number of internal iterations. In addition, we will use the approximation of∥∥∥(Id− ψk ◦ c
)
(x)
∥∥∥2

in Equation (13), i.e., applying the fixed image F on it, which changes
it to ∥∥∥F(x)− F

(
ψk ◦ c(x)

)∥∥∥2
. (15)

It can match the magnitude of this item with that of the images and the masks.
After that, we use the first-order approximation of the intrinsic update step c =

ϕk,l ◦ exp
(

vk,l
)

to simplify Equation (13), where vk,l is the update velocity field. The ap-

proximation is reasonable because vk,l is small. Therefore, Equation (13) becomes

Lk,l
1 (vk,l) ≈

∫
Ω

1
σ2

1

∥∥∥JM
ϕk,l (x)vk,l(x)− FM(x)

∥∥∥2
+

1
σ2

2

∥∥∥JBM
ϕk,l (x)vk,l(x)− BFBM(x)

∥∥∥2

+
1
σ2

3

∥∥∥JF
ψk◦ϕk,l (x)vk,l(x)− FF(x)

∥∥∥+ 1
σ2

x

∥∥∥vk,l(x)
∥∥∥2

dx, (16)

where JA
f (x) = ∇T A( f (x)) is a row vector, and

FM(x) = F(x)−M
(

ϕk,l(x)
)

, (17)

BFBM(x) = BF(x)− BM

(
ϕk,l(x)

)
, (18)

FF(x) = F(x)− F
(

ψk ◦ ϕk,l(x)
)

. (19)

We can rewrite Equation (16) as the following least-squares problem:

min
vk,l

Lk,l
1 (vk,l) ≈

∫
Ω

∥∥∥∥∥∥∥∥∥∥


1
σ1

JM
ϕk,l

1
σ2

JBM
ϕk,l

1
σ3

JF
ψk◦ϕk,l

1
σx

I

vk,l −


1
σ1

FM
1
σ2

BFBM
1
σ3

FF
0


∥∥∥∥∥∥∥∥∥∥

2

dx, (20)

where I is the identity matrix of size n.
Finally, we obtain the least-squares solution of Equation (20) through the Sherman–

Morrison formula:

vk,l =

1
σ2

1
FM · JM

ϕk,l +
1

σ2
2

BFBM · JBM
ϕk,l +

1
σ2

3
FF · JF

ψk◦ϕk,l

1
σ2

1

∥∥∥JM
ϕk,l

∥∥∥2
+ 1

σ2
2

∥∥∥JBM
ϕk,l

∥∥∥2
+ 1

σ2
3

∥∥∥JF
ψk◦ϕk,l

∥∥∥2
+ 1

σ2
x

, (21)
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where we omit the position x for simplicity. Similarly, we can solve the least-squares
problem acquired from Equation (10) from the above steps:

sk,l =

1
σ2

1
MF · JF

ψk,l +
1

σ2
2

BMBF · JBF
ψk,l +

1
σ2

3
MM · JM

ϕk◦ψk,l

1
σ2

1

∥∥∥JF
ψk,l

∥∥∥2
+ 1

σ2
2

∥∥∥JBF
ψk,l

∥∥∥2
+ 1

σ2
3

∥∥∥JM
ϕk◦ψk,l

∥∥∥2
+ 1

σ2
x

, (22)

where sk,l is the update velocity field of ψk,l , and

MF(x) = M(x)− F
(

ψk,l(x)
)

, (23)

BMBF(x) = BM(x)− BF

(
ψk,l(x)

)
, (24)

MM(x) = M(x)−M
(

ϕk ◦ ψk,l(x)
)

. (25)

As for the new subproblem Equation (14), we can obtain the closed-form solution
with a Gaussian convolution, i.e., ϕk,l+1 = K ∗

(
ϕk,l ◦ exp

(
vk,l
))

, where K is a Gaussian
kernel. This is because of the special form of the regularization term [49]. Consequently,
the closed-form solution of the subproblem Equation (10) is also obtained: ψk,l+1 = K ∗(

ψk,l ◦ exp
(

sk,l
))

.
The algorithm of our proposed method is as follows (Algorithm 2).

Algorithm 2 Symmetric diffeomorphic image registration with multi-label segmenta-
tion masks

Initialize ϕ , ψ , v , s.
repeat

{Update the backward transform ψ}
repeat

Compute the velocity field s using Equation (22).
s← K f luid ∗ s (fluid-like regularization).
c← ψ ◦ exp(s) (intrinsic update step using Algorithm 1).
ψ← Kdiff ∗ c (diffusion-like regularization).

until Convergence
{Update the forward transform ϕ}
repeat

Compute the velocity field v using Equation (21).
v← K f luid ∗ v (fluid-like regularization).
c← ϕ ◦ exp(v) (intrinsic update step using Algorithm 1).
ϕ← Kdiff ∗ c (diffusion-like regularization).

until Convergence
until Convergence

2.5. The Selection of Spatially Adaptive Parameters

In this section, we consider only the parameters in Equation (21) because we can
acquire those in Equation (22) similarly.

Firstly, we need to review the traditional selection of parameters based on statistics.
We assume that {FM(x)| x ∈ Ω} is independent and identically distributed (IID) in a
normal distribution N(0, σ2

1 ). This setting is reasonable when Ω is huge because of the
Lindberg–Lévy central limit theorem. We choose the zero mean because we hope that the
warped moving image fully aligns with the fixed image. We write the likelihood function,
based on the maximum likelihood estimation (MLE), as

W = ∏
x

1√
2πσ1

exp

{
− FM(x)2

2σ2
1

}
. (26)
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The optimal estimation of σ2
1 is obtained through −∂ ln(W)/∂σ1 = 0, i.e.,

σ2
1 =

1
|Ω|

∫
Ω
‖FM(x)‖2dx, (27)

where |Ω| is the area of Ω. In particular, we can regard Ω as the neighborhood of a specific
position x, denoted as Ωx, where we can change the radius of it arbitrarily. The extreme
condition is when the radius is zero, leading to σ2

1 (x) = ‖FM(x)‖2, which is the selection
of Thirion [50]. This parameter not only adjusts the influence between the similarity
metric and the regularization term dynamically but also controls the magnitude of E1 by
transferring the distribution of FM(x)/σ1 to N(0, 1).

Next, we evaluate the misalignment based on the multi-label segmentation masks.
We treat BFBM(x) as a continuous random variable. The reason is that the activation
functions [51], such as the Sigmoid function and the tanh function, can smooth the gap
around the area boundaries, although BFBM(x) can take only some values. We denote 1
as the indicator function, which fulfills 1(x) = 1 if x > 0 and 1(x) = 0 if x = 0. We then
introduce the probability of misalignment based on the masks:

p(x) =
1
|Nx|

∫
Nx
1(BFBM(y))dy , (28)

where Nx is the neighborhood of x. The indicator function helps distinguish whether
the alignment improves or the low-intensity values occur when BFBM(y) declines. This
probability p is especially a widely used overlap metric called the “target overlap” [28]
when Nx is large enough to cover Ωr

BF
, i.e., p = |Ωr

BF
∩Ωr

BM
|
/
|Ωr

BF
| , where r is the index

of the regions.
After that, we give our selection of spatially adaptive parameters. We think that

1/σ2
i , i = 1, 2, 3 are connected because the decline of E1 and E3 is not meaningful unless

the alignment of region boundaries is good. Therefore, the parameters should satisfy
two requirements:

• When the alignment is poor (p approaches 1), we reduce the effect of E1 and E3 and
increase that of E4. When the alignment is good (p approaches 0), we do the opposite.

• The role of E1 should be stronger than that of E3 because the decline of E3 cannot
improve registration accuracy.

Therefore, we denote the parameters as functions of p, i.e., 1/σ2
i = qi(p). Specifically,

we define

q1 = c1(1− p), c1 =
1
|Nx|

∫
Nx
‖BFBM(y)‖2dy, (29)

q2 = c2 p, c2 =
1
|Nx|

∫
Nx
‖FM(y)‖2dy, (30)

q3 = λq1, (31)

where λ ∈ [0, 1], and c1 and c2 are the MLEs of 1/σ2
1 and 1/σ2

2 (see Equation (27)), respec-
tively. We denote the radius of Nx as R. The parameters, λ and R, are both determined by
the user because the influence of E3 on E1 and the amount of computation vary in different
tasks. It is worth noting that we need to add a small positive number to the denominator of
ci when ci is not well defined.

Finally, we validate the effectiveness of the parameters. When 0 < p < 1, we express
the ratio of the importance between the similarity metric of the images and that of the
masks, i.e., the ratio of E1 to E4, as

q1

q2
=

(
1
p
− 1
) ∫

Nx
‖FM(y)‖2dy∫

Nx
‖BFBM(y)‖2dy

. (32)
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We know that
∫

Nx
‖FM(y)‖2dy is constant when x is fixed. Meanwhile, we infer

that p and
∫

Nx
‖BFBM(y)‖2dy are positively related based on Equation (28). We thus

conclude from Equation (32) that q1/q2 decreases when p increases, which means E4 plays
a key role; q1/q2 increases when p decreases, which means E1 plays a key role. Therefore,
the parameters vary according to the current position and the decline of the energy function,
which coordinates the optimization process spatially.

3. Results

In this section, we evaluate the performance of our method with three experiments.
The experimental images include synthetic 2D images, the OASIS-1 dataset [52], and the
IBSR18 dataset [53]. All these experiments are implemented using C++ in a Ubuntu 16
system, with two Intel Xeon Silver 4216 @2.1GHz CPUs and 128GB 2666MHz memory.

3.1. Implementation Details and Algorithmic Comparison

Firstly, we regard our algorithm’s user-determined parameters. We choose the radius
of Nx to be R = 1 considering the calculation time. We select λ = 0.5, which means the
ratio of E1 to E3 is 2 : 1. In addition, the algorithm has two terminal conditions, i.e., the
maximum iterations and the minimum magnitude of the update step.

Next, we implement the algorithm based on the open-source library Insight ToolKit
(ITK) 5.1 (https://itk.org, accessed on 31 May 2022). We use the combination of two
itkPDEDeformableRegistrationFilters to iterate alternatively, as shown in Figure 2a. There
are four modules in itkPDEDeformableRegistrationFilter, as shown in Figure 2b. We denote
two Gaussian kernels as Kfluid and Kdiff, where Kfluid smooths the update field and Kdiff
smooths the deformation field. The exponential map is computed through itkExponentialD-
isplacementFieldImageFilter. All modules are set to compute parallelly by the multithreading
technique [54].

itkExponentialDisplacementFieldImageFilter

ComputeUpdateField

SmoothUpdateField

SmoothDeformationField

TerminalCondition

Yes
No

(a) Algorithm structure (b) itkPDEDeformableRegistrationFilter

Initialization

Input

itkPDEDeformableRegistrationFilter

itkPDEDeformableRegistrationFilter

TerminalCondition

Yes
No

BackwardTransform

ForwardTransform

Figure 2. (a) The structure of the whole algorithm. (b) The structure of itkPDEDeformableRegistra-
tionFilter.

After that, we use two mainstream approaches for comparison, i.e., Diffeomorphic
Demons and SyN. Vercauteren et al. [27], who proposed Diffeomorphic Demons, applied
the SVF framework to the classic Demons algorithm [55], enhancing the smoothness and de-
formability of the transformations. SyN is a symmetric diffeomorphic registration method,
which uses the local correlation coefficient (LCC) as the similarity metric. Avants et al. [56]
provided the SyN approach based on the LDDMM algorithm [15], strengthening the regis-
tration accuracy and reversibility. Diffeomorphic Demons and SyN are both widely used to
compare with the brain registration methods [28]. In addtion, Kfluid and Kdiff are also used
in these two approaches.

Finally, we introduce the algorithmic comparison and related notations. We denote
our method as Ours, our method without the inverse consistent constraint as Ours-NId,

https://itk.org
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and our method without the similarity metric of the masks as Ours-NSeg. We also denote
Diffeomorphic Demons [27] as DiffDe and SyN [56] as SyN. In addition, we denote the
number of iterations as numIt and denote two Gaussian kernels Kfuild and Kdiff as Kfσ and
Kdσ, respectively, where σ is the standard deviation (stDev). All methods are performed
only once at the highest resolution of the images for fairness. Moreover, we introduce
the following five evaluation metrics considering accuracy, reversibility, reasonability,
and smoothness.

• Accuracy: The Dice ratio (DR(Ω)) [28] is defined by

2 ∑r

∣∣∣Ωr
BF
∩Ωr

BM

∣∣∣
∑r

(∣∣∣Ωr
BF

∣∣∣+ ∣∣∣Ωr
BM

∣∣∣) , (33)

where r is the index of the regions, and |·| is the volume. It is a measure of region
overlap, which should be as high as possible.

• Reversibility: The identity error (IdErr) is defined by 1
|Ω|‖Id− ϕ ◦ ψ‖2. It reflects the

difference between the identity map and the composition of the forward and backward
transformation, which should be as low as possible.

• Reasonability: The probability of negative Jacobian determinant of the transformation
(P(DetJ)) [57] is defined as 1

|Ω|1(−Det(Jϕ)), where Jϕ is the Jacobian of the transfor-
mation, and 1 is the indicator function, which fulfills 1(x) = 1 if x > 0 and 1(x) = 0
if x ≤ 0. It measures how frequently ϕ is not isomorphic locally, which should be as
low as possible.

• Smoothness: The maximum Jacobian determinant of the transformation (M(DetJ)) is
defined as maxΩ Det(Jϕ). It computes the upper limit of the sharpest deformation,
which should be as low as possible.

• Smoothness: The smoothness error (SMErr) is defined by 1
|Ω|‖∇ϕ‖2. It measures

the mean value of the L2 norm of the gradient field, which which should be as low
as possible.

Furthermore, we denote the masks of WM, GM, and CSF segmentation as WGCS,
which are the multi-label segmentation masks BF and BM. We denote the detailed masks of
brain regions’ segmentation as BRS, which are used for computing the Dice ratio.

3.2. The Ablation Experiments on Synthetic 2D Data

In this section, we conduct ablation experiments to verify the effectiveness of E3 and E4,
i.e., the inverse consistent constraint and the similarity metric of the masks. The synthetic
2D data, with the size of 100× 100, is a simple simulation of the brain, as shown in the
first row of Figure 3. We generate the fixed image first with three ellipses of the same
center. Then, we set the asymptotic intensity values to avoid being the same as the masks,
as shown in the second row of Figure 3. We produce the moving image last by changing
the long and short axes, which mimics the possible deformation in the brain [58]. We also
apply a shear transform towards the x-axis with 84◦ to test the ability to recover simple
linear transformations.

We will carry out registration with numIt = 300, which makes the optimization pro-
cess converged. In particular, we set 20 external iterations × 15 internal iterations in our
method. Moreover, we select two kinds of smoothing parameters, i.e., Kf2 Kd0.5 and
Kf1 Kd1. The reason to select Kf1 Kd1 is that it is the same as the classic DiffDe [27], and
many methods verify its effectiveness. By contrast, Kf2 Kd0.5 is a compromise between the
standard setting of DiffDe and SyN [59]. Since DiffDe cannot obtain the inverse transfor-
mation in one registration, it performs an additional backward registration, i.e., exchanging
M and F. The qualitative results are shown in Figure 4, and the quantitative results are
shown in Tables 1 and 2.



Mathematics 2022, 10, 1946 11 of 20

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 10 20 30 40 50 60 70 80 90 100 0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 10 20 30 40 50 60 70 80 90 100

Position Position

In
te

ns
ity

In
te

ns
ity

x

y

direction direction

Fi
xe

d 
Im

ag
e

M
ov

in
g 

Im
ag

e

(0, 0)

Figure 3. The synthetic 2D data in Section 3.2 is shown. The first row displays the moving and fixed
images. The boundaries of the fixed image are marked with yellow outlines. The second row plots
the images of the intensity value on the line segment from (0, 50) to (99, 50), which is the direction of
the green arrows.

Firstly, we discuss, based on Figure 4, the effect of the smoothing parameters. The stan-
dard deviations of Kf and Kd determine the sharpness of the deformation, as shown in
the magnitude images of the transformations. It reveals that Kd affects smoothness the
most because the higher the stDev of Kd, the smoother the transformation. In addition,
the results of Kf2 Kd0.5 are better than those of Kf1 Kd1, as shown in the warped moving
images and the residual images. It suggests that low stDevs lead to more accurate results.
Therefore, we should choose the smoothing parameters carefully in practice to balance
accuracy and smoothness.

Secondly, we discuss, based on Tables 1 and 2, the results of the ablation experiments.
Ours-NSeg shows excellent results in the items of IdErr, M(DetJ), and SMErr, but the DR
is relatively low. However, the behavior of Ours-NId is just the opposite. We conclude
that the similarity metric of the masks improves the accuracy, and the inverse consistent
constraint improves the reversibility, reasonability, and smoothness. Therefore, the good
results of Ours shows it combines the advantages of both E3 and E4.

Table 1. The quantitative results of Section 3.2 with smoothing parameters Kf1 Kd1 are shown.
The first row lists the methods, and the second to the fifth rows represent the Dice ratio (DR),
the identity error (IdErr), the maximum Jacobian determinant of the transformations (M(DetJ)),
and the smoothness error (SMErr), respectively. The numbers with wavy lines are the best among
Ours-NSeg, Ours-NId, and Ours. The bolded numbers are the best among DiffDe, SyN, and Ours.

DiffDe SyN Ours-NSeg Ours-NId Ours

DR 0.890 0.824 0.805 0.900
::::
0.901

IdErr 0.364 0.001
::::
0.018 0.094 0.040

M(DetJ) 2.962 3.206
::::
1.533 2.611 2.643

SMErr 0.082 0.017
::::
0.002 0.061 0.060
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Table 2. The quantitative results of Section 3.2 with smoothing parameters Kf2 Kd0.5 are shown.
The first row lists the methods, and the second to the fifth rows represent the same evaluation metrics
as Table 1. The numbers with wavy lines are the best among Ours-NSeg, Ours-NId, and Ours.
The bolded numbers are the best among DiffDe, SyN, and Ours.

DiffDe SyN Ours-NSeg Ours-NId Ours

DR 0.931 0.944 0.884
::::
0.960

::::
0.960

IdErr 0.543 0.125
::::
0.035 0.218 0.136

M(DetJ) 4.003 5.511
::::
2.487 3.770 3.866

SMErr 0.231 0.577
::::
0.038 0.271 0.267
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Figure 4. The qualitative results of Section 3.2 are shown. The figure has two parts, distinguishing
between two kinds of smoothing parameters, i.e., Kf1 Kd1 and Kf2 Kd0.5. In each part, the three
rows display the warped moving images, the deformation grids, and the residual images, respectively.
Different columns are the results of different methods. The color of the deformation grids, whose
scale bar ranges from −4.5 to 5.8 pixels, represents the magnitude of the transformations. The color
of the residual images, whose scale bar ranges from −3.0 to 3.2, represents the difference between the
intensity values of the fixed image and the warped moving images.

Thirdly, we discuss the comparison among DiffDe, SyN, and Ours. As described
in Tables 1 and 2, DiffDe shows poor results in the items of IdErr, M(DetJ), and SMErr,
although the warped moving images of DiffDe are very similar to those of Ours. Moreover,
SyN achieves the best reversibility. However, the warped moving images of SyN are not
satisfactory because the shapes of the white ellipses do not maintain, as displayed in
Figure 4. By contrast, the shapes of Ours are good, which means Ours can recover the
deformation. Moreover, Ours has the best accuracy and reasonability, as revealed in Tables 1
and 2.
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3.3. The Anti-Noise Experiments on the OASIS-1 Dataset

In this section, we show the robustness of our method to the noise through the anti-
noise experiments. The OASIS-1 dataset [52], which we use, contains 416 subjects aged
from 18 to 96. This dataset is a part of the OASIS project to make neuroimaging data
freely available (https://www.oasis-brains.org, accessed on 31 May 2022). It is used widely
in the comparison of registration algorithms [60–62]. Each subject is equipped with a
T1-weighted skull-stripped image, a BRS of 35 brain regions, and a WGCS, as shown in
the first three images of Figure 5. All the masks are verified by experts. The size of the
images is 160× 192× 224 voxels with a voxel size of 1× 1× 1 mm3.

 Original Image WGCS BRS
(     = 0.01)nσ

Noise Image
(     = 0.025)nσ

Noise Image
(     = 0.05)nσ

Noise Image

Figure 5. The axial view of both #161 in the OASIS-1 dataset and noise images are shown. The first
image is the original skull-stripped image of #161, the second image is the related WGCS, and the
third image is the BRS of 35 regions. The last three images display the noise images of the standard
deviation σn = 0.01, 0.025, 0.05, respectively.

We selected five subjects in the OASIS-1 dataset randomly to avoid the influence of
the sort order in the dataset. Next, we designate one subject as the fixed image and leave
the other four as moving images. Specifically, the fixed image is #161, and the moving
images are #227, #287, #319, and #333, respectively. We then add Gaussian noise of four
standard deviations to the images, i.e., σn = 0, 0.01, 0.025, 0.05, where 0 means no noise.
Therefore, each method performs 4× 4 = 16 registration. The higher the standard deviation,
the stronger the noise is, as shown in the last three images of Figure 5. We use additive
Gaussian white noise because it is common in nature. After that, we carry out histogram
matching to reduce the uncertainty caused by the different distributions of the intensity
values in the images. Meanwhile, we reassign the intensity value of the masks. Finally, we
conduct registration with numIt = 150. In particular, we set 10 external iterations × 15
internal iterations in our method. The smoothing parameters are chosen to be Kf2 Kd0.5 for
all methods. The reason is that Kf2 Kd0.5 can obtain high accuracy while maintaining good
smoothness, which is suggested by the quantitative and qualitative results in Section 3.2.

Firstly, we analyze an example in which #227 and #161 are the moving image and
the fixed image, respectively. The registration of this example is performed with the noise
of σn = 0.05. We present the warped BRSs in Figure 6, which can show the accuracy is
poor if a large difference between the warped BRSs and the fixed BRSs occurs. The results
of DiffDe and SyN are not satisfactory, e.g., DiffDe’s and SyN’s volume of the left and
right ventricles is larger than the fixed BRS’s. By contrast, Ours has the best results in
this example because the volume and position of the brain regions are very close to the
fixed BRS.

https://www.oasis-brains.org
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Figure 6. The qualitative results of Section 3.3 are shown. The first to third rows display the BRSs of
the axial, coronal, and sagittal sections, respectively. The first column shows the fixed BRS of #161.
The second to forth columns show the warped BRSs of the methods.

Secondly, we plot how the DR varies with the noise intensity in Figure 7. The high
slope of the line segments indicates that the noise can affect the accuracy greatly. The stabil-
ity of DiffDe is weak because the DR decreases rapidly when the noise is enhanced. By con-
trast, SyN’s performance is better than DiffDe’s, e.g., the line segments of 0.01→ 0.025 are
almost flat. The results of Ours are similar to those of SyN, but the overall performance of
Ours is better. Consequently, Ours has strong robustness to the noise.

(a)

(c)

(b)

(d)

Figure 7. The quantitative results of Section 3.3 are shown. (a) The registration results from #227 to
#161. (b) The registration results from #287 to #161. (c) The registration results from #319 to #161.
(d) The registration results from #333 to #161. In each diagram, we plot the images of the Dice ratio
with respect to the standard deviations of the noise, where 0 means no noise.
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3.4. The Performance Experiments on the IBSR18 Dataset

In this section, we demonstrate the excellent comprehensive capabilities of our ap-
proach through the performance experiments. The Internet Brain Segmentation Repository
(IBSR) contains T1-weighted MRI brain images of 18 subjects. The original images were
preprocessed by the Center for Morphometric Analysis, Massachusetts General Hospital in
Boston, U.S. [28]. We use the IBSR18 v2.0 dataset (https://www.nitrc.org/projects/ibsr/,
accessed on 31 May 2022), in which Rohlfing et al. [53] modified the IBSR18 dataset by
removing non-brain regions, etc. We can see this dataset is commonly used in the field of
brain image registration [28,63–65]. Each subject is equipped with a skull-stripped image,
a BRS of 84 brain regions, and a WGCS. The size of the images is 256× 256× 128 voxels
with a voxel size of (0.837 ∼ 1)× (0.837 ∼ 1)× 1.5 mm3.

We first crop the unnecessary area of the images, which changes the size into 166×
161× 128. We also unify the voxel size to 0.97× 0.97× 1 mm3. We then choose the same
smoothing parameters as in Section 3.3, i.e., Kf2 Kd0.5. After that, we conduct registration
with numIt = 150. In particular, we set 10 external iterations × 15 internal iterations in
our method. Finally, we select the first ten subjects in the dataset. We make each subject
the fixed image and the other nine subjects the moving images. Therefore, each method
performs 10× 9 = 90 registration.

Firstly, we analyze an example in which #02 and #01 are the moving and fixed images,
respectively. We display, in Figure 8, the moving image, the fixed image, and the warped
moving images of different methods. We enlarge representative positions to analyze the
difference in the results conveniently. For example, the first row of Figure 8 shows the axial
sections. The result of Ours is the most similar to the fixed image considering the contour
of the left ventricle and the left thalamus. Furthermore, we can also verify the excellent
performance of Ours from the second and third rows of Figure 8, representing the coronal
and sagittal sections of the images, respectively.

DiffDe OursSyNMoving Image Fixed Image
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tt
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C
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Figure 8. The registration results of an example in Section 3.4 are shown. All images are plotted in
the axial, coronal, and sagittal sections. The first column displays the moving image #02, and the
second column displays the fixed image #01. The third to fifth columns represent the warped moving
images of different methods, i.e., DiffDe, SyN, and Ours, respectively.

Secondly, we can also compare the results from the volumetric plots and point cloud
maps of the evaluation metrics based on the above example. We show the volumetric plots
of the DR for each brain region after stripping the upper part of the brain, as displayed

https://www.nitrc.org/projects/ibsr/
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in the first row of Figure 9. We can see that Ours achieves the optimal result because
its color is the closest to blue. In the second row of Figure 9, we plot the volume of the
SMErr of the transformations over the entire brain. All three methods appear to be smooth
overall, but SyN shows more large deformations because there is more volume of red.
We last display in the third row of Figure 9 the point cloud maps where the negative
Jacobian determinant occurs. In contrast, SyN has the most points, DiffDe has the second
most, and Ours has the fewest. Therefore, Ours shows, in this example, wonderful results
considering accuracy, smoothness, and reasonability.
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Figure 9. The qualitative results in Section 3.4, based on Figure 8, are shown. The first to third
columns distinguish the results of DiffDe, SyN, and Ours. The first row displays the half-bottom
volumetric plots of the DR, where the scale bar ranges from 0.7 to 0.91. The second row displays
volumetric plots of the SMErr, where the scale bar ranges from 0 to 11.28. The third row displays the
point cloud maps showing where the negative Jacobian determinant occurs (DetJ < 0).

Thirdly, we organize the quantitative results of 90 registration in Table 3, which lists
the mean and standard deviation of each evaluation metric. The results of DiffDe are
relatively stable because its standard deviations are lower than other methods’ in most
items. It is worth noting that SyN achieves the best result of the IdErr, but SyN is not
remarkable in the remaining items. By contrast, Ours is the best considering the DR,
P(DetJ), M(DetJ), and SMErr, which means the results of Ours have excellent accuracy,
reasonability, and smoothness.
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Table 3. The quantitative results in Section 3.4 are shown. The results represent the mean values
and corresponding standard deviations with 90 registrations. The first row lists the methods, i.e., no
registration (No Reg.), DiffDe, SyN, and Ours. The second to sixth rows represents the results of
the DR, IdErr, P(DetJ), M(DetJ), and SMErr, respectively. The bolded numbers are the best results
among different methods.

No Reg. DiffDe SyN Ours

DR 0.605 (0.040) 0.815 (0.020) 0.811 (0.022) 0.825 (0.019)
IdErr N/A 0.750 (0.230) 0.015 (0.019) 0.316 (0.172)

P(DetJ) (‰) N/A 0.836 (0.442) 1.836 (1.311) 0.517 (0.460)
M(DetJ) N/A 4.211 (0.434) 4.605 (0.541) 3.949 (0.620)
SMErr N/A 0.045 (0.010) 0.073 (0.025) 0.035 (0.012)

4. Discussion

We verify the advantages of our method through the experimental results. The multi-
label segmentation masks are added to the model as a priori information. The reassignment
ensures the masks contain both the spatial information of the region boundaries and the
mean intensity values in the regions. Therefore, the masks improve the alignment of
the regions and robustness to the noise. Moreover, the symmetric form of the model
strengthens the reversibility, reasonability, and smoothness without losing much accuracy.
Furthermore, we need the masks of large regions only, which are accessible easily in practice.
The masks can also be changed with different region definitions. Finally, our method has a
very small computational cost and can thus obtain transformations quickly because of the
SVF framework.

Our method also has some disadvantages. Firstly, the method relies on additional
segmentation methods to obtain the masks. Secondly, the accuracy can be reduced if the
inaccurate masks of large regions are used. Thirdly, the amount of calculation increases
exponentially with the radius of Nx, which is (2R + 1)n specifically, where n is the image
dimensionality and R is the radius. If the image size and dimensionality are small, enlarging
the radius is a good choice, which improves the accuracy of the parameter estimation.
However, selecting a large radius is not applicable for high-resolution 3D medical images.

We plan to provide the masks for the model by establishing a relating segmentation
method in the future. In addition, we will research to strengthen the convergence of
reversibility. We will also apply the method to multi-modality registration.

5. Conclusions

In this study, we propose a symmetric diffeomorphic image registration model based
on the multi-label segmentation masks to solve the problems in brain MRI registration. We
tackle the issue that existing methods pay little attention to the alignment of the region
boundaries by introducing the similarity metric of the multi-label segmentation masks.
It also improves the robustness to the noise. We build the model on the diffeomorphism
group, with the relaxation method and the inverse consistent constraint to strengthen
the smoothness and reversibility. Moreover, we help the descent of the energy function
in different regions through the spatially adaptive parameters. Finally, we verify the
effectiveness of our method through three experiments. Compared with mainstream
methods, the approach has better accuracy and noise resistance, and the transformations
are more smooth and more reasonable.
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