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Abstract. This paper presents a coupled finite element and boundary integral meth-
od for solving the time-periodic oscillation and scattering problem of an inhomoge-
neous elastic body immersed in a compressible, inviscid, homogeneous fluid. By
using integral representations for the solution in the infinite exterior region occupied
by the fluid, the problem is reduced to one defined only over the finite region occu-
pied by the solid, with associated nonlocal boundary conditions. This problem is then
given a family of variational formulations, including a symmetric one, which are used
to derive finite-dimensional Galerkin approximations. The validity of the method is
established explicitly, and results of an error analysis are discussed, showing optimal
convergence to a classical solution.

1. Introduction. We consider the problem of an elastic body immersed in a com-
pressible, inviscid homogeneous fluid. More precisely, we study small time-periodic
oscillations and scattering about a constant equilibrium state due to an incident acous-
tic wave propagating through the fluid. The body may be spatially inhomogeneous.
A precise statement appears in Sec. 2. Various physical applications are described,
e.g., in [10, 12].

The solid-fluid interaction is a special case of a general situation. Let Q be a
bounded region in space, with boundary T, and let Q+ be the complement of £2.
Suppose one has equations Lu = 0 in Q and L+u - 0 in Q+ with transition con-
ditions across T. The coupling idea is the following. If L+ is spatially homogeneous
then one can apply integral equation methods to Q+ so as to obtain relations between
the exterior Cauchy data on T. One then uses the transition conditions to obtain
relations on the inner Cauchy data. The result is a problem for Lu = 0 in Q with
nonlocal boundary conditions which one can then solve by finite element methods.
This procedure is often denoted as the coupled boundary element and finite element
method for interface problems.

The coupling idea has been used in a great variety of circumstances, starting with
[14] in the engineering literature, with [9] apparently providing the first theoretical

Received February 19, 1990.
Supported by the National Science Foundation under Grant DMS 8601288.

©1991 Brown University
107



108 J. BIELAK and R. C. MacCAMY

justification. Formal coupling procedures are reviewed, e.g., in [3]. Reference [8]
describes and analyzes one coupling method for the elastic solid-fluid problem. Here
we present a different one. In fact, in Sec. 3 we present a family of nonlocal prob-
lems (Pa) depending on a parameter a, 0 < a < 1 . For each we give a variational
formulation (VPq). We also give a family of finite-dimensional approximation prob-
lems (AVP||). The choice of a is dictated by what kind of information is of most
interest, but when a = j the problems (AVP^) are symmetric which will facilitate
numerical computation. Our methods were inspired by analogous ones given in [4]
for elastic-elastic scattering.

Remark 1.1. We feel our method has two advantages over that in [8]. It avoids
the use of hypersingular integrals and it leads to symmetric finite element equations.

Remark 1.2. An important feature of the method here and the one in [4] is the
symmetry of the resulting Galerkin equations. We are presently performing numeri-
cal work on the elastic-elastic problem with good accuracy.

Remark 1.3. In Sec. 4 and the Appendix we give a proof of the validity of our
method, and show the optimum convergence of the Galerkin approximations.

Remark 1.4. Extensions are possible. If the obstacle is a shell the procedure is
essentially the same. In principle one can hope to extend to nonlinear elastic bodies
but then the time-periodic theory, in general, no longer applies and one needs a
variation of the treatment of the exterior problem with artificial boundaries [1,2, 6],

2. Statement of the problem. We suppose £2 represents a linear, isotropic elastic
solid. If u denotes the displacement and I[u] the stress then

X[u] = /<(Vu + (Vu)7") -(- Adivu/ (2.1)
where p and X can be functions of position x. If pE is the density, the equation
of motion (with no body force) is,

P^^tt = div Z[u]. (2.2)
We assume the exterior region Q+ to be filled with a compressible, inviscid fluid.

We assume that the fluid remains close to an equilibrium state with constant density
and zero velocity. Thus the density r = pQ + p , p < 1 and one has an approximate
equation of state P - f(p0 + p) & f{p0) + f'{p0)p = P0 + c~ p for the pressure, where
c is the speed of sound in the linearized fluid. If v is the velocity (v < 1) then the
linearized equations of motion are

p0\t = - gradP, P, + P0divv = 0, p = \p. (2.3)
c

In terms of pressure alone one has

\pn = Ap, v( = —-grad p. (2.4)
c P o

The solid-fluid interaction problem involves solving (2.2) in and (2.4) in Q+ .
One needs transition conditions on T. One condition is the continuity of traction.
Since the stress in Q+ is simply -pi this yields

(l[u~](n)) ■ n = -p+, (l[u ](n))xn = 0 (2.5)
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where the minus and plus denote interior and exterior limits on T and n is the out-
ward unit normal. Since tangential motion of the obstacle will not produce tangential
motion of a nonviscous fluid one requires continuity only of the normal component
of velocity. This yields the transition condition,

uh ' n = v,+ • n = — ~~P„ ■ (2.6)

We assume that there is an incident fluid motion given by a pressure which has the
form Re(p°(x)e"i;') and we look for the corresponding steady state periodic motion
u(x, t) = Re(U(x)e,'Ct"), p{x, t) = Re((p°(x) + P{x))e,wt) so that P represents the
scattered field in ft+. We impose a radiation condition on P. Thus we obtain
Problem (P(p0)):

2
divX[U] + pEco2\J = 0 in ft; AP+^yP = 0 in ft+,

c q
£[U]~(n) ■ n = ~(P+ + p°), (l[U]») xn = 0, )}

p0co2U~ ■ n = (P+ + p°n) onT.

P satisfies the radiation condition.
There is a difficulty with uniqueness in (P(p0)).

Theorem 2.1. Suppose (U, P) is a solution of P(0). Then P = 0 and

divX[U] + pEa>2\J — 0, Z[U]_ ■ n = 0, U"-n = 0. (2.7)

The proof of this theorem is essentially the same as that of Theorem 1.1 of [7], One
uses Green's theorem arguments and Rellich's lemma to conclude that P = 0 in ft.

It is known that for certain regions (2.7) can have nonzero solutions. This appears
to be rare but in any event we will rule out this possibility by making the following
assumption:

(2.7) has no nontrivial solutions. (A,)

3. Nonlocal problems. We start with the exterior region ft+ . Let k2 = v?jc1,
the wave number, and put K(x,y) = —(47r)~1 |jc - ^l"1 exp(z/c|x - y\). Then we
consider the layer potentials,

^[<t>](x) = frK(x' y)<t>(y)day\ ^[<P]{x) = J^-£^-K(x,y)(t>(y)drjy. (3.1)

We recall the jump relations

<n<t*]±(x) = s[<j>](x),
3r[4>]±{x) = T^<j)(x) + D[(f)](x), (3_2)

^-^[<f>]±(x) = ±^ + N[<f)](x) onT.

Here S, D, and N are integral operators on T. We summarize well known
results for the case of smooth surfaces T.
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Lemma 3.1. (i) The following are bounded linear mappings S: Hr(T) —► Hr+1(T);
D: Hr(T) - Hr+2{T); N: Hr(T) - Hr+2(T).

(ii) As mappings on L2(T), S is self adjoint and D and N are adjoint.
(iii) If Ap + k2p =0 in Q+ and p satisfies a radiation condition, then

P=^[p+n]-^[p+]. (3.3)
We also need the following result

Lemma 3.2. Let {p.n} be the set of eigenvalues of the Laplacian in Q with Dirichlet
boundary conditions. Then

(i) The mappings \l + D and \l + N are singular if and only if k2 = ~nn for
some n .

(ii) If \y/ + N[y] = Q then ^[y/] is identically zero in Q+.
Proof. Suppose + N[y] = Q and put u = S^[y/]. Then Aw + k2w = 0 in Q+,

u satisfies a radiation condition and u+n = 0 on T. It follows that u = 0 in Q+ .
Thus u+ = 0 and, by (3.2), u~ = 0. Thus we have Au = -k2u in Q, u = 0 on
r. It follows that —k = nn for some n . Since N and D are adjoint the result
follows.

The occurrence of special parameter values is typical of coupling methods and our
methods fail for these values. Thus we make an assumption ruling out these cases:

k2 ± -nn for any n . (A2)

(Special techniques for dealing with the case k = ~nn have been presented, e.g., in
[5, 13].) We are now ready to describe our nonlocal problems.

Problem (P0(/?0)). Suppose (U, P) is a solution of (P(p0)). Then by (3.3) and
(3.2)

P = S[P*]-2![P+] inft+,
1 + + + (3-4)-P+ = S[P^]-D[P+] onT.

We put X = Z[U-](n) • n and insert the transition conditions in (3.4). This yields
the problem,

divI[U] + pEco2\J — 0 in Q,

Z[U"](n)-n = A, S[U"](n) x n = 0, (Po(/?o})

/>0«2S[ir • n] + + D[X] = f=l-p° + - D[p°] on T.

We have also,
P = S^[p0co2\]~ • n - p°n] + 3[k + p°] infi+. (3.5)

Remark 3.1. If p° satisfies Ap° + x2p° = 0 in Q then a Green's theorem argu-
ment shows that / = —p° .

Problem (P,(p0)). Again suppose (U, P) is a solution. We assume

P = in £2+ . (3.6)
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Then (3.2) yields

^+ = S[(f], pn=\v + onr.

Once gain we insert the transition conditions and obtain

div X[U] + pEco2\] = 0 in Q,

X[U~](n)X[U~](n) • n = -S[^] - p°, X[lT](n) x n - 0

- p0co2U~ • n-f ^y/ + JV[^] = -p°n on T.

Theorem 3.1. Suppose Assumption (A2) holds. Then

(i) If (U, X) is a solution of (P0(p0)) and P is defined by (3.5) then (U, P)
is a solution (P(/?0)).

(ii) If (U, i//) is a solution (P^p0)) and P is defined by (3.6) then (U, P) is
a solution of (P(/>°)).

Proof. For (P0{p0)), (3.5) and (3.2) yield

P+ = />0«2S[ir . n] - + D[X] - - ±p° + D[p°]

and the second boundary condition in (P°(/?°)) shows that P+ = -X - p°. Thus
(3.5) becomes

P = ^[p0co2V~ n-p°n\-2>[P+]. (3.7)

But P is a solution of AP + k2P = 0 in Q+ and satisfies a radiation condition.
Thus we have also

P=^[P;]-3>[P+]. (3.8)

From (3.7) and (3.8) we see that x = ^oW2U • n - p°n - P* satisfies \x + N[/] = 0.
It follows from (A2) that x = 0.

For (P, (p0)) we have from (3.6)

^+ = S[V], Pt = \_V + Nty].

The boundary conditions for (P,^0)) then yield Z[U](n) ■ n = -P+ - p° and
p0co2V~ n = P++p°n.

Corollary 3.1. If (A,) and (A2) hold (P0(0)) and (P,(0)) have only the trivial
solutions.

Proof. Suppose (U, X) solves (P0(0)). Then, by Theorem 3.1, if we define P by
(3.5), U, P is a solution of (P(0)). Hence by Theorem 2.1 U = 0 and P = 0.
P = <5?[-X\ and P = 0 in Q+ implies P* = jA + jV[A] = 0. Hence, by (A2),
X = 0. The proof for (P,(0)) is the same.
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We now give variational formulations for (P0(/?0)) and (P, (p0)), both involving
only natural boundary conditions. We take H to be the Hilbert space H = H^Q) x
L2(T). We introduce the bilinear forms

V) = i4[1(U,V)= / Z[U]: VVdx- w [ pEUVdx,
Jn J a

Jw-ndo, a\2{v, V) = Js[iy]\ndo,

A°2l(4>, U) = J S[n U~]~4>do, Al2l(X, U) = - J U" ■ n*da,

/)2O2(A,0) = _L j^X + D[X])4da-,

(3.9)

Al22{v,x) = —^J^(^y/ + N[i//]Sjxd(T.
p0co

We write = (U, A), Wx = (U, i//), ^° = (V, <t>), ̂ = (V, x) and

J/V, ^°) = ^.(U, V) + A^iv > V) + ^(0, U) + A°22(A, <P),
s/\WX , <TX) = ^4J,(U, V) + A\j¥, V) + Al2l(X , U) + a\2(w, x) ■

(3.10)

Finally, we define functionals F0 and F{ on H by

<r°,F0) = -!-? f ft do,
p0a> Jr

{TX,Fl) = - f p°\ ndo [ p°x da. (3.11)
Jr p0a> Jr

Our variational problems are

Find &°eH such that , V*) = <^°, F°) for any e H . (VP„)

Find g/1 e H such that sf\W\yx) = ^ ,FX) for any e H. (VP,)
The following result is easily verified.

Theorem 3.2. (i) If (U,A) solves (P0(/?°)) then = (U,A) solves (VP0). If
^° = (U, A) solves (VP0),and U and A are smooth, (U,A) solves (P0(p0)).

(ii) If (U, y/) solves (P,(/)) then = (U, y/) solves (VP,). If 2C1 = (U, V/)
solves (VP,) and U and y/ are smooth, (U, y/) solves (P,(/?0)).

4. Numerical discretization. We consider here the numerical implementation of
the variational problems described in the previous section.

Suppose that fiA(£l) and I^T) are finite-dimensional subspaces of H^Cl) and
Z.2(F) , depending on a parameter h . We set Hh — Q.h(Q) x I^T) and consider the
approximate problems

Find 2C* € Hh such that = (^,F0) for any
%heHh. 0
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Find G Hh such that ,Txh) = {^\h, F{) for any
TxhGHh. ( lj

Suppose C,, -.- , Cjy* and t*i > ••• > ("m* are bases for QA and and we write

UA e RV , kh 6 RV/ , y/h e RV/ for the corresponding expansions. Then the
appropriate variational problems are equivalent to algebraic equations of the form,

!°nUh + &0l2JLh = 0 38\ NhxNh &\2NhxMh
(Eo^,0 T jh ^0 ,h 0 ^2.0 , Ar/i ^0 , ,/i , ,/i v 0'*21U = g, 382XM xN 3822M xM

l\x\Jh + &\2yrh = gj 38\xNh x Nh 38\2Nh x Mh

t\x\Jh +&\2vh = gj 38\xMh x Nh 3S\2MhxMh
(E{)

Remark 4.1. If one is primarily interested in the inner region Q, (P0(/?0)) is
useful since it produces the interior stress and boundary traction as solutions. The
exterior field on the other hand requires two integrations (3.5). If the primary interest
is in Q+ , (P, (p°)) is better since the exterior field requires only one integration (3.6).

Remark 4.2. It is interesting to note that one has a whole family of problems.
Since A^(U, V) = A^U, V) we can take convex combinations of (P0(p0)) and
(P,(/)). Thus one takes H = Hx(Q) x L2{T) x L2(T) with It = (U, A, y/), T =
(V, 4>, f) and

T) = (1 -a)^°((U, V), {X, 0)) + aAl((V, V), (</, £)),
<2^, F ) = (1 - a)((V, 0), F0) + a((\, X), Fx),

to obtain
Find &eH such that s^a^t, 2H = (T, Fa) for any T e H. (VPJ

We now have two boundary functions to be determined and the structure of the
finite-dimensional approximation equations will be

38°xxlJh + (1 - a)&\2kh + a&\2yrh = Qg|,

+a3?l22¥h = ag\, (Ej)

(1 - a)^rJjU* + (1 - a)^p22kh = (1 - a)g°2 .

If we choose Q= i and use real basis elements then it is quite easy to verify that
the system (E*) is symmetric; that is:

(38°/= 38°u, (£?/= •?!,, (38lx2)T =38°2X, [38\2)r = 38\2. (4.1)
Let us verify one of these. We have

*22),*" = AWk ' = ^2 Jr {jH + ^,d(J

1 jr + D[/i']) ^ d° = ^2°2(//' ' ^k) = (^2°2)/t/ •
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Remark 4.3. We observe also that our procedures are well adapted to standard
ftware. For instance, we

can be solved in the form,
software. For instance, we can solve (E?) by condensation. The second equation

l = (&°22) >g2-(^22)^2IUh. (4.2)

The inverse is a standard one from boundary integral equation methods.
One can then insert (4.1) into the first equation to obtain equations of the form

^°,Uh +WUh = g0. (4.3)

Here W = and g0 = 3§^2(3§22)'x g2 ,and 38^x is the standard
dynamic stiffness, or impedance, matrix for interior elastic problems. This matrix is
sparse.

Similarly, by condensing y/h, (E,) leads to an equation of the form
^V + g'V-g,, (4.4)'it

while (Ey2) yields the equation

+ + fr)UA = i(g0 + gl). (4.5)
jIt is worth noting that the appearance of the adjoint matrices ^ and W in (4.3)

and (4.4) is a direct consequence of the adjointness of the linear mappings D and
N, which occur, respectively, in the formulation of problems (P0) and (P,). (P0)
is based on the integral representation (3.4) for the fluid pressure which introduced
D, while (P,) uses the single-layer representation (3.6) from which N arises. (These
two alternatives are denoted as the direct and the indirect formulations in the engi-
neering literature [14].) It is then clear why, whereas each problem (P0) and (Pt),
by itself, leads to a nonsymmetric system of the finite-dimensional approximation
equations (4.3), (4.4), their average (4.5) is symmetric. It is this form of the dis-
cretized equations which is most convenient for computations. All the elements of
the matrices &, , and + &T) are zero except for those elements associated

with the components of \Jh located on T. Each of these matrices represents the
impedance of the fluid at the interface with the solid, and constitutes, in effect, a
discretized nonlocal absorbing boundary. The terms g0 and g, represent effective
forces applied on T, due to the incident wave p°. After solving for U', A and
if/h can be evaluated by back substitution, using (4.2) for kh and a similar equation
for y/h. The scattered field P can be calculated using (4.2) and kh and a similar
equation for y/h . The scattered field P can then be calculated from (3.5) or, more
simply, from (3.6).

5. Existence and regularity. Our first goal here is to validate the procedures in the
preceding section. The proof of the validity of the coupling methods rests on the
following abstract result. Let H be a Hilbert space, A a bounded bilinear form on
H x H and F an element of H1, the dual of H .
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Suppose that A = A0 + Ax where

There exists k > 0 such that A0(u, u) > A:|| w||2 for any y e H. (I)

For any bounded sequence {uk} in H there exists a subsequence (II)
uk and a u e H such that Al(uk , v) —> A{(u, v) for any v e H.

Consider the variational problem

Find u e H such that A(u, v) = (v, F) for any v e H. (VP)

Theorem A. If A(u, v) = 0 for all v implies u — 0 then (VP) has a unique
solution u and F —► u is a bounded map from H' —► H.

Suppose that one has a family Sh of finite-dimensional subspaces contained in H
and one considers the approximate variational problems:

Find uh e Sh such that A(uh , vh) = (vh , F) for any vh e Sh. (AVP^)

We suppose that the Sh approximate H in the following sense:

Given any e > 0 there is an h0 > 0 such that for any h < h0 and
u € H there is a wh e Sh such that \\u - wh\\ < e .

Theorem B. If A(u, v) = 0 for all v implies u = 0 then
h0 > 0 such that (AVP^(i) There exists an h0> 0 such that (AVP.) has a unique solution uh for any

h<h0.
(ii) If u is the solution of (VP) ||m - uh\\ —> 0 as h | 0.

Theorem A is an easy consequence of the Lax-Milgram lemma and Riesz-Schauder
theory. Theorem B is fairly well known (see for instance [7] and [11]) but for com-
pleteness we sketch the proof in an appendix. The results in the Appendix also show
that one has optimal convergence. For instance, if one uses piecewise quadratic ap-
proximations in Q and piecewise linear approximations on T one obtains 0(h ) in
H,(Q) and 0(h3) in L2(T).

In proving the validity of our procedure, (P0(p0)) and (P,(/70)) can be treated in
the same way and both begin with the same observation. We write,

4,(U, V) = Alu(U, V) = A0(U, V) + ^,(U, V),

'VU, V) = J (X[U]: VV + mU \)dx, (4 6)

^[(U,V) = - f mUVrfx-w2 / pE\]\dx.
J a J n

For m sufficiently large, Korn's second inequality implies that there is a k > 0 such
that

A0(U, U) > fc||U||Wi(fl). (4.7)

The form Ax satisfies (II). If {UA} is a bounded sequence in //,(Q) then there
is a subsequence Uk which converges weakly in H^Q.) and strongly in L2(Q) to
Ue//,(Q); hence Ax(Vk , V) A{{U, V) for any Ve//,(Q).
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Consider first (VPn). We decompose , V) in the formo>

*o,0(f/, T) = , V) + , 2H ,

rf0°(^,r-) = A0(u,v) + —^ f x<t>do,
p0a> Jr

sf.°(W,Vr) = Al(\J, \) + A°l2{k, V) + A°2l(<t>, V) + —~ [ D[X\4>do.
D^(o Jr

From (4.2) we see that ss?0° satisfies (I). We assert that j/,° satisfies (II). We have
already seen this for AX{U, V) and we consider the remaining terms under the
assumption that %k — (Ufc, Xk) with {Uk} a bounded sequence in H{(Q) and kk
a bounded sequence in L2(Y). Then we have that {UJr} is a bounded sequence in
Hl,2{Y). We conclude that there is a subsequence k] such that

converges weakly in H^Q.) to U,

Ufc |r converges weakly in H^2(T) to U|r,

\Jk |r converges strongly in L2(T) to U\r,

Xk converges weakly to k in L2(T).

Consider the individual terms

A°n(\,V) = - J kk V ■ nda —► - J k\ nda,

AM>Vk)= [ S[n-VkWd(7.
' Jr 1

S is a bounded map from L2(T) into HxiY); hence 5[n ■ Uk ] converges strongly

to 5[n-U] in L2(T) and A°2l(U, ) — A°2i(<j>, U)* .

nW2/r(2\ +
D[L])ct>d(j.

p0co

D is a bounded map from L2(T) into H2(T) and Xk is bounded in L2{Y) and
converges weakly to X; hence we can assume (with possibly another subsequence)
that D{Xk ) converges strongly to I in L2(T). Thus A°22{kkj, (f>) —► A22(k, 0).'

We have thus shown that conditions (I) and (II) are satisfied. If we take p° e
h\oc(Q+) with Ap° + K2p° = 0 then we have p°|r € H[/2(Y), pQn|r e H_l/2(Y) so
that FQ e //, and we can use Theorems A and B. From Corollary 3.1 we see that,
under assumptions (A,), (A2), , T) = 0 implies ^ = 0; hence, Theorem
A implies the existence of a unique solution of (VP0). If, in addition, (III) holds
Theorem B implies the convergence of Galerkin's method.

The argument for (VP,) is the same with the same conclusions.

This idea comes from [11],
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Under the hypotheses (I) and (II) and assuming p° e //J0C(Q+) we obtain a gener-
alized solution of (P0(p0)) or (PjQ?0)) with U € Hy(Sl) and P £ //joc(Q+). Because
of the special form of these problems it is not difficult to obtain regularity results by
bootstrapping. We illustrate with (P0(/?°)). Suppose p° e HX°C > (Q+) with r > 1 .
Then p°|r e Hr_l/2(T) and p°n e Hr_i/2{T); hence / = -\pQ + S?\[p°n\ - D[pQ] e
Hr_xl2{Y). If U e HX{Y) we have U'ne Hl/2(T) and S"[U~ • n] e H^/2(T),

k= (±7 + D)'l{f -/>0«25[U" ■ n]} g HS(D s = |).

On the other hand we have

divX[U] + pco^V = 0 inQ,
I[U](n)-n = A, I[U](n)xn = 0.

Hence U e Hs+i/2(Q.). Take r > 2, then we have, at least, U e //3(^). If r
is arbitrarily large we can continue this process and show that Ue^(fl), 1 6
Hl™V2(T) for k arbitrarily large, thus establishing that (U,A) is a classical solution
of (P0(p°)) and, accordingly, that we have a classical solution of (P(/?0)).

hAppendix. Proof of Theorem B. We begin by defining the Galerkin operator G0: H
—> Sh by Gq u = iih where

A0(uh, vh) = A0(u, vh) for any vh. (A.l)

h hIf we expand u in terms of the basis elements of S , (A.l) becomes a system of
linear algebraic equations and condition (I) guarantees that this system has a solution

-ih
70so Gq is well defined. For any wh e Sh we obtain from (A.l),

hence, by (I),

. , h h hs . , h hs
A0(u -W ,V ) = A0(u - W ,V),

\uh - wh\\ < j^a\\u - wh|

where a is an upper bound for A0 . Thus

n — i/ll k1 \\,,Gtu - u\\ < K\\u - wh\\ for any u G H, wh e Sh. (A.2)

Hence condition (III) implies that \\Gh0u - u\\ —► 0 as h | 0 for any u e H, that is,
G0 converges strongly to I as h | 0. Moreover we can put wh = 0 in (A.2) and
conclude that \\GQu - u\\ < K\\u\\ for any ueH. It follows that ||Gq|| is uniformly
bounded.

Next we consider A{ . We note that, for each u e H the map v —► Ax{u, v) is
bounded and linear, hence we can define a map /://->//' by

(v , Ju) — A{(u, v) for any veH. (A.3)

Condition (III) states that / is a compact map.
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Theorem A states that the solution of (VP) defines a bounded solution map 5?
from H[ into H by the equation

A(S*F, v) = (v , F) for any v . (A.4)

Consider the map S^J(I - Gq). This is a map from H into itself and we assert
that its norm tends to zero as h [ 0. Suppose not. Then we find an e > 0 and a
sequence hn j 0 with un e H, ||mJ| = 1 such that \\S"J{I - G0)un\\ > £• Since

h h||/ - G0|| is uniformly bounded (/ - G0)un = wn is a bounded sequence in H and
by the definition (A. 1) of G0 one has

A0(wu,vh) = 0 for any vh <E Sh . (A.5)

Now {w } is bounded in H, hence there is a subsequence to which converges
n nk

weakly in H to w . But then (A.5) implies A0(w, vh) = 0 for any vh € Sh which,
in view of (III), implies A0(w , v) = 0 for any v e S. Hence by (I) w — 0. Thus
wn converges weakly to zero. But J is compact so Jwn converges strongly to zero

y.and 5? is bounded so 5" J {I - G0)un converges strongly to zero which contradicts
\\^J(I-Gh0)un\\>e.

Since ||S?J{I - Gg)|| tends to zero as h —» 0 we can find an h0 sufficiently small
that (/ — 5?J(1 - Gq))-1 exists for h < h0 and we can define

Gh = Gh0[I-5"J(O-Gh0)fl.

A(Ghu, vh) = A(u, vh) for any vh e Sh , (A.6)

that is, Gh is the Galerkin operator for A . To verify (A.3) put

z = (/ -fj(l -C?J)fV
Then we have

z -u = <9pJ(I -Gh0)z. (A.7)

We assert that

By (A.3) and (A.2) this means

Tfr.,,o

'1WJ - "o

A(z, v) = {v, J (I - Gq)z) + A(u, v)

= AMI-G")z,v) + A(u,v)

or
A0(z, v) + A^GqZ , v) = A{u, v). (A.8)

We put vh in (A.7). Then A0(z, vh) = A^G^z, vh) and (A.8) yields

A(GhQz, vh) - A(u, vh) for any vh e Sh

and this is formula (A.5).
(A.5) gives the result we want. For a solution u of (VP) (vn, F) = A(u, v) and

(A.5) says that the Galerkin solution is
uh = GhJI-SJ(I-Gh0)~^F). (A.9)
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The operator in (A. 7) tends to I as h J. 0 confirming that uh —> u. This completes
the proof.
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