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SYMMETRIC FUNCTIONAL DIFFERENTIAL EQUATIONS
AND NEURAL NETWORKS WITH MEMORY

JIANHONG WU

Abstract. We establish an analytic local Hopf bifurcation theorem and a
topological global Hopf bifurcation theorem to detect the existence and to
describe the spatial-temporal pattern, the asymptotic form and the global
continuation of bifurcations of periodic wave solutions for functional differen-
tial equations in the presence of symmetry. We apply these general results
to obtain the coexistence of multiple large-amplitude wave solutions for the
delayed Hopfield-Cohen-Grossberg model of neural networks with a symmetric
circulant connection matrix.

1. Introduction

The purpose of this paper is to study the spatial-temporal patterns of solutions
for systems of functional differential equations in the presence of symmetry. Of
major concern is the existence, the asymptotic form, the isotropy group and the
global continuation of periodic wave solutions. The well-known Hopfield-Cohen-
Grossberg model of neural networks with delay provides the motivation and the
illustration of our main general results.

We will start with the symmetric local Hopf bifurcation problem of the following
parametrized system of functional differential equations

ẋ(t) = L(α)xt + f(α, xt),(1.1)

where f(α, 0) = 0 and ∂
∂φf(α, 0) = 0 for α ∈ R and φ ∈ C := C([−τ, 0]; Rn),

τ ≥ 0, is a given constant, xt is the usual notation for an element of C defined by
xt(s) = x(t + s) with s ∈ [−τ, 0], L : R × C → Rn is continuous and linear in the
second argument. Moreover, there exists a compact Lie group Γ acting on Rn such
that f(α, γφ) = γf(α, φ) and L(α)γφ = γL(α)φ for (α, γ, φ) ∈ R × Γ × C, where
γϕ ∈ C is given by (γφ)(s) = γφ(s) for s ∈ [−τ, 0]. We assume that there exists a
critical value α0 such that at α = α0, (i). The infinitesimal generator A(α) of the
C0-semigroup generated by the linear system ẋ(t) = L(α)xt has a pair of purely
imaginary eigenvalues ±iβ0; (ii) the generalized eigenspace Uiβ0(A(α0)) associated
with iβ0 consists of eigenvectors of A(α0) only and the restricted action of Γ on
Uiβ0(A(α0)) is isomorphic to V ⊕ V for some absolutely irreducible representation
V of Γ.
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Under the above assumptions, Uiβ0(A(α0)) consists of ω = 2π
β0

-periodic func-
tions and Γ × S1 acts on Uiβ0(A(α0)) by shifting arguments. We will show, in
Theorem 2.1, that under usual non-resonance and transversality conditions, for ev-
ery subgroup Σ ≤ Γ × S1 such that the Σ-fixed point subspace of Uiβ0(A(α0)) is
of dimension 2, system (1.1) has a bifurcation of periodic solutions whose spatio-
temporal symmetry can be completely characterized by Σ. In other words, un-
der non-resonance and transversality conditions, maximal isotropy groups with
minimal-dimensional fixed-point subspaces lead to bifurcations of periodic solutions
with a certain spatio-temporal symmetry.

Note that the presence of symmetry often causes purely imaginary eigenvalues to
be multiple and hence, the standard Hopf bifurcation theory of functional differen-
tial equations (cf. Hale [27], Hassard, Kazarinoff and Wan [29]) cannot be applied.
Our general result, Theorem 2.1, represents an analog for functional differential
equations of a well-known symmetric Hopf bifurcation theorem established by Gol-
ubitsky and Stewart [24] for ordinary differential equations (see also Golubitsky,
Stewart and Schaeffer [25] and Vanderbauwhede [54] for a more detailed account of
the local symmetric Hopf bifurcation theory). However, the proof of this analogue
is not an elementary exercise as even the precise statement and verification of the
hypotheses of this analog require nontrivial applications of some important facts of
the generalized eigenspaces of the infinitesimal generators of solution semigroups
and the decomposition theory of linear retarded functional differential equations.

We next consider the global continuation of the bifurcation of symmetric peri-
odic solutions detected by the analytic local symmetric Hopf bifurcation theorem
(Theorem 2.1). Our strategy here is strongly influenced by the work of Alexander
and Auchmuty [3] where the global continuation of phase-locked oscillations in a
system of ordinary differential equations arising from Turing rings of identical cells
was investigated by considering the maximal continuation of periodic solutions for
an associated scalar functional differential equations of mixed type (with both ad-
vanced and delayed arguments). More generally, our analytic local symmetric Hopf
bifurcation theorem describes the spatio-temporal pattern of the bifurcated periodic
solutions. This spatio-temporal pattern of the bifurcated periodic solutions often
enables us to obtain a relatively simpler system of functional differential equation of
mixed type and with an additional parameter (usually the period) which completely
characterizes the bifurcated periodic solutions. In other words, the global contin-
uation problem of the bifurcated symmetric periodic solutions of a parametrized
system of functional differential equations can be reduced to a corresponding prob-
lem of the bifurcated periodic solutions of a relatively simpler system of functional
differential equations which is of mixed type and with two parameters, but without
symmetry.

With this reduction in mind, we apply the S1-bifurcation theory developed by
Geba and Marzantowicz [21] to establish a global Hopf bifurcation theorem, The-
orem 3.3, for a system of functional differential equations of mixed type and with
two parameters. At each stationary solution a sequence of bifurcation invariants,
called the crossing numbers, is defined and can be evaluated from the information,
via the Brouwer degree, of the linearization of the system at the stationary solution.
Our global bifurcation theorem then claims that in the so-called Fuller’s space (cf.
Fuller [19]), along each bounded connected component of the nontrivial periodic
solutions, the sum of the aforementioned crossing numbers must be zero.
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Global bifurcation problems have been extensively studied during the last two
decades. A global bifurcation theorem was first established by Rabinowitz [51]
for a compact perturbation of the identity parametrized by a real number, and
then generalized to more general classes of nonlinear mappings by Alexander [1],
Alexander and Fitzpatrick [4], Dancer [11], Fenske [14], Hetzer and Stallbohm [31],
Nussbaum [48] and Stuart [53], to name a few. A similar result was also obtained
for global continua of periodic solutions of differential equations by Alexander [1],
Alexander and Fitzpatrick [4], Alexander and Yorke [5], Chow and Mallet-Paret
[8], Chow, Mallet-Paret and Yorke [9], Fiedler [15, 16], Fitzpatrick, [17], Geba and
Marzantowicz [21], Ize [35, 36], Ize, Massabó and Vignoli [37, 38], Mallet-Paret
and Yorke [46], Nussbaum [49]. We refer to Fielder [15], Ize, Massabó and Vignoli
[37, 38] and Erbe, Geba, Krawcewicz and Wu [20] for a detailed account of the
literature.

Our general result, Theorem 3.3, represents an analog of the aforementioned
results, in particular, the results of Alexander and Auchmuty [2], Chow and Mallet-
Paret [8], Fiedler [15, 16], Ize [35, 36], Mallet-Paret and Yorke [46] and Nussbaum
[49], for functional differential equations of mixed type and with two parameters.
This is not strikingly new but provides a crucial tool in our later application to
the existence of large-amplitude wave solutions of delayed neural networks. It
should be mentioned that in our approach, we employed the S1-equivariant degree
constructed by Dylawerski, Geba, Jodel and Marzantowicz [12]. There is now
a more general version of the equivariant degree introduced by Ize, Massabó and
Vignoli [37, 38] and Geba, Krawcewicz and Wu [20] and a corresponding bifurcation
theory developed by Ize, Massabó and Vignoli [37, 38], Krawcewicz, Vivi and Wu
[39] and Krawcewicz and Wu [40]. We emphasize that the main contribution of
Theorem 3.3 is to formulate the global bifurcation theory in the setting easily
applied to the problem of obtaining an unbounded continuation of periodic solutions
of functional differential equations.

In Sections 4 and 5, our general results will be illustrated by their applications
to the delayed Hopfield-Cohen-Grossberg model of neural networks:

u̇i(t) = −ui(t) +
n∑

j=1

Jijf(uj(t− τ)), 1 ≤ i ≤ n,(1.2)

where f is a sigmoidal function normalized so that f(0) = 0, J = (Jij) is a sym-
metric circulant matrix with all the diagonal elements identical to zero. It was
shown by Hopfield [33, 34] and Cohen and Grossberg [10] that every solution of
(1.2) is convergent to the set of equilibria if τ = 0. On the other hand, in electronic
implementations of analog neural networks, time delays are present in the com-
munication and response of neurons due to the finite switching speed of amplifiers
(neurons). Designing a network to operate more quickly increases the relative size
of the intrinsic delay and may cause sustained oscillations. In particular, Marcus
and Westervelt [47] have demonstrated how the neuron gain, delay and the size
and connection topology of the network affect the existence of oscillatory modes
in continuous-time analog neural networks with time delay from the viewpoint of
local analysis and with the help of numerical integration and some experiments on
a small electronic network.
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By using Theorem 2.1 and Theorem 3.3, we will show that system (1.2) exhibits
very rich dynamics and various types of oscillations for large delay. In particular,
we will obtain the coexistence of

(i) pitchfork bifurcations of equilibria;
(ii) Hopf bifurcations of synchronous oscillations (periodic solutions satisfying

ui(t) = ui−1(t) for i(modn), t ∈ R);
(iii) Hopf bifurcations of phase-locked oscillations (periodic solutions satisfying

ui(t) = ui−1(t − r
np), i(modn), t ∈ R, where r ∈ {0, . . . , n − 1} is a given

integer and p > 0 is a period of u);
(iv) Hopf bifurcations of mirror-reflecting waves (periodic solutions satisfying

ui(t) = un−i(t), i(modn), t ∈ R);
(v) Hopf bifurcations of standing waves (periodic solutions satisfying un−i(t) =

ui(t− 1
2p), i(modn), t ∈ R, where p > 0 is a period of u).

We will also show that several branches of phase-locked oscillations, standing waves
and mirror-reflecting waves may bifurcate simultaneously from the trivial solution
at some critical values of the delay.

The above wave solutions are special cases of the so-called coherent oscillation
observed by Marcus and Westervelt [47]. In comparison with these results, we
not only can detect the existence of sustained oscillations but also describe their
spatio-temporal patterns. Moreover, as a result of our approach based on global
bifurcation theorems, the coexistence of the aforementioned wave solutions will be
established for delay not only near but also far away form the critical values. There-
fore, we can obtain wave solutions of large amplitudes. We establish such global
existence results by applying Theorem 3.3 and by (i) obtaining a priori bounds for
periodic solution; (ii) excluding wave solutions of a certain period using the spectral
analysis of Nussbaum [50] for circulant matrices (see Lemma 5.3, Theorem 5.4 and
Theorem 6.3).

Depending on the value of the neuron gain (f ′(0)) and the topology and size
of the interconnection matrix, the aforementioned oscillations can be either stable
or unstable. In fact, in Marcus and Westervelt [47] it has been observed that
some systems of neural networks with delay possess multiple basins of attraction
for coexisting equilibria and oscillatory attractors. Due to the (topological) nature
of our approach to the existence of wave solutions we are, in general, unable to
discuss the stability of these waves, except in several special cases where the theory
of monotone dynamical systems of Hirsch [32] and Smith [52] can be applied to
exclude stable discrete waves, as will be illustrated in Section 6.

Finally, we mention that existing research has indicated some similarity between
the system (1.2) with large delay and the parallel-update network ui(k + 1) =∑n

j=1 Jijf(uj(k)) studied in Frumkin and Moses [18], Goles-Chacc, Fogelman-
Soulie and Pellegrin [22], Goles and Vichniac [23], Grinstein, Jayaprakash and He
[26], Little [43] and Little and Shaw [44]. We wish to address the related singular
perturbation problem in a future paper.

2. Analytic local symmetric Hopf bifurcations for FDEs

Let τ ≥ 0 be a given real number and C denote the Banach space of con-
tinuous mapping from [−τ, 0] into Rn equipped with the supremum norm ‖φ‖ =
sup−τ≤θ≤0 |φ(θ)| for φ ∈ C. In what follows, if σ ∈ R, A ≥ 0 and x : [σ−τ, σ+A] →
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Rn is a continuous mapping, then xt ∈ C, t ∈ [σ, σ+A], is defined by xt(θ) = x(t+θ)
for −τ ≤ θ ≤ 0.

Suppose L : R × C → Rn is continuous and linear in the second argument,
f : R × C → Rn is continuous and has continuous first and second derivatives in
the second argument with f(α, 0) = 0, αf

αφ (α, 0) = 0 for α ∈ R and φ ∈ C. Consider
the following system of delay differential equations

ẋ(t) = L(α)xt + f(α, xt),(2.1)

where ẋ(t) denotes d
dtx(t). It is well-known that for each fixed α, the linear system

ẋ(t) = L(α)xt(2.2)

generates a strongly continuous semigroup of linear operators with the infinitesimal
generator A(α) given by

A(α)φ = φ̇, φ ∈ Dom(A(α)),

Dom(A(α)) = {φ ∈ C; φ̇ ∈ C, φ̇(0) = L(α)φ}.
Moreover, the spectrum σ(A(α)) of A(α) consists of eigenvalues which are solutions
of the following characteristic equation

det∆(α, λ) = 0,(2.3)

where the characteristic matrix ∆(α, λ) is given by

∆(α, λ) = λ Id−L(α)(eλ· Id).(2.4)

We assume
(H1) The characteristic matrix is continuously differentiable in α ∈ R and there

exist α0 ∈ R and β0 > 0 such that (i) A(α0) has eigenvalues ±iβ0; (ii) the
generalized eigenspace, denoted by Uiβ0(A(α0)), of these eigenvalues ±iβ0

consists of eigenvectors of A(α0); (iii) all other eigenvalues of A(α0) are not
integer multiple of ±iβ0.

(H2) There exists a compact Lie group Γ acting on Rn such that both L(α)
and f(α, ·) are Γ-equivariant, i.e. f(α, γφ) = γf(α, φ), L(α)γφ = γL(α)φ
for (α, γ, φ) ∈ R × Γ × C, where γφ ∈ C is given by (γφ)(θ) = γφ(θ),
θ ∈ [−τ, 0].

Note that we do not require the eigenvalues ±iβ0 to be simple. In fact, the
presence of symmetry often causes these purely imaginary eigenvalues to be mul-
tiple. Hence, the standard Hopf bifurcation theory of functional differential equa-
tions (cf. Hale [27] and Hassard, Kazarinoff and Wan [29]) cannot be applied. To
state the next assumption, we note that under (H1), Uβ0(A(α0)) is the real vector
space consisting of Re(eiβ0·b) and Im(eiβ0·b) such that b ∈ Ker∆(α0, iβ0). More-
over, there exists a natural identification between Ker∆(α0, iβ0) and R2m, where
2m = dim Ker∆(α0, iβ0), as a real vector space. We also require
(H3) There exists an m-dimensional absolutely irreducible representation V of Γ

such that Ker∆(α0, iβ0) is isomorphic to V ⊕V , here a representation V of
Γ is absolutely irreducible if the only linear mapping that commutes with
the action of Γ is a scalar multiple of the identity.

Remark 2.1. Assume that (H1)–(H3) are satisfied. Let {bj1 + ibj2}m
j=1 be a basis

for Ker∆(α0, iβ0) and define sinβ , cosβ ∈ C([−τ, 0]; R) by

sinβ(θ) = sin(βθ), cosβ(θ) = cos(βθ), θ ∈ [−τ, 0].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



4804 JIANHONG WU

Then the columns of Φα0 = (ε1, . . . , ε2m) form a basis for Uiβ0(A(α0)), where

εj = sinβ bj1 + cosβ bj2,

εm+j = cosβ bj1 − sinβ bj2, 1 ≤ j ≤ m.

It can be easily verified that

A(α0)εj = βεm+j , A(α0)εm+j = −βεj , 1 ≤ j ≤ m.

That is,

AΦα0 = Φα0B(α0),

where

B(α0) =
(

0 β Idm

−β Idm 0

)
and Idm is the identity matrix of order m.

Remark 2.2. Let

L(α)φ =
∫ 0

−τ

[dη(α, θ)]φ(θ), φ ∈ C,α ∈ R,

where η(α, θ) is an n×n matrix function of bounded variation in θ ∈ [−τ, 0]. Then
(2.2) can be written as

ẋ(t) =
∫ 0

−τ

[dη(α, θ)]x(t + θ).(2.5)

Along with this linear homogeneous equation, we will also consider the formal
adjoint equation

ẏ(s) = −
∫ 0

−τ

y(s− θ)[dη(α, θ)](2.6)

together with the bilinear form

(ψ, φ)α = ψ(0)φ(0)−
∫ 0

−τ

∫ θ

0

ψ(ξ − θ)[dη(α, θ)]φ(ξ) dξ(2.7)

for φ ∈ C and ψ ∈ C∗ := C([0, τ ]; Rn∗), where Rn∗ is the space of n-dimensional
row vectors. Let A∗(α) denote the infinitesimal generator of the strongly continuous
semigroup generated by (2.6) on C∗. Then the subspace of solutions to the linear
algebraic equation

x∗∆(α0, iβ0) = 0, x∗ ∈ Rn∗ + iRn∗ := Cn∗

has a basis {cj1 + icj2}m
j=1, cj1, cj2 ∈ Rn∗, 1 ≤ j ≤ m. If cos∗β , sin

∗
β ∈ C([0, τ ]; R)

are defined by

cos∗β(θ) = cos(βθ), sin∗β(θ) = sin(βθ), θ ∈ [0, τ ],

then Ψ∗
α0

= (ε∗1, . . . , ε
∗
2m) forms a basis for Uiβ0(A

∗(α0)), where

ε∗j = sin∗β cj1 + cos∗β cj2,

ε∗m+j = cos∗β cj1 − sin∗β cj2, 1 ≤ j ≤ m.
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Lemma 2.1. Under assumptions (H1)–(H3), there exist δ0 > 0 and a continu-
ously differentiable function λ : (α0 − δ0, α0 + δ0) → C such that λ(α0) = iβ0,
λ(α) is an eigenvalue of A(α), Uλ(α)(A(α)) consists of eigenvectors of A(α), and
dimUλ(α)(A(α)) = dimUiβ0(A(α0)). Moreover, there exist 2m continuously dif-
ferentiable mappings ej : (α0 − δ0, α0 + δ0) → C and 2m continuously differen-
tiable mappings e∗j : (α0 − δ0, α0 + δ0) → C∗ such that ej(α0) = εj , e

∗
j(α0) = ε∗j ,

Φα = (e1(α), . . . , e2m(α)) is a basis of Uλ(α)(A(α)) and Ψα = (e∗1(α), . . . , e∗2m(α))
is a basis of Uλ(α)(A∗(α)).

Proof. Let P and I − P denote the projection operators defined by the decompo-
sition

Cn = Ker∆(α0, iβ0)⊕ Ran∆(α0, iβ0).

As Ker∆(α0, iβ0) is Γ-invariant, P and I−P commutes with the Γ-action. Rewrite
the equation

∆(α, λ)b = 0(2.8)

as {
∆(α0, iβ0)d = [I − P ][∆(α0, iβ0)−∆(α, λ)](b0 + d)
P [∆(α0, iβ0)−∆(α, λ)](b0 + d) = 0

(2.9)

where

b = b0 + d(2.10)

is the unique decomposition such that

b0 ∈ Ker∆(α0, iβ0), d ∈ Ran∆(α0, iβ0).

Applying the implicit function theorem, we obtain δ1 > 0 and an n × n matrix
D∗(α, λ), continuously differentiable for |α − α0| < δ1 and |λ − iβ0| < σ1, such
that D∗(α0, iβ0) = 0, d = D∗(α, λ)b0 is a solution of the first equation of (2.9), and
D∗(α, λ) commutes with the action of Γ on Ker∆(α0, iβ0). Therefore, the existence
of an eigenvalue λ near iβ0 for α near α0 is equivalent to the existence of a solution
of

f(α, λ)b0 = 0,(2.11)

where

f(α, λ)b0 = P [∆(α0, iβ0)−∆(α, λ)][Idm +D∗(α, λ)]b0.

Properly choosing a basis for Cn, we may assume

P =
(

Idm 0
0 0

)
,∆(α, λ) =

(
∆11(α, λ) ∆12(α, λ)
∆21(α, λ) ∆22(α, λ)

)
,

where ∆11(α, λ) is an m×m matrix, ∆22(α, λ) is of order (n−m)× (n−m) and

∆(α0, iβ0) =
(

0 0
0 ∆22(α0, iβ0)

)
, det∆22(α0, iβ0) 6= 0.

Therefore,

f(α, λ) = −[∆11(α, λ) + ∆12(α, λ)D∗(α, λ)].(2.12)

Moreover, substituting d by D∗(α, λ)b0 in the first equation of (2.9), we get

∆21(α, λ) = −∆22(α, λ)D∗(α, λ).(2.13)
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This implies that

∆(α, λ) =
(

∆11(α, λ) ∆12(α, λ)
−∆22(α, λ)D∗(α, λ) ∆22(α, λ)

)
=
(

Idm 0
0 ∆22(α, λ)

)(
∆11(α, λ) ∆12(α, λ)
−D∗(α, λ) Idm

)
.

Consequently, from (2.12) it follows that

det∆(α, λ) = (−1)m det ∆22(α, λ) det f(α, λ).(2.14)

As dimUiβ0(A(α0)) = 2m, by the well-known folk theorem for retarded functional
differential equations (cf. Hale [27] and Levinger [42]) we have{

∂k

∂λk det∆(α0, λ)|λ=iβ0 = 0, 0 ≤ k ≤ m− 1,
∂m

∂λm det∆(α0, λ)|λ=iβ0 6= 0.
(2.15)

Therefore, as det∆22(α0, iβ0) 6= 0, we derive from (2.14) the following{
∂k

∂λk det f(α, λ) = 0, 0 ≤ k ≤ m− 1,
∂m

∂λm det f(α, λ) 6= 0.
(2.16)

On the other hand, under assumption (H3) we may assume

f(α, λ) =
(
F11(α, λ) F12(α, λ)
F21(α, λ) F22(α, λ)

)
for some m × m real matrices Fij , i, j = 1, 2. The Γ-equivariance of D∗(α, λ)
implies that f(α, λ) commutes with the diagonal action of Γ on V ⊕ V , and hence
Fij commutes with the action of Γ on V . By the absolute irreducibility of V , we
have

Fij(α, λ) = fij(α, λ) Idm

for some scalar functions fij(α, λ). So

det f(α, λ) = qm(α, λ),

where

q(α, λ) = f11(α, λ)f22(α, λ) − f12(α, λ)f21(α, λ).

By (2.16), we get q(α0, iβ0) = 0, ∂
∂λq(α0, λ)|λ=iβ0 6= 0. Therefore, from the implicit

function theorem it follows that there exist δ0 > 0 and a continuous differen-
tiable function λ(α) for |α − α0| < δ0 such that λ(α0) = iβ0, q(α, λ(α)) = 0 and
|λ(α) − iβ0| < δ1. So, λ(α) is an eigenvalue of A(α) with multiplicity 2m, and the
corresponding eigenvector is

b(α) = [I +D∗(α, λ(α))]b, b ∈ Ker∆(α0, iβ0).

Consequently, dimUλ(α)(A(α)) = dimUiβ0(A(α0)) for |α− α0| < δ0. Let

b∗j1(α) + ib∗j2(α) = [I +D∗(α, λ(α))][bj1 + ibj2].

Then

ej(α) = Im eλ(α)·[b∗j1(α) + ib∗j2(α)],

em+j(α) = Re eλ(α)·[b∗j1(α) + ib∗j2(α)], 1 ≤ j ≤ m,

form a basis of Uλ(α)(A(α)) with the required properties.
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The same argument can be applied to construct the basis {c∗j1(α) + ic∗j2(α)}m
j=1

for the subspace of solutions to the equation x∗∆(α, λ(α)) = 0 for x∗ ∈ Rn∗.
Therefore,

e∗j (α) = Im eλ(α)·[c∗j1(α) + ic∗j2(α)],

e∗m+j(α) = Re eλ(α)·[c∗j1(α) + ic∗j2(α)], 1 ≤ j ≤ m,

form a basis of Uλ(α)(A∗(α)) with the required properties. This completes the
proof.

Remark 2.3. It can be easily shown that

A(α)Φλ(α) = Φλ(α)B(α),

where

B(α) =
(

Reλ(α) Idm − Imλ(α) Idm

Imλ(α) Idm Reλ(α) Idm

)
.

We also need the following

Lemma 2.2. Let (Ψα,Ψα)α = ((e∗j , ek)α)1≤j,k≤2m. Then

B′(α) = −(Ψα,Φα)−1
α Ψα(0)

[
d

dα
L(α)

]
Φα.

The proof is similar to that of Lemma 3.9 on pp. 179 of Hale [27] and therefore
is omitted.

Let ω = 2π
β0

. Denote by Pω the Banach space of all continuous ω-periodic map-
pings x : R → Rn. Then Γ× S1 acts on Pω by

(γ, θ)x(t) = γx(t+ θ), (γ, θ) ∈ Γ× S1, x ∈ Pω .

Denote by SPω the subspace of Pω consisting of all ω-periodic solutions of (2.2)
with α = α0. Then for each subgroup Σ ≤ Γ× S1, the fixed point set

Fix(Σ, SPω) = {x ∈ SPω; (γ, θ)x = x for all (γ, θ) ∈ Σ}
is a subspace.

Under assumption (H1), the columns of U(t) = Φα0(0)eB(α0)t, t ∈ R, form a
basis for SPω.

Lemma 2.3. SPω is a Γ× S1-invariant subspace of Pω.

Proof. For each γ ∈ Γ, γKer∆(α0, iβ0) ⊆ Ker∆(α0, iβ0). So there exist αγ
jk and

βγ
jk, 1 ≤ j, k ≤ m, such that

γbj1 =
m∑

k=1

[αγ
jkbk1 − βγ

jkbk2],

γbj2 =
m∑

k=1

[βγ
jkbk1 + αγ

jkbk2], 1 ≤ j ≤ m.

Let

T1γ = (αγ
jk)1≤j,k≤m, T2γ = (βγ

jk)1≤j,k≤m.

Then, we can easily verify that

γU(t) = U(t)
(
T1γ −T2γ

T2γ T1γ

)
.
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So γSPω ⊆ SPω. Moreover, for every θ ∈ S1,

θU(t) = U(t)
(

cos θ Idm − sin θ Idm

sin θ Idm cos θ Idm

)
.

Therefore, θSPω ⊆ SPω. This completes the proof.

Lemma 2.4. Let Tγ = ( T1γ −T2γ

T2γ T1γ
) be given in the argument of Lemma 2.3. Then

Γ× S1 acts on R2m by

(γ, θ)w = Tγ

(
cos(βθ) Idm − sin(βθ) Idm

sin(βθ) Idm cos(βθ) Idm

)
w, w ∈ R2m,

and this action is isomorphic to the restricted action of Γ× S1 on Uiβ0(A(α0)).

Proof. Let w = (w1, . . . , w2m)T ∈ R2m. Then the mapping H : R2m → Uiβ0(A(α0))
defined by

Hw =
2m∑
j=1

wjεj

gives an isomorphism of the representation of R2m and Uiβ0(A(α0)).

Lemma 2.5. Consider the linear nonhomogeneous equation

ẋ(t) = L(α0)xt + g(t).(2.17)

Let

TPω = {g ∈ Pω ; (2.17) has an ω-periodic solution}.
Then TPω is Γ× S1-invariant.

Proof. It is well-known that (2.17) has an ω-periodic solution if and only if∫ ω

0

y(t)g(t) dt = 0

for every ω-periodic solution of the formal adjoint equation (2.6) with α = α0. On
the other hand, if y(s) is a ω-periodic solution of (2.6) with α = α0, then

ẏ(s)γ = −
∫ 0

−τ

y(s− θ)[dη(α0, θ)]γ

= −
∫ 0

−τ

y(s− θ)γ[dη(α0, θ)].

So y(s− θ)γ is also an ω-periodic solution of (2.6) with α = α0. Consequently, for
every g ∈ TPω,∫ ω

0

y(t)(γ, θ)g(t) dt =
∫ ω

0

y(t)γg(t+ θ) dθ =
∫ ω

0

y(t− θ)γg(t) dt = 0.

This shows (γ, θ)g ∈ TPω, completing the proof.

Recall that in Lemma 2.1, we have proved that under (H1)–(H3), there exist
δ0 > 0 and a continuously differentiable function λ : (α0 − δ0, α0 + δ0) → C such
that λ(α0) = iβ0, and for each α ∈ (α0 − δ0, α0 + δ0), λ(α) is an eigenvalue of
A(α), Uλ(α)(A(α)) consists of eigenvectors of A(α) and has the same dimension as
Uiβ0(A(α0)). We can now state the final assumption—the transversality condition:
(H4) d

dα Reλ(α)|α=α0 6= 0.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SYMMETRIC FDES AND NEURAL NETWORKS 4809

Theorem 2.1. Assume that (H1)–(H4) are satisfied and dim Fix(Σ, SPω) = 2 for
some Σ ≤ Γ × S1. Then for a chosen basis {δ1, δ2} of Fix(Σ, SPω) there exist
constants a0 > 0, a∗0 > 0, σ0 > 0, functions α : R2 → R, ω∗ : R2 → (0,∞) and a
continuous function x∗ : R2 → Rn, with all functions being continuously differen-
tiable in a ∈ R2 with |a| < a0, such that x∗(a) is an ω(a)-periodic solution of (2.1)
with α = α(a), and

γx∗(a)(t) = x∗(a)
(
t− ω∗(a)

ω
θ

)
, (γ, θ) ∈ Σ,

x∗(0) = 0, ω∗(0) = ω, α(0) = α0,

x∗(a) = (δ1, δ2)a+ o(|a|) as |a| → 0.

Furthermore, for |α−α0| < α∗0, |ω∗− 2π
β0
| < σ0, every ω∗-periodic solution of (2.1)

with ‖xt‖ < σ0, γx(t) = x(t− ω∗
ω θ) for (γ, θ) ∈ Σ, t ∈ R, must be of the above type.

Proof. We start with the normalization of the period. Let β ∈ (−1, 1), u(t) =
x((1 + β)t). Then equation (2.1) can be rewritten as

u̇(t) = L(α0)ut +N(α, β, ut, ut,β),(2.18)

where

ut,β(θ) = u

(
t+

θ

1 + β

)
, θ ∈ [−τ, 0],

N(α, β, ut, ut,β) = (1 + β)[f(α, ut,β) + L(α)ut,β ]− L(α0)ut.

Let J : Pω → TPω be a fixed Γ× S1-equivariant projection and let K : TPω → Pω

be a bounded linear Γ × S1-equivariant operator such that Kg is an ω-periodic
solution of (2.17) for every g ∈ TPω. Then u is an ω-periodic solution of (2.18)
with Σ as the group of symmetry if and only if there exists z = (z1, z2)T ∈ R2 such
that {

u = (δ1, δ2)z +KJN(α, β, u., u.,β ),
(I − J)N(α, β, u., u.,β ) = 0.

(2.19)

We now apply the implicit function theorem to obtain a solution of the first
equation of (2.19), u = u∗(α, β, z), for α, β, z in a sufficiently small neighbourhood
of (α0, β0, 0) such that

u∗(α0, β0, z)− (δ1, δ2)z = o(|z|) as |z| → 0.

The function u∗(α, β, z) is continuously differentiable in (α, z) from the implicit
function theorem. Moreover, a solution of the first equation of (2.19) satisfies a
differential integral equation and hence, u∗(α, β, z)(t) is differentiable in t. This,
in turn, implies that u∗(α, β, z) is differentiable in β. Furthermore, the uniqueness
guaranteed by the implicit function theorem and the Γ-equivariance of f and L
imply that

(γ, θ)u∗(α, β, z) = u∗(α, β, z), (γ, θ) ∈ Σ.

Consequently, all ω-periodic solutions of (2.18) are obtained by finding solutions
(α, β, z) of the bifurcation equation

JN(α, β, u∗· (α, β, z), u
∗
·,β(α, β, z)) = 0.(2.20)
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As noted in the proof of Lemma 2.5, g ∈ TPω if and only if∫ ω

0

e−B(α0)sΨα0(0)g(s) ds = 0.

So the bifurcation equation is equivalent to∫ ω

0

e−B(α0)sΨα0(0)N(α, β, u∗x(α, β, z), u∗s,β(α, β, z)) ds = 0.(2.21)

Let H : R2m → Uiβ0(A(α0)) denote the isomorphism defined in the proof of
Lemma 2.4. Then there exists a vector w1 = (w11, w21)T ∈ R2m, w11, w12 ∈ Rm,
such that (δ1, δ2) = H( w11 −w21

w21 w11
). Define G : R× R+ × R2 → R2m by

G(α, β, z) =
∫ ω

0

e−B(α0)sΨα0(0)N(α, β, u∗s(α, β, z), u
∗
s,β(α, β, z)) ds.

One can easily verify that

(γ, θ)G(z)

=
∫ ω

0

e−B(α0)(s−θ)TgΨα0(0)N(α, β, u∗s(α, β, z), u
∗
s,β(α, β, z)) ds

=
∫ ω

0

e−B(α0)(s−θ)Ψα0(0)γN(α, β, u∗s(α, β, z), u
∗
s,β(α, β, z)) ds

=
∫ ω

0

e−B(α0)(s−θ)Ψα0(0)N(α, β, γu∗s(α, β, z), γu
∗
s,β(α, β, z)) ds

=
∫ ω

0

e−B(α0)(s−θ)Ψα0(0)N(α, β, u∗s−θ(α, β, z), u
∗
s−θ,β(α, β, z)) ds

=
∫ ω

0

e−B(α0)sΨα0(0)N(α, β, u∗s(α, β, z), u
∗
s,β(α, β, z)) ds

= G(Z)

for (γ, θ) ∈ Σ. So G(R×R+×R2) is contained in the two-dimensional subspace of
R2m spanned by w1 = (w11, w21)T and w2 = (−w21, w11)T . Clearly, G(α, β, 0) = 0
and

G(α, β, z) = M(α, β)z + o(|z|),
where

M(α, β)z =
∫ ω

0

e−B(α)sΨα0(0)[(1 + β)L(α)v∗s,β(α, β) − L(α0)v∗s (α, β)]z ds

and

v∗(α, β)z = Ψα0(0)eB(α0)·(w1, w2)z +KJ [(1 + β)L(α)v∗·,β(α, β) − L(α0)v∗· (α, β)]z.

So,

v∗(α0, β)z = Ψα0(0)e(1+β)B(α0)·(w1, w2)z.

Hence,

M(α, β)z = β

∫ ω

0

e−B(α0)sΨα0(0)Φα0(0)eB(α0)sB(α0)(w1, w2)z ds

= β

∫ ω

0

(Ψα0 ,Φα0)α0B(α0)(w1, w2)z ds.
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Therefore,
∂

∂β
M(α0, β)z|β=0

=
∫ ω

0

(Ψα0 ,Φα0)α0B(α0)(w1, w2)z ds

= ω(Ψα0 ,Φα0)α0B(α0)(w1, w2)z

= (w1, w2)ω(Ψα0 ,Φα0)α0

(
0 β0

−β0 0

)
z.

Moreover, by Lemma 2.2, we have
∂

∂α
M(α, β0)z|α=α0

=
∫ ω

0

e−B(α0)sΨα0L(α0)Φα0e
B(α0)s(w1, w2)z ds

= −
∫ ω

0

e−B(α0)s(Ψα0 ,Φα0)α0B
′(α0)eB(α0)s(w1, w2)z ds

= −(w1, w2)ω(Ψα0 ,Φα0)α0

(
Reλ′(α0) − Imλ′(α0)
Imλ′(α0) Reλ′(α0)

)
z.

Consequently, we get[
∂

∂α
M(α, β),

∂

∂β
M(α, β)

]
α=α0,β=β0

z

= ω

( −Reλ′(α0) β + Imλ′(α0)
−β0 − Imλ′(α0) Reλ′(α0)

)
z.

(2.22)

As G commutes with the S1-action, we have
G(α, β, z) = M(α, β)z + o(|z|)

= p(α, β)
(
z1
z2

)
+ q(α, β)

(−z2
z1

)
+ o(|z|).

So, (2.22) implies that
∂

∂α
p(α, β0)|α=α0 = −ωReλ′(α0),

∂

∂α
q(α, β0)|α=α0 = Imλ′(α0),

∂

∂β
p(α0, β)|β=β0 = 0,

∂

∂β
q(α0, β)|β=β0 = −ωβ0.

The remainder of the proof proceeds exactly as in the proof of the standard Hopf
bifurcation theorem (cf. Hale [27]), and therefore is omitted.

3. A topological global Hopf bifurcation theorem

Theorem 2.1 enables us to detect generic Hopf bifurcations of periodic solutions.
It also describes the spatial-temporal symmetry of the bifurcated periodic solu-
tions. Therefore, one can often obtain a reduced system of functional differential
equations which characterizes the bifurcated periodic solutions. In particular, for
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the delayed neural network to be studied in subsequent sections, generic periodic
solutions are discrete waves, mirror-reflecting waves and standing waves which are
completely characterized by a scalar functional differential equation with the period
as an additional parameter. Due to this additional parameter, the reduced scalar
functional differential equations have several discrete delayed and advanced argu-
ments. This motivates us to consider the local existence and global continuation of
periodic solutions for functional differential equations of mixed type and with two
parameters.

We will need the following S1-bifurcation theory for a coincidence problem with
two parameters. Let E be a real isometric Banach representation of the group
G = S1. The isotypical direct sum decomposition is denoted by

E = E0 ⊕ E1 ⊕ · · · ⊕ Ek ⊕ · · · ,
where E0 = EG := {x ∈ G; gx = x for all g ∈ G} is the subspace of G-fixed
points, and for k ≥ 1, x ∈ Ek\{0} implies Gx, the isotropy group of x, is Zk :=
{g ∈ G; gk = 1}. For simplicity, we assume that each Ek, k = 0, 1, . . . , is of finite
dimension.

All subspaces Ek, k ≥ 1, admit a natural structure of complex vector spaces
such that an R-linear operator A : Ek → Ek is G-equivariant if and only if it is
C-linear with respect to this complex structure. Therefore, by choosing a basis in
Ek, k ≥ 1, we can define an isomorphism between the group of all G-equivariant au-
tomorphisms of Ek, denoted by GLG(Ek), and the general linear group GL(mk,C),
where mk = dimC Ek.

For a topological space X , we denote by [S1, X ] the set of homotopy classes
of continuous maps β : S1 → X . Let C∗ := C\{0} be a continuous map. The
correspondence [β] → degB(β), where degB denotes the Brouwer degree, defines
the bijection of [S1,C∗] onto Z. It is well-known that there exists a canoni-
cal bijection ∇ : [S1, GL(n,C)] → Z defined by ∇([α]) := degB(detC α), where
α : S1 → GL(n,E) and detC : GL(n,C) → C∗ is the usual determinant homomor-
phism. Moreover, if αi : S1 → GL(ni,C), i = 1, 2, are two continuous maps, then
∇([α1 ⊕ α2]) = ∇([α1]) · ∇([α2]), where α1 ⊕ α2 : S1 → GL(n1 + n2,C) is the
canonical direct sum of α1 and α2.

Let F be another Banach isometric representation of G, and L : E → F be a
given equivariant linear bounded Fredholm operator of index zero. We assume that
L has an equivariant compact resolvent K : E → F. That is, K is equivariant and
L+K : E → F is an isomorphism.

In what follows, a point of the Banach space E × R2 is denoted by (x, λ) with
x ∈ E and λ ∈ R2, and the action of G on E × R2 is defined by g(x, λ) = (gx, λ)
for every g ∈ G.

We consider a G-equivariant continuous map f : E× R2 → F such that

f(x, λ) = Lx−Q(x, λ), (x, λ) ∈ X × R2,

where Q : E×R2 → F is a completely continuous map and the following assumption
is satisfied

(B1) There exists a two-dimensional submanifold N ⊂ E0 × R2 such that (i)
N ⊂ f−1(0); (ii) if (x0, λ0) ∈ N , then there exists an open neighbourhood
Uλ0 of λ0 in R2, an open neighbourhood Ux0 of x0 in E0, and a C1-map
η : Ux0 → E0 such that N ∩ (Ux0 × Uλ0) = {(η(λ), λ);λ ∈ Uλ0}.
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We further assume that at all points (x0, λ0) ∈ N the derivative Dxf(x0, λ0) : E
→ F of f with respect to x exists and is continuous on N . We say that (x0, λ0)
∈ N is E-singular if Dxf(x0, λ0) : E → F is not an isomorphism. An E-singular
point (x0, λ0) is isolated if there are no other E-singular points in some neighbour-
hood of (x0, λ0).

Suppose that (x0, λ0) ∈ N is an isolated E-singular point. We identify R2 with
C, and for sufficiently small ρ > 0, we define α : D → N , D := {z ∈ C; |z| ≤ 1}, by

α(z) = (η(λ0 + ρz), λ0 + ρz) ∈ E0 × R2.

Let

h(x, λ) = x− (L+K)−1(Kx+Q(x, λ)), (x, λ) ∈ X ⊕ R2.

Clearly, the formula Ψ(z) := Dxh(α(z)), z ∈ ∂D, defines a continuous mapping
Ψ: S1 → GLG(E) which has the decomposition Ψ = Ψ0 ⊕ Ψ1 ⊕ · · · ⊕ Ψk ⊕ · · · ,
where Ψ0 : S1 → GL(E0) and Ψk : S1 → GLG(Ek) for k = 1, 2, . . . . We now define

ε = sign detΨ0(z), z ∈ S1,

and

γk(x0, λ0) = ε∇([Ψk]), k = 1, 2, . . . .

Geba and Marzantowicz [21] established the following global bifurcation result
by applying the S1-degree theory due to Dylawerski, Geba, Jodel and Marzantowicz
[12].

Theorem 3.1. Suppose that f satisfies (B1). If (x0, λ0) ∈ N is an isolated E-
singular point such that γk(x0, λ0) 6= 0 for some k ≥ 1, then there exists a sequence
(xn, λn) ∈ f−1(0)\N such that (xn, λn) → (x0, λ0) as n → ∞ and Zk ⊂ Gxn for
each n ≥ 1. Moreover, if we assume that N is complete and every E-singular point
in N is isolated, then for each bounded connected component P of S(f), where S(f)
denotes the closure of the set f−1(0)\N , the set P ∩ S(f) is finite and∑

(x,λ)∈P∩S(f)

γk(x, λ) = 0

for every positive integer k.

With the above preparation, we can now consider global Hopf bifurcations for
general functional differential equations of mixed type with two parameters.

Let X denote the Banach space of bounded continuous mappings x : R → Rn

equipped with the supremum norm. For reasons discussed at the beginning of this
section, we will consider functional differential equations with both delayed and
advanced arguments. Therefore, for x ∈ X and t ∈ R, we will use xt to denote an
element in X defined by xt(s) = x(t+ s) for s ∈ R.

Consider the following functional differential equation

ẋ(t) = F (xt, α, p)(3.1)

parametrized by two real numbers (α, p) ∈ R×R+, where R+ = (0,∞) and F : X×
R× R+ → Rn is completely continuous. Identifying the subspace of X consisting
of all constant mappings with Rn, we obtain a mapping F̂ = F |Rn×R×R+ : Rn×R×
R+ → Rn. We require

(A1) F̂ is twice continuously differentiable.
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Denote by x̂0 ∈ X the constant mapping with the value x0 ∈ Rn. We call
(x̂0, α0, p0) a stationary solution of (3.1) if F̂ (x0, α0, p0) = 0. We assume

(A2) At each stationary solution (x̂0, α0, p0), the derivative of F̂ (x, α, p) with
respect to the first variable x, evaluated at (x̂0, α0, p0), is an isomorphism
of Rn

Under (A1)–(A2), for each stationary solution (x̂0, α0, p0) there exists ε0 > 0 and
a continuously differentiable mapping y : Bε0(α0, p0) → Rn such that F̂ (y(α, p), α, p)
= 0 for (α, p) ∈ Bε0(α0, p0) = (α0 − ε0, α0 + ε0)× (p0 − ε0, p0 + ε0).

We need the following smoothness condition:
(A3) F (ϕ, α, p) is differentiable with respect to ϕ, and the n× n complex matrix

function ∆(ŷ(α,p),α,p)(λ) is continuous in (α, p, λ) ∈ Bε0(α0, p0) × C. here,
for each stationary solution (x̂0, α0, p0), we have ∆(x̂0,α0,p0)(λ) = λ Id−
DF (x̂0, α0, p0)(eλ· Id), where DF (x̂0, α0, p0) is the complexification of the
derivative of F (ϕ, α, p) with respect to ϕ, evaluated at (x̂0, α0, p0).

For easy reference, we will again call ∆(x̂0,α0,p0)(λ) the characteristic matrix
and the zeros of det∆(x̂0,α0,p0)(λ) = 0 the characteristic values of the stationary
solution (x̂0, α0, p0). So, (A2) is equivalent to assuming that 0 is not a characteristic
value of any stationary solution of (3.1).

Definition 3.1. A stationary solution (x̂0, α0, p0) is called a center if it has purely
imaginary characteristic values of the form im 2π

p0
for some positive integer m. A

center (x̂0, α0, p0) is said to be isolated if (i) it is the only center in some neighbor-
hood of (x̂0, α0, p0); (ii) it has only finitely many purely imaginary characteristic
values of the form im 2π

p0
, m is an integer.

Assume now (x̂0, α0, p0) is an isolated center. Let J(x̂0, α0, p0) denote the set of
all positive integers m such that im 2π

p0
is a characteristic value of (x̂0, α0, p0). We

assume that there exists m ∈ J(x̂0, α0, p0) such that
(A4) There exist ε ∈ (0, ε0) and δ ∈ (0, ε0) so that on [α0 − δ, α0 + δ] × ∂Ωε,p0 ,

det∆(ŷ(α,p),α,p)(u + im 2π
p ) = 0 if and only if α = α0, u = 0, p = p0, where

Ωε,p0 = {(u, p); 0 < u < ε, p0 − ε < p < p0 + ε}.
Let

H±(x̂0, α0, p0)(u, p) = det∆(ŷ(α0±δ,p),α0±δ,p)

(
u+ im

2π
p

)
.

Then (A4) implies that H±
m(x̂0, α0, p0) 6= 0 on ∂Ωε,p0 . Consequently, the following

integer

γm(x̂0, α0, p0) = degB(H−
m(x̂0, α0, p0),Ωε,p0)− degB(H+

m(x̂0, α0, p0),Ωε,p0)

is well defined.

Definition 3.2. γm(x̂0, α0, p0) is called the mth crossing number of (x̂0, α0, p0).

We will show that γm(x̂0, α0, p0) 6= 0 implies the existence of a local bifurcation
of periodic solutions with periods near p0/m. More precisely, we have the following:

Theorem 3.2. Assume that (A1)–(A3) are satisfied, and that there exists an iso-
lated center (x̂0, α0, p0) and an integer m ∈ J(x̂0, α0, p0) such that (A4) holds and
γm(x̂0, α0, p0) 6= 0. Then there exists a sequence (αk, pk) ∈ R× R+ so that

(i) limk→∞(αk, pk) = (α0, p0);
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(ii) at each (α, p) = (αk, pk), (3.1) has a non-constant periodic solution xk(t)
with a period pk/m.

(iii) limk→∞ xk(t) = x̂0, uniformly for t ∈ R.

To describe the global continuation of the local bifurcation obtained in Theo-
rem 3.2, we need to assume
(H5) All centers of (3.1) are isolated and (A4) holds for each center (x̂0, α0, p0)

and each m ∈ J(x̂0, α0, p0).
(H6) For each bounded set W ⊆ X ×R×R+ there exists a constant L > 0 such

that |F (ϕ, α, p)−F (ψ, α, p)| ≤ L sups∈R |ϕ(s)−ψ(s)| for (ϕ, α, p), (ψ, α, p) ∈
W .

Theorem 3.3. Let

Σ(F ) = Cl{(x, α, p); x is a p-periodic solution of (3.1)} ⊂ X × R× R,
N(F ) = {(x̂, α, p);F (x̂, α, p) = 0}.

Assume that (x̂0, α0, p0) is an isolated center satisfying conditions in Theorem 3.2.
Denote by C(x̂0, α0, p0) the connected component of (x̂0, α0, p0) in Σ(F ). Then
either

(i) C(x̂0, α0, p0) is unbounded, or
(ii) C(x̂0, α0, p0) is bounded, C(x̂0, α0, p0) ∩N(F ) is finite and∑

(x̂,α,p)∈C(x̂0,α0,p0)∩N(F )

γm(x̂, α, p) = 0(3.2)

for all m = 1, 2, . . . , where γm(x̂, α, p) is the mth crossing number of (x̂, α, p)
if m ∈ J(x̂, α, p), or it is zero if otherwise.

Proof of Theorems 3.2 and 3.3. Put S1 = R/2πZ, E = L1(S1; Rn), M=L2(S1; Rn).
Define L : E →M and Q : E× R× R+ →M by

Lz = ż(t), Q(z, α, p)(t) =
p

2π
F (zt,p, α, p),

where

zt,p(θ) = z

(
t+

2π
p
θ

)
, θ ∈ R.

Clearly, x(t) is a p-periodic solution of (3.1) if and only if z(t) = x( p
2π t) is a solution

in E of the operator equation Lz = Q(z, α, p).
E and F are isometric Hilbert representations of the group S1, where S1 acts

by shifting the argument. With respect to these S1-actions, L is an equivariant
bounded linear Fredholm operator of index zero with an equivariant compact resol-
vent K, and Q is an S1-equivariant compact mapping. Moreover, at (ŷ(α, p), α, p)
with (α, p) ∈ D := (α0−δ, α0 +δ)× (p0−ε, p0 +ε), the derivative of Q with respect
to the first variable is given by

DzQ(ŷ(α, p), α, p)z(t) =
p

2π
DF (ŷ(α, p), α, p)zt,p.

Identifying ∂D with S1, as (x̂0, α0, p0) is an isolated center we can easily show that
the mapping Id−(L + K)−1[K + DzF (ŷ(α, p), α, p)] is an isomorphism of E and
that the mapping Ψ: S1 → GL(E) defined by

(α, p) ∈ ∂D ∼= S1 → Id−(L+K)−1[K +DzF (ŷ(α, p), α, p)] ∈ GL(E)

is continuous.
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E has the well-known isotypical decomposition E =
⊕∞

k=0 Ek, where E0
∼= Rn

and for each k ≥ 1, Ek is spanned by cos(kt)εj and sin(kt)εj , 1 ≤ j ≤ n, where
{ε1, . . . , εn} is the standard basis of Rn. So, we have Ψ(α, p)Ek ⊆ Ek. Let
Ψk(α, p) = Ψ(α, p)|Ek

. It is not difficult to show that

Ψk(α, p) =
p

i2kπ
∆(ŷ(α,p),α,p)

(
ik

2π
p

)
.

Let

ε = signdetΨ0(α, p), (α, p) ∈ ∂D.
nk(x̂0, α0, p0) = ε degB(det Ψk(·),D), k = 1, 2, . . . .

Then one can show, as in Erbe, Geba, Krawcewicz and Wu [13], that γk(x̂0, α0, p0) =
nk(x̂0, α0, p0) and therefore Theorems 3.2 and 3.3 are simply an immediate conse-
quence of Theorem 3.1 with N = {(x̂0, α0, p0) ∈ Rn × R× R+;F (x̂0, α0, p0) = 0}.
This completes the proof.

4. Applications to delayed neural networks:
Local existence and asymptotic forms of waves

We now consider the following system of delay-differential equations

Ciu̇i(s) = − 1
Ri
ui(s) +

n∑
j=1

Tijfj(uj(s− τj)), 1 ≤ i ≤ n,

which describes the evolution of a network of n saturating voltage amplifiers
(neurons) with delayed output coupled via a resistive interconnection matrix, where
the variable ui represents the voltage on the input of the ith neuron, and each neu-
ron is characterized by an input capacitance Ci, and a transfer function fi which
is sigmoidal, saturating at ±1 with maximum slope at u = 0. More precisely, the
transfer function fi satisfies the following condition:

(TF) fi : R → R is twicely continuously differentiable, strictly increasing, f(0) =
0, limx→±∞ fi(x) = ±1 and xf ′′i (x) < 0 if x 6= 0.

T = (Tij) is called the interconnection matrix where Tij has a value (Rij)−1 when
the noninverting output of the jth neuron is connected to the input of the ith neuron
through a resistance Rij , and a value −(Rij)−1 when the inverting output of the
jth neuron is connected to the input of the ith neuron through a resistance Rij .
Ri = (

∑n
j=1 |Tij |)−1 is called the parallel resistance at the input of the ith neuron.

The system was proposed by Hopfield [33, 34] and the time delay was incorporated
by Marcus and Westervelt [47] to account for the finite switching speed of amplifiers.
Similar systems were also investigated by Cohen and Grossberg [10].

We will concentrate on the case of identical neurons Ci = C, τi = τ∗, fi = f ,
Ri = R, 1 ≤ i ≤ n. Rescaling time, delay and Tij by

t = s/RC, τ = τ∗/RC, Jij = RTij ,

we obtain the following normalized system

u̇i(t) = −ui(t) +
n∑

j=1

Jijf(uj(t− τ)), 1 ≤ i ≤ n.(4.1)
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Clearly, Jij has the following normalization property
n∑

j=1

|Jij | = 1.(4.2)

In what follows, J = (Jij) will be called the normalized interconnection matrix, and
RC the characteristic network relaxation time.

We further assume that the normalized interconnection matrix J is a symmetric
circulant matrix, i.e. Jij = aj−i+1, where ai = an−i+2 and the subscripts ak are
written modulo n, so a0 = an, a−1 = an−1, etc. We will denote this by

Jij = circ(a1, a2, . . . , an).

Circulant interconnection matrix includes the following four important special cases:

JE =
1

n− 1
circ(0, 1, . . . , 1),

JI =
1

n− 1
circ(0,−1, . . . ,−1),

JRE =
1
2

circ(0, 1, 0, 0, . . . , 0, 1),

JIE =
1
2

circ(0,−1, 0, 0, . . . , 0,−1)

which represents all-excitatory or ferromagnetic networks, all-inhibitory or antifer-
omagnetic networks, symmetrically connected excitatory rings and symmetrically
connected inhibitory rings of neurons, respectively.

We will consider the Hopf bifurcation of periodic solutions of (4.1) with a circu-
lant interconnection matrix J = circ(a1, . . . , an). The linearization of (4.1) at the
trivial solution leads to

u̇i(t) = −ui(t) + β
n∑

j=1

Jijuj(t− τ), 1 ≤ i ≤ n,(4.3)

here

β = f ′(0)

is called the neuron gain. Regarding τ as the parameter, we first determine when
the infinitesimal generator Aτ of (4.3) has a pair of purely imaginary eigenvalues.
Some version of the following result has appeared in Belair [6] and Braddock and
van den Driessche [7], we include the proof for the completeness of the presentation.

Lemma 4.1. Let γ = Reiθ, 0 ≤ θ < 2π, and consider

q(λ) = λ+ 1− γe−λτ .

(i) If R ≤ 1, then q(λ) has no purely imaginary zeros for all τ ≥ 0;
(ii) If R > 1, then for any integer k such that τk := (θ−arccos 1

R+2kπ)/
√
R2 − 1

> 0, q(λ) has one and only one pair of purely imaginary zeros ±i√R2 − 1
if τ = τk, and has no pair of purely imaginary zeros if 0 < τ 6= τk for all
such k’s;

(iii) If R > 1 and τk > 0 for some k, then there exist a sufficiently small δ > 0
and a smooth curve λ : (τk − δ, τk + δ) → C such that q(λ(τ)) = 0 for all
τ ∈ (τk − δ, τk + δ), λ(τk) = i

√
R2 − 1 and d

dλ Reλ(τ)|τ=τk
> 0.
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Proof. For any x > 0, we have

q(ix) = ix+ 1− Rei(θ−τx)

=
√

1 + x2ei arctan x − Rei(θ−τx) .

So, q(ix) = 0 if and only if{√
1 + x2 = R,

arctanx = θ − τx + 2kπ for some integer k

from which the conclusions (i) and (ii) follow.
As

∂

∂λ
q(λ)|λ=i

√
R2−1,τ=τk

= 1 + rτe−λτ |λ=i
√

R2−1,τ=τk

= 1 + τk(i
√
R2 − 1 + 1) 6= 0,

there exist δ > 0 and a smooth curve λ : (τk − δ, τk + δ) → C such that q(λ(τ)) = 0
and λ(τk) = i

√
R2 − 1. Differentiating q(λ(τ)) = 0 with respect to τ , we get

λ′(τk) =
−γλ(τk)e−λ(τk)τk

1 + τkγe−λ(τk)τk
=
−λ(τk)[λ(τk) + 1]
1 + τk[λ(τk) + 1]

.

Therefore,

Reλ′(τk) =
R2 − 1

(1 + τk)2 + τ2
k (R2 − 1)

> 0.

This completes the proof.

To apply the previous lemma to system (4.3), we put

ξ = ei 2π
n ,

Wr = (1, ξr, . . . , ξ(n−1)r)T , 0 ≤ r ≤ n− 1.

Clearly, {W0, . . . ,Wn−1} spans Cn. The eigenvalues of Aτ of (4.3) are determined
by the equation

det∆(τ, λ) = 0,

where

∆(τ, λ) = (λ+ 1) Id−βe−λτJ.

Note that

(∆(τ, λ)Wr)i = (λ+ 1)ξ(i−1)r − βe−λτ
n∑

j=1

Jijξ
(j−1)r

= [λ+ 1− βe−λτ
n∑

j=1

aj−i+1ξ
(j−i)r ]ξ(i−1)r

= (λ+ 1− αrβe
−λτ )ξ(i−1)r ,

where

αr =
n−1∑
k=0

ak+1ξ
kr .(4.4)
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So,

∆(τ, λ)Wr = (λ + 1− αrβe
−λτ )Wr

and hence,

det∆(τ, λ) −
n−1∏
r=0

(λ+ 1− αrβe
−λτ ).

Applying Lemma 4.1 to each factor of the above product, we get

Lemma 4.2. Assume that there exists r ∈ {0, . . . , n− 1} such that |αrβ| > 1. Let

αr = |αr|eiθr , 0 ≤ θr < 2π,

τr,k =
1√|αrβ|2 − 1

[
θr − arccos

1
|αrβ| + 2kπ

]
, k = 0,±1,±2, . . . .

Then
(i) For each k = 0,±1,±2, . . . such that τr,k > 0, the generator of (4.3) has a

pair of purely imaginary eigenvalues ±i√|αrβ|2 − 1 and the corresponding

generalized eigenspace U
i
√
|αrβ|2−1

(Aτr,k
) consists of vectors Re(ei

√
|αrβ|−1·b)

and Im(ei
√
|αrβ|2−1·b) such that b ∈ ker∆(τr,k, i

√|αrβ|2 − 1);
(ii) For each k = 0,±1,±2, . . . such that τr,k > 0, there exist δ > 0 and a

smooth function λ : (τr,k − δ, τr,k + δ) → C such that det∆(τ, λ(τ)) = 0,
dimUλ(τ)(Aτ ) = dimU

i
√
|αrβ|2−1

(Aτr,k
) for τ ∈ (τr,k−δ, τr,k +δ), λ(τr,k) =

i
√
R2 − 1 and d

dr Reλ(τ) > 0 at τ = τr,k.

We now explore the symmetry in system (4.1). Let Γ = Dn be the dihedral
group of order 2n. Γ acts on Rn by

(ρx)j = xj−1, (κx)j = xn−j , j(modn),

where ρ is the generator of the cyclic subgroup Zn and κ is the flip. Clearly, system
(4.1) is Γ-equivariant. It is an easy exercise to verify the following:

Lemma 4.3. Assume that there exists r ∈ {0, . . . , [n
2 ]} such that |αrβ| > 1 and

αj 6= αr for all 0 ≤ j 6= r ≤ [n
2 ].

(i) If 2r 6= 0, n, then dim ker∆(τr,k, i
√|αrβ|2 − 1) = 4 (as a real vector space)

for any integer k such that τr,k > 0. Moreover, there exists a 2-dimensional
absolutely irreducible representation R2 of Γ such that ker∆(τr,k,i

√|αrβ|2−1)
is Γ-isomorphic to R2 ⊕ R2;

(ii) If r = 0 or n
2 (in the later case, n must be even), then

dim ker∆(τr,k, i
√
|αrβ|2 − 1) = 2

(as a real vector space) for any integer k such that τr,k > 0.

Assume now that |αrβ| > 1 for some r ∈ {0, . . . , [n
2 ]}. Let ω = 2π√

|αrβ|2−1
, and

define
Pω = the Banach space of all continuous ω-periodic mappings

from R into Rn, equipped with the supremum norm;
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SPω = the subspace of Pω consisting of all ω-periodic solutions

of (4.3), where τ = τr,k.

Clearly, for any θ ∈ (0, ω),

Σθ = {(ρj, ei 2π
ω θj); 0 ≤ j ≤ n− 1}

is a subgroup of Γ× S1. We first consider

Fix(σθ, SPω) = {x ∈ SPω; ρx(t) = x(t− θ), t ∈ R}
= {x ∈ SPω;xi−1(t) = xi(t− θ), t ∈ R, i(modn)}.

Lemma 4.4. Assume that |αrβ| > 1 for some r ∈ {0, . . . , [n
2 ]}, and αj 6= αr for

all 0 ≤ j 6= r ≤ [n
2 ]. Then

Fix(Σθ, SPω) =


{x1ε1 + x2ε2;x1, x2 ∈ R} if θ =

r

n
ω,

{x3ε3 + x4ε4;x3, x4 ∈ R} if θ =
n− r

n
ω,

{0} if θ 6∈
{
r

n
ω,
n− r

n
ω

}
where 

ε1 = cosω ReWr − sinω ImWr,

ε2 = sinω ReWr + cosω ImWr,

ε3 = cosω ReWr + sinω ImWr,

ε4 = sinω ReWr − cosω ImWr

and cosω ∈ Pω, sinω ∈ Pω and defined by
cosω t = cos

(
2π
ω
t

)
,

sinω t = sin
(

2π
ω
t

)
, t ∈ R.

In particular,

dim Fix(Σθ, SPω) =

2 if θ =
r

n
ω or

n− r

n
ω,

0 otherwise.

Proof. Note that

ρ · ReWr = cos
2πr
n

ReWr + sin
2πr
n

ImWr,

ρ · ImWr = − sin
2πr
n

ReWr + cos
2πr
n

ImWr,

cosω(t+ θ) = cos
(

2π
ω
t

)
cos
(

2π
ω
θ

)
− sin

(
2π
ω
t

)
sin
(

2π
ω
θ

)
,
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sinω(t+ θ) = sin
(

2π
ω
t

)
cos
(

2π
ω
θ

)
+ cos

(
2π
ω
t

)
sin
(

2π
ω
θ

)
.

Consequently,

ρ · (x1ε1 + x2ε2 + x3ε3 + x4ε4)

= x1 cosω

[
cos

2πr
n

ReWr + sin
2πr
n

ImWr

]
− x1 sinω

[
− sin

2πr
n

ReWr + cos
2πr
n

ImWr

]
+ x2 sinω

[
cos

2πr
n

ReWr + sin
2πr
n

ImWr

]
+ x2 cosω

[
− sin

2πr
n

ReWr + cos
2πr
n

ImWr

]
+ x3 cosω

[
cos

2πr
n

ReWr + sin
2πr
n

ImWr

]
+ x3 sinω

[
− sin

2πr
n

ReWr + cos
2πr
n

ImWr

]
+ x4 sinω

[
cos

2πr
n

ReWr + sin
2πr
n

ImWr

]
− x4 cosω

[
− sin

2πr
n

ReWr + cos
2πr
n

ImWr

]
= x1 cos

2πr
n

[cosω ReWr − sinω ImWr ]

+ x1 sin
2πr
n

[cosω ImWr + sinω ReWr]

+ x2 cos
2πr
n

[sinω ReWr + cosω ImWr]

+ x2 sin
2πr
n

[sinω ImWr − cosω ReWr]

+ x3 cos
2πr
n

[cosω ReWr + sinω ImWr]

+ x3 sin
2πr
n

[cosω ImWr − sinω ReWr]

+ x4 cos
2πr
n

[sinω ReWr − cosω ImWr]

+ x4 cos
2πr
n

[sinω ImWr + cosω ReWr]

=
(
x1 cos

2πr
n

− x2 sin
2πr
n

)
ε1 +

(
x1 sin

2πr
n

+ x2 cos
2πr
n

)
ε2

+
(
x3 cos

2πr
n

+ x4 sin
2πr
n

)
ε3 +

(
−x3 sin

2πr
n

+ x4 cos
2πr
n

)
ε4,
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and

(x1ε1 + x2ε2 + x3ε3 + x4ε4)(·+ θ)

= x1

[
cosω cos

2π
ω
θ − sinω sin

2π
ω
θ

]
ReWr

− x1

[
sinω cos

2π
ω
θ + cosω sin

2π
ω
θ

]
ImWr

+ x2

[
sinω cos

2π
ω
θ + cosω sin

2π
ω
θ

]
ReWr

+ x2

[
cosω cos

2π
ω
θ − sinω sin

2π
ω
θ

]
ImWr

+ x3

[
cosω cos

2π
ω
θ − sinω sin

2π
ω

]
ReWr

+ x3

[
sinω cos

2π
ω
θ + cosω sin

2π
ω
θ

]
ImWr

+ x4

[
sinω cos

2π
ω
θ + cosω sin

2π
ω
θ

]
ReWr

− x4

[
cosω cos

2π
ω
θ − sinω sin

2π
ω
θ

]
ImWr

= x1 cos
2π
ω
θ[cosω ReWr − sinω ImWr]

− x1 sin
2π
ω
θ[sinω ReWr + cosω ImWr]

+ x2 cos
2π
ω
θ[sinω ReWr + cosω ImWr]

+ x2 sin
2π
ω
θ[cosω ReWr − sinω ImWr]

+ x3 cos
2π
ω
θ[cosω ReWr + sinω ImWr]

+ x3 sin
2π
ω
θ[− sinω ReWr + cosω ImWr ]

+ x4 cos
2π
ω
θ[sinω ReWr − cosω ImWr]

+ x4 sin
2π
ω
θ[cosω ReWr + sinω ImWr]

=
(
x1 cos

2π
ω
θ + x2 sin

2π
ω
θ

)
ε1 +

(
−x1 sin

2π
ω
θ + x2 cos

2π
ω
θ

)
ε2

+
(
x3 cos

2π
ω
θ + x4 sin

2π
ω

)
ε3 +

(
−x3 sin

2π
ω
θ + x4 cos

2π
ω
θ

)
ε4.

Consequently, in order for the following equality

ρ · (x1ε1 + x2ε2 + x3ε3 + x4ε4)

= (x1ε1 + x2ε2 + x3ε3 + x4ε4)(·+ θ)
(4.5)
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to hold, we must have

x1 cos
2πr
n

− x2 sin
2πr
n

= x1 cos
2πr
n
θ + x2 sin

2π
n
θ

x1 sin
2πr
n

+ x2 cos
2πr
n

= −x1 sin
2π
n
θ + x2 cos

2π
ω
θ

x3 cos
2πr
n

+ x4 sin
2πr
n

= x3 cos
2π
ω
θ + x4 sin

2π
ω
θ

x4 cos
2πr
n

− x3 sin
2πr
n

= x4 cos
2π
ω
θ − x3 sin

2π
ω
θ.

Consequently, (4.5) holds if and only if

θ =
n− r

n
ω, x3 = x4 = 0, x1, x2 ∈ R, or

θ =
r

n
ω, x1 = x2 = 0, x3, x4 ∈ R, or

θ 6= n− r

n
ω,

r

n
ω, x1 = x2 = x3 = x4 = 0.

Clearly,

SPω = {x1ε1 + x2ε2 + x3ε3 + x4ε4;x1, x2, x3, x4 ∈ R}.
The conclusion thus follows.

Note that

Σm = {(κ, 1), (1, 1)}
and

Σs = {(κ,−1), (1, 1)}
are also subgroups of Γ × S1. A similar argument to that of Lemma 4.4 leads to
the following:

Lemma 4.5. Assume that |αrβ| > 1 for some r ∈ {0, . . . , [n
2 ]}, and αj 6= αr for

all 0 ≤ j 6= r ≤ [n
2 ]. Then

Fix(Σm, SPω) =

{
4∑

i=1

xiεi ;x3 = x1 cos
4π
n
− x2 sin

4π
n
,

x4 = x1 sin
4π
n

+ x2 cos
4π
n
, x1, x2 ∈ R

}
and

Fix(Σs, SPω) =

{
4∑

i=1

xiεi ;x3 = −x1 cos
4π
n

+ x2 sin
4π
n
,

x4 = − x1 sin
4π
n
− x2 cos

4π
n
, x1, x2 ∈ R

}
.

In particular, dim Fix(Σm, SPω) = dim Fix(Σs, SPω) = 2.

Lemmas 4.2–4.5 enable us to apply Theorem 2.1 to obtain the following result
on the existence of smooth local Hopf bifurcations of wave solutions:
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Theorem 4.1. Assume that there exists r ∈ {0, . . . , [n
2 ]} such that |αrβ| > 1. Fix

an integer k such that τr,k > 0. Assume also that

(NR)
√|αiβ|2 − 1/

√|αrβ|2 − 1 is not an integer for any i ∈ {0, . . . , [n
2 ]} such

that i = r, |αiβ| > 1 and τi,k∗ = τr,k for some integer k∗.
Then near τr,k there exist three branches of small-amplitude periodic solutions of
(4.1) with period near 2π√

|αrβ|2−1
and satisfying

ui−1(t) = ui

(
t− r

n
p
)
, i(modn), or(4.6)

un−i(t) = ui(t), i(modn), or(4.7)

un−i(t) = ui

(
t− p

2

)
, i(modn).(4.8)

More precisely, we have
(i) there exist constants ad > 0, δd > 0 and continuously differential functions

τd(x1, x2), pd(x1, x2) and pd(x1, x2)-periodic function ud(x1, x2), where
(x1, x2)T ∈ R2 and |x1|+ |x2| < ad, such that
(a) at τ = τd(x1, x2), ud(x1, x2) is a pd(x1, x2)-periodic solution of (4.1)

satisfying (4.6);
(b) ud(0, 0) = 0, pd(0, 0) = 2π√

|αrβ|2−1
, τd(0, 0) = τr,k;

(c) ud(x1, x2) = x1ε1 + x2ε2 + o(|x1|+ |x2|) as |x1|+ |x2| → 0.
Moreover, for |τ−τr,k| < δ, |p− 2π√

|αrβ|2−1
| < δ, every p-periodic solution of

(4.1) with sup |x(t)|t∈R < δ and satisfying (4.6) must be of the above type.
(ii) there exist constants am > 0, δm > 0 and continuously differential functions

τm(x1, x2), pm(x1, x2) and pm(x1, x2)-periodic function um(x1, x2), where
(x1, x2)T ∈ R2 and |x1|+ |x2| < am, such that
(a) at τ = τm(x1, x2), um(x1, x2) is a pm(x1, x2)-periodic solution of (4.1)

satisfying (4.7);
(b) um(0, 0) = 0, pm(0, 0) = 2π√

|αrβ|2−1
, τm(0, 0) = τr,k;

(c) um(x1, x2) =
∑4

i=1 xiεi + o(|x1|+ |x2|) as |x1|+ |x2| → 0, where x3 =
x1 cos 4π

n − x2 sin 4π
n and x4 = x1 sin 4π

n + x2 cos 4π
n ;

Moreover, for |τ−τr,k| < δm, |p− 2π√
|αrβ|2−1

| < δm, every p-periodic solution

of (4.1) with sup |x(t)|t∈R < δm and satisfying (4.7) must be of the above
type.

(iii) there exist constants as > 0, δs > 0 and continuously differential func-
tions τs(x1, x2), ps(x1, x2) and ps(x1, x2)-periodic function us(x1, x2), where
(x1, x2)T ∈ R2 and |x1|+ |x2| < as, such that
(a) at τ = τs(x1, x2), us(x1, x2) is a ps(x1, x2)-periodic solution of (4.1)

satisfying (4.8);
(b) us(0, 0) = 0, ps(0, 0) = 2π√

|αrβ|2−1
, τs(0, 0) = τr,k;

(c) us(x1, x2) =
∑4

i=1 xiεi + o(|x1| + |x2|) as |x1| + |x2| → 0, where x3 =
−x1 cos 4π

n + x2 sin 4π
n and x4 = −x1 sin 4π

n − x2 cos 4π
n ;

Moreover, for |τ − τr,k| < δs, |p− 2π√
|αrβ|2−1

| < δs, every p-periodic solution

of (4.1) with sup |x(t)|t∈R < δm and satisfying (4.8) must be of the above
type.
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Remark 4.1. Periodic solutions satisfying (4.6) are called discrete waves in the lit-
erature (cf. Fiedler [16] and Golubitsky, Stewart and Schaeffer [25] and references
therein). They are also called synchronous oscillations (if r 6= 0) or phase-locked os-
cillations (if r 6= 0) as each neuron oscillates just like others except not necessarily in
phase with each other. The existence of synchronous oscillation in ordinary/partial
differential equations has been extensively studied (cf. Alexander and Auchmuty
[3]) and some existence results have also been obtained for functional differential
equations in conjunction with Turing rings with delayed coupling (see Krawcewicz
and Wu [40] and Wu and Krawcewicz [55]. Periodic solutions satisfying (4.7) and
(4.8) are called mirror-reflecting solutions and standing waves, respectively.

Remark 4.2. As will be shown in the next section, the non-resonance condition
(NR) is not necessary for the existence of bifurcations of periodic solutions.

5. Applications to delayed neural networks:
Global continua of discrete waves

Consider system (4.1) with a symmetric circulant interconnection matrix. Re-
sults in Section 4 show that, under certain conditions, system (4.1) has branches of
periodic solutions u(t) which satisfy the following property:

ui−1(t) = ui

(
t− r

n
p
)
, i(modn),(5.1)

where p is a period of u(t) and r is an integer satisfying 0 ≤ r ≤ n− 1.
Let x(t) = u1(t). Clearly, if u(t) is a solution of (4.1) satisfying (5.1), the x(t) is

a solution of the following scalar functional differential equation

ẋ(t) = −x(t) +
n∑

j=1

ajf

[
x

(
t+

(j − 1)r
n

p− τ

)]
.(5.2)

Conversely, if x(t) is a p-periodic solution of (5.2), then

u(t) =
(
x(t), x

(
t+

r

n
p
)
, . . . , x

(
t+

(n− 1)r
n

p

))T

is a p-periodic solution of (4.1) satisfying (5.1). Consequently, there exists a one-
to-one correspondence between a p-periodic solution of the scalar equation (5.2)
and a discrete wave satisfying (5.1) of the system (4.1).

When r = 0, system (5.2) reduces to the following scalar delay-differential equa-
tion

ẋ(t) = −x(t) +

 n∑
j=1

aj

 f(x(t− τ)).(5.3)

This equation has been extensively studied. In particular, Mallet-Paret and Nuss-
baum [45] proved the following:

Theorem 5.1. If β
∑n

j=1 aj < −1, then for each

τ > τk :=
1√

|∑n
j=1 ajβ|2 − 1

[
π − arccos

1
|∑n

j−1 aj | + 2kπ

]
, k = 0, 1, . . . ,

equation (5.3) has at least (k+1) periodic solutions x1(t), . . . , xk+1(t) such that the
period of x1(t) is larger than 2τ and the period of xm(t), 1 ≤ m ≤ k, is in the open
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interval ( τ
m+ 1

2
, τ

m ). Hence, for each τ > τk, (4.1) has (k + 1) distinct synchronous
oscillations with periods in (2τ,∞) and ( τ

m+ 1
2
, τ

m ), respectively.

We now follow Mallet-Paret and Nussbaum [45] and call a periodic solution of
(4.1) a slowly oscillatory solution if its period is larger than twice the delay, and a
rapidly oscillatory solution if otherwise. So, Theorem 5.1 shows the coexistence of
a slowly oscillatory synchronous oscillation and k rapidly oscillatory synchronous
oscillations for τ > τk under the assumption β

∑n
j=1 aj < −1.

In the case where
∑n

j=1 aj > 0, we have the following analog of Theorem 4.1.

Theorem 5.2. If β
∑n

j=1 aj > 1, then for each

τ > τk :=
1√

(β
∑n

j=1 aj)2 − 1

[
2π − arccos

1
β
∑n

j=1 aj
+ 2kπ

]
, k = 0, 1, . . . ,

equation (5.3) has k+1 periodic solutions x1(t), . . . , xk+1(t) with periods in (τ, 2τ),
( τ

m+1 ,
τ
m ), 1 ≤ m ≤ k, respectively. Hence, for each τ > τk, (4.1) has k + 1

synchronous oscillation with periods in (τ, 2τ), ( τ
m+1 ,

τ
m ), 1 ≤ m ≤ k, respectively.

We defer the proof of this result to Remark 5.1.
Due to the topological nature of our global bifurcation theorem, we are unable to

describe the stability of the obtained synchronous oscillation. In fact, the following
result shows that in certain situations, the obtained synchronous oscillations are all
unstable.

Theorem 5.3. If 0 ≤ ∑n
j=1 aj < β−1, then the trivial solution of (5.3) is a

global attractor. Hence, (4.1) has no synchronous oscillations for all τ ≥ 0. If
β
∑n

j=1 aj > 1, then equation (5.3) has three equilibria y∗ < 0 < z∗ such that al-
most every solution of (5.3) is convergent to either y∗ or z∗. In particular, (4.1)
has no stable synchronous oscillation for all τ ≥ 0.

Proof. The result is trivial if
∑n

j=1 aj = 0. If
∑n

j=1 aj > 0, then property (TF)
implies that equation (5.3) has only one equilibrium 0 if β

∑n
j=1 aj < 1, and has

three equilibria y∗ < 0 < z∗ such that f ′(y∗), f ′(z∗) < 1∑
j=1 aj

if β
∑n

j=1 aj > 1.
The solution semiflow generated by equation (5.3) is eventually strongly monotone,
and hence the stability of an equilibrium x∗ is determined by the associated ordinary
differential equation ẋ = −x +

∑n
j=1 ajf

′(x∗)x by Theorem 3.1 of Smith [52].
Consequently, if β

∑n
j=1 aj < 1, then the unique equilibrium 0 is asymptotically

stable, and if β
∑n

j=1 aj > 1, then the trivial solution is unstable and other equilibria
y∗ and z∗ are asymptotically stable. The generic convergence to the asymptotically
stable equilibria is a consequence of the general theory of monotone dynamical
systems developed by Hirsch [32] and Smith [52]. This completes the proof.

Throughout the remainder of this section, we assume

β

n∑
j=1

aj < 1.(5.4)

It can be easily shown that under this assumption, 0 is the only equilibrium of (5.2)
for all p, τ > 0. Our goal is to apply the global bifurcation theorem in Section 3
to investigate the maximal continuation of each branch of discrete waves obtained
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in Section 4. (The discussion of the maximal continua of standing waves and
mirror-reflecting waves is similar and thus omitted). The existence results in the
previous section is local in character; the amplitude is small and the delay τ is close
to the bifurcation values τr,k. We will show that the existence of discrete waves
(synchronous/phase-locked oscillations) is preserved as τ moves away form these
bifurcation values. Clearly, as τ moves away from τr,k, the amplitude of discrete
waves may increase. Consequently, we obtain large-amplitude periodic solutions.

First of all, we establish some a priori bounds for possible periodic solutions of
(5.2).

Lemma 5.1. If x(t) is a non-constant periodic solution of (5.2), then |x(t)| < 1
for all t ∈ R.

Proof. Let t∗ ∈ R such that |x(t∗)| = sup |x(t)|t∈R. Then x(t∗) 6= 0 and d
dtx

2(t∗)
= 0. But |f(x(t))| < 1 for all t ∈ R and

d

dt
x2(t∗) = 2x(t∗)

−x(t∗) +
n∑

j=1

ajf

(
x

(
t∗ +

(j − 1)r
n

p− τ

))
< 2

−x2(t∗) + |x(t∗)|
n∑

j=1

|aj |


= −2|x(t∗)|
|x(t∗)| − n∑

j=1

|aj |


= −2|x(t∗)|[|x(t∗)| − 1].

Consequently, |x(t∗)| < 1. This completes the proof.

Next, we exclude some periodic solutions with specific periods.

Lemma 5.2. If the diagonal elements of J are zero, then system (4.1) has no
non-constant periodic solutions of period τ . Consequently, (5.2) with p = τ has no
non-constant periodic solution of period τ .

Proof. If u(t) is a period solution of (4.1) of period τ , then u(t) solves the system
of ordinary differential equations

u̇i = −ui +
n∑

j=1

Jijf(uj), 1 ≤ i ≤ n.(5.5)

For this system of ordinary differential equations, Hopfield [33] showed that the
time derivative of the energy function

E = −1
2

∑
i,j

Jijf(ui)f(uj) +
n∑

i=1

∫ f(ui)

0

f−1(v) dv

is

dE

dt
= −

n∑
i=1

f ′(ui)

ui(t)−
n∑

j=1

Jijf(uj)

2

.
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Therefore, by the well-known invariance principle, each solution of (5.5) is conver-
gent to an equilibrium. Consequently, (5.5) (and thus (4.1)) has no non-constant
periodic solution of period τ . This completes the proof.

Lemma 5.3. Assume that there exists a positive integer s such that γsf(y)/y < 1
for y 6= 0, where

γs = max

Re
n∑

j=1

ajz
(j−1)s−1; zns = 1

 ,

then equation (5.2) has no non-constant r−1nsτ-periodic solution (here, we assume
r 6= 0).

Proof. Suppose that x(t) is an r−1nsτ -periodic solution of (5.2) with p = r−1nsτ .
Then

ẋ(t) = −x(t) +
n∑

j=1

ajf [x(t+ (j − 1)sτ − τ)].

Clearly, x(t) is also nsτ -periodic. Let

yj(t) = x(t+ (j − 1)τ), j(modns)

y = (y1, . . . , yns)T ,

A = circ(0, . . . , 0, a2︸ ︷︷ ︸
s

, 0, . . . , 0, a3︸ ︷︷ ︸
s

, . . . , 0, . . . , 0, an︸ ︷︷ ︸
s

, 0, . . . , 0, a1︸ ︷︷ ︸
s

)

F (y) = (f(y1), . . . , f(yns))T .

Then

ẏ = −y +AF (y).(5.6)

By Lemma 1.1 of Nussbaum [50] for the spectral analysis of circulant matrices, we
have

(−Az, z) ≥ min

Re
n∑

j=1

(−aj)z(j−1)s−1; zns = 1


ns∑
i=1

z2
i

= −max

Re
n∑

j=1

ajz
(j−1)s−1; zns = 1


ns∑
i=1

z2
i

= −γs

ns∑
i=1

z2
i , z ∈ Rns.

That is,

(Az, z) ≤ γs

ns∑
i=1

z2
i .
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Consequently, for V (y) =
∑n

i=1

∫ yi

0
f(s) ds, along solutions of (5.6), we have

d

dt
V (y(t)) = F (y)T [−y +AF (y)]

=
ns∑
i=1

yif(yi) + (AF (y), F (y))

≤ −
ns∑
i=1

f(yi)yi

[
1− γs

f(yi)
yi

]
.

Therefore, if γs
f(y)

y < 1 for all y 6= 0, then d
dtV (y(t)) < 0 along nontrivial solutions

of (5.6). This implies that (5.6) has no non-constant periodic solutions. Hence,
x(t) must be constant. This completes the proof.

Theorem 5.4. Assume that

(i) (5.4) is satisfied;
(ii) there exists an integer r ∈ {0, . . . , [n

2 ]} such that |αrβ| > 1;
(iii) there exist an integer k and two nonnegative numbers qr,k,1 < qr,k,2 such

that τr,k > 0,

qr,k,1 <
2π

θr − arccos 1
|αrβ| + 2kπ

< qr,k,2

and (5.2) has non non-constant periodic solutions of period qr,k,1τ or qr,k,2τ .

Then for every τ > τr,k, system (4.1) has a discrete wave (a p-periodic solution)
satisfying ui−1(t) = ui(t− r

np) for t ∈ R, i(modn) and qr,k,1 < p/τ < qr,k,2.

Proof. We regard (τ, p) as parameters and apply Theorem 3.3. By (5.4), we can eas-
ily show that (0, τ, p) is the only stationary solution of (5.2) and the corresponding
characteristic matrix

∆(0,τ,p)(λ) = λ+ 1−
n∑

j=1

ajβe
λ( j−1

n rp−τ)

is clearly continuous in (τ, p, λ) ∈ R+ × R+ × C. This justifies (A1)–(A3) of Theo-
rem 3.3 for the considered equation (5.2).

To locate centers, we consider

∆(0,τ,p)

(
i
2mπ
p

)
= i

2mπ
p

+ 1−
n∑

j=1

ajβξ
(j−1)rme−ir 2mπ

p

= i
2mπ
p

+ 1− αmrβe
−iτ 2mπ

p

= q

(
i
2mπ
p

)
,

where

q(λ) = λ+ 1− amrβe
−τλ.

Using results in Lemma 4.1 and notations in Lemma 4.2, we can show that for each
fixed r, (0, τ, p) is a center if and only if there exist an integer m ≥ 1 and an integer
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k such that 
|αmrβ| > 1,
p = 2mπ√

|αmrβ|2−1
,

τ = τmr,k > 0.

In particular, (0, τr,k, 2π√
|αrβ|2−1

) is a center and all centers are isolated. In fact,

the set of centers is countable and can be expressed as

∆ =

{(
0, τmr,k,

2mπ√|αmrβ|2 − 1

)
; |αmrβ| > 1, τmr,k > 0

}
.

We now fix r ∈ {0, . . . , n− 1} such that |αrβ| > 1. Then (0, τr,k, 2π√
|αrβ|2−1

) is an

isolated center and 1 ∈ J(0, τ∗r ,
2π√

|αrβ|2−1
).

Consider q(λ) with m = 1. By Lemma 4.1 there exist ε > 0, δ > 0 and a smooth
curve λ : (τr,k − δ, τr,k + δ) → C such that q(λ(τ)) = 0, |λ(τ) − i 2π√

|αrβ|2−1
| < ε for

all τ ∈ [τr,k − δ, τr,k + δ], and

λ(τr,k) = i
2π√|αrβ|2 − 1

,
d

dτ
Reλ(τ)|τ=τr,k

> 0.

Let

Ωε =

{
(0, p); 0 < u < ε,

∣∣∣∣∣p− 2π√|αrβ|2 − 1

∣∣∣∣∣ < ε

}
.

Clearly, if |τ − τr,k| ≤ δ and (u, p) ∈ ∂Ωε such that det∆(0,τ,p)(u + i 2π
p ) = 0, then

τ = τr,k, u = 0 and p = 2π√
|αrβ|2−1

. This justifies (A4) for m = 1. Moreover, if we

put

H±
m

(
0, τr,k,

2π√|αrβ|2 − 1

)
(u, p) = ∆(0,τr,k±δ,p)

(
u+ im

2π
p

)
,

then at m = 1, we have

γm

(
0, τr,k,

2π√|αrβ|2 − 1

)

= degB

(
H−

m

(
0, τr,k,

2π√|αrβ|2 − 1

)
,Ωε

)

− degB

(
H+

m

(
0, τr,k,

2π√|αrβ|2 − 1

)
,Ωε

)
= −1.

By Theorem 3.3, we conclude that the connected component C(0, τr,k, 2π√
|αrβ|2−1

)

through (0, τr,k, 2π√
|αrβ|2−1

) in Σr is nonempty, where

Σr = cl{(x, τ, p); x is a p-periodic solution of (5.2)}.
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Using the same argument as above, we can show that the first crossing number of
each center is always −1. Therefore, we can use (3.2) to exclude alternative (ii) of
Theorem 3.3. That is, we can conclude that C(0, τr,k, 2π√

|αrβ|2−1
) is unbounded.

Lemma 5.1 implies that the projection of C(0, τr,k, 2π√
|αrβ|2−1

) onto the x-space

is bounded. Also, note that the proof of Lemma 5.2 implies that the system
(4.1) with τ = 0 has no non-constant periodic solution. Therefore, the projec-
tion of C(0, τr,k, 2π√

|αrβ|2−1
) onto the τ -space is bounded below. Assumption (iii)

implies that, if (x, τ, p) ∈ C(0, τr,k, 2π√
|αrβ|2−1

), then τqr,k,1 < p < τqr,q,2. This

shows that in order for C(0, τr,k, 2π√
|αrβ|2−1

) to be unbounded, the projection of

C(0, τr,k, 2π√
|αrβ|2−1

) onto τ -space must be unbounded. Consequently, the projection

of C(0, τr,k, 2π√
|αrβ|2−1

) onto τ -space must be an interval [α,∞) with 0 < α < τr,k.

This shows that for each τ > τr,k, (5.2) has a non-constant periodic solution with
a period in (τqr,k,1, τqr,k,2). This completes the proof.

Remark 5.1. We can now give a proof of Theorem 5.2. In fact, Chow and Mallet-
Paret [8] have proved that equation (5.3) has no non-constant periodic solution
of period 2τ . Consequently, it has no non-constant periodic solution of period τ

m

or 2τ
m+1 = τ

m+ 1
2

for all positive integers m. Therefore, Theorem 5.2 becomes a

special case of Theorem 5.4 where r = 0, αr =
∑n

j=1 aj; θr = 0, τr,k = τk−1,
qr,k+1,1 = 1

k+1 , qr,k+1,2 = 1
k for all k = 1, 2, . . . , and qr,1,1 = 1, qr,1,2 = 2.

Remark 5.2. We can always take q1,k,1 = 0 if we do not need good estimation of the
lower bound of the period of periodic solutions. Moreover, we can use Lemma 5.2
and Lemma 5.3 to determine qr,k,1 and qr,k,2 in some concrete neural networks, see
the next section for details.

Remark 5.3. Applying Theorem 3.2 and employing the same argument as that for
Theorem 5.4, we can obtain a local bifurcation theorem for (4.1): If there exist r ∈
{0, . . . , [n

2 ]} and an integer k such that |αrβ| > 1 and τr,k > 0, then near τr,k, (4.1)
has a branch of small-amplitude p-periodic solution satisfying ui−1(t) = ui(t− 1

np),
i(modn), t ∈ R. Note that we do not require non-resonance condition, but we
cannot describe the smoothness, the isotropy group and the asymptotic form of the
bifurcated wave solution.

6. Examples and further discussions

In this section, we concentrate on some specific networks to discuss some im-
plications and limitations of our general results. For simplicity, we will only con-
sider synchronous/phase-locked oscillations and omit the discussion about standing
waves and mirror-reflecting waves.

6.A. All-Excitatory Networks. For this special network, as f is an increasing
function and the interconnection matrix has positive off diagonal elements, the
solution semiflow is eventually strongly monotone and hence the convergence to
equilibria is the dominant dynamics. More precisely, we have

Theorem 6.1. Consider equation (4.1) with the interconnection matrix JE.
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(i) If β = f ′(0) < 1, then for any τ > 0 the unique equilibrium (0, . . . , 0) is
a global attractor. That is, any solution of (4.1) converges to (0, . . . , 0) as
t→∞.

(ii) If β = f ′(0) > 1, then equation (4.1) has three and only three equilibria
(y∗, . . . , y∗), (0, . . . , 0) and (z∗, . . . , z∗) with y∗ < 0 < z∗, f(y∗) = y∗,
f(z∗) = z∗. (0, . . . , 0) is unstable, (y∗, . . . , y∗) and (z∗, . . . , z∗) are asymp-
totically stable and almost every solution of (4.1) is convergent to either
(y∗, . . . , y∗) or (z∗, . . . , z∗) as t→∞. Moreover, there exists a solution u(t)
of (4.1) such that ui(t) < ui(s) if t < s, 1 ≤ i ≤ n, and limt→−∞ ui(t) = 0,
limt→∞ ui(t) = z∗; and there exists a solution v(t) of (4.1) such that
vi(t) < vi(s) if t > s, 1 ≤ i ≤ n, and limt→−∞ vi(t) = 0, limt→∞ vi(t) = y∗.

Proof. Let (x1, . . . , xn) be an equilibrium of (4.1). Then

xi =
1

n− 1

∑
j 6=i

f(xj), 1 ≤ i ≤ n.

Hence,

xi − xj =
1

n− 1
[f(xj)− f(xi)]

and from the increasing property of f it follows that xi = xj for all 1 ≤ i, j ≤ n.
Therefore, (x1, . . . , xn) is an equilibrium of (4.1) if and only if x = f(x) and xi = x
for all 1 ≤ i ≤ n. Consequently, using property (TF) we conclude that (4.1)
has a unique equilibrium (0, . . . , 0) if β < 1, and has three equilibria (y∗, . . . , y∗),
(0, . . . , 0), (z∗, . . . , z∗) when f(y∗) = y∗ < 0 < z∗ = f(z∗) if β > 1. In the latter
case, we also have f ′(y∗), f ′(z∗) < 1.

We now consider the case where β < 1. As f is strictly increasing and JE

has positive off diagonal elements, the general theory of Smith [52] shows that the
solution semiflow generated by (4.1) is eventually strongly monotone and the zero
solution (0, . . . , 0) of (4.1) is asymptotically stable if and only if the zero solution
of the associated ordinary differential equation

ẋi = −xi +
∑
j 6=i

β

n− 1
f(xj)(6.1)

is asymptotically stable. It can be easily shown that eigenvalues of (6.1) at the
trivial solution are −1 + βαr, 0 ≤ r ≤ n− 1, where

αr =

1 if r = 0,

− 1
n− 1

if 1 ≤ r ≤ n− 1.

Consequently, β < 1 implies that the zero solution of (6.1) is asymptotically stable.
As each solution of (4.1) is clearly bounded, (0, . . . , 0) is the only equilibrium and
is asymptotically stable. By results in Smith [52], the zero solution is a global
attractor.

In the case where β > 1, using the same argument as above we can verify that the
zero solution (0, . . . , 0) is unstable, and (y∗, . . . , y∗), (z∗, . . . , z∗) are asymptotically
stable. Again, by results in Hirsch [32] and Smith [52], almost every solution of
(4.1) is convergent to either (y∗, . . . , y∗) or (z∗, . . . , z∗), and there are monotonically
heteroclinic orbits connecting (0, . . . , 0) to (y∗, . . . , y∗) and to (z∗, . . . , z∗). This
completes the proof.
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Remark 6.1. The above result shows that the generic dynamics of (4.1) is the con-
vergence to equilibria. This is independent of the length of the delay τ . The only
interesting phenomena is the bifurcation of the pitchfork type: as the neuron gain
moves through value 1, the zero solution becomes unstable, and two asymptotic
stable equilibria appear in either side of the origin in the ferromagnetic direction
(ui = 1 for all 1 ≤ i ≤ n). This phenomena was observed in Marcus and Westervelt
[47].

Let us now try to apply Theorem 5.4 and Remark 5.3 to discuss the occurrence
of discrete waves. Clearly,

αr =
1

n− 1
[ξr + ξ2r + · · ·+ ξ(n−1)r]

=

1 if r = 0,

− 1
n− 1

if 1 ≤ r ≤ n− 1.

Let

τ0,k =
1√
β2 − 1

[
2kπ − arccos

1
β

]
if β > 1 and k ≥ 1;

τk =
n− 1√

β2 − (n− 1)2

[
π − arccos

n− 1
β

+ 2kπ
]

if β > n− 1 and k ≥ 0.

Applying Remark 5.3, we get

Theorem 6.2. Consider equation (4.1) with the interconnection matrix JE.
(i) If β > 1, then near τ0,k, k ≥ 1, there exists a branch of small-amplitude

synchronous oscillations, i.e. a branch of small-amplitude periodic solution
with period near 2π/

√
β2 − 1 and satisfying ui(t) = u1(t) for 1 ≤ i ≤ n and

τ ∈ R;
(ii) If β > n − 1, then near τk, k ≥ 0, there exist (n − 1) branches of small-

amplitude phase-locked oscillations with distinct phase differences, i.e. (n−
1) branches of small-amplitude phase-locked oscillations with period near
2π(n − 1)/

√
β2 − (n− 1)2 and satisfying ui−1(t) = ui(t − r

np) for t ∈ R,
i(modn), 1 ≤ r ≤ n− 1.

Remark 6.2. By Theorem 6.1, any synchronous/phase-locked oscillation obtained
above must be unstable. Consequently, in all-excitatory networks, delay may cause
discrete waves but these waves can hardly be observed in experiments. An in-
teresting phenomena here is the simultaneous occurrence of (n − 1) branches of
phase-locked oscillations with distinct phase differences. We should also mention
that if (n− 1)

√
β2−1

β2−(n−1)2 is not a positive integer, then we can apply Theorem 2.1
to discuss the smoothness and directions of these (n− 1) branches of phase-locked
oscillations.

6.B. Rings of Inhibitory Neurons. We next consider symmetrically connected
inhibitory rings of neurons, where

αr = −1
2
[ξr + ξ(n−1)r]

=

{
−1 if r = 0,
− cos 2πr

n if r = 1, . . . , n− 1.
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Consequently, αi = αj if and only if i+ j = n.
Note that

γs = max
{

Re
(
−1

2
zs−1 − 1

2
z(n−1)s−1

)
; zns = 1

}
= max

{
−1

2
Re(zs−1 + z−s−1); zns = 1

}
= max

{
−1

2

[
cos

2πj(s− 1)
ns

+ cos
2πj(s+ 1)

ns

]
; 0 ≤ j ≤ ns− 1

}
= max

{
− cos

2πj
ns

cos
2πj
n

; 0 ≤ j ≤ ns− 1
}
.

In particular,

γ1 = max

{
−
(

cos
2πj
n

)2

; 0 ≤ j ≤ n− 1

}
≤ 0.

Therefore,

γ1f(y)/y ≤ 0 < 1 for all y 6= 0.

Let

τ0,k =
1√
β2 − 1

[
π − arccos

1
β

+ 2kπ
]
, if β > 1, k ≥ 0,

and

τr,k =
1√

|β cos 2πr
n |2 − 1



[
2(k + 1)π − arccos

1
|β cos 2πr

n |
]

if β cos
2πr
n

< −1, k ≥ 0,[
π − arccos

1
|β cos 2πr

n | + 2kπ
]

if β cos
2πr
n

> 1, k ≥ 0.

Theorem 6.3. Consider system (4.1) with the interconnection matrix JIE.
(i) If β > 1, then for each τ > τ0,k, (4.1) has (k + 1) distinct synchronous

oscillations with periods in (2τ,∞) and ( τ
m+ 1

2
, τ

m ), 1 ≤ m ≤ k, respectively;

(ii) If r
n ∈ (1

4 ,
3
4 ) and β cos 2πτ

n < −1, then for each τ > τrk,k, (4.1) has (k + 1)
phase-locked oscillations with periods in (τ, n

r τ) and ( τ
m+1 ,

τ
m ), 1 ≤ m ≤ k,

respectively and satisfying ui−1(t) = ui(t− r
np), i(modn), t ∈ R;

(iii) If r
n ∈ (0, 1

4 ) ∪ (3
4 , 1) and β cos 2πr

n > 1, then for each τ > τr,k, (4.1) has
(k + 1) phase-locked oscillations with periods in (2τ, n

r τ) (if r
n ∈ (0, 1

4 )) or
(2τ, n

n−r τ) (if r
n ∈ (3

4 , 1)), and ( τ
m+1 ,

τ
m ), 1 ≤ m ≤ k, respectively and

satisfying ui−1(t) = ui(t− r
np), i(modn), t ∈ R.

Proof. (i) is an immediate consequence of Theorem 5.1, where
∑n

j=1 aj = −1 < 0.
(ii) Assume r

n ∈ (1
4 ,

3
4 ) and β cos 2πr

n < −1. Note that

1
k + 1

=
2π

2(k + 1)π
<

2π
2(k + 1)π − arccos 1

|β cos 2πr
n |

<
2π

2(k + 1)π − π
2

=
1

k + 3
4

.
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So,

1 <
2π

2(k + 1)π − arccos 1
|β cos 2πr

n |
<

4
3
<
n

r
, if k = 0,

1
k + 1

<
2π

2(k + 1)π − arccos 1
|β cos 2πr

n |
<

1
k
, if k ≥ 1.

Since γ1 ≤ 0, by Lemma 5.3, equation (5.2) has no non-constant n
r τ -periodic so-

lution. Moreover, by Lemma 5.2, equation (5.2) has no non-constant τ
m -periodic

solution for any positive integer m. Therefore, we can apply Theorem 5.4 to obtain
the required result, where

qr,0,1 = 1, qr,0,2 =
n

r
, qr,k,1 =

1
k + 1

, qr,k,2 =
1
k
, k ≥ 1.

This proves (ii), and (iii) can be justified similarly.

Remark 6.3. Note that cos 2πr
n = cos 2π(n−r)

n . So, τr,k = τn−r,k for all r ∈ {1, . . . ,
n − 1} and k ≥ 0. Therefore, if r 6= n

2 , then at each τr,k there are two branches
of phase-locked oscillations which are conjugate in the sense that if solutions along
one branch satisfy ui−1(t) = ui(t− r

np), then solutions along another branch satisfy
ui−1(t) = ui(t+ r

np) (as ui(t− n−r
n p) = ui(t+ r

np)). This implies that Theorem 5.3
actually guarantees the existence of 2(k+1) phase-locked oscillations in either case
(ii) or case (iii).

Remark 6.4. If n = 4q + m for some nonnegative integer q and integer m ∈
{0, 1, 2, 3}, then r

n ∈ (0, 1
4 ) ∪ (3

4 , 1) if and only if

r ∈


{1, 2, . . . , q, n− 1, . . . , n− q) if m 6= 0,
∅ if m = 0 and q ≤ 1,
{1, . . . , q − 1, n− 1, . . . , n− q + 1} if m = 0 and q ≥ 2.

Consequently, if

β > max
r
n∈(0, 1

4 )∪( 3
4 ,1)

1
cos 2πr

n

,

then for sufficiently large τ satisfying

τ >


max{τ0,0, τ1,0, . . . , τq,0} if m 6= 0,
max{τ0,0, τ1,0, . . . , τq−1,0} if q ≥ 2, m = 0,
τ0,0 if m = 0, q ≤ 1,

system (4.1) has at least (2q∗+1) slowly oscillatory periodic solutions, one of which
is synchronous oscillation and others are phase-locked oscillations, where

q∗ =


q if m 6= 0,
q − 1 if m = 0, q ≥ 2,
0 if m− 0, 0 ≤ q ≤ 1.

6.C. All-inhibitory networks and rings of excitatory neurons. Using the
same argument as that in 6.A and 6.B, we can show that all-inhibitory networks
exhibit the coexistence of synchronous and phase-locked oscillations for large delay
and neural gains. It is also possible for a ring of excitatory neurons to possess

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



4836 JIANHONG WU

synchronous/phase-locked oscillations, but these oscillations are all unstable and
the dominant dynamics is the convergence to equilibria.
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