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1. Introduction 

A second order polynomials sequence is of Fibonacci 
type (Lucas type) if its Binet formula has a structure 
similar to that for Fibonacci (Lucas) numbers. In the 
literature, these types of sequences are known as 
Generalized Fibonacci Polynomial (GFP). They are 
actually a natural generalization of the sequence, called 
the Fibonacci polynomial sequence. However, there is no 
unique generalization of this sequence, one can refer to 
articles by several authors like André Jeannin [7,10], 
Bergum et al. [11] and Florez et al. [14,15], to see this. In 
this paper we use the definition another of our suggested. 
The generalized polynomials of second order sequence 

( ) N{ }n nG x ∈  is defined by a recurrence sequence 

 
( ) ( ) ( )
( ) ( )
( ) ( )

0 1 1

0 1 2
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, 2 ,
,

n n

n
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G x G x xα β β

−

−

 = +
 + + ≥
 = = +

 (1.1) 

where 0 1 0 1 0 0, , , , ,p p q q α β  and 1β  are complex 
numbers. 

The study of identities for Fibonacci polynomials and 
Lucas polynomials have received less attention than their 
counterparts for numerical sequences, even if many of 
these identities can be proved easily. A natural question to 
ask is: under what conditions is it possible to extend 
identities that already exist for Fibonacci and Lucas 
numbers to the GFP? We observe here that the identities 
involving Fibonacci and Lucas numbers extend naturally 
to the GFP that satisfy closed formulas similar to the Binet 
formulas satisfied by Fibonacci and Lucas numbers. 

In fact, the well-known sequences below are special 
cases of the generalized polynomials sequence 

•  Putting 0 1 0 0p q β= = =  and 1 0 0 1p q α β= = = =
1  reduces to Fibonacci polynomials. 

•  Substituting 0 1 0 0p q β= = =  and 0 2,α =  

1 0 1 1p q β= = =  yields Lucas polynomials. 
•  Taking 0 1 0 1 10, 2p q pα β= = = = =  and 0q =

0 1β =  gives Pell polynomials. 
•  Taking 0 1 0 00, 1p q qβ= = = =  and 0 1α β= =

1 2p =  gives Pell-Lucas polynomials. 
•  Taking 1 0 0 1 0 00, 1p q pα β β= = = = = =  and 

1 2q =  gives Jacobsthal polynomials. 
•  In the case when 1 0 1 0 00, 1p q pβ β= = = = =   

and 0 1 2qα = =  it reduces to Jacobsthal-Lucas 
polynomials. 

•  In the case when 0 1 0 0,p q β= = =  0 1 1,α β= =

1 2p =  and 0 1q = −  it reduces to Chebyshev 
polynomials of first kind. 

•  In the case when 0 1 0 00, 1,p q β α= = = =

1 1 2pβ = =  and 0 1q = −  it reduces to Chebyshev 
polynomials of second kind. 

•  Putting 0 1 0 1 10, 1, 2p q pα β= = = = =  and 0β =

0 1q = −  we obtain Chebyshev polynomials of third 
kind. 

•  Substituting 0 1 0 0 1 10, 1, 2p q pα β β= = = = = =  
and 0 1q = −  yields Chebyshev polynomials of 
fourth kind. 

•  Taking 0 1 1 0 0 10, 1, 2p q q pβ β= = = = = =  and 

0 iα =  we get Gaussian Pellpolynomials. 
•  Putting 1 0 1 0 0 10, 1, 2p q p qβ β= = = = = =  and 

0 2
iα =  we obtain Gaussian Jacobsthal 

polynomials. 
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•  Putting 1 0 0 0 10, 1, 2p q p qβ= = = = =  and 0α =

22 ,i− 1 2iβ =  we obtain Gaussian Jacobsthal-
Lucas polynomials. 

In order to determine generating functions of generalized 
polynomials sequence, we use analytical means and series 
manipulation methods. In the sequel, we derive new 
symmetric functions and some new properties. We also 
give some more useful definitions which are used in the 
subsequent sections. From these definitions, we prove our 
main results given in Section 3. 

2. Definitions and Some Properties 

In order to render the work self-contained we give the 
necessary preliminaries tools; we recall some definitions 
and results. 

Proposition 1. (Favard's Theorem [1]). Let 0{ }n nP ≥  be 
a monic polynomial sequence. Then 0{ }n nP ≥  is 
orthogonal if and only if there exist two sequences  
of complex numbers 0{ }n nβ ≥  and 0{ } ,n nγ ≥  such that 

0, 1n nγ ≠ ≥  and satisfies the three-term recurrence 
relation 

 
( ) ( )
( ) ( ) ( )

( )

1 0

1

1

0, 1,

, 0.
n n n

n n

P x P x
P x x P x

P x n
β

γ

−

+

−

= =
 = −
 − ≥

 (2.1) 

Remark 2. If 0nβ =  so 0{ }n nP ≥  is called symmetric 

when ( ) ( 1) ( ).n
n nP x P x− = −  

Definition 3. Let k  and n  be two positive integers  
and { }1 2, ,..., na a a  are set of given variables the  

k-th elementary symmetric function ( )1 2,, ...,k ne a a a  is 
defined by 

 ( ) ( )1 2
1 2, 1 2

...1 2

, ..., ... 0 ,i i ink n n
i i i kn

e a a a a a a k n
+ + + =

= ≤ ≤∑  

with 1 2, , ..., 0ni i i =  or 1 . 
Definition 4. Let k  and n  be two positive  

integers and { }1 2, ,..., na a a  are set of given variables  
the k-th complete homogeneous symmetric function 

( )1 2, ,...,k nh a a a  is defined by 

 ( ) ( )1 2
1 2, 1 2

...1 2

, ..., ... 0 ,i i ink n n
i i i kn

h a a a a a a k n
+ + + =

= ≤ ≤∑  

with 1 2, , ..., 0ni i i ≥ . 

Remark 5. Set ( )0 1 2,, ..., 1ne a a a =  and 

( )0 1 2,, ..., 1nh a a a = ， by usual convention. For 0,k <  we 

set ( )1 2,, ..., 0k ne a a a =  and ( )1 2,, ..., 0k nh a a a = . 
Definition 6. [2] Let A  and P  be any two alphabets. 

We define ( )nS A P−  by the following form 

 ( ) ( ) ( )01 1 ,n
p P a A nnpt at S A P t∞
∈ ∈ =Π − Π − = −∑ (2.2) 

with the condition ( ) 0nS A P− =  for 0.n <  
Equation (2.2) can be rewritten in the following form 

 
0 0 0

( ) ( ) ( ) ,n n n
n n n

n n n
S A P t S A t S P t

∞ ∞ ∞

= = =

   
− = × −      

   
∑ ∑ ∑ (2.3) 

where 

 
0

( ) ( ) ( ).
n

n n j j
j

S A P S P S A−
=

− = −∑  

Definition 7. [3] Given a function f  on ℝ𝑛𝑛 , the 
divided difference operator is defined as follows 
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Definition 8. [4] the symmetrizing operator 
1 2
k
e eδ  is 

defined by 

 1 1 2 2
1 2 1 2

( ) ( )
( )

k k
k
p p

p g p p g pg
p p

δ
−

=
−

 

for all N.k ∈  

3. Generating Function of Generalized 
Polynomials of Second Order 

The following theorem is one of the key tools of the 
proof of our main result which is already given its proof in 
[5]. 

Theorem 9. Given an alphabet { }1 2,E e e=  two 

sequences 
0

,n
n

n
a t
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=
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n
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If 1k =  for the case 1
1 .n

t
n

t
∞

− = ∑  The following 

lemmas allow us to obtain many generating functions of 
generalized polynomials and some well-known polynomials 
cited above, using a technique symmetric functions. 

Lemma 10. Given an alphabet { }1 2, ,E e e=  we have 

 ( )1 2
0

( ) 1 1 .n
n

n e E
S e e t et

+∞

= ∈
+ = −∑ ∏  (3.1) 
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Lemma 11. Given an alphabet { }1 2, ,E e e=  we have 
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0
( ) .
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n
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e E
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−
=

∈

+ =
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 (3.2) 

•  Replacing 2e  by [ ]2e−  in the formulas (3.1) 
and (3.2), we have 

 [ ]
( )1 2 2

0 1 2 1 2

1( ) ,
1

n
n
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S e e t
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∞

=
+ − =

− − −
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Multiplying the equation (3.3) by 0α  and adding it 
from (3.4) multiplying by ( ) ( )0 0 0 1 0 1( )p p xβ α β α− + −  

and setting 1 2 0 1

1 2 0 1

,
,

e e p p x
e e q q x
− = +

 = +
 we obtain 

 

[ ] ( )
( ) [ ]
( ) ( )
( ) ( )

0 1 2 0 0 0

1 0 1 1 1 20

0 0 0 0 1 0 1
2

0 1 0 1

( ) (

) ( )

,
1

n n

nn

S a a p
t

p x S a a

p p x t

p p x t q q x t

α β α

β α

α β α β α

∞

−=

 + − + −
 
+ − + −  
 + − + − =
− + − +

∑
 (3.5) 

and we have the following Proposition. 
Proposition 12. For ,n∈  the new generating 

function of generalized polynomials is given by 
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Proof. Theordinary generating function associated is 
defined by 
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which is equivalent to 
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Accordingly, we conclude the following Corollaries. 
Corollary 13. For ,n∈  the generating function of 

Fibonacci polynomials is given by 
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Replacing t  by ( )t−  in the formula (3.7), we  
have 
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Corollary 14. For ,n∈  the generating function of 
Lucas polynomials is given by 
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 (3.8) 

Replacing t  by ( )t−  in the formula (3.8), we have 
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Corollary 15. For ,n∈  the generating function of 
Pell polynomials is given by 
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Corollary 16. For ,n∈  the generating function of 
Pell-Lucas polynomials is given by 
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Corollary 17. For ,n∈ the generating function of 
Jacobsthal polynomials is given by 
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Replacing t  by ( )t−  in the formula (3.9), we have 
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Corollary 18. For ,n∈ the generating function of 
Jacobsthal- Lucas polynomials is given by 
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 (3.10) 

Replacing t  by ( )t−  in the formula (3.10), we have 
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Corollary 19. For ,n∈  the generating function of 
Gaussian- Pell polynomials is given by 
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Replacing t  by ( )t−  in the formula (3.11), we  
have 
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Corollary 20. For ,n∈  the generating function of 
Gaussian -Jacobsthal polynomials is given by 
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Replacing t  by ( )t−  in the formula (3.12), we have 
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Corollary 21. For ,n∈ the generating function of 
Gaussian –Jacobsthal- Lucas polynomials is given by 
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Replacing t  by ( )t−  in the formula (3.13), we have 
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•  Replacing 1e  by [ ]22e  and 2e  by [ ]22e  in the 
formulas (3.1) and (3.2), we have 
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Multiplying the equation (3.14) by 0α  and adding it 
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and we have the following Proposition. 
Proposition 22. For ,n∈ the new generating function 

of generalized polynomials is given by 
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Corollary 23. For ,n∈ the generating function of 

Chebyshev polynomials of first kind is given by 
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Corollary 24. For ,n∈  the generating function of 
Chebyshev polynomials of second kind is given by 
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Corollary 25. For ,n∈  the generating function of 
Chebyshev polynomials of third kind is given by 

 
( )

( ) [ ] [ ]

2
0

1 2 1 1 2

1 ,  
1 2

 (2 2 ) (2 2 ).

n
n

n

n n n

tV x t
xt t

with V x S a a S a a

∞

=

−

−
=

− +

= + − − + −

∑  

Corollary 26. For ,n∈ the generating function of 
Chebyshev polynomials of fourth kind is given by 
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4. Conclusion 

In this paper, by making use of equations (3.1) and 
(3.2), we have derived some new generating functions for 
generalized polynomials of second order. It would be 
interesting to apply the methods shown in the paper to 
families of other special polynomials. 
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