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O. Introduction 

Some time ago Nakaoka IN] determined the additive structure of H*(Z.,F2). 
Around the same time, the ring structure of H*(274, F2) was calculated and it was 
assumed that the same type of simple multiplicative relations would appear for 
n > 4. Since then, most work has concentrated on the embedding 2;. ~ ,~o, using 
the polynomial ring structure of H*(Xo~, F2). In particular, most of the recent work 
in [HI was explicitly or implicitly described in [ M - M ]  more than a decade ago, 
and provides no new information on the multiplicative structure of the mod 2 
cohomology of finite symmetric groups. 

In this paper we use invariant theory to detect unexpected multiplicative 
relations in H*(Z',, F2). The complicated nature of the numerical evidence which 
we present explains the absence of complete calculations for n > 16. The rings of 
invariants which we study are at the core of any computation of H*(2;., F2). They 
build up sucessively, yielding relations rich in symmetry but of a highly convoluted 
type. 

The following problem lies at the heart of all this. Let P. be a polynomial ring 
k 

over F2 on n variables, and let P..k = (~P"" Then Ek acts by permuting blocks of 
generators. 1 

Problem. Determine (Pn.k) rk. 
The, fundamental theorem of Galois theory states that for n = 1, any k, this is 

a polynomial ring, Our results show that this breaks down even for n = 2 and that 
things get quite complicated quickly. For  n = 2 and k = 2 we exhibit a quadratic 
relation, which yields the first relation of this sort in the eohomology of the 
symmetric groups. Concretely, we have 

Theorem 3.2. 
H*(Es)  ~ PI-o t, ~2, ~3, c3, 04, d6, dT](xs)/( R ) 

where degcri= i, degc 3 = 3, degdi=i, degx5 = 5, and R is the following set of 

* Partially supported by NSF grants (all three authors) and the S.F.B. 170 (the third author) 
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relations: 
d6001 = d60"3 = 0 

dTot = d70"2 = d7G3 = d7c3 = dTx5 = 0 

X50"3 + r = 0 

C3(a3 3 L 0"1(72) 4- 001X5 = 0 

X52 4- X50"2C3 --{- d60022 4- 0"4r = 0. [ ]  

This is a formal description as a ring. However, the explicit generators are 
described in Sect. 1 as duals to certain monomials in the Dyer-Lashof algebra 
H,(2700,F2)~-H,(Q(S~ F2), where Q(S ~ denotes the infinite loop space 

~176 ~(S~ An alternative algebraic description is also supplied. We compute 
(P2.3) x~ similarly, and use this to obtain H*(2712, F2): 

Theorem 3.5. 

H*(2712) ~ P1-001, 0"2, 0"3, c3, 0"4, 0"5, 06, d6, d7, d9-[ (Xs, x7, x s ) / (  R ) 

where degai = i, degc 3 = 3, degdi = i, degxi = i and R is the set of relations 

X 2 "[- O'4X 2 4- 0r20"4X8 4- (006C3 "[" 0020"4C3)X5 4- 0 ~ "1- C 2 4- tr2004d6 4- tr6002d6, 
2 2 X 2 4- d6x 2 -[- r 4- (d90"2 4- c3d6a2)x5 -[- d60" 2 4- r 4- d9c30"2, 

x~x~ + a2x] + [00~, + 00,3x~ + ~2c~x~ + ,T3d~ + ,~a~a, + ~ c ]  + 006d~ + ,r~a,c 2, 

x s x 8  + C3X 2 + [C 2 + d6]x7 + c2tr2xs + c3004 + c3tr4a6 + dga 2 + d9004 + c3d6022, 

x 3 + c302x 2 + xTx8 + c3172x8 4- 0-2c2x7 + 1002d6 + 0-4r + 003d9 + r + 0-6d9, 

d90-1, d90-3, d9ty 5, 

d7~ d7xs,  d700 lc3, d7(x7 + ~ dT(a5 + 00400 t), d'~(0"6 + 0"40"2), d7(xs + d60"2), 

dT(d9 + d6c3), 

x7001 4- X5(001002 4- (73) "[- C3(0020"3 -~ 0"20"1 4- 0"10"4 4- 0"5), 

XT0" 3 4- XS(0" 5 + 0"1004) -1-- C3(0'100 6 -'1- 0"30" 4 '4- 0"10"20"4) , 

X7~" 5 4- XS0"10" 6 4- C3(0"30" 6 -1- 0010"20'6), 

XS0" 1 + d6(o" 3 + 61o"2) , 

xao" 3 + d6(o" s + 0010"4), 

Xsar 5 + d600100 6. [ ]  

For completeness we also indicate H*(276), H*(27to )  in 3.1 and 3.4. 
These rings of invariants represent the image of the restriction map in the 

cohomology of certain elementary abelian subgroups, which detect the 
multiplicative relations. For n = 2 and k = 4, 5,6 we have numerical data which 
indicates a highly non-trivial ring structure for H*(2716 , F2)  and beyond. We hope 
to recognize general patterns which will enable us to extend our computations. It 
is well known that the rood 2 cohomology of the symmetric groups is detected 
on elementary abelian subgroups, and the additive structure can be determined 
from this. Generators appearing at a finite stage will exist stably, but the precise 
multiplicative relations among them change at each level, as the lattice of detecting 
subgroups becomes larger and more complicated. 
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Let G be a finite group, then there is a canonical embedding G ~ Sla I induced 
by the regular representation. If H ___ G, we have a commutative diagram 

G reg ~, SIG[ 

regla~:RI 
H ,(SIHI) IG:H1 

Indeed, we can write G = Hg 1 w Hg 2 w . . .  u Hgta:n], where the gi are representatives 
for the right cosets of H in G. Then, for g~H,  acting from the left on G, we clearly 
have the asserted diagram. These maps give us canonical characteristic classes for 
group cohomology. For example, if G = (Z/2)", then im reg* = H*((Z/2)", F2) aL"(v2) 
the Dickson algebra. Note that Ns,~(reg(G))=AutG,  in particular im 
reg* ___ H*(G) ~ This may partly explain why the Dickson algebra plays such 
an important role. Also note that from the above it follows that im reg* is a large 
portion of the non-riilpotent part of H*(G, F2). 

On the other hand, given any embedding G ~ X,, we know from a result due 

to Evens [E-I that under the induced map i*:H*(X,)~H*(G), the cohomology of 
G is a finitely generated H*(L',)-module. Hence the cohomology rings of the finite 
symmetric groups carry universal relations which will affect the cohomology of 
their subgroups. The situation is a lot more delicate than that induced by the 
embeddings G ~ Soo or G ~ U(n), as the cohomology of these larger groups are 
free abelian algebras: tensor products of polynomial algebras on even dimensional 
generators and exterior algebras on odd ones at odd primes, while for Z/2  
coefficients H*(2~o ) is a polynomial ring on generators dual to the generators of 
the Dyer-Lashof  algebra [M-M] .  We are currently analyzing the general pattern 
for all symmetric groups, which, if understood, would provide insight into the 
cohomological behaviour of arbitrary finite groups. 

Calculating the cohomology of a simple group is especially hard, as one cannot 
make use of the Lyndon-Hochschild-Serre spectral sequence. In Sect. 4 we use 
our results on the symmetric groups to give an explicit method for determining 
the additive structure of H*(A,,  F2), any n. We also describe the mad 2 cohomology 
rings of A s, Alo, and At2 , which have been of interest to algebraists. 

Corollary 4.5. 

H*(A s) ~ P[a2, c3, a3, a,~, d 6, e 6, d7, eT] (Xs)/(R ) 

where deg at = i, deg c a = 3, deg d~ = i, deg e~ = i, deg x~ = 5, and R is the following 
set o f  relations: 

d6a3 = O, dad 7 + d6e 7 + e6e7 = O, d~ + dae6 + e~ = O, 

d7a 2 = dTa a = dTc 3 = dTx5 = 0,d6d 7 + dTe 6 + e6e 7 = O,d~ + d7e 7 + eZ7 = O, 

e60r 3 = 0 

e70" 2 = e70" 3 = e7c 3 = e7x 5 = 0 

X50" 3 ~--- 0~ C3flr 3 = 0 

x~ + xsa2c3 + (d6 + e6)a~ + a,c~ = O. D 
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Tezuka and Yagita [T-Y] calculated the mod 2 cohomology of GL4(F2). Using 
the classical isomorphism As---GL4(F2) we obtain a much cleaner and precise 
description, correcting some imprecisions. We obtain our result using H*(2~s, Fz) 
and a short exact sequence in cohomology which exists in the index two situation. 
We use the same method to determine the cohomology of A1o, At2. 

We would like to point out that our calculations were motivated by specific 
questions in topology. We required precise understanding of H*(27,, F2) as rings 
and modules over the Steenrod algebra (which we obtain in all the examples 
mentioned previously) in order to analyze certain double covers Zn which serve 
as finite models for a classifying space which, among other things, serves to detect 
the Kirby-Siebenmann characteristic class of 4-dimensional manifolds (see [M1] 
for more on this). We hope to elaborate on these applications in a separate paper. 

It is also interesting to note that the smaller alternating and symmetric groups 
are intimately involved in the structure of many sporadic and Lie type simple 
groups. For example, there is a subgroup of the form (Z/2) ~ x rat  in the Mathieu 
group M22, with odd index, and the stability conditions to determine the exact 
image of the restriction map in rood 2 cohomology can be described explicitly (see 
[AMM], Sect. 3). Also (Z/2) 4 x TA7 is a subgroup of odd index in Mz3,  so a similar 
analysis can be made. The double cover of A s, As is a subgroup of McL, and 
shares the same 2-Sylow subgroup with Mz2. Finally we note that -41o c Ly, again 
with odd index. It seems likely that combining the approach described in [AMM] 
with the results in this paper, one can obtain substantial information about the 
ca)homology of the groups mentioned above. 

The organization of the paper is as follows: in Sect. 1 we briefly describe the 
determination of the additive structure of H*(27,, F2); in Sect. 2 we explain the 
invariant theory necessary to detect multiplicative relations; in Sect. 3 we calculate 
H*(~n, F2), n = 6,8, 10, 12 as rings and modules over A(2); and in Sect. 4 we apply 
these results to find the cohomology of the alternating groups. 

We would like to thank Ronnie Lee for stimulating our interest in the 
cohomology of simple groups, and Stewart Priddy for helpful comments. 
Throughout this paper F2-coefficients will be used, so we drop them from our 
notation. 

1. The homology of L'n 

In this section we will briefly outline how H.(2~n) can be computed using infinite 
loop spaces. The original calculation of H , ( Z J  is due to Nakaoka IN], but we 
choose to follow the approach due to Milgram [M], Barratt-Priddy [B-P]  and 
Quillen [Q] which yields the homology of the symmetric groups as a corollary of 
fundamental results in homotopy theory. The reason is that this point of view is 
more conceptual and will serve as background for a sequel, where we discuss 
topological consequences of our calculations. 

If X is a space with basepoint, the natural inclusions IT'Sn(X)~ 0 n + 1S~ + I(X ) 
on passing to the limit define the space Q(X)= lira O~s'(x). Q(X) depends 

B " *  Or3 

funetorially on X and n~Q(X)) = ~(X), the i-th stable homotopy group of X. Let 
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C(S~ = H B,F,., the disjoint union, with B2: o as base point ,. The usual inclusions 
n > 0  

27, x Zm---,27 +,, induce maps B_r. x B~,m--'B,F,.+. which together with �9 make 
C(S ~ into an associative H-space with unit (in fact, a unitary monoid). Now Q(S ~ 
has a "loop sum product", which is given as the limit of the/2" - 1(.):12.S. x ~S"--* 
I2"S n where .:I2S" x I2S"~/2S" is the loop sum. We have the following 
fundamental result 

Theorem 1.1 (Dyer-Lashof). Q(S ~ is the group completion of C(S ~ and hence 

(Q(S ~ ( l i  ) ) |  H .  )) =~ m H,(~r, 2[Z]. [] 
\ n ~ O O  

Although the language was different, this result first appeared in the original 
1960 preprint of [D-L] .  Later it was independently rediscovered by Barrat t-Priddy 
and Quillen. This is an isomorphism compatible with the two ring structures 
induced by the products on either side. Furthermore, the proof of this result shows 
how to distill H.(Z',) from the above. First we describe H,(Q(S~ under loop sum. 

Theorem 1.2. Under the operation * induced by loop sum, 

H .(Q(S~ ) ~ P[Qt] | Z/2[Z] 

where 1=(i l  . . . . .  i.) is a sequence of inteaers with 0 < i l  <i2 < ' ' '  <in and 
degQ1=il + 2 i 2 + , . . + 2 " - l i . .  [] 

For readers acquainted with Dyer-Lashof  operations, we point out that 
Q~ = Q~,QI2""QI. [1]. Note also that using the loop product we can discard the 
classes with i 1 = 0, as Qto.i2,....i.~ = Qti2.....~,~*Q,2,.,.,i,j (a loop square). We refer to 
[M-M] ,  pg. 137 for details. Note that 1.2 implies that H*(,Foo)-~P[Qt], a 
polynomial algebra on an infinite set of generators; the same is true of the 
cohomology ring H*(~,oo)" The map induced in homology by the inclusion 
L'm ~ Zoo is injective, and its image ie explicit, hence allowing us to compute 
H*(~rm). Partition m as m = 2 j~ + 2 j~ + ..- + 2Jq with 0 < Jl < J2 < "'" < J,, then a 
homology basis for H.(2"~) is given by elements 

Qt~*QJ2*"*Q,, 

where 0 __< length (lk) --< J~, the I k have the same form as in 1.2, and (Jl . . . . .  A) range 
over all r-tuples giving a partition of m as described above. 

For  our cohomology calculations it will be necessary to describe how some 
of these classes come from detecting subgroups in 2~,.. Inductively define V'. ~ (Z/2)" 
by V 1' = Z 2 and V'. = Z/2 • V ' . _ l c  Z/2 • Z 2._, c Z/2 ~272._, ~ Z2.. Then, under 
this inclusion, the image of H.(V'.) is contained in the vector space spanned by 
the elements Ql, I = (il . . . . .  i.) where 0 < ix < - - '  < i,. The groups V'. are conjugate 
to the groups V~ defined in Sect. 2 and they will play a central role in our 
cohomology calculations. For  later use we note that the dual classes Q*eH*(~,2. ), 
where i, = 1, will restrict to generators of the image in H*(V.) (and H*(V'.)), the 
so-called Dickson invariants. In our calculations only the first few Dickson classes 
will appear; we denote them as follows: c2 = (Qo,0*, c3 =(QI ,0*,  d,~ =(Qo,o,1)*, 
d6 = (Q0,1,1)*, d7 = (Q1,1.1)*. 
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If  m is not a power of two, we proceed as follows. Let m = 2 TM + 2 "2 + ... + 2 "k, 
0 < nl < n2 < "" < nk be the dyadic expansion of m. Then the map induced by the 
natural inclusion 

n , ( x : ,  x ... • X2nk)--* H,(X, ,  ) 

is surjective (and injective in cohomology). Now given an inclusion 
i: Xs x X z ~ X, +,, it is clear from the definitions that i,(Ql | Qs) = Qx* QJ. Taking 
the products of the classes originating in various detecting subgroups, we can keep 
track of the necessary information. This will be applied to compute the cohomology 
of X 6, X s, X~o and ~v'12 in Sect. 3. 

Finally we point out how the symmetric classes can be described in terms of 
the QI. If  m = 2k, then i:(X2) k C-~Xm and i,(Q1 | "'" | = Q1 * ' " * Q r  Hence 
i*((Ql*"" *QI)*) = ~rk, the k-th symmetric class and similarly i*((Q1 * 1--. * 1)*) = cr 1, 
i*((QI*Q~*I , . . - , 1 ) * ) =  a2, etc. Note that some of the Dickson and symmetric 
generators are identified: a2 with c2, ~,  with d,. We use symmetric generators 
whenever possible. 

2. Invariant theory 

As we saw in Sect. 1, the additive structure of H*(Z,,) has been completely 
understood for over 20 years. At that time the ring structure of H*(XD was 
determined to be the following: 

H*(X4) ~- P[ol, ~z2, C3"]/(~1C 3 "~" 0 ). 

It was assumed that the same type of simple relation would hold for symmetric 
groups of higher degree. In this section we will use invariant theory to show 
otherwise. In fact we will exhibit numerical evidence that indicates the presence 
of very complicated relations, rich with symmetry, that build up successively. We 
will use these to give complete descriptions of the rings H*(E,) for n = 6, 8, 10, 12 
in Sect. 3. 

Let j: V~ = (Z/2)" c_~ Z/2 ~...~Z/2 ~ X2. denote the embedding where we 
s t  

consider 2~2. as the automorphism group of the set O Z/2 and V, as the set of 
1 

translations. Its normalizer is the group of affine transformations, Aff,(Z/2). 
Therefore N(V,)/V,, = GL,(Z/2)and we have that in fact imj*= H*(V,) GLaz/2~, the 
ring of invariants (see [M-M ]) .  For n = 2, we obtain that imj* ~ P[Xo, xt] deg Xo = 2, 
degx t  = 3. 

For n = 4k, we have a natural inclusion 

In cohomology, the image of i* lies. in P[xo, x l l  , where 2~ k acts by 

permuting the polynomial generators. We will now analyze this ring of invariants, 
which later on we will see is the homomorphic  image of H*(Z,). 

We start with the case k = 2: 
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T h e o r e m  2.1. The Poincar~ series of (P[x o, xl]  | P[xo, xl])z~ is 

l + t  5 
P2(t) = 

( l  - t 2 ) ( l  - t s ) O  - t" )O - t 6 )  

Proof. As we are taking two-fold symmetric tensors, there are 
invariants, x |  y |  and x |  The latter are counted by 

1 
series 

(1 - t4)(1 - t6)" 

1/2 (1 - t2)2(1 - t3 )  2 

two types of 
the Poincar6 

Consequently, the former are counted by the series 

1 
] and doing an easy manipulation we obtain: 

(1 - -  t4)(1 - t 6}  / 

'E( ' 
P2(t)=~ t l - t 2 ) ( 1 - t  s) + 

1(  1 ) (  1 
- 2  ( l - t 2 ) ( l - t  s) ( 1 - t 2 ) ( 1 - t  3) q 

_ ~((1 _ t2~1 _ t3 ) ) ( ( l  l - t - ~ - -  t6' ) 2 + 2 t  5 

l + t  5 
- (1 - t2)(1 - t3)(1 - t4)(1  - t6)" [ ]  

Examining this series, we deduce the existence of a five-dimensional class, which 
satisfies a quadratic relation. This is the first indication of the occurrence of relations 
which are not of the form seen before, the products of two generators being zero. 

T h e o r e m  2.2. 

(P[Xo, Xl] | P[xo, xl]) r* 

where 

(1 - t 4 ) O  - t 6)  

( l  + t2 )O + t 3) 

<x~ + xsdo,dll + d22dgl + do2d21 = 0> 

d o t = x o | 1 7 4  d l l = x t | 1 7 4  

do2-'Xo| d2z=Xx|  

xs =Xo|  + xl | 

Proof. The elements doDdo2,dt~,de 2 are independent, generating a subpolynomial 
algebra. Verifying the relation, we conclude that together with xs they generate a 
subalgebra with the same Poincar6 series as (P[xo, x~] | P[xo, x l ] ) &  [] 

The relation in 2.2 will pull hack to H*(Zs), as will be shown in Sect. 3. 
Next we analyze the case k = 3 ,  denote P3=(P[xo, xl]|  Xl]|  

P[xo, xd) ~3. 

T h e o r e m  2.3. The Poincar~ series for Ps is 

1 + t s + t T + t s + t ~ ~  15 
Ps(t) = 

(1 - t2)(1  - tS ) ( l  - t4)(1  - t6)2(1 - -  t 9 )  

P[do 1, do2, d l l, d22] (xs) 
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Proof. Denote 
abc =(1/(1 - t2)(1 - t 3) - 1) 3 

a2b =(1/(1 - t * ) (1  - t  6) - 1)(1/(1 - t2 ) (1  - t  3) - 1) 

a 3 =(1/(1 -- t6)(1 - t 9) -- 1) 

The letters denote the type of  products  they represent. Let 

e 3 = a  3 r cubes 

e t 2 = a2b - e3 ~- products  of type a2b which are not  cubes 

el 1 ~ = abc - 3et2 - e3 ' -  products  of type abe not of  two other types. 

As we are taking symmetric invariants, the formula for the desired Poincar6 
series is 

Ps(t  ) = l ~e11~ + e~2 + e3 + (1/(1 - t2)(1 - t3)) 

The term on the extreme right records the 3-fold symmetrization of the generators 

of  e Ix  o, x l I- 
Using macsyma*, this simplifies to the asserted Poincar6 series. [ ]  
As before, we use the numerator  to deduce the relations. Let S(ul | |  

denote symmetrization. 

Theorem 2.4. 

P3 ~ P[dol, do2, do3, dl 1,d22,d33, xs, xT, x8]/( R ) 

where 

doa -- S(Xo | 1 | 1), 

dll =8(xl | 1 | 1), 

x5 =S(Xo| | I), 

Relations: 

do2 = S(Xo | Xo | 1}, 

d22 = S(xl | x~ | 1), 

x7 = S(xo|174 

do3 = x o | 1 7 4  

d33 = xl  |  |  

xs = S(Xo| |  

x~+do2x~+do2dotxs+(do3dt t  +do2doxd, a)xs 
2 2  + dozdlx +d~td22do2+do3dold22 

2 2 xs+d22xs+d22dllXT+(d33d01 + d22dlldoa)x5 
2 2  + d22dox + d~tdo2d22 + d33dtxd02 

x,x7 + aolX~ + [e~ + ao2]X8 + ~ 3 dotdxtx5 + dold22 

+dold22do2+~3d~l+~3d22 +dotdo2d~ 

xsx8 + dtax~ + [d~l + d22]x7 + d~ldotxs + d~xd02 

+dlldo2d22+d33~1+d33do2+dtid22dgt  

+(dgld22+do2d~l)xs+d~td33+d~xdo3+do3d33. 

(1) 

(2) 

(3) 

(4) 

(5) 

* macsyma is a symbolic manipulation program develol~d at MIT and distributed by syrabolics 
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Proof. The elements  do, i=  0, 1, j = 1,2, 3 are a lgebraical ly  independent ,  and  
generate a po lynomia l  subalgebra.  We examine the numera to r  of the Poincar6 
series for Ps:  

l +tS +t7 +ts  +t lo  +t15" 

The quintic term mus t  come from x s = S ( x o | 1 7 4  and  similar ly XT= 
S(xo | Xo | Xt), x8 = S(xo | X~ | Xt) account  for tT, t 8. Likewise x~ explains  the 
occurrence of  t 1~ (One checks that  x5 does no t  satisfy a quadra t i c  equation).  

There  mas t  be re la t ions involving x 3, z z x 7, x 8, xsx 7 and xsxa. Find ing  the exact 
re lat ion is a ra ther  tedious task,  which involves tak ing  all possible  produc ts  of  the 
right d imension involving xs, xT, xs, x~ and expressing their spill over  in terms 
of the d o. Knowing  the exact  formulas,  their  verification is a lengthy but  s t raight  
forward calculat ion,  which we leave as a horr ible  exercise to the reader.  No te  that  
re lat ion (2) is ob ta ined  from (1) by exchanging Xo and Xl; likewise we get (4) from 
(3) in this manner .  Rela t ion (5) is invar iant  under  this exchange. 

To comple te  the p roo f  we jus t  compare  Poincar6 series. [ ]  

F o r  the cases k = 4, 5, 6 we do  not  have the a lgebra  structure,  only  the Poincar6  
series. These can be ob ta ined  in a combina to r i a l  way extending the methods  used 
in 2.3; we used macsyma to per form the simplifications.  As the denomina to r s  of 
these series are clear, we only give the numera tors :  

Theorem 2.5. The invariant algebras P4, Ps, P6 have the following polynomials as 
numerators of their Poincar~ series: 

N4(t) = t 30 + t 25 + t 23 + t 22 + t 2t  + 2t 2~ + t 19 + t 18 + t 17 + t 16 "4- 2 t  15 + t 14 + t t3 

+ t 12 + t t i  + 2t t~ + t 9 + t 8 + t 7 + t 5 + 1 (1) 

Ns(t  ) = t 50 + t a5 + t '~3 + t 42 + t 41 + 2t 4~ + 2 t  39 + 2t 3a + 2t 37 + 3t  36 + 3t 35 + 3t 34 

+ 3 t  33 + 4t 32 + 4t 3~ + 4t 3~ + 5t 29 + 5t 2s + 5t 27 + 5t 26 + 6t 25 + 5t 24 + 5t 23 

+ 5t 22 + 5 t  2t + 4 t  2~ + 4 t  19 + 4 t  18 + 3t ~7 + 3t 16 + 3t 15 + 3t : 4 + 2 t  13 + 2 t  12 

+ 2t t t  + 2t 1~ + t 9 + t 8 + t 7 + t 5 + 1 (2) 

N6( t  ) = t 75 + t 7~ + t 6s + t 67 + t 66 + 2 t  65 + 2 t  64 + 2 t  63 + 3 t  62 + 4 t  6 t  + 4 t  6~ + 5t  59 

+ 5t 5s + 6t s7 + 7t 56 + 8t 55 + 10t 54 + 10t 5a + l l t  s2 + 13t 5t + 14t5~ + 15t 49 

+ 17t '~s + 18t 47 + 19t 46 + 20t 45 + 2 I t  44 + 22t 43 + 23t 42 + 23t 4~ + 24t 4~ 

+ 23t 39 + 24t 3s + 24t 37 + 23t 36 + 24t 35 + 23t 34 + 23t 33 + 22t 32 + 2 I t  3t 

+ 2 0 t  3 ~  19t z9 + 18t 2s + 17t 27+  15t 26+  14t 2s + 13t 2 4 +  l l t  23 + 10t 22 

+ 10t 21 + 8t 2~ + 7t 19 + 6t ~a + 5t 17 + 5t 16 + 4t ts  + 4t 14 + 3t x3 + 2t 12 

+ 2t 11 + 2t 1~ + t 9 + t s + t 7 + t 5 + l .  (3) 

These po lynomia l s  satisfy two unexpected condi t ions:  (i) if n = deg N,(t), then 
the coefficient of  t ~-k is the same as the coefficient of  t k, and  (ii) N~(I) = i!. 

Let PEx t . . . .  , x~] be a po lynomia l  a lgebra  which has  a ,~, ac t ion  defined by  
permut ing  the n generators .  A fundamenta l  result  in Ga lo i s  Theo ry  is tha t  the  
r ing of  invar iants  of this ac t ion is also a po lynomia l  ring, on  the symmetr ic  
genera tors  ~r~ . . . . .  a , .  W e  have shown that  this result  does  not  ex tend  to invar ian ts  
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of the form P[x o, x 1] . As more variables are introduced, the complexity of 

this ring of invariants increases and this will be reflected by interesting relations 
in the cohomology of the symmetric groups. 

3. H*(2~.) ,  n = 6,8, 10,12 

In this section we will combine the well-known additive structure of H,(Xn) with 
the invariant theory of Sect. 2 to obtain precise descriptions of the cohomology 
rings H*(2~n) n = 6, 8, 10, 12, as well as the action of the Steenrod algebra on them. 
We start by describing H*(,~6): 

Theorem 3.1. 

H*(~6) ~ P[0-1, 0"2' 0"3' C3]/(C3(0"3 "~- 0"10"2) : 0~ 

deg a s = i, deg c 3 = 3' where 

S q l a 2 = a l a 2 + a 3 + c 3 ,  Sqlc3=O, Sq2c3=cr2c 3 

Sqla3 = (c3 + 0"3)0"1, Sq20"3 = 0"30"2 + c30"~. 

Proof. From Sect. 1, we see that H,(X6) has a basis given by elements 
{Qi* Qs* Qk, Q,.~* Q,} where 1 < r _< s, dim Q,,~ = 2s + r and Qo,, = Q~* Q~. We now 
consider the sequence of inclusions 

(~2) 3 ~ 4  X S 2 & ~ 6 .  

Using a basis dual to the one above, we have that if k = j ' i ,  

k*((Q1 �9 1 �9 1)*) =0"1 

k*((Q 1 * Q 1 * 1)*) = 0"2 

k*(tQl *QI*QI)*) =0"3. 

Using the symbol 0"1 to denote the cohomology classes identified to symmetric 
classes, the above implies that 

j * { ( Q x * l * l ) * ) = a l |  1 + 1| 1 

J*((QI *Q1 * 1)*) = 0"1 | al + 0"2 | 1 

J*((Q1 *Q1 *QI)*) = 0"2 ~ 0"1" 

Note that the 3-dimensional generator c 3 in H*(274) restricts to zero. As 
J,(Q11 | 1) = QI l * 1, we conclude that J*((QI 1 * 1)*) = Q11 | 1 = c 3 | 1. 

The elements a t | 1 + 1 | 0-1, 0.1 | a l  + 0-2 | 1 and 0-2 | al  are independent, 
as they map to the symmetric generators under i*. Recalling that in H*(2~4), c3a~ = 0 
is the only relation, we obtain a unique relation in the subalgebra generated by 
the above elements together with c3| 1: 

(C3 ~1)[(0-2~)0"1)q-(0-1 ~)1 d- [ ~0-1){trl ~ t r l  q-0"2(~ I)] = 0 .  

Hence observing that j* is a monomorphism and that this subalgebra has the 
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same  Po inca r6  series as  H*(E6)  (which is 1 + x3/(1 - x)(1 - x2)(1 - x3)) we c o n c l u d e  

H*{'U6) ~ P[0.1, r 0.3, C3]/(C3(0.3 -{- 0"10"2) = 0 ) .  

He re  we ident i fy  a 1 | 1 7 4  ~ r l | 1 7 4  0.2| 
c3| 1 -~c3. 

For the action of the Steenrod algebra, we apply the Sq~ in H*(Z,) |  H*(Z'2) 
and use the relations there: 

Sql ff2 = Sqli*(0.2 | 1 + 0.1 | 0.1) = i*(Sql0"2 | 1 + 0"2 t | 0"i + 0"1 | 0.2) 

= i * ( c 3 |  +0.10"2 |  +0"2| 1 +0"1|  2) 

= i*((0.1 | t + 1|174 + 0 . 2 | 1 7 4  + c 3 |  ) 

= 0"10.2 + G3 + C3 

Sqt c3 = Sqli*(c3 | 1) = i*(Sql(c3 | 1)) = 0 

S q 2 c 3  = i*(Sq2(c3 | 1)) = i* (0 .2C  3 | 1) = 0"2r 3 

Sqitr3 = Sqli*(0"2 | a t )  = i*(Sqt0.2 | 0.1 + 0.2 | 0.2) 

= i*(c3 | 0"1 + ai0.2 | 0.1 + 0.2 | 0"t 2) 

= (c3 + 0"3)0"1 

SqZ'r3 = i*(Sq20"2 | 0"1 + Sq10"2 | Sq10"1) = i*(0" 2 | 0"1 + c3 | 0"2 + 0"10"~ | 0"2) 

= i*((0.t | a t ) (az  | 1 + 0.1 | 0.1) + (c3 | 1){0"1 | 1 + 1 | 0"1) 2) 
= 0 " : 2 + c :  2- [ ]  

Next  we consider 2~s: 

Theorem 3.2. 

H* (.~?s) ~ P i g 1 ,  0.2, 0.3, c3, 04, d6, d7](x5)/( R ) 

where d e g a i  = i, d e g c  3 = 3, d e g d i  = i, d e g x  5 = 5, and R is the following set of  
relations: 

d60.1 = d60. 3 = 0 

d70.1 = d70" 2 = d70. 3 = dTc 3 = dTx 5 = 0 

X50" 3 + s 1 = 0 

e3(0.3 + 0 . : 2 )  + 0.1xs = 0 

+ d~0"~ + 0",c~ 0 X 5 "3 t- X50.2C 3 

The following table describe the action of  the Steenrod algebra: 

~2 G3 C3 

Sq 1 ~1~2 + a 3 + C 3 HI(C 3 + 63) 0 

2 C3ff ~ + G2ff 3 + ffla4 ~2C3 + X5 Sq 2 % 

sq 3 o a~ c~ 
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a~ x5 d6 d7 

Sq I x 5 + a l a  4 a l x  5 d 7 0 

Sq 2 OZa 4 + d 6 + xsff I ff2X5 azd 6 0 

Sq 3 d 7 + c a #  4 + ff3ff4 + ~2x~ (c 3 + a3)x s c3d 6 O 

2 Sq 4 G 4 a4X5 + c3(d 6 + fflxs) ff4d6 Gad7 

Sq s 0 x~ xsd6 + ff4d7 0 

Sq 6 0 0 d~ d6d 7 

We will make use of the following inclusions 

i J 
( E 2 )  4 - - - - *  E,~ X E 4 ) E 8 

l, l, 
V~ x V2 v3 

Proof. 

Recalling facts from Sect. 1, we see that H,(Z's) has a basis given by the elements 

Qi,:,k dim i + 2j + 4k, 0 <= i ~ j ~ k 

QI,j*Q,*Qs d i m i + 2 j + r + s ,  O < i < j  

Qij*Q,,, d imi+r+2( j+s) ,  O<i<j ,  

Qi*Qj*Qk*Q, d i m i + j + k  +s 

O ~ r ~ s  

with relations Qoj,k = Q~,k* Qi,k, Qo.k = Qk * Qk. As before we know the cohomology 
classes which map to the symmetric generators in H*((Z2)4), and what classes they 
represent in H*(E4)| H*(Z4) under j*: 

J*(#1) = J*((QI * I * 1 * I)*) = #i | 1 + I | a I 

J*(cr2) = J*((QI*Q1 * 1 * 1)*) = #2 | 1 + #1 | #1 + 1 | ~r 2 

j*(a3)=j*((QI.Q1.QI.1)*)=#2| +#1| 

J*(#4) = J*((QI *Q1 * e t  * Q1)*) = a2 | a2. 

We also have that 
J.(QI,1 r * 1) = Q1,1 *Q1 * I 

].(Q1,1 | Q1 *Q1) = Qt,I *Q1 *Q1 

J,(QI.I | QI.0 = Q1.1 *Q1.1. 
Hence in cohomology we deduce, that 

J*((Ql . t*(21* 1)*) =c3 | + #1 | 

j*(xs) = j*((Qt.1 *Qt*Qt)*) = c3 | #2 + a2 |  

j*(d6) = J*((Ql,1 * QI.1)*) = c 3  |  
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We also have j*(c3) = j* ((Q l, 1 * 1)*) = C 31~ 1 + 1 @ c 3 and j*(d7) = j*((Q1, t, 1 )*) = O. 
Note that we have renamed our cohomology generators in such a way as to keep 
track of the symmetric generators (al) and the symmetrization of the three 
dimensional generator of H*(274), %. 

To determine one of the multiplicative relations we use Theorem 2.2 and the 
fact that q'j* is clearly onto the invariants previously calculated; in fact we have 
(jq)*(o2) =dos, (jq)*(c3)= dl~, (jq)*(0.4)=do2, (jq)*(d6)= d11, ( jq)*(xs)=xs,  and 
the other generators map to 0. From 2.2 we pull back the relation to obtain 
j*(x~ + xsa2c 3 + d6a22 + 0.,c~) = 0. We now make use of the fact that ira(l*) is well 
known [ M - M ]  to be a polynomial algebra on the Dickson invariants D,, D6, DT, 
(deg Di =/). Furthermore it is known that I*(QI*QI*QI*QO*) = I*(0.4) = D4, 
I*((QI,1 *QL1)*) =/*(d6) = D6, /*((QLt,1)*) = l*(dT) = 07 and all other generators 
map to 0. 

It was also proved in [M-M-] that V 3 and 274 x 274 are detecting subgroups 
for L" s. In other words, H*(Xs) is isomorphic to the subalgebra of 
H*(,~ 4 x ~v'4)@H*(V3) generated by 

0.1v--~(0.1 @ 1 + 1 @0.1,0) 

02V-~(0.2@ 1 + 0.1 @0.1 + 1@0"2,0) 

0.31"-"1'(0"2@0"1 "F" 0.1 @0"2,0) 

0.4~(0.2 @ a2, D4) 
C3F"*(C3 @ 1 + 1 @c3,0 ) 
XSV.....I,(C3 @0. 2 "-[- 0"2 @C3,0 } 

d6 t---*(c 3 @ C3, D6) 

d 7 v-q.(0, DT). 

The relations 

d60.t = d6o'3 = dTal = d70.3 = d70.2 = d7c3 = d7xs  = 0 

follow immediately from this, as does the last relation (using 2.2). Now, under this 
correspondence 

X50. 3 "1- C30"40"11"-r (~ O'2 "~- 0.2 (~ C3)(0.2 @ 0"1 + 0.1 (~) 0.2)' 0) 

+ ((% @ 1 + 1 @ c3)(a 2 @ a2)(a I @ 1 + 1 @ el), 0) 

= (c3a2 @ altrl + a20.1 @%0.2,0) + (c3a2 @ a20"t + a2al @%0"2,0) 

= ( o , o )  

%(03 + al~r2) + exXr 3 @ 1 + 1 @ c3)[(a 2 @ 0.1 + al @ 02) 

+ (0  l@ 1 + 1 @at)(o" 2@ 1 + a I @01 + 1@0"2)],0) 

+ ((tr t @ 1 + 1 @ 0.1)(% @ 02 + 0.2 @ c3), (3) 

--'~ (r @ 0"1 + 0.1 ~) C30'2 + C30.2 (~ 17"1 

+ C3 (~)0"10"2 + 0.1 ~) C30"2 q" 0'162 @ C3, 0) 

+ (C3 ~) 0.10"2 + 0"10.2 @ C3, 0) ---'=-- (0, 0 ). 
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The fact that this is a complete description of H*(27s) follows from checking its 
Poincar~ series (which is known from the results in Sect. 1) or by observing that 
any other relation would be detected on (Z2)*, V 2 x V 2 or V 3. 

To obtain the action of the Steenrod algebra, we work in ira(j* ~ l*) and use 
our knowledge about the operations in H*(274)| and H*(V3). We leave 
the details to the reader. []  

Corollary 3.3. The Poincar~ series of ,V, s is 

P~(t) 
tts + 2t13 + t12 + 3t tt + 3tl~ + 3t9 + 4ta + 4tT + 4te + 3tS + 3t4 + t3 + 2t2 + l 

(t 7 -- 1Xt 6 - 1)(t a - 1) ( t -  1)(t 2 + 1) 
[]  

From this, a relatively direct calculation gives the cohomology of 27t o. Indeed, 
going from 27,1 to L',i+ 2 only has the effect of removing relations involving at. In 
general, the relations in a finite symmetric group do not occur stably, but appear 
at the finite stage because the detecting subgroups are not yet large enough. For  
Zt0 we have: 

Theorem 3.4. 
H*(27t o) ~ P[0.1, 0"2, 0-3, a4, 0-5, r X5, d6, d7] / (R)  

where R is the set of  relations 

0"2d7, 0.3d7, c3d7, xsd7 

(0"5 + 0"10",t)d7, (0"3 + ~ (~5 + fft0.4.)d6 

x~ + 0"2c3x, + c~0", + 0-,~a6 
(0"3 "1" 0"/O'2)X 5 "+" C3(0- 5 "4- 0"10" 4. "F 0"20" 3 "F 0"10"2) 

(0"5 "F" 0-10-4)X5 "F" C3(0- 3 -t- 0"10"2)0- 4. [ ]  

Next we prove 

Theorem 3.5. 

H*(~V'l 2) ~ e [0 . t ,  0"2, 0-3, c3, 0.4, 0"5, 0-6, d6, dT, d9-](xs, x7, x s ) / ( R )  

where degoi = i, degc 3 = 3, degd /= / ,  degxi = i and R is the set of  relations 

X2 .dr_ 0-4X2 + 0-20-4.X 8 + (0-6e3 ..1_ 0-20-4C3)X 5 + 0-2 -I- C 2 --~ 0.20-4d 6 "-~ 0.60-2d6, 

2 2 c20-4d6 + d9c30.2, X 2 + d6 x2 + c3d6x 7 -F (d90 2 -F c3d60.2)x5 + d60- 2 q- 

xsx7 .~_ a2x2 4. [0-2 .~ o.4.]x 8 --I- 172c3x5 ~t- ~32d 6 + 0-2d60-4 -I- 0-6 r -,F- o6d  6 q-- 0.20.4c 2, 

XSX 8 + C3X 2 q- [C~ q- d6]x  7 + c]0-2x 5 41- c3174 + c30.4d 6 + d90" 2 + d90- 4 -I- c3d60-22, 

,'2 + c 3 , ~  + ~7~s + c30"~x~ + ~ d x 7  + t0-~do + 0 - , ~ ) ~  + 0-~d9 + d0"~ + 0-6d~, 

d90.1, d90.3, d90.s 

d70 3, d7x 5, dTortc3, dT(x7 + 0"4c3), dT(as + o,,at), d7(0-6 + a40"2), dT(xa + d60.2), 

dT(d9 + d6c3), 
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x70-1 4- X5(0-10-2 4- 0-3) 4- C3(0.20.3 "{" a20.1 4- 0"10-4 4- 0"5)' 

X70-3 + X5(0-5 4- 0-10-4) 4- C3(0-10.6 4- r 4- 0.10-20-4), 

X70- 5 + X50-10- 6 + C3(0-30- 6 4- 0"10"217"6) , 

xaax + d6(0-3 4- 0-10.2), 
X80-3 + d6(a5 + 0-10-*), 

X80- 5 + d60-io" 6. 

The action on the Steenrod algebra on H*(Z'12) is determined by the followino 
values: 

Sqla2 
Sqlc3 
Sq20-3 
Sq10-, 

Sq20-5 

Sq'0-5 
Sq2x5 
Sql0-6 

Sq40-6 

Sqld6 
Sq4d6 
Sqtd7 

Sqlxa 
Sqld9 

=GIG 2 + G 3 + C 3, 

=0, Sq2c3 = 0-2ca + xs, 

= C3 G2 4- 0"20" 3 + 0"10" 4 4- G5, 

=X5 + 0"t0-4 + 05, ~q20"4 = 0"20"* + a6 + d6 + r 4- ~ 

= d60-1 + Ks 0-2 + c3(0.10-3 + 0'20"2) + 020"5 + 0-t0-6, 

=C3 G2 + a,a s + GIX5G 3 + G3G 6 + C3GIG2G3 + C3GIG 5, 

~---- G2XS, 

= X  7 4-0-1G6, Sq2a6 = x 8 4- x70-1 4-e2a6,  

=0-,0-6 + x70-3 + d,0.  + + x50-2c3 + c 0., + c3 , + c30-10.6, 

=dT, Sq2d6 = x s + 0-2d6, 

-----0"40" 6 4- X50.2C 3 4- d60- 2 4- 0-4 c2 4- X. 2 4- X7C 3 4- X80-2, 

= Sq2d7 = O, Sq4d7 = 0.4d7, Sq6d7 = d6d 7, 

= d 9 4- 0-2d7 + 0-3d6 + 0-10-2d6, Sq4x8 = XS(0- 4 4- C30-1) 

= d7c3, Sq2d9 = 0-2d9, Sqad9 = d7XTC 3 4- xsd 9. 

Proof. From Sect. 1, we see that H , ( Z 1 2  ) has a basis given by elements 

Generators Dimensions 

Qi,j,k *Q~,s i + r + 2(j + s) + 4k 

Qi.j.k*Q,*Q~ 

Qi.j*Q,.~*Q,., 

Q~j*Q,.~*Q,*Q, 

Q~j*Q,*Q~*Qt*Q, 
Qi*Qj*Q,*Q,*Qt*Q, 

i + r + s + 2 j + 4 k  
i+r +t + 2(j+s+u) 

i + r + t + u + ~ j + s )  

i + r + s + t + u + ~  

i + j + r + s + t + u  

Restrictions 

O<_i<_j<=k 
O<r<s 
O<i<=j<_k 
O<i<_j 

O<_r<_s 
O<t<_u 

o < i ~ j  
O<r<s 
O<=i<-j 
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We make use of the following sequence of inclusions: 

z.,xz4 xZ,  

l, 
|/~ x v2 • v2 

As before if we denote 

0.1 = ( Q I * I * I * I * I * I )  *, 

0-3 = ( Q I * Q I * Q I * I * I * I )  *, 

0"5 =(QI *QI *QI *Q1 *QI* 1)*, 

] k 
,2; s x Z ,  ,2712 

l, 
(,~2) 6 

0-2 = ( Q I * Q l * l * l * l * l )  * 

0"4 = (QI *QI*QI*QI*  1,1)* 

0"6 = (Q1 *Q1 *QI *Q1 *QI*Q1)* 

then under (kji)* they map to the symmetric generators (having the same name) 
in H*((2~2)6). Hence under k* we have 

{ k*(0.1)=al| + 1| k*(0-2)=0.2(~1 +0"1| 1 + 1| 2 

k*(o'3) --  0 .3 |  1 + a z |  + ai |  k*(0.4) = 0.4|  1 + 0.2| + 0"3| (3.5) 

k*(as) = a4 | 0.1 + 0-3 | a2, k*(0"6) --  0"4 | 0-2 

We also have 

(k~ | l | l)=Ql.l * l * l * l * l 

(k~ | Ql,l | l) = Q1.1 * Q1.1 * 1 �9 1 

(k~ | Q1.1 | = Q1.1 *Q1,1 *QI,~. 
Denoting the duals of these homology classes, by ca, d6, d9 respectively, and 
d~ = (Q1,1,1 * 1 �9 1)* we have that 

{ k*(c3)= c3| + 1| 

k*(d6) = d 6 | 1 + c3 | c3 (3.6) 

k*(dT) = d7 | 1 
k*(d9) = do | ca 

Similarly, 

(koj).(Ql.1 | *Ql | 1) = Ql,1 *Qt *Q1 * 1 �9 1 

(k~ | Qt *QI | QI *QI) =QI,I *QI *QI *QI *Q1 
(koj).(Ql,1 | | *Q1)=QI.I *QI,I *QI *QI 

Denoting the duals of these homology classes x 5, x~, xs respectively, we have that 

k*(xs)=xs| 1 + a2| +c3| + c3al | 
k*(xT) = a4 | c3 + x~ | a 2 (3.7) 

k * ( x 8 )  = x 5 | c 3 -t- d 6 @ 0" 2. 

The image of k* is generated by the 13 classes we have listed; this follows from 
the detecting subgroups. As k* is injective (note that 2~12 and Z s x Z4 have the 
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same 2-Sylow subgroup) we conclude that H*(Z12) is isomorphic to the subalgebra 
of H*(Z8 x Z4) generated by the classes defined in (3.5), (3.6), (3.7). 

To obtain the relations, we observe that there are three distinct types of 
generators 

Type I: a~, a 2, a 3, a 4, ffs, ~6 
Type II: ff2,c3,ff4,t76,d6,x5,xT, xs, d9 
Type III: d7 

The relations among the generators of type II are detected on (I:2) a. The 
relations obtained in the ring of invariants Pa correspond to them, and using 2.4 
we pull them back to H*(~12), yielding the first block of relations. The other 
relations come from products of generators of different type. They are mixed 
products which vanish when restricted to the detecting subgroups. We leave the 
verification of the relations to the reader. Note that they are consistent with the 
relations recorded in the symmetric groups of lower degree, and that only the new 
generators of type II produce new relations when multiplied with the odd 
dimensional symmetric generators. The fact that these are a complete set of relations 
follows by observing that any other relation must necessarily decompose into a 
combination of those given. 

Finally, the action of the Steenrod algebra is determined by working in 
H*(2~ s x Z4) and using our knowledge of the action on H*(2?a) and H*(274). [] 

4. The cohomology of alternating groups 

An important class of simple groups whose cohomology has not been computed 
are the alternating groups A n. The absence of proper normal subgroups makes 
the cohomology of simple groups particularly inaccessible, but in our situation 
we can make good use of H*(Zn). The following lemma in Quillen-Venkov [Q-V] 
allows one to relate the cohomology of a group to that of an index 2 subgroup: 

Lemma 4.1. Let veHom (G, Z/2) non-trivial, with H = kerv. Then there is a lono 
exact sequence 

. . . .  ,H'(G) ~~ '~.,n'+l(l~ t' ,H'+I(G) ~ , . . .  

Proof. (Compare [D-M, Appendix 1]). The fibration Z/2 o B n  ~ B a  is the sphere 
fibration of a line bundle. Consequently MC(p) = Ba/Bu is the Thom space of the 
line bundle with first Stiefel-Whitney class v. Now apply the Gysin sequence. 
Transversality identifies 

B j B n  ~ ,F, Bn 

with the transfer. This can also be proved algebraically using the short sequence 
of G-modules 

O---~F2---~F2[G/H]--*F2--~O. [] 

We apply this lemma to the situation An-  ,~,o with [27,:A~ = 2. We know 
Hl(2~n)-~.F2, generated by the symmetric class trt; hence 



408 A. Adem et al. 

Theorem 4.2. There is a short exact sequence of  H*(T,.)-modules: 

0 ,H.(2~.)/(0- 0 ~ S H . ( A n  ) t, ~Ann(0-1 ) ,0. [ ]  

F r o m  the considerations in Sect. 1, it is not  hard  to see that  the ideal 
J .  = Ann(o-l) is generated by "pure"  Dickson classes. These can be described as 
follows: let n = 2 i '  + -.. + 2 # ' ,whcre 1 < Jl < "'" < J, (the case Jl = 0 can be reduced 
to this situation); the pure Dickson classcs are those of the form (Q#,* ' "*Qr , )* ,  
where 2 =< lcngth( l~)=j~ for all k = 1 . . . . .  r and each I k = (1 . . . . .  1). 

An immediate  consequence of this is the following 

Corollary4.3. I f  n is congruent to 2 or 3 mod4 ,  then the restriction map 
H*(T,.)-~ H*(An) is onto, and 

H*(A.)  ~- H*(,r,.)/(0-1). [] 

We remark  that  the results in Sect. 1 together  with the preceding discussion 
can be used to completely determine the additive structure of  H*(A.), any n. The  
ring structure is of course much  harder,  but  we can recover the rings H*(A6), 
H*(As), H*(Ato ) and H*(A12) in what  follows. 

F rom 3.1 and 4.3 we have: 

Corollary 4A. 

H*(A6) ~ P[0-2, 0-3, c3]/(c30-3 = O) 

with 

Sql0-2 = 0-3 + c3, Sqlc3 = O, Sq2c3 = 0-2c3, Sql0-3 = O, Sq20-3 = 0"30" 2. 

Proof. By 3.1, A n n ( a 1 ) = 0 ,  hence 

H*(A6) ~- H*(Z6)/(0-1). [] 

Applying 4.2 to A a, we obtain  the following 

Corollary 4.5. 

H*(As) ~- P[0-2, c3, 0"3, 0-4, d6, e6, dT, eT-] (Xs)/( R ) 

where deg0- i = i, degc  3 = 3, degd  t = i, dege  i = i, degx~ = 5, and R is following set 
o f  relations: 

d60"3 = O, d6d 7 + d6e 7 + e6e 7 = O, d~ + d6e 6 + e~ = O, 

dTa2 = dTa3 = d7c3 = dTxs = O, d6d 7 + dTe 6 + e6e 7 = O, d] + d7e 7 + e~ = O, 

e60" s = 0, 

e 7 0 "  2 ~ e70- 3 = e7c 3 = eTx 5 = O, 

x50"3 = 0 ,  c30-3 = 0, 
x~ + xs0-2c3 + (d 6 + e6)0-~ + 0-4c~ = 0. 

The action o f  the Steenrod algebra on the generators different from e6, e7 can be 
read from 3.2 using the restriction map;for e6, e 7 the action is identical to that on 
ds and d 7 substituting e6, e7 for  d6, d 7 throughout. 
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Proof. Using 3.2 and 4.2, we have a short exact sequence 

0 ,H.(,y,s)/(trl ) , , , . ,H,(As) tr ,(d6, dT)_..0" 

Here (d6, dT) is the ideal generated by d 6 and d7 in H*(,V,a), and res is an isomorphism 
until degree 6, where a new class e6~He(As); similarly there is a new class e7 ~HS(As), 
and we have t r  (e6) = d6, tr (e7) ---- d 7. Note that tr (xy) = tr (x).y for y~H*(Zs)/(al),  
hence we need only adjoin e6, e7 and their products with elements in im res to 
obtain H*(As). It only remains to determine the multiplicative relations involving 
these two classes. 

Let Nz~(V3) , NAs(Va) be the normalizers of V 3 in Z s and As respectively. Then 
[Es:Nzs(Va)]=2[As:NA,(V3) ] as there are twice as many conjugates of V 3 
obtained by using elements in Z" s as those obtained by using only elements in A s. 
Hence there exists 1 ~ OeEs/A s such that 1/"3 and gV3O- 1 are not conjugate in As. 
The classes e6, e7 will be detected on gVg -1. For this note that NA.(V3)= 
Nz.(V3)=Aff3(Z/2);  similarly Na~(gV3g-I)=Nzs(V3).  We have a diagram of 
restriction maps 

i* 
H*(Xs) , H*(As) r H*(gV3g- ~)~L,(F~ 

The maps j* and l* are onto: as noted before their images will be subpolynomial 
algebras generated by the Dickson invariants D,, D6, D7 and E,, E6, E7 respectively. 
The classes D4, E ,  are identified with o,~H*(As) and we obtain d6, e6, dT, e7~H*(As) 
with j*(d6) = D6, j*(d7) = D 7, l*(e6) = E6, l*(eT) = E 7. 

The element ~,S ,s /A  s induces an involution on H*(As) with tj*d i = e~, i = 6, 7; 
also note that res di = d~ + e~. Now tr ((ei + di)e3 = tr ((res d3e 3 = d i.tr e i = dZ~. 
Therefore 

tr(e 2 + (ei + di)el) = 0 and etd~eim res. 

Using the restriction to V 3 and gV3g -I ,  it follows that 

e,di = res d 2 

yielding the relation 

e~ + e fli + d~ = O. 

The same procedure yields the relations 

e6e 7 +d6e 7 + d6d 7 = 0 

e6e 7 + dTe 6 + d6d 7 = O. 

The other relations, involving e 6, e 7 and the other generators, follow from the 
corresponding relations for d6, d7. The remaining relations follow from applying 
res to relations in H*(Za). []  



410 A. Adem et al. 

The  explicit calculation of  H*(As) is part icularly interesting in light of  the fact 
that  A s -_ GLa(F2). This i somorphism,  due to Jo rdan  and found in Dickson [D] ,  
can be described by the following correspondence of generators:  

t 10il 0 0 1 , 0 1 
(23)(12)~ 1 0 (34)(12)v--, 1 0 

1 0 1 , 1 0 
(45)(i2)  1 0 (56)(12) 10 0 1 

0 0 1 0 

1 0 I , 0 1 
(67)(12)~-~ 0 0 (78)(12)~-~ 

0 0 1 1 

A calculation for H*(GL4(F2) ) was first a t t empted  in [ T - Y ] ;  there was an error 
which was corrected later. However ,  at best their approach  led to a listing of 
elements without  giving any  insight as to their significance or explicit multiplicative 
relations. 

Corol lary  4.6. The Poincar~ series for H*(GL4(F2) ) is 

t t 5  - -  t 14  + t 13 - -  t 1 2  4" t 11 -- t 9 + t s + t 7 + 2t 6 + 2t 4 -- t 3 + 2t 2 -- t + 1 
P(t) = [] 

( t  7 - -  l)(t 6 - 1)(t 3 - 1 ) ( t -  1)(t 2 + 1) 

Using an analogous  approach ,  we obtain  

Coro l lary  4.7. 

H*(A t o) ~ PEa2, o" 3, a,,as, c3, xs, d6]/<R> 

where R is the set of relations 

asdT, ar3dT, c3d7, xsdT, a3d6, o ' s d  6 

ersx s + c3a3a4,a3x5 + c3(a5 + a2a3). [ ]  

As for A6, the act ion of  the Steenrod algebra on the generators  follows directly 
f rom the descript ion of  H*(2~1o). 

Corollary 4.8. 

H*(A i 2) ~ PEa2, tr3, c3, a4, as ,  a6, d6, dT, d9, e9, el o] (x5, xT, xs) / (  R } 

where degcri=~,  degc  3 = 3, degd,=i,  d e g x i =  i, d e g e t = i  and R is the set of 
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relations 

X 2 -{- 0"4 X2 -+ O'20"4X 8 +(0"6C 3 -{- 0"20"4C3)X 5 -3 l- 0 -2 -{- C 2 + o'2o'4d6 + u6o2d6, 

X2 + d6x25 + c3d6x7 + (I-e9 + d9]o. 2 + c3d6(72)xs 2 2 + d60" 2 + c2t;,,d6 + [-e 9 + d9lc3o'2, 

x5x 7 -~- u2 X2 + [0 .2 -[- o-4lx 8 -~- ~72c3x5 -{- t73d6 + o'2d6o" 4 + 0"6 c2 .+. e6d 6 + (72(74c 2, 

X5X 8 -~" C3 X2 + ['C 2 "l" d61x 7 -{-- c320"2x5 + c30"4 --~ c3u4d 6 + [-e 9 -.+- d910"2 .-4- re 9 -[- d910 , 

+ c3d6o'22, 

X 3 4" C3r X2 -aj- X7X 8 "~ C3(72X8 -}- a2C2X7 @ (0"2d6 + cr,c2)xs + (722[e9 + d91 + c3r 

+ o'6J-e 9 + d9], 

d90"3, d90"5, eoor 3, e90" 5, 

dTO" 3, dTxs, etoO" 4 + dT(x7 + 0"4c3) , d705, d7(o" 6 + 0"40"2) , dT(x 8 + d60"2), 

dT(e 9 + dg) + d6(dTc3 + elo), 

XsOr 3 + C3(0"20"3 + US), X70" 3 -{- X50" 5 -~- C30"3(74, X70" 5 -~- C30"30"6, 

d60-3, XsO" 3 + d60" 5, XsOr 5, 

+ dge9 + e 2, (d e3) 2 + d c3elo + e20, 

d9dTc 3 + d9eto + e9el 0, d9dTC3 + dTc3e9 + e9elo. 

The action on the Steenrod algebra on generators different from e9, elo can be 
obtained from 3.4 using the restriction map;for e9, eto the action is identical to that 
on d 9 and d7c 3 doing the appropriate substitutions. [] 
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