
Symmetric-Key Based Proofs of Retrievability

Supporting Public Verification

Chaowen Guan1, Kui Ren1, Fangguo Zhang1,2,3, Florian Kerschbaum4

, and Jia Yu1,5

1 Department of Computer Science and Engineering, University at Buffalo
2 School of Information Science and Technology, Sun Yat-sen University, China

3 Guangdong Key Laboratory of Information Security Technology, China
4 SAP, Karlsruhe, Germany

5 College of Information Engineering, Qingdao University, China
{chaoweng,kuiren}@buffalo.edu, isszhfg@mail.sysu.edu.cn,

florian.kerschbaum@sap.com

Abstract. Proofs-of-Retrievability enables a client to store his data on
a cloud server so that he executes an efficient auditing protocol to check
that the server possesses all of his data in the future. During an audit,
the server must maintain full knowledge of the client’s data to pass, even
though only a few blocks of the data need to be accessed. Since the first
work by Juels and Kaliski, many PoR schemes have been proposed and
some of them can support dynamic updates. However, all the existing
works that achieve public verifiability are built upon traditional public-
key cryptosystems which imposes a relatively high computational burden
on low-power clients (e.g., mobile devices).
In this work we explore indistinguishability obfuscation for building a
Proof-of-Retrievability scheme that provides public verification while the
encryption is based on symmetric key primitives. The resulting scheme
offers light-weight storing and proving at the expense of longer verifi-
cation. This could be useful in applications where outsourcing files is
usually done by low-power client and verifications can be done by well
equipped machines (e.g., a third party server). We also show that the pro-
posed scheme can support dynamic updates. At last, for better assessing
our proposed scheme, we give a performance analysis of our scheme and
a comparison with several other existing schemes which demonstrates
that our scheme achieves better performance on the data owner side and
the server side.

Keywords: Cloud Storage, Proofs of Retrievability, Indistinguishability
Obfuscation

1 Introduction

Nowadays, storage outsourcing (e.g., Google Drive, Dropbox, etc.) is becoming
increasingly popular as one of the applications of cloud computing. It enables
clients to access the outsourced data flexibly from any location. However, the

2 C. Guan et al.

storage provider (i.e., server) is not necessarily trusted. This situation gives rise
to a need that a data owner (i.e., client) can efficiently verify that the server
indeed stores the entire data. More precisely, a client can run an efficient audit
protocol with the untrusted server where the server can pass the audit only
if it maintains knowledge of the client’s entire outsourced data. Formally, this
implies two guarantees that the client wants from the server: Authenticity and
Retrievability. Authenticity ensures that the client can verify the correctness of
the data fetched from the server. On the other hand, Retrievability provides
assurance that the client’s data on the server is intact and no data loss has
occurred. Apparently, the client should not need to download the entire data
from server to verify the data’s integrity, since this may be prohibitive in terms
of bandwidth and time. Also, it is undesirable for the server to read all of the
client’s outsourced data during an audit protocol.

One method that achieves the above is called Proofs of Retrievability (PoR)
which was initially defined and constructed by Juels and Kaliski [1]. Mainly, PoR
schemes can be categorized into two classes: privately verifiable ones and publicly
verifiable ones. Note that privately verifiable PoR systems normally only involve
symmetric key primitives, which are cheap for the data owner in encrypting and
uploading its files. However, in such systems the guarantees of the data’s authen-
ticity and retrievability largely depend on the data owners themselves due to the
fact that they need to regularly perform verifications (e.g., auditing) in order to
react as early as possible in case of a data loss. Nowadays, users create and up-
load data everywhere using low power devices, such as mobile phones. Obviously,
such privately verifiable PoR system would inevitably impose expensive burdens
on low power data owners in the long run. On the other hand, in this scenario
with low power users, it is reasonable to have a well equipped server (trust-
ed or semi-trusted) perform auditing on behalf of data owner which requires
publicly verifiable PoR systems. However, all of the existing PoR schemes that
achieve public verifiability are constructed based on traditional public key cryp-
tography which implies more complex and expensive computations compared to
simple and symmetric key cryptographic primitives. (This observation can also
be spotted in outsourced computing schemes that support public verification
[34–36].) That means a PoR scheme using public key cryptographic primitives
incurs relatively expensive overheads on low-capability clients. One might want
to construct a public verifiable PoR scheme without relying on traditional pub-
lic key cryptographic primitives. One cryptographic primitive that can help to
overcome this constraint is indistinguishability obfuscation (iO) which achieves
that obfuscations of any two distinct (equal-size) programs that implement the
same functionality are computationally indistinguishable from each other. iO
has become so important since the recent breakthrough result of Garg, Gen-
try, Halevi, Raykova, Sahai, and Waters in [2]. Garg et al. proposed the first
candidate construction of an efficient indistinguishability obfuscator for general
programs which are written as boolean circuits. Subsequently, Sahai and Wa-
ters [3] showed the power of iO as a cryptographic primitive: they used iO to
construct denial encryption, public-key encryption, and much more from pseu-

Symmetric-Key Based Proofs of Retrievability Supporting Public Verification 3

dorandom functions. Most recently, by exploiting iO, Ramchen et al. [4] built
a fully secure signature scheme with fast signing and Boneh et al. [5] proposed
a multiparty key exchange protocol, an efficient traitor tracing system and more.

Our work. In this paper, we explore this new primitive, iO, for building PoR.
In particular, we modify Shacham and Waters’ privately verifiable PoR scheme
[6] and apply iO to construct a publicly verifiable PoR scheme. Our results share
a similar property with Ramchen et al.’s signing scheme [4], that is, storing and
proving are fast at the expense of longer public verification. Such “imbalance”
could be useful in applications where outsourcing files is usually done by low-
power client and verifications can be done by well equipped machines (a semi-
trusted third party). Our contributions are summarized as follows:

1. We explore building proof-of-retrievability systems from obfuscation. The
resulting PoR scheme offers light-weight outsourcing, because it requires only
symmetric key operations for the data owner to upload files to the cloud
server. Likewise, the server also requires less workload during an auditing
compared to existing publicly verifiable PoR schemes.

2. We show that the proposed PoR scheme can support dynamic updates by
applying the Merkle hash tree technique. We first build a modified B+ tree
over the file blocks and the corresponding block verification messages σ.
Then we apply the Merkle hash tree to this tree for ensuring authenticity
and freshness.

3. Note that the current iO construction candidate will incur a large amount
of overhead for generating obfuscation, but it is only a one-time cost during
the preprocessing stage of our system. Therefore its cost can be amortized
over plenty of future operations. Except for this one-time cost, we show that
our proposed scheme achieves good performance on the data owner side and
the cloud server side by analysis and comparisons with other recent existing
PoR schemes.

Indistinguishability obfuscation indeed provides attractive and interesting fea-
tures, but the current iO candidate construction offers impractical generation
and evaluation. Given the fact that the development of iO is still in its nascent
stages, in Appendix, we discuss several possible future directions in works on
obfuscation in addition to those discussed in [2].

1.1 Related Work

Proof of Retrievability and Provable Data Possession. The first PoR
scheme was defined and constructed by Juels and Kaliski [1], and the first Prov-
able Data Possession (PDP) was concurrently defined by Ateniese et al. [7].
The main difference between PoR and PDP is the notion of security that they
achieve. Concretely, PoR provides stronger security guarantees than PDP does.
A successful PoR audit guarantees that the server maintains knowledge of all of
the client’s outsourced data, while a successful PDP audit only ensures that the

4 C. Guan et al.

server is retaining most of the data. That means, in a PDP system a server that
lost a small amount of data can still pass an audit with significant probability.
Some PDP schemes [8] indeed provide full security. However, those schemes re-
quires the server to read the client’s entire data during an audit. If the data is
large, this becomes totally impractical. A detailed comparison can be found in
[9]. Since the introduction of PoR and PDP they have received much research
attention. On the one hand, subsequent works [6, 10–12] for static data focused
on the improvement of communication efficiency and exact security. On the oth-
er hand, the works of [13–15] showed how to construct dynamic PDP scheme
supporting efficient updates. Although many efficient PoR schemes have been
proposed since the work of Juels et al., only a few of them supports efficient
dynamic update [16–18].

Observe that in publicly verifiable PoR systems, an external verifier (called
auditor) is able to perform an auditing protocol with the cloud server on behalf
of the data owner. However, public PoR systems do not provide any security
guarantees when the user and/or the external verifier are dishonest. To address
this problem Armknecht et al. recently introduced the notion of outsourced proofs
of retrievability (OPoR) [19]. In particular, OPoR protects against the collusion
of any two parties among the malicious auditor, malicious users and the mali-
cious cloud server. Armknecht et al. proposed a concrete OPoR scheme, named
Fortress, which is mainly built upon the private PoR scheme in [6]. In order to
be secure in the OPoR security model, Fortress also employs a mechanism that
enables the user and the auditor to extract common pseudorandom bits using a
time-dependent source without any interaction.

Indistinguishability Obfuscation. Program obfuscation aims to make com-
puter programs “unintelligible” while preserving their functionality. The formal
study of obfuscation was started by Barak et al. [20] in 2001. In their work,
they first suggested a quite intuitive notion called virtual black-box obfuscation,
for which they also showed impossibility. Motivated by this impossibility, they
proposed another important notion of obfuscation called indistinguishability ob-
fuscation (iO), which asks that obfuscations of any two distinct (equal-size)
programs that implement the same functionalities are computationally indis-
tinguishable from each other. A recent breakthrough result by Garg et al. [2]
presented the first candidate construction of an efficient indistinguishability ob-
fuscator for general programs that are written as boolean circuits. The proposed
construction was build on the multilinear map candidates [21, 22].

The works of Garg et al. [2] also showed how to apply indistinguishability
obfuscation to the construction of functional encryption schemes for general cir-
cuits. In subsequent work, Sahai and Waters [3] formally investigated what can
be built from indistinguishability obfuscation and showed the power of indis-
tinguishability obfuscation as a cryptographic primitive. Since then, many new
applications of general-purpose obfuscation have been explored [24–28]. Most
recently, the works of Boneh et al. [5] and Ramchen et al. [4] re-explore the
constructions of some existing cryptographic primitives through the lens of ob-
fuscation, including broadcast encryption, traitor tracing and signing. Those

Symmetric-Key Based Proofs of Retrievability Supporting Public Verification 5

proposed constructions indeed obtain some attractive features, although curren-
t obfuscation candidates incur prohibitive overheads. Precisely, Boneh et al.’s
broadcast encryption achieves that ciphertext size is independent of the number
of users, and their traitor tracing system achieves full collusion resistance with
short ciphertexts, secret keys and public keys. On the other hand, Ramchen et
al. [4] proposed an imbalanced signing algorithm, which is ideally significant-
ly faster than comparable signatures that are not built upon obfuscation. Here
“imbalanced” means the signing is fast at the expense of longer verification.

2 Preliminaries

In this section we define proof-of-retrievability, indistinguishability obfuscation,
and variants of pseudorandom functions (PRFs) that we will make use of. All the
variants of PRFs that we consider will be constructed from one-way functions.

2.1 Proofs of Retrievability

Below, we give the definition of publicly verifiable PoR scheme in a way similar
to that in [6]. A proof of retrievability scheme defines four algorithms, KeyGen,
Store, Prove and Verify, which are specified as follows:

(pk, sk) ←KeyGen(1λ). On input the security parameter λ, this randomized
algorithm generates a public-private keypair (pk, sk).

(M∗, t)←Store(sk,M). On input a secret key sk and a file M ∈ {0, 1}∗, this
algorithm processes M to produce M∗, which will be stored on the server,
and a tag t. The tag t contains information associated with the file M∗.

(0, 1) ← Audit(Prove,Verify). The randomized proving and verifying algo-
rithms together define an Audit-protocol for proving file retrievability. During
protocol execution, both algorithms take as input the public key pk and the
file tag t output by Store. Prove algorithm also takes as input the processed
file description M∗ that is output by Store, and Verify algorithm takes as
input public verification key V K. At the end of the protocol, Verify outputs
0 or 1, with 1 indicating that the file is being stored on the server. We denote
a run of two parties executing such protocol as:

{0, 1} ← (Verify(pk, V K, t) ⇋ Prove(pk, t,M∗)).

Correctness. For all keypairs (pk, sk) output by KeyGen, for all files M ∈
{0, 1}∗, and for all (M∗, t) output by Store(sk,M), the verification algorithm
accepts when interacting with the valid prover:

(Verify(pk, V K, t) ⇋ Prove(pk, t,M∗)) = 1.

2.2 Obfuscation Preliminaries

We recall the definition of indistinguishability obfuscation from [2, 3].

6 C. Guan et al.

Definition 1. Indistinguishability Obfuscation (iO). A uniform PPT machine iO
is called an indistinguishability obfuscator for a circuit class {Cλ}λ∈N if the fol-
lowing conditions are satisfied:

– For all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x, we have
that Pr[C′(x) = C(x) : C′ ← iO(λ,C)] = 1.

– For any (not necessarily uniform) PPT distinguisher (Samp,D), there exists
a negligible function negl(·) such that the following holds: if for all security
parameters λ ∈ N, Pr[∀x,C0(x) = C1(x) : (C0;C1; τ) ← Samp(1λ)] >
1− negl(λ), then we have

|Pr[D(τ, iO(λ,C0)) = 1 : (C0;C1; τ)← Samp(1λ)]−
Pr[D(τ, iO(λ,C1)) = 1 : (C0;C1; τ)← Samp(1λ)]| ≤ negl(λ).

2.3 Puncturable PRFs

A pseudorandom function (PRF) is a function F : K×M→ Y with K
$← K such

that the function F (K, ·) is indistinguishable from random. A constrained PRF
[29] is a PRF F (K, ·) that is able to evaluate at certain portions of the input
space and nowhere else. A puncturable PRF [29, 3] is a type of constrained PRF
that enables the evaluation at all bit strings of a certain length, except for any
polynomial-size set of inputs. Concretely, it is defined with two PPT algorithms
(EvalF ,PunctureF) such that the following two properties hold:

– Functionality preserved under puncturing. For every PPT algorithm
A with input 1λ outputs a set S ⊆ {0, 1}n, for all x ∈ {0, 1}n\S, we have

Pr[EvalF (K{S}, x) = F (K,x) : K
$← K,K{S} ← PunctureF (K,S)] = 1

– Pseudorandom at punctured points. For every pair of PPT algorithms
(A1,A2) such that A1(1

λ) outputs a set S ⊆ {0, 1}n and a state σ, consider

an experiment where K
$← K,K{S} ← PunctureF (K,S). It holds that

|Pr[A2(σ,K{S}, S, F (K,S)) = 1)]−
Pr[A2(σ,K{S}, S, Um(λ)·|S|) = 1]| ≤ negl(λ)

3 Security Definitions

The security definitions of Authenticity and Retrievability in [17, 18] are essen-
tially equivalent to the security definition of Soundness in [6]. Note that the
security definitions in [17, 18] are for dynamic PoR systems, while the one in
[6] considers only static PoR systems. The only difference between a static PoR
scheme and a dynamic PoR scheme is that the latter one supports secure dy-
namic updates, including modification, deletion and insertion. This affects the
access to oracles in the security game. Below we present the security definitions
for static PoR systems in the same way as [17, 18] and then point out how to
obtain the security definitions for dynamic PoR systems based on the static one.

Symmetric-Key Based Proofs of Retrievability Supporting Public Verification 7

3.1 Security Definitions on static PoR

Authenticity. Authenticity requires that the client can always detect if any
message sent by the server deviates from honest behavior. More precisely, con-
sider the following game between a challenger C, a malicious server S̃ and an
honest server S for the adaptive version of authenticity:

– The challenger initializes the environment and provides S̃ with public pa-
rameters.

– The malicious sever S̃ specifies a valid protocol sequence P = (op1, op2, · · · ,
oppoly(λ)) of polynomial size in the security parameter λ. The specified op-
erations opt can be either Store or Audit. C executes the protocol with both
S̃ and an honest server S.

If at execution of any opj , the message sent by S̃ differs from that of the honest

server S and C does not output reject, the adversary S̃ wins and the game results
in 1, else 0.

Definition 2. A static PoR scheme is said to satisfy adaptive Authenticity, if
any polynomial-time adversary S̃ wins the above security game with probability
no more than negl(λ).

Retrievability. Retrievability guarantees that whenever a malicious server can
pass the audit test with non-negligible probability, the server must know the
entire content ofM; and moreover,M can be recovered by repeatedly running
the Audit-protocol between the challenger C and the server S̃. More precisely,
consider the following security game:

– The challenger initializes the environment and provides S̃ with public pa-
rameters.

– The malicious server S̃ specifies a protocol sequence P = (op1, op2, · · · ,
oppoly(λ)) of polynomial size in terms of the security parameter λ. The speci-
fied operations opt can be either Store or Audit. LetM be the correct content
value.

– The challenger C sequentially executes the respective protocols with S̃. At
the end of executing P , let stC and stS̃ be the final configurations (states)
of the challenger and the malicious server, respectively.

– The challenger now gets black-box rewinding access to the malicious server
in its final configuration stS̃ . Starting from the configurations (stC , stS̃), the
challenger runs the Audit-protocol repeatedly for a polynomial number of
times with the server S̃ and attempts to extract out the content value as
M′.

If the malicious server S̃ passes the Audit-protocol with non-negligible probability
and the extracted content valueM′ 6=M, then this game outputs 1, else 0.

Definition 3. A static PoR scheme is said to satisfy Retrievability, if there exists
an efficient extractor E such that for any polynomial-time S̃, if S̃ passes the
Audit-protocol with non-negligible probability, and then after executing the Audit-
protocol with S̃ for a polynomial number of times, the extractor E outputs content
valueM′ 6=M only with negligible probability.

8 C. Guan et al.

The above says that the extractor E will be able to extract out the correct
content value M′ =M if the malicious server S̃ can maintain a non-negligible
probability of passing the Audit-protocol. This means the server must retain full
knowledge ofM.

3.2 Security Definitions on Dynamic PoR

The security definitions for dynamic PoR systems are the same as those for static
PoR systems, except that the oracles which the malicious server S̃ has access to
are including Read, Write and Audit. Precisely, the security game for Authenticity
is the same as the for static PoR schemes, except that the malicious server S̃
can get access to Read, Write and Audit oracles. This means that the specified
operations opt by S̃ in the protocol sequence P = (op1, op2, · · · , oppoly(λ)) can
be either Read, Write or Audit. Similarly, the security game for Retrievability is
the same as that for static PoR systems, except that the malicious server S̃ can
get access to Read, Write and Audit oracles. Note that the winning condition for
both games remain unchanged.

4 Constructions

In this section we first give the construction of a static publicly verifiable PoR
system. Then we discuss how to extend this static PoR scheme to support effi-
cient dynamic updates.

Before presenting our proposed constructions, we analyze a trivial construc-
tion of a publicly verifiable PoR scheme using iO. Let n be the number of file
blocks, λ1 be the size of a file block (here assume every file block is equally
large), λ2 be the size of a block tag σ and I be the challenge index set requested
by the verifier. Since iO can hide secret information, which is embedded into
the obfuscated program, from the users, one might construct a scheme as: 1)
set the tag for a file block mi as the output of a PRF F (k,mi) with secret key
k; 2) embed key k into the verification program and obfuscate it; 3) this veri-
fication program simply checks the tags for the challenged file blocks to see if
they are valid outputs of the PRF. Observe that this verification program takes
as inputs a challenge index set, the challenged file blocks and the correspond-
ing file tags. Therefore, the circuit for this verification program will be of size
O(poly(|I| · logn + |I| · λ1 + |I| · λ2)), where |I| is the size of index set I and
poly(x) is a polynomial in terms of x. Clearly, this method also costs much a lot
of bandwidth due to the fact that it does not provide an aggregated proof.

While in our construction we modify the privately verifiable PoR scheme
in [6]. For consistency with the above analysis, assume that file blocks are not
further divided into sectors. Then the verification program takes as input a
challenge index set I, an aggregation of the challenged file blocks µ and an
aggregated σ′. Consequently the circuit for the verification program will have
size O(poly(|I| · logn+ λ1 + λ2)), which is much smaller than that in the trivial
construction. Clearly, the trivial construction will lead to a significantly larger
obfuscation of the verification program.

Symmetric-Key Based Proofs of Retrievability Supporting Public Verification 9

Similarly, we analyze the circuit’s size when a file block is further split into
s sectors, as the scheme in [6] did. Let the size of a sector in a file block be λ3.
The circuit size in the trivial construction will remain unchanged, O(poly(|I| ·
logn + |I| · λ1 + |I| · λ2)). While the circuit in our construction will have size
O(poly(|I| · logn + s · λ3 + λ3)) ≈ O(poly(|I| · logn + λ1 + λ3)), which is still
much smaller than that in the trivial construction. As we can see, exploiting iO
is not trivial although it is a powerful cryptographic primitive.

4.1 Static publicly verifiable PoR scheme

We modify Shacham and Waters’ privately verifiable PoR scheme in [6] and
combine it with iO to give a publicly verifiable PoR scheme. Recall that in the
scheme in [6], a file F is processed using erasure code and then divided into n
blocks. Also note that each block is split into s sectors. This allows for a tradeoff
between storage overhead and communication overhead, as discussed in [6].

Before presenting the construction of the proposed static PoR scheme, we
give a brief discussion on how we apply indistinguishability obfuscation to the
PoR scheme in [6]. For doing that, we need to utilize a key technique introduced
in [3], named punctured programs. At a very high-level, the idea of this technique
is to modify a program (which is to be obfuscated) by surgically removing a key
element of the program, without which the adversary cannot win the security
game it must play, but in a way that does not change the functionality of the
program. Note that, in Shacham and Waters’ PoR scheme, for each file block, σi

is set as fprf(i) +
∑s

j=1 αjmij , where the secret key kprf for PRF f is specific
for one certain file M . That means for different files, it uses different PRF key
kprf ’s. As to make it a punctured PRF that we want in the obfuscated program,
we eliminate this binding between PRF key kprf and file M , and the same PRF
key kprf will be used in storing many different files. Thus, the PRF key kprf
will be randomly chosen in client KeyGen step, not in Store step. The security
will be maintained after this modification, due to the fact that it still provides
σi with randomness without adversary getting the PRF key.

The second main change is related to the construction of a file tag t. Note
that, in Shacham and Waters’ scheme, t = n‖c‖MACkmac

(n‖c), where c =
Enckenc

(kprf‖α1‖ · · · ‖αs). In our proposed scheme, the randomly selected ele-
ments α1, · · · , αs will be removed. Instead, we use another PRF key fprf ′ to
generate s pseudorandom numbers, which will reduce the communication cost
by (s · ⌈log p⌉), where log p means each element αi ∈ Zp. As a consequence of
these two changes, the symmetric key encryption component c is no longer need-
ed and σi will be made as fprf (i) +

∑s

j=1 fprf ′(j) ·mij .

Let F1(k1, ·) be a puncturable PRF mapping ⌈log N⌉-bit inputs to ⌈log Zp⌉. Here
N is a bound on the number of blocks in a file. Let F2(k2, ·) be a puncturable
PRF mapping ⌈log s⌉-bit inputs to ⌈log Zp⌉. Let SSigssk(x) be the algorithm
generating a signature on x.

10 C. Guan et al.

KeyGen(). Randomly choose two PRF key k1 ∈ K1, k2 ∈ K2 and a random

signing keypair (svk, ssk)
R← SKg. Set the secret key sk = (k1, k2, ssk).

Let the public key be svk along with the verification key VK which is an
indistinguishability obfuscation of the program Check defined as below.

Store(sk,M). Given fileM and secret key sk = (k1, k2, ssk), proceed as follows:
1. apply the erasure code to M to obtain M ′;
2. split M ′ into n blocks, and each block into s sectors to get {mij} for

1 ≤ i ≤ n, 1 ≤ j ≤ s;
3. set the file tag t = n‖SSigssk(n)
4. for each i, 1 ≤ i ≤ n, compute σi = F1(k1, i) +

∑s

j=1 F2(k2, j) ·mij ;
5. set as the outputs the processed file M ′ = {mij}, 1 ≤ i ≤ n, 1 ≤ j ≤ s,

the corresponding file tag t and {σi}, 1 ≤ i ≤ n.
Verify(svk, V K, t). Given the tag t, parse t = n‖SSigssk(n) and use svk to

verify the signature on t; if the signature is invalid, reject and halt. Otherwise,
pick a random l-element subset I from [1, n], and for each i ∈ I, pick a
random element vi ∈ Zp. Send set Q = {(i, vi)} to the prover.

Parse the prover’s response to obtain µ1, · · · , µs, σ ∈ Z
s+1
p . If parsing fails,

reject and halt. Otherwise, output VK(Q = {(i, vi)}i∈I , µ1, · · · , µs, σ).

Check:

Inputs: Q = {(i, vi)}i∈I , µ1, · · · , µs, σ
Constants: PRF keys k1, k2

if σ =
∑

(i,vi)∈Q vi · F1(k1, i) +
∑s

j=1 F2(k2, j) · µj then output 1
else output ⊥

Prove(t,M ′). Given the processed file M ′, {σi}, 1 ≤ i ≤ n and an l-element
set Q sent by the verifier, parse M ′ = {mij}, 1 ≤ i ≤ n, 1 ≤ j ≤ s and
Q = {(i, vi)}. Then compute

µj =
∑

(i,vi)∈Q

vimij for 1 ≤ j ≤ s, and σ =
∑

(i,vi)

viσi,

and send to the prove in response the values µ1, · · · , µs and σ.

4.2 PoR scheme Supporting Efficient Dynamic Updates

A PoR scheme supporting dynamic updates means that it enables modification,
deletion and insertion over the stored files. Note that, in the static PoR scheme,
each σi associated with mij1≤j≤s

is also bound to a file block index i. If an
update is executed in this static PoR scheme, it requires to change every σi cor-
responding to the involved file blocks, and the cost could probably be expensive.
Let’s say the client needs to insert a file block Fi into position i. We can see
that this insertion manipulation requires to update the indices in σj ’s for all
i ≤ j ≤ n. On average, a single insertion incurs updates on n/2 σj ’s.

In order to offer efficient insertion, we need to disentangle σi from index i.
Concretely, F1(k1, ·) should be erased in the computing of σi, which leads to a
modified σ′

i =
∑s

j=1 F2(k2, j) ·mij . However, this would make the scheme inse-

cure, because a malicious server can always forge, e.g., σ′
i/2 =

∑s

j=1 F2(k2, j) ·
(mij/2) for file block {mij/2}1≤j≤s with this σ′

i.

Symmetric-Key Based Proofs of Retrievability Supporting Public Verification 11

Instead, we build σi as F1(k1, ri)+
∑s

j=1 F2(k2, j) ·mij , where ri is a random
element from Zp. Clearly, we can’t maintain the order of the stored file blocks
without associating σi with index i. To provide the guarantee that every up-
to-date file block is in the designated position, we use a modified B+ tree data
structure with standard Merkle hash tree technique.

Observe that, unlike Shacham and Waters’ scheme where the file is split into
n blocks after being erasure encoded, the construction here assumes that each file
block is encoded ‘locally’. (Cash et al.’s work [17] also started with this point.)
That is, instead of using an erasure code that takes the entire file as input, we
use a code that works on small blocks. More precisely, the client divides the file
M into n blocks, i.e., M = (m1,m2, · · · ,mn), and then encodes each file block
mi individually into a corresponding codeword block ci = encode(mi). Next, the
client performs the following PoR scheme to create σi for each ci. Auditing works
as before: The verifier randomly selects l indices from [1, n] and l random values,
and then challenges the server to respond with a proof that is computed with
those l random values and corresponding codewords specified by the l indices.
Note that, in this construction, each codeword ci will be further divided into s
sectors, (ci1, ci2, · · · , cis) during the creation of σi. A more detailed discussion
about this and analysis of how to better define block size can be found in the
appendices in [6, 17].

Let F1(k1, ·) be a puncturable PRF mapping ⌈log N⌉-bit inputs to ⌈log Zp⌉. Here
N is a bound on the number of blocks in a file. Let F2(k2, ·) be a puncturable
PRF mapping ⌈log s⌉-bit inputs to ⌈log Zp⌉. Let Enck/Deck be a symmetric key
encryption/decryption algorithm, and SSigssk(x) be the algorithm generating a
signature on x.

KeyGen(). Randomly choose puncturable PRF keys k1 ∈ K1 k2 ∈ K2, a sym-

metric encryption key kenc ∈ Kenc and a random signing keypair (svk, ssk)
R←

SKg. Set the secret key sk = (k1, k2, kenc, ssk). Let the public key be svk a-
long with the verification key VK which is an indistinguishability obfuscation
of the program CheckU defined as below.

Store(sk,M). Given file M and secret key sk = (k1, k2, kenc, ssk), proceed as
follows:

1. split M ′ into n blocks and apply the erasure code to each block mi to
obtain the codeword block m′

i, then divide each block m′
i into s sectors

to get {m′
ij} for 1 ≤ i ≤ n, 1 ≤ j ≤ s;

2. for each i, 1 ≤ i ≤ n, choose a random element ri ∈ Zp and compute
σi = F1(k1, ri) +

∑s

j=1 F2(k2, j) ·m′
ij ;

3. set c = Enckenc
(r1‖ · · · ‖rn) and the file tag t = n‖c‖SSigssk(n‖c);

4. set as the outputs the processed file M ′ = {m′
ij}, 1 ≤ i ≤ n, 1 ≤ j ≤ s,

the corresponding file tag t and {σi}, 1 ≤ i ≤ n.

Verify(svk, V K, t). Given the file tag t, parse t = n‖c‖SSigssk(n‖c) and use
svk to verify the signature on t; if the signature is invalid, reject and halt.
Otherwise, pick a random l-element subset I from [1, n], and for each i ∈ I,
pick a random element vi ∈ Zp. Sent set Q = {(i, vi)} to the prover.

12 C. Guan et al.

Parse the prover’s response to obtain µ1, · · · , µs, σ ∈ Z
s+1
p . If parsing fails,

reject and halt. Otherwise, output VK(Q = {(i, vi)}i∈I , µ1, · · · , µs, σ, t).

CheckU:

Inputs: Q = {(i, vi)}i∈I , µ1, · · · , µs, σ, t
Constants: PRF keys k1, k2, symmetric encryption key kenc

n‖c‖SSigssk(n‖c)← t
r1, · · · , rn ← Deckenc

(c)
if σ =

∑
(i,vi)∈Q vi · F1(k1, ri) +

∑s

j=1 F2(k2, j) · µj then output 1
else output ⊥

Prove(t,M ′). Given the processed file M ′, {σi}, 1 ≤ i ≤ n and an l-element
set Q sent by the verifier, parse M ′ = {m′

ij}, 1 ≤ i ≤ n, 1 ≤ j ≤ s and
Q = {(i, vi)}. Then compute

µj =
∑

(i,vi)∈Q

vim
′
ij for 1 ≤ j ≤ s, and σ =

∑

(i,vi)

viσi,

and send to the prove in response the values µ1, · · · , µs and σ.

Modified B+ Merkle tree. In our construction, we organize the data files us-
ing a modified B+ tree, and then apply a standard Merkle Hash tree to provides
guarantees of freshness and authenticity. In this modified B+ tree, each node has
at most three entries. Each entry in leaf node is data file’s σ and is linked to its
corresponding data file in the additional bottom level. The internal nodes will
no longer have index information. Before presenting the tree’s construction, we
first define some notations. We denote an entry’s corresponding computed σ by
label(·), the rank of an entry (i.e., the number of file blocks that can be reached
from this entry) by rank(·), descendants of an entry by child(·), left/right sibling
of an entry by len(·)/ren(·).

– entry w in leaf node: label(w) = σ, len(w) (if w is the leftmost entry, len(w) =
0) and ren(w) ((if w is the rightmost entry, ren(w) = 0);

– entry v in internal node and root node: rank(v), child(v) len(v) and ren(v),
where len(v) and ren(v) conform to the rules above.

An example is illustrated in Fig. 1.a. Following the definitions above, entry
v1 in root node R contains: (1) rank(v1) = 3, because w1, w2 and w3 can be
reached from v1; (2) child(v1) = w1‖w2‖w3; (3) len(v1) = 0; (4) ren(v1) = v2.
Entry w2 in leaf node W1 contains: (1) label(w2) = σ2; (2) len(w2) = w1; (3)
ren(w2) = w3. Note that the arrows connecting the entries in leaf nodes with F ’s
means that each entry is associated with its corresponding file block. Precisely,
e.g., entry w1 is associated with the first data block F1 and label(w1) = σ1.

To search for a σ and its corresponding file block, we need two additional
values of each entry, low(·) and high(·). low(·) gives the lowest-position data
block that can be reached from an entry, and high(·) defines the highest-position
data block that can be reached from an entry. Observe that these two values need
not be stored for every entry in the tree. We can compute them on the fly using
the ranks. For the current entry r, assume we know low(r) and high(r). Let

Symmetric-Key Based Proofs of Retrievability Supporting Public Verification 13

w7 w8 w9w4 w5 w6w1

v2 v3v1

R

W3W2W1

w2 w3

F1 F2 F3 F4 F5 F6 F7 F8 F9

(a) Initial Tree.

w7 w8 w9w4 w5 w6w1

v2 v3v1

R

W3W2W1

w2 w3

F1 F2 F3 F4 F5 F6 F7 F8 F9

w10

F10

(b) Insertion.

r2

v1

w6 w10 w7 w8 w9w1

v4 v3v2

R

W3W’2W1

w2 w3

F1 F2 F3 F6 F7 F8 F9

w4 w5

W4

F4 F5 F10

v1

w6 w10 w7 w8 w9w1

v4 v3v2

R’

W3W’2W1

w2 w3

F1 F2 F3 F6 F7 F8 F9

w4 w5

W4

F4 F5 F10

r1

V1 V2

(c) Splitting Internal Node and Root Node.

Fig. 1. An Example of a Modified B+ tree.

child(r) = v1‖v2‖v3. Then low(vi)’s and high(vi)’s can be computed with entry’s
rank value in the following way: (1) low(v1) = low(r) and high(v1) = low(v1)+
rank(v1)− 1; (2) low(v2) = high(v1)+1 and high(v2) = low(v2)+ rank(v2)− 1;
(3) low(v3) = high(v2) + 1 and high(v3) = high(r).

Using the entries’ rank values, we can reach the i-th data block (i.e., i-th
entry) in the leaf nodes. The search starts with entry v1 in root node. Clearly,
for the start entry of the tree, we have low(v1) = 1. On each entry v during the
search, if i ∈ [low(v), high(v)], we proceed the search along the pointer from v to
its children; otherwise, check the next entry on v’s right side. We continue until
we reach the i-th data block. For instance, say we want to read the 6-th data
block in Fig. 1.a. We start with entry v1, and the search proceeds as follows:

1. compute high(v1) = low(v1) + rank(v1)− 1 = 3;
2. i = 6 /∈ [low(v1), high(v1)], then check the next entry, v2;
3. compute low(v2) = high(v1)+1 = 4, high(v2) = low(v2)+ rank(v2)−1 = 6;
4. i ∈ [low(v2), high(v2)], then follow the pointer leading to v2’s children;
5. get child(v2) = w4‖w5‖w6;
6. now in leaf node, check each entry from left to right, and find w6 be the

entry connecting to the wanted data block.

Now it is only left to define the Merkle hash tree on this modified B+ tree.
Note that in our modified B+ tree, each node have at most 3 entries. Let upper
case letter denote node and lower case one denote entry. For each entry, the
hashing value is computed as follows:

14 C. Guan et al.

– Case 0: w is an entry in a leaf node, compute f(w) = h(label(w)) = h(σ),
– Case 1: v is an entry in an internal node and it’s descendent is node V ′,

compute f(v) = h(rank(v)‖f(V ′)).
For each node (internal node or leaf node) consisting of entries v1, v2, v3 from left
to right, we define f(V) = h(f(v1)‖f(v2)‖f(v3)). For instance, in Fig. 1.a, the
hashing value for the root node is f(R) = h(f(v1)‖f(v2)‖f(v3)), where f(vi) =
h(rank(vi)‖f(Wi)) and f(Wi) = h(f(w(i−1)∗3+1)‖f(w(i−1)∗3+2)‖f(w(i−1)∗3+3)).

With this Merkle hash tree built over the modified B+ tree, the client keeps
track of the root digest. Every time after fetching a data block, the client fetches
its corresponding σ as well. Also the client receives the hashing values associated
with other entries in the same node along the path from root to the data block.
Then the client can verify the authenticity and freshness with the Merkle tree.
Say the client needs to verify the authenticity and freshness of block F3 in Fig.

1.a, where he/she possesses the root digest f(R). The path from root to F3 will
be (R → W1). For verification, besides σ3, the client also receives f(w1), f(w2)
in node W1 and f(v2), f(v3) in node R.
Update. The main manipulations are updating the data block and updating
the Merkle tree. Note that the update affects only nodes along the path from a
wanted data block to root on the Merkle tree. Therefore, the running time for
updating the Merkle tree is O(logn). Also to update the Merkle tree, some hash-
ing values along the path from a data block to root are needed from the server.
Clearly, the size of those values will be O(logn). Update operations include Modi-

fication, Deletion and Insertion. The update operations over our modified B+ tree
mostly conform to the procedures of standard B+ tree. A slight difference lies
in the Insertion operation when splitting node, due to the fact that our modified
B+ tree doesn’t have index information.

First, we discuss Modification and Deletion. To modify a data block, the client
simply computes the data block’s new corresponding σ and updates the Merkle
tree with this σ to obtain a new root digest. Then the client uploads the the new
data block and the new σ. After receiving this new σ, the server just needs to
update the Merkle tree along the path from the data block to root. To delete a
data block, the server simply deletes the unwanted data block by the client and
then updates the Merkle tree along the path from this data block to root.

Next, we give the details of Insertion. If the leaf node where the new data
block will be inserted is not full, the procedure is the same as Modification.
Otherwise, the leaf node needs to be split, and then the entry that leads to this
leaf node will also be split into two entries, with one entry leading to each leaf
node. Note that unlike operations on standard B+ tree, we don’t copy the index
of the third entry (i.e., the index of the new generated node) to its parent’s node.
Instead, we simply create a new entry with a pointer leading to the node and
record the corresponding information as defined above. If the root node needs
to be divided, the depth of this Merkle tree will increment by 1. An example of
updating is shown as Fig. 1.b and 1.c. Say the client wants to insert a new file
block F10 in the 7-th position. First, it locates the position in the way mentioned
above. Note that we can locate the 6-th position or the 7-th position. Here we
choose to locate the 6-th position and insert a new entry w10 behind w6 in left

Symmetric-Key Based Proofs of Retrievability Supporting Public Verification 15

node W2 . (If choosing to locate the 7-th position, one should put the new entry
before w7.) Next, the information corresponding to this new file block F10 will
be written into entry w10 with a pointer pointing from w10 to F10, as shown in
Fig. 1.b. Since it exceeds the maximum number of entries that a node can have,
this leaf node W2 needs to be split into two leaf nodes, W ′

2 and W4 with two non-
empty entries in each node (this conforms to the rules of updating a B+ tree), as
shown in Fig. 1.c. At the same time, a new entry v4 is created in the root node R
with a pointer leading v4 to leaf node W4. Similarly, this root node R is split into
two internal nodes, V1 and V1. Finally, a new root note R′ is built, which has two
entries and two pointers leading to V1 and V2, respectively. Note that, now the
root node has entries r1 and r2, where r1 is the start entry of this tree, meaning
low(r1) = 1. We also have rank(r1) = rank(V1) = rank(v1) + rank(v2) = 5 and
rank(r2) = 5.

4.3 Security Proofs

Theorem 1 The proposed static PoR scheme satisfied Authenticity as specified
in Sect. 3.1, assuming the existence of secure indistinguishability obfuscators,
existentially unforgeable signature schemes and secure puncturable PRFs.

Theorem 2 The proposed static PoR scheme satisfies Retrievability as specified
in Sect. 3.1.

The detailed proof for Theorem 1 is given in the full version of this paper [23].
The proof for Theorem 2 will be identical to that in [6], because in our scheme, a
file is processed using erasure code before being divided into n blocks, the same
as that in [6] where the proof was divided into two parts, Sect. 4.2 and 4.3.

5 Analysis and Comparisons

In this section, we give an analysis of our proposed scheme and then compare it
with other two recently proposed schemes.

Our scheme requires the data owner to generate an obfuscated program dur-
ing the preprocessing stage of the system. With the current obfuscator candidate,
it indeed costs the data owner a somewhat large amount of overhead, but this
is a one-time effort which can be amortized over plenty of operations in the
future. Thus, we focus on the analysis on the computation and communication
overheads incurred during writing and auditing operations rather than those in
the preprocessing step. Like the private PoR system in [6] the data owner can
efficiently store files on the cloud server, and it takes the cloud server less over-
head during an auditing protocol than in a public-key-based scheme. The cost
on the client device is mainly incurred by the operations over symmetric key
primitives, which are known to be much faster than public key cryptographic
primitives. The cost analysis on the server side is shown as Table 1.

In Table 1 showing a comparison with existing dynamic PoR schemes we let
β be the block size in number of bits, λ be the security parameter and n be the

16 C. Guan et al.

Scheme Write Cost Write Auditing Cost Verifiability Dynamic
on Server Bandwidth Server Read Update

Iris[16] O(β) O(β) O(βλ
√

n) private YES

Cash et al.[17] O(βλ(log n)2) O(βλ(log n)2) O(βλ(log n)2) private YES

Shi et al.[18] O(β log n) +O(λ log n) O(β) +O(λ log n) O(βλ log n) public YES

This paper O(β) +O(λ log n) O(β) +O(λ log n) O(βλ) public YES
Table 1. Comparison with existing dynamic PoRs.

number of blocks. We compare our scheme with the state-of-the-art scheme [18],
since a comparison between Shi et al.’s scheme and Cash et al.’s scheme is given
in [18]. Note that Shi et al.’s scheme needs amortized cost O(β logn) for writing
on the server side, due to the fact that an erasure-coding needs to be done on
the entire data file after Θ(n) updates, while our scheme uses an erasure code
that works on file blocks, instead of taking the entire file as inputs (more details
and discussions can be found in Sect. 4). That means, in our system modifying
a block does not require a change of the erasure codes of the entire file. Thus,
the cost for writing is only proportional to the block size being written. On the
other hand, during an auditing protocol, Shi et al.’s scheme incurs overhead
O(βλ log n) on the server side, due to the features of the server-side storage
layout. In their scheme, one single file will be stored as three parts, including
raw data part R, erasure-coded copy of the entire file C and hierarchical log
structure part H that stores the up-to-date file blocks in erasure-coded format.
Thus, during one auditing operation, Shi et al.’s scheme needs to check O(λ)
random blocks from C and O(λ) random blocks from each filled level in H.
While, in our scheme, the server performs every writing over the wanted block
directly, not storing the update block separately. Thus, our scheme only requires
O(λ) random blocks of one file to check authenticity during auditing. (Note that
this O(λ) usually would be Ω(

√
nβ) if no pseudorandom permutation over the

locations of the file blocks is performed, because a small number proportional
to O(λ) might render the system insecure. Please refer to [17] for more details.)
Note that it is most likely that the auditing protocol is executed between a
well-equipped verification machine and the server, and the operations on server
side only involve symmetric key primitives. Therefore, it will not have noticeable
effects on the system’s overall performance.

Clearly, the improvement in our work mainly results from iO’s power that
secret keys can be embedded into the obfuscated verification program without
secret keys being learnt by user. However, the current obfuscator candidate [2]
provides a construction running in impractical, albeit polynomial, time. (Note
that it is reasonable and useful that the obfuscated program is run on well-
equipped machines.) Although iO’s generation and evaluation is not fast now
[30], studies on implementing practical obfuscation are developing fast [31]. It
is plausible that obfuscations with practical performance will be achieved in the
not too distant future. Note that the improvement on obfuscation will directly
lead to an improvement on our schemes.

Symmetric-Key Based Proofs of Retrievability Supporting Public Verification 17

6 Conclusions

In this paper, we explore indistinguishability obfuscation to construct a publicly
verifiable Proofs-of-Retrievability (PoR) scheme that is mainly built upon sym-
metric key cryptographic primitives. We also show how to modify the proposed
scheme to support dynamic updates using a combination of a modified B+ tree
and a standard Merkle hash tree. By analysis and comparisons with other exist-
ing schemes, we show that our scheme is efficient on the data owner side and the
cloud server side. Although it consumes a somewhat large amount of overheads
to generate an obfuscation, it is only a one-time effort during the preprocessing
stage of the system. Therefore, this cost can be amortized over all of future op-
erations. Also note that the improvement on obfuscation will directly lead to an
improvement on our schemes.

7 Acknowledgments

This work is supported in part by US National Science Foundation under grant
CNS-1262277 and the National Natural Science Foundation of China (Nos.
61379154 and U1135001).

References

1. Juels, A., Kaliski Jr, B.S.: PORs: Proofs of retrievability for large files. In: ACM
CCS, pp. 584-597 (2007)

2. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate in-
distinguishability obfuscation and functional encryption for all circuits. In: FOCS,
pp. 40-49 (2013)

3. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: Deniable en-
cryption, and more. In: STOC, pp. 475-484 (2014)

4. Ramchen, K., Waters, B.: Fully secure and fast signing from obfuscation. In: ACM
CCS, pp. 659-673 (2014)

5. Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014. LNCS, vol. 8616, pp. 480-499. Springer, Heidelberg (2014)

6. Shacham, H., Waters, B.: Compact proofs of retrievability. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 90-107. Springer, Heidelberg (2008)

7. Giuseppe, A., Randal, B., Reza, C., Herring, J., Kissner, L., Peterson, Z., Song,
D.: Provable data possession at untrusted stores In: ACM CCS, pp. 598-609 (2007)

8. Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable delegation of computation over
large datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 111-131.
Springer, Heidelberg (2011)

9. Küpçü, A.: Efficient cryptography for the Next generation secure cloud: protocols,
proofs, and implementation. Lambert Academic Publishing (2010)

10. Ateniese, G., Kamara, S., Katz, J.: Proofs of storage from homomorphic identi-
fication protocols. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
319-333. Springer, Heidelberg (2009)

18 C. Guan et al.

11. Bowers, K.DJuels, A., Oprea, A.: Proofs of retrievability: theory and implementa-
tion. In: The ACM Workshop on Cloud Computing Security, pp. 43-54 (2009)

12. Dodis, Y., Vadhan, S., Wichs, D.: Proofs of retrievability via hardness amplifica-
tion. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 109-127. Springer,
Heidelberg (2009)

13. Ateniese, G., Pietro, R.D., Mancini, L.V., Tsudik, G.: Scalable and efficient prov-
able data possession. In: SecureComm 2008, pp. 9:1-9:10. ACM, New York (2008)

14. Dynamic provable data possession. In: ACM CCS, pp. 213-222 (2009)
15. Wang, Q., Wang, C., Li, J., Ren, K., Lou, W.: Enabling public verifiability and

data dynamics for storage security in cloud computing. In: Backes, M., Ning, P.
(eds.) ESORICS 2009. LNCS, vol. 5789, pp. 355-370. Springer, Heidelberg (2009)

16. Stefanov, E., van Dijk, M., Juels, A., Oprea, A.: Iris: a scalable cloud file system
with efficient integrity checks. In: ACSAC, pp. 229-238 (2012)

17. Cash, D., Küpçü, A., Wichs, D.: Dynamic proofs of retrievability via oblivious
RAM. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol.
7881, pp. 279-295. Springer, Heidelberg (2013)

18. Shi, E., Stefanov, E., Papamanthou, C.: Practical dynamic proofs of retrievability.
In: ACM CCS, pp. 325-336 (2013)

19. Armknecht, F., Bohli, J.M., Karame, G.O., Liu, Z., Reuter, C.A.: Outsourced
proofs of retrievability. In: ACM CCS, pp. 831-843 (2014)

20. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang,
K.: On the (im) possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO
2001. LNCS, vol. 2139, pp. 1-18. Springer, Heidelberg (2001)

21. Coron, J.S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the integers.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 476-493.
Springer, Heidelberg (2013)

22. Garg, S., Gentry, C., Halevi, S.: Candidate Multilinear Maps from Ideal Lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1-17. Springer, Heidelberg(2013)

23. Guan, C., Ren, K., Zhang, F., Kerschbaum, F., Yu, J.: A Symmetric-Key Based
Proofs of Retrievability Supporting Public Verification. full version, http://

ubisec.cse.buffalo.edu/files/PoR_from_iO.pdf
24. Barak, B., Bitansky, N., Canetti, R., Kalai, Y.T., Paneth, O., Sahai, A.: Obfus-

cation for evasive functions. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
26-51. Springer, Heidelberg (2014)

25. Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via
generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
1-25. Springer, Heidelberg (2014)

26. Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure mpc from indis-
tinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
74-94. Springer, Heidelberg (2014)

27. Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F., Sahai, A.,
Shi, E., Zhou, H.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014, LNCS, vol. 8441, pp. 578-602. Springer, Heidelberg
(2014)

28. Hohenberger, S., Sahai, A., Waters, B.: Replacing a random oracle: full domain
hash from indistinguishability obfuscation. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014, LNCS, vol. 8441, pp. 201-220. Springer, Heidelberg (2014)

29. Boneh, D., Waters, B.: Constrained pseudorandom functions and their application-
s. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, LNCS, vol. 8270, pp. 280-300.
Springer, Heidelberg (2013)

Symmetric-Key Based Proofs of Retrievability Supporting Public Verification 19

30. Apon, D., Huang, Y., Katz, J., Malozemoff, A.J.: Implementing cryptographic
program obfuscation. IACR Cryptology ePrint Archive 2014, 779 (2014)

31. Ananth, P., Gupta, D., Ishai, Y., Sahai, A.: Optimizing obfuscation: avoiding bar-
rington’s theorem. In: ACM CCS, pp. 646-658 (2014)

32. Hohenberger, S., Koppula, V., Waters, B.: Universal signature aggregators. IACR
Cryptology ePrint Archive 2014, 745 (2014)

33. Wee, H.: On obfuscating point functions. In: STOC, pp. 523-532 (2005)
34. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: Out-

sourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 465-482. Springer, Heidelberg (2010)

35. Parno, B., Raykova, M., Vaikuntanathan, V.: How to delegate and verify in public:
Verifiable computation from attribute-based encryption. In: Cramer, R. (ed.) TCC
2012. LNCS, vol. 7194, pp. 422-439. Springer, Heidelberg (2012)

36. Kerschbaum, F.: Outsourced private set intersection using homomorphic encryp-
tion. In: ASIACCS, pp. 85-86 (2012)

A Discussions and Future Directions Towards iO

As pointed out in [2], the current obfuscation constructions runs in impractical
polynomial-time, and it is an important objective to improve the efficiency for
iO usage in real life applications. Also Apon et al.’s showed the inefficiency in
iO’s generation and evaluation in [30]. In this section, we give discussions on
three possible future directions in Obfuscation, in addition to those in [2].

A.1 Outsourced and Joint Generation of Indistinguishability
Obfuscation

Image the scenario in our proposed publicly verifiable PoR system, where users
store their data on the same cloud server using the same PoR scheme but with
different secret keys. One naive approach with iO would be requiring each user
to generate his/her own individual obfuscated program for public verification.
This means that each user needs to afford the prohibitively expensive overhead
for iO’s generation on his/her own. Note that for the same PoR scheme, the
verification procedures are the same but with different user’s secret key. Also note
that each user ”embeds” his/her own secret keys into the obfuscated verification
in a way that anyone else can’t learn anything about the embedded secret values.
Hence, we can have several users jointly and securely generate one obfuscated
verification program, where each user uses his/her own secret key as part of the
input to the generation. One promising way could be using Secure multiparty
computation. Observe that this generated obfuscated program has almost the
same computation as the one with only one user’s secret key embedded. The only
differences between this jointly generated obfuscation and the individual-user-
generated obfuscation are that (1) the jointly generated obfuscation is implanted
with more than one user’s secret key; (2) the jointly generated obfuscation needs
one more step to identify which user’s secret key it will use.

On the other hand, outsourced computing is useful in applications where
relatively low-power devices need to compute expensive and time-consuming

20 C. Guan et al.

functions. Clearly, as for relatively low-power individual computers, the overhead
caused by the current iO construction candidate is impractical. Thus, it would
be promising to find a specific way to efficiently outsource iO’s generation.

A.2 Reusability and Universality of Indistinguishability Obfuscation

Reusability is related to iO’s joint generation to some extent. In the scenario
considered above, the jointly generated obfuscated program is embedded with a
group of users’ private key. This means that the same obfuscated program can
be used by verifiers on behalf of different users in this group.

Universality is relevant to an obfuscated program’s functionalities. More
Concretely, an universal iO is supposed to support multiple functionalities. A
straightforward example would be the obfucation-based functional encryption
scheme in [2]. Recall that in their construction, the secret key skf for a function
f is an obfuscated program. For this obfuscated program to become universal,
skf would need to be associated with more than one function. In this case,
e.g., an universal obfuscated program skf can be associated with a class of
similar functions f = (f1, f2, · · · , fk). This means that skf ’s holder can obtain
f1(m), f2(m), · · · , fk(m) from an encryption of m.

Recently, Hohenberger et al. [32] has shown that iO can provide some oth-
er cryptographic primitives with universality. They employed iO to construct
universal signature aggregators, which can aggregate across schemes in various
algebraic settings (e.g., RSA, BLS). Prior to this universal signature aggrega-
tor, the aggregation of signatures can only be built if all the signers use the
same signing algorithm and shared parameters. On the contrary, the universal
signature aggregator enables the aggregation of the users’ signatures without re-
quiring them to execute the same signing behavior, which indicates a compressed
authentication overhead.

A.3 Obfuscation for Specific Functions

The current iO construction candidate provides a way for obfuscating general
circuits and runs in impractical polynomial-time. Note that an obfuscation de-
signed for some particular simple function with practical performance, such as
computing two vectors’ inner product, can also be wanted. (like Wee’s work in
STOC’05 [33]) This means that we want to obfuscate such simple functions in
a practical way that might be specific for those functions. Note that, for exam-
ple, a practical obfuscated program computing the inner product of two vectors,
where one vector is an input to this program and the other one is embedded into
the program without user learning its knowledge, could be useful in applications
like computational biometrics. Also, it is really likely that such a practical ob-
fuscation for a specified function can be used as a building block to construct an
obfuscation supporting more complex functionalities by combining with other
existing practical cryptographic primitives.

