
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/221199745

Symmetric Key Cryptography Using Random Key Generator.

Conference Paper · January 2010

Source: DBLP

CITATIONS

109
READS

15,359

3 authors, including:

Some of the authors of this publication are also working on these related projects:

Advanced Image Encryption and Data Hiding Techniques View project

Real Time Sign Language Processing System View project

Asoke Nath

St. Xavier's College, Kolkata

278 PUBLICATIONS 2,061 CITATIONS

SEE PROFILE

All content following this page was uploaded by Asoke Nath on 07 May 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/221199745_Symmetric_Key_Cryptography_Using_Random_Key_Generator?enrichId=rgreq-434571b0a8a74187f91a9f8bce3e2be8-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE5OTc0NTtBUzoyMjYzMjk4MDM5MjM0NTZAMTQzMDk3MjYzODcwNQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/221199745_Symmetric_Key_Cryptography_Using_Random_Key_Generator?enrichId=rgreq-434571b0a8a74187f91a9f8bce3e2be8-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE5OTc0NTtBUzoyMjYzMjk4MDM5MjM0NTZAMTQzMDk3MjYzODcwNQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Advanced-Image-Encryption-and-Data-Hiding-Techniques?enrichId=rgreq-434571b0a8a74187f91a9f8bce3e2be8-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE5OTc0NTtBUzoyMjYzMjk4MDM5MjM0NTZAMTQzMDk3MjYzODcwNQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Real-Time-Sign-Language-Processing-System?enrichId=rgreq-434571b0a8a74187f91a9f8bce3e2be8-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE5OTc0NTtBUzoyMjYzMjk4MDM5MjM0NTZAMTQzMDk3MjYzODcwNQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-434571b0a8a74187f91a9f8bce3e2be8-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE5OTc0NTtBUzoyMjYzMjk4MDM5MjM0NTZAMTQzMDk3MjYzODcwNQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Asoke-Nath-4?enrichId=rgreq-434571b0a8a74187f91a9f8bce3e2be8-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE5OTc0NTtBUzoyMjYzMjk4MDM5MjM0NTZAMTQzMDk3MjYzODcwNQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Asoke-Nath-4?enrichId=rgreq-434571b0a8a74187f91a9f8bce3e2be8-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE5OTc0NTtBUzoyMjYzMjk4MDM5MjM0NTZAMTQzMDk3MjYzODcwNQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/St-Xaviers-College-Kolkata?enrichId=rgreq-434571b0a8a74187f91a9f8bce3e2be8-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE5OTc0NTtBUzoyMjYzMjk4MDM5MjM0NTZAMTQzMDk3MjYzODcwNQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Asoke-Nath-4?enrichId=rgreq-434571b0a8a74187f91a9f8bce3e2be8-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE5OTc0NTtBUzoyMjYzMjk4MDM5MjM0NTZAMTQzMDk3MjYzODcwNQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Asoke-Nath-4?enrichId=rgreq-434571b0a8a74187f91a9f8bce3e2be8-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE5OTc0NTtBUzoyMjYzMjk4MDM5MjM0NTZAMTQzMDk3MjYzODcwNQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Symmetric key cryptography using Random
key generator

Asoke Nath1, Saima Ghosh2 and Meheboob Alam Mallick3

1,2,3Department of Computer Science

St. Xavier’s College(Autonomous)
30, Park Street

Kolkata-700 016
West Bengal

India

Abstract - In the present work we have introduced a new symmetric key cryptographic method
for encrypting as well as decrypting any file such as binary file, text file or any other file. In our
method we have modified the idea of Play fair method into a new platform where we can encrypt
or decrypt any file. We have introduced a new randomization method for generating the
randomized key matrix to encrypt plain text file and to decrypt cipher text file. We have also
introduced a new algorithm for encrypting the plain text multiple times. Our method is totally
dependent on the random text_key which is to be supplied by the user. The maximum length of
the text_key can be of 16 characters long and it may contain any character(ASCII code 0 to 255).
We have developed an algorithm to calculate the randomization number and the encryption
number from the given text_key. The size of the encryption key matrix is 16x16 and the total
number of matrices can be formed from 16 x 16 is 256! which is quite large and hence if
someone applies the brute force method then he/she has to give trail for 256! times which is quite
absurd. Moreover the multiple encryption method makes the system further secured. We propose
that our method could be appropriate in sensor network where the massive computation is not
possible but the security of data is important at the same time.

1 Introduction

Symmetric key cryptography is well known
concept in modern cryptography. The plus
point of symmetric key cryptography is that
we need one key to encrypt a plain text and
the same key can be used to decrypt the
cipher text. There are various methods
which are already established such as DES
method, Double DES method, Play fair
method are some important symmetric key
cryptographic methods. In case of
symmetric key cryptography the main
problem is that the same key is used for
encryption as well as decryption process.
Hence the key must be secured. Because of
this problem we have introduced public key
cryptography such as RSA method, AES
method etc. These methods have got both
merits as well as demerits. The problem of
Public key cryptosystem is that we have to
do massive computation for encrypting any
plain text. Some times these methods may
not be also suitable such as in sensor
networks. As we know that in sensor
network the main problem is the problem of
power of the sensors. The battery of the
sensor node can not be rechargeable and
hence for encrypting data if the sensor
nodes remains open for long time then
ultimately the sensors nodes will be fully
discharged and will not be able send any
signal to other nodes. So the security
problem in sensor node is a real problem.
However, there are quite a number of
encryption methods have came up in the
recent past appropriate for the sensor
nodes. In the present work we are proposing
a symmetric key method where we have

used a random key generator for generating
the initial key and that key is used for
encrypting the given source file. Our method
basically a substitution method where we
take 2 characters from any input file and
then search the corresponding characters
from the random key matrix and store the
encrypted data in another file. For searching
characters from the random key matrix we
have used a different algorithm from Play
fair method. In our method we have the
provision for encrypting message multiple
times which is not possible in Play Fair
method. The key matrix contains all possible
characters(ASCII code 0 to 255) in a
random order. The pattern of the key matrix
will depend on text_key entered by the user.
Here we are proposing our own algorithm to
obtain randomization number, encryption
number and the shift parameter from the
initial text_key. We have given a long trial
run on text_key and we found that it is very
difficult to match the three above parameters
for 2 different Text_key which means if
some one wants to break our encryption
method then he/she has to know the exact
pattern of the text_key otherwise it will not
be possible to obtain two sets of identical
parameters from two different text_key. We
have given several trial runs to break our
encryption method but we found it is almost
unbreakable. For pure text file we can apply
brute force method to decrypt small text but
for any other file such any binary file we can
not apply any brute force method and it not
work.

2 Random Key Encryption Algorithm

To create Random key Matrix of
size(16x16) we have to take any key.
The size of key must be less than or
equal to 16 characters long. These 16
characters can be any of the 256
characters(ASCII code 0 to 255). The
relative position and the character itself
is very important in our method to
calculate the randomization number ,
the encryption number and the relative
shift of characters in the starting key

matrix. We take an example how to
calculate randomization number, the
encryption number and relative shift
from a given key. Here we are
demonstrating our method:

Suppose key=AB
Choose the following table for
calculating the place value and the
power of characters of the incoming key:

Table-1:

Length
of
key(n)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Base
value(b)

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

 n
Step-1: Sum=Σ ASCII Code * bm ----(1)
 m=1

Example-1:
 Now we calculate the sum for
key=”AB” using equation(1)
 Sum=65*161 + 66 * 162
 =17936
 Now we have to calculate 3
parameters from this sum (i) Randomization
number(n1), (ii) Encryption number(n2) and
(iii)Relative shift(n3) using the following
method:

(i) Randomization number(n1):
 num1=1*1+7*2+9*3+3*4+6*5=84
 n1=sum mod num1=17936 mod
84=44
 Note: if n1=0 then n1=num1
and n1<=128
(ii) Encryption number(n2):
 num2=6*1+3*2+9*3+7*4+1*5=72
 n2=sum mod num2 =17936
mod 72 =8
 Note: if n2=0 then n2=num2
and n2<=64

(iii) Relative shift(n3):

n3= Σall digits in
sum=1+7+9+3+6=26

Example-2:
 Now we will calculate the sum for
key=”AC” using equation(1)
 Sum=65*161 + 67 * 162
 =18192
 Let us now calculate 3 parameters
from this sum (i) Randomization
number(n1), (ii) Encryption number(n2) and
(iii)Relative shift(n3) using the following
method:

(iv) Randomization number(n1):
 num1=1*1+8*2+1*3+9*4+2*5=66
 n1=sum mod num1=18192 mod
66=42
 Note: if n1=0 then n1=num1
and n1<=128
(v) Encryption number(n2):
 num2=2*1+9*2+1*3+8*4+1*5=60
 n2=sum mod num2 =18192
mod 60 =12
 Note: if n2=0 then n2=num2
and n2<=64

(vi) Relative shift(n3):

n3= Σall digits in
sum=1+8+1+9+2=21

Now we show the original key matrix(16 x
16) which contains all characters(ASCII
code 0-255):

 Table –2 : The original Matrix:

 ☺ ☻ ♥ ♦ ♣ ♠
 ♫ ☼
► ◄ ↕ ‼ ¶ § ▬ ↨ ↑ ↓ ← ∟ ↔ ▲
▼
 ! " # $ % & ' () * + , - . /
0 1 2 3 4 5 6 7 8 9 : ; < = > ?
@ A B C D E F G H I J K L M N O
P Q R S T U V W X Y Z [\] ^ _
` a b c d e f g h i j k l m n o
p q r s t u v w x y z { | } ~ ⌂
Ç ü é â ä à å ç ê ë è ï î ì Ä Å
É æ Æ ô ö ò û ù ÿ Ö Ü ¢ £ ¥ ₧ ƒ
á í ó ú ñ Ñ ª º ¿ ⌐ ¬ ½ ¼ ¡ « »
░ ▒ ▓ │ ┤ ╡ ╢ ╖ ╕ ╣ ║ ╗ ╝ ╜ ╛ ┐
└ ┴ ┬ ├ ─ ┼ ╞ ╟ ╚ ╔ ╩ ╦ ╠ ═ ╬ ╧
╨ ╤ ╥ ╙ ╘ ╒ ╓ ╫ ╪ ┘ ┌ █ ▄ ▌ ▐ ▀
α ß Γ π Σ σ µ τ Φ Θ Ω δ ∞ φ ε ∩
≡ ± ≥ ≤ ⌠ ⌡ ÷ ≈ ° · · √ ⁿ ² ■

 Table-3 : The matrix after relative
shift(n3=26) is:

 4 N h é £ ╢ ╨ Ω ☺ ← 5 O i â
¥ ╖ ╤ δ ☻ ∟ 6 P j ä ₧ ╕ ╥ ∞ ♥ ↔
7 Q k à ƒ ╣ ╙ φ ♦ ▲ 8 R l å á ║
╘ ε ♣ ▼ 9 S m ç í ╗ ╒ ∩ ♠ : T
n ê ó ╝ ╓ ≡ ! ; U o ë ú ╜ ╫ ±
 " < V p è ñ ╛ ╪ ≥ # = W q ï
Ñ ┐ ┘ ≤
 $ > X r î ª └ ┌ ⌠ ♂ %
? Y s ì º ┴ █ ⌡ ♀ & @ Z t Ä ¿ ┬
 ' A [u Å ⌐ ├ ▌ ≈ ♫ (B \
v É ¬ ─ ▐ ° ☼) C] w æ ½ ┼ ▀ ·
► * D ^ x Æ ¼ ╞ α · ◄ + E _ y ô
¡ ╟ ß √ ↕ , F ` z ö « ╚ Γ ⁿ ‼ -
G a { ò » ╔ π ² ¶ . H b | û ░ ╩
Σ ■ § / I c } ù ▒ ╦ σ ▬ 0 J d
~ ÿ ▓ ╠ µ ↨ 1 K e ⌂ Ö │ ═ τ ↑ 2
L f Ç Ü ┤ ╬ Φ ↓ 3 M g ü ¢ ╡ ╧ Θ

We will now describe our Randomization
method
The following are the operations we execute
serially one after another.
Step-1: Function cycling()
Step-2: Function upshift()
Step-3: Function downshift()
Step-4:Function leftshift()
Step-5:Function rightshift()
Step-6:Function random()
Step-7:Function random_diagonal_right()
Step-8:Function random_diagonal_left()

Now we describe the meaning of all above
functions when we apply on a 4x4 matrix as
shown below:

Table-4: Original table

A B C D
E F G H
 I J K L
M N O P

 Relative shift(by 1)

.A B C D
E F G H
 I J K L
M N O P

For I=1 to n1

Call Leftshift()

C L D M
A J B K
G P H I
E N F O

 Call cycling()

A C L D
G B H M
E J P K
N F O I

. Call upshift()

E A J C
O H I M
N G F B
D P L K

 Call rightshift()

K E N A
G J F C
B O D H
P I L M

 Call downshift()

M F L C
K B E O
N D A H
G P J I

 Table-5:
After finishing above shifting process we
perform
 (i)column randomization
 (ii)row randomization and
(iii)diagonal rotation and
(iv)reverse diagonal rotation.

Each operation will continue for i,i-1,i-2
till the value becomes 1.

Next I

Now we apply encryption process on
any text file. Our encryption process is
as follows:

We choose a 4X4 simple key matrix:

A B C D
E F G H
I J K L
M N O P

Case-I : Suppose we want to encrypt FF
then it will taken as GG which is just one
character after F in the same row.
Case –II : Suppose we want to encrypt FK
where F and K appears in two different rows
and two different columns. FK will be
encrypted to KH (FK GJ HK KH).
Case-III: Suppose we want to encrypt EF
where EF occurs in the same row. Here EF
will be converted to HG.

3 Results and Discussion

Here we are giving a real live solution for
our encryption method:

(i) Key used:1234
(ii)Randomization number created by our
method : 98
(iii)Encryption number generated by our
method : 40
(iv) Relative shift generated by our method:
23
The above values were used for encryption
and decryption of a given text
file(readme.txt) which is given in the next
page:

 Table-6: The Key Matrix generated
after relative shift:

 ↨ . E \ s è í ╕ ╧ µ ² ☺ ↑ / F
] t ï ó ╣ ╨ τ ■ ☻ ↓ 0 G ^ u î ú
║ ╤ Φ ♥ 1 H _ v ì ñ ╗ ╥ Θ ♦
← 2 I ` w Ä Ñ ╝ ╙ Ω ♣ ∟ 3 J a
x
Å ª ╜ ╘ δ ♠ ↔ 4 K b y É º ╛ ╒
∞
 ▲ 5 L c z æ ¿ ┐ ╓ φ ▼ 6 M d
{ Æ ⌐ └ ╫ ε 7 N e | ô ¬ ┴
╪
∩
 ! 8 O f } ö ½ ┬ ┘ ≡ ♂ " 9 P
g ~ ò ¼ ├ ┌ ± ♀ # : Q h ⌂ û ¡ ─
 $; R i Ç ù « ┼ ▄ ≤ ♫ % <
S j ü ÿ » ╞ ▌ ⌠ ☼ & = T k é Ö
░
╟ ▐ ⌡ ► ' > U l â Ü ▒ ╚ ▀ ÷ ◄
(
? V m ä ¢ ▓ ╔ α ≈ ↕) @ W n à
£
│ ╩ ß ° ‼ * A X o å ¥ ┤ ╦ Γ · ¶
+ B Y p ç ₧ ╡ ╠ π · § , C Z q
ê

ƒ ╢ ═ Σ √ ▬ - D [r ë á ╖ ╬ σ ⁿ

Table-7: The Final Randomized Key
Matrix after we apply random
generator program:
╦ ; J u x ♦ > ⌠ └ ? Φ ╛ ║ ≥ ƒ ⌡
$ ↓ ├ Σ , ▓ K ╟ 8 U Ü ú æ ╙)
╘
± # ╨ V α @ ' ∟ ╧ ┬ r ¡ ╒ Ç ¬
«
 ╥ \ ó * ε ² ⌐ ♣ c
O ë Θ : Ö v " ▄ Q ö § ┼ ┐ 2 i
1 É 7 P Γ ▌ ■ F ◄ ╣ ≈ ▬ a ≤
ü
f ∩ Z B g ╠ Ñ z ╔ t √ Ω ç o ╓ ╤
° { X G ← ☻ ` » ╞ 0 ↨ T m I │
y
▼ á ⁿ ∞ E l j n S ê í [N ì D <
 e ↑ W δ ╪ σ π ┌ b ┴ ▒ â
♀ ╜ s h ▀ % ~ / µ ¼ ─ è · q 4
w
╕ ╝ ╖ . ¿ 6 · ╬ ⌂ ► 5 ò ♥ p å
₧
▲ ╢ ╚ ! ä k ♂ - _ Y ▐ é ^ ☼ ÿ
9
M ♠ φ Å ≡ ¶ d ñ ª ↔ L
 ╩ î = C
Ä τ 3 + R & ░ A ù û ┤ } | ☺ ‼ à
] º ÷ ╗ ♫ ↕ ¥ £ ß H ┘ ô ═ ╫ (ï

Original File(Readme.txt):

The society of Jesus, a Christian Religious
Order founded by Saint Ignatius of Loyola in
1540, has been active in the field of
education through out the world since its
origin. In the world, the Society of Jesus is
responsible for over 1865 Educational
Institutions in 65 countries.These Jesuit
Educational Institutions

engage the efforts of approximately 98,000
teachers.They
educate approximately 17,92,000 students.

Size of the original file:425 bytes

Institutions in 65 countries.These Jesuit
Educational Institutions engage the efforts of
approximately 98,000 teachers.They
educate approximately 17,92,000 students.

Size of the original file:425 bytes

Size of the original file:425 bytes
Encrypted file(X1.txt):

_

Y6ÙÌ_ÜY /kÌ�ë¹ ́¾´‡ëlkœ
üÜÙï¯lž6Õ pz_Ül
ÙëÉ7) üë�Ìw)
 ªë!/BuŽ_zžek__ž_e¯¾´kë�ë’Ì/ëp_k
¯ž6Æ3>{‡ë
_Ùë.Y_wkl_ïzIY6zžke‚_ë�zY�)kë�«»Y)¾_
_e¯lžkeŠXl
ùŠkë
 ke‚_k¤Ìü�)ëÙzžü k¯ïÙkëüÜ_Üw
k%ž6
Y6¤ëX�(Òke‚_BuŽÌ_ÜY /kÌ�ë¹ ´¾´k¯ÙëX
 Ù6lžÙÜ.pY6�ÌüëlI
 XëæfpÃëù(¾üle¯ëž_pPu%<´e¯
e¯lžÙëzž6_Ãë_ÌwïüzY´•_
 ´Y6” ´¾¯eëÊ)¾__e¯lž_pk%<´e¯
e¯lžÙ«»Y<ù__Y6
Y6
 æ�ÌüïÙëÌ�kl&&üÌ_Üð_ YpåkœOÒ
½½½k Y__‚_7Þ}_‚_/B»Y)¾__ Ykl&&üÌ_Üð_
Ypåëæ_Ò-~‡{½½ëÙ
) ž ´•

Size of encrypted file: 425 bytes

Decrypted file(X2.txt):

The society of Jesus, a Christian Religious
Order founded by Saint Ignatius of Loyola in
1540, has been active in the field of
education through out the world since its
origin. In the world, the Society of Jesus is
responsible for over 1865 Educational
Institutions in 65 countries.These Jesuit
Educational Institutions engage the efforts of
approximately 98,000 teachers.They
educate approximately 17,92,000 students.

Size of decrypted file: 425 bytes

4 Conclusion
In the present work we use the
maximum encryption number=64 and
maximum randomization number=128.
The present work is a substitution
method and can be used to replace a
character by any of the 256 characters.
In the present work the key matrix may
be generated in 256! Ways. So in
principle it will be difficult for any one to
decrypt the encrypted text without
knowing the exact key matrix. Our
method is essentially stream cipher
method and it may take huge amount of
time if the files size is large and the
encryption number is also large. The
merit of this method is that if we change
the key_text little bit then the whole
encryption and decryption process will
change. This encryption method can be
applied for data encryption and
decryption in banks, railway reservation
systems, ATM, in defense, in sensor
nodes. We have already started to work
on pair of characters to make the
encryption process more secured and
that will be almost impossible to break
encryption code.

5 Acknowledgement

We are very much grateful to
Department of Computer Science to
give us opportunity to work on
Cryptography. One of the authors (AN)
sincerely expresses his gratitude to
Prof. S.Agarwal, Prof. S.Das of Dept. of
Computer Science for giving constant
inspiration to complete this work. We
are also thankful to all 3rd year
Computer Science Hons. Students
(2010 batch) for their encouragement to
finish this work.

References:

[1] Abhijit Das and C.E. Madhavan :

Public-Key Cryptography Theory
and Practice, Pearson Education

[2] William Stalings : Cryptography and
Network SecurityData Encryption
method and Network security, PHI

[3] C. Kaufman, R. Perlman and M.
Speciner, Network Security Private
Communication in a PUBLIC World,
PHI

[4] Atul Kahate, Network Security and
Cryptography, PHI

View publication statsView publication stats

https://www.researchgate.net/publication/221199745

