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Abstract. Modern morphometric studies use non-linear image regis-
tration to compare anatomies and perform group analysis. Recently, log-
Euclidean approaches have contributed to promote the use of such com-
putational anatomy tools by permitting simple computations of statis-
tics on a rather large class of invertible spatial transformations. In this
work, we propose a non-linear registration algorithm perfectly fit for log-
Euclidean statistics on diffeomorphisms. Our algorithm works completely
in the log-domain, i.e. it uses a stationary velocity field. This implies that
we guarantee the invertibility of the deformation and have access to the
true inverse transformation. This also means that our output can be
directly used for log-Euclidean statistics without relying on the heavy
computation of the log of the spatial transformation. As it is often desir-
able, our algorithm is symmetric with respect to the order of the input
images. Furthermore, we use an alternate optimization approach related
to Thirion’s demons algorithm to provide a fast non-linear registration
algorithm. First results show that our algorithm outperforms both the
demons algorithm and the recently proposed diffeomorphic demons algo-
rithm in terms of accuracy of the transformation while remaining com-
putationally efficient.

1 Introduction

Non-linear image registration has opened the way for computational character-
ization of morphological evolution and morphological variability. Most compu-
tational anatomy tools make use of registration results [1–4] but require that
they satisfy some advanced properties such as invertibility and symmetry with
respect to the order of the inputs. Image registration schemes can thus only be
used if they meet the requirements of these tools. Large deformation diffeomor-
phic methods have initially been developed for this purpose. Transformations are
determined by a time-varying ordinary differential equation (ODE) [5]. Following
the seminal work on inverse consistency [6], the large deformations framework
has also been extended to enforce the symmetry of the solution [3, 7].

A widely acknowledged issue with the large deformation setting lies in its
computational complexity and memory requirements. Recent work has strived
towards bridging the gap between these rigorous mathematical tools and very ef-
ficient non-linear registration schemes such as Thirion’s demons algorithm [8]. On
one hand it has been proposed to constrain the large deformation setting by using
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transformations that satisfy the initial momentum conservation [9,10]. Similarly,
in [1], the authors proposed to parameterize the diffeomorphisms with station-

ary velocity fields to allow easy computations of statistics on diffeomorphisms.
This parameterization was used for registration in [11,12]. These algorithms are
well-fit for further statistical processing [1, 2, 4]. On the other hand, in [13] the
authors proposed an efficient diffeomorphic registration scheme based on the
demons algorithm that encodes the optimization steps, but not the complete
transformation, with such stationary velocity fields. Between these attempts, we
believe that there is still a gap to be bridged. Second generation large defor-
mation algorithms still need to solve rather large Euler-Lagrange equations at
each iteration and the diffeomorphic demons cannot be directly used by the re-
cent statistical tools we mentioned. Furthermore, the demons algorithm is not
symmetric with respect to the order of the images to register.

In this work, we propose an image registration scheme that uses a demons-
like alternate optimization approach for efficiency but represents the complete
deformation as an exponential of a smooth velocity field. This approach will
hereafter be referred to as log-domain one. Thanks to such representation, our
results are symmetric and can be directly used for computational anatomy.

The remainder of this paper is organized as follows. Classical and diffeomor-
phic demons are presented in Section 2. Our log-domain approach is developed
in Section 3 and evaluated in Section 4. Finally Section 5 concludes the paper.

2 Additive and Diffeomorphic Demons Algorithms

Non-linear image registration aims at finding a well-behaved spatial transforma-
tion s(.) that best aligns two given images I0(.) and I1(.). Typically, a similarity
criterion Sim (I0, I1, s) is used to measure the resemblance of the aligned images
while a regularization energy Reg (s) estimates the likelihood of the transforma-
tion. Non-parametric methods need to find the displacement s(p) of each point
p in order to optimize the following energy functional:

E(s) =
1

σ2
i

Sim (I0, I1, s) +
1

σ2
T

Reg (s) ,

where σi accounts for the noise on the image intensity, and σT controls the
amount of regularization we need. The desired properties of the final spatial
transformation can be encoded within the regularization term or can be enforced
by constraining the search space. Instead of looking for a solution in the complete
space of non-parametric spatial transformations, it is for example possible to
search only within a subspace of diffeomorphisms.

Additive Demons. Even if we use a simple transformation space and a classical
regularization term, approaching the registration problem directly often leads to
computationally expensive iterations that need the solution of an Euler-Lagrange
equation. Contrastingly, Thirion’s demons algorithm uses an efficient two-step
procedure at each iteration [8]. It first looks for an unconstrained update step
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with an optical flow computation and then uses a simple Gaussian smoothing on
the updated transformation. It has been shown in [14] that the demons algorithm
could be cast to the minimization of a well-posed criterion by introducing a
hidden variable c for point correspondences. The interest of this auxiliary variable
is that it decouples the optimization into easily tractable sub-problems. Each
iteration walks towards the optimum of the global energy

E(I0, I1, c, s) =
1

σ2
i

Sim (I0, I1, c) +
1

σ2
x

dist (s, c)
2

+
1

σ2
T

Reg (s) , (1)

where σx accounts for a spatial uncertainty on the correspondences. We clas-
sically have Sim (I0, I1, c) = ‖I0 − I1 ◦ c‖

2
, dist (s, c) = ‖c− s‖ and Reg (s) =

‖∇s‖
2

but more advanced criteria can be used [14].
In the additive demons algorithm, the optimization is performed within the

complete space of non-parametric transformation using additive updates of the
form s + u. The optical flow procedure solves for the correspondence energy

Ecorr

add (I0, I1, s,u) = Sim (I0, I1, s + u) + ‖u‖
2

(2)

with respect to u, while the Gaussian smoothing solves for the regularization.
Different optimizers lead to different forces that have been justified in [15].

Diffeomorphic Demons. In [13], the authors proposed to adapt the demons al-
gorithm to provide diffeomorphisms. The diffeomorphic demons algorithm uses
Thirion’s alternate optimization approach to maintain the computational effi-
ciency but works in a space of diffeomorphisms to enforce the invertibility.

An efficient computational framework for diffeomorphisms was proposed in [1].
It uses a Lie group structure that defines an exponential mapping from the vector
space of smooth stationary velocity fields to diffeomorphisms. The exponential
exp(u) of a velocity field is given by the flow at time one of the stationary
ODE: ∂p(t)/∂t = u(t). The nice property of this framework lies in the the low
computational requirement needed to compute the exponential.

At each iteration, the diffeomorphic demons takes advantage of this expo-
nential mapping by looking for an update step u in the Lie algebra (the vector
space of velocity fields) and then by mapping it in the space of diffeomorphisms
through the exponential. The update step is thus of the form s ◦ exp(u). The
advantage of this approach is that it can compute u with an unconstrained opti-
mizer that has the same form and complexity as the classical demons forces [13].
The diffeomorphic demons retains the simple Gaussian smoothing of Thirion’s
algorithm for its efficiency. With this approach the first step optimizes the mod-
ified correspondence energy

Ecorr

diffeo(I0, I1, s,u) = Sim (I0, I1, s ◦ exp(u)) + ‖u‖
2
. (3)

3 A Log-Domain Approach to Diffeomorphic Demons

The parameterization of diffeomorphic transformations through stationary ve-
locity fields proposed in [1] provides a very efficient means of dealing with dif-
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feomorphisms. In the diffeomorphic demons of [13], the exponential is used only
to encode the adjustment made at each iteration to the current transforma-
tion. This leads to a computationally attractive scheme but lacks some of the
characteristics of log-domain registration tools [11,12] that encode the complete
transformation with stationary velocity fields: namely the ability to compute the
inverse of the transformation at a very low cost, the symmetry of the registration
result and the adequacy of the representation for the statistical tools of [1, 2].

Our main contribution in this paper is to show that the diffeomorphic demons
can be extended to represent the complete spatial transformation in the log
domain. The main idea of the proposed algorithm is to represent the current
transformation s as an exponential of a smooth velocity field v, i.e. s = exp(v),
and use the diffeomorphic demons to efficiently compute a field u for an update
of the form s◦exp(u), i.e. exp(v)◦exp(u). With this idea, there are two questions
that come to mind. First of all, given that we want to represent everything in the
log-domain, we need to know whether for any v and u there exists a velocity field
w such that exp(w) = exp(v) ◦ exp(u). Then we need to design a regularization
scheme that is consistent with the log-domain representation.

Baker-Campbell-Hausdorff Approximations. Our first goal is to find a
smooth velocity field Z(v, εu) such that

exp (Z(v, εu)) ≈ exp(v) ◦ exp(εu), (4)

where ε is simply used to emphasize the fact that we look for an approximation
valid for small εu (to encode the update) but arbitrary v (to encode the com-
plete transformation). Since we deal with an infinite-dimensional space which
has a Lie group structure but is not an actual Lie group, the question of the
existence of such a velocity field is a tough mathematical one that needs further
investigation. In practice though, it has been shown in [2] that the the Baker-
Campbell-Hausdorff (BCH) formula which is valid for finite-dimensional spaces
could be applied successfully on diffeomorphisms. By using the first terms of the
BCH formula, the authors of [2] obtained an approximation that seems well-fit
for the demanding application of brain atlas construction. In our setting, since
only εu is assumed to be small, the first order approximation of Z(v, εu) is:

Z(v, εu) = v + εu +
1

2
[v, εu] +

1

12
[v, [v, εu]] + O(‖εu‖

2
), (5)

where the Lie bracket [v,u] provides a velocity field defined at each point p by1:

[v,u](p) = Jac(v)(p).u(p)− Jac(u)(p).v(p). (6)

This first-order approximation provides a good candidate for our update rule
but is still somewhat complex as it requires three Lie brackets. This might also

1 Most authors define the Lie bracket as the opposite of (6). Numerical simulations,
and personal communication with M. Bossa, showed the relevance of this definition.
Future research will aim at fully understanding the reason of this discrepancy.
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lead to an unstable numerical scheme as the imbricated Lie bracket amounts to
using second-order derivatives. An ad hoc simplification can be made by simply
considering the first terms of the BCH expansion. We chose to evaluate the
quality of the following approximations: ZA(v, εu) , v + εu, ZB(v, εu) , v +
εu + 1

2 [v, εu] and ZC(v, εu) , v + εu + 1
2 [v, εu] + 1

12 [v, [v, εu]].
In order to test the validity of these approximations for our application we

set up a small experiment to measure the error between exp (ZX(v, εu)) and
exp(v) ◦ exp(εu). We generate a random v at a given energy, a random u at a

lower energy and measure ‖exp (ZX(v, εu))− exp(v) ◦ exp(εu)‖
2
. Due to space

constraints, only the conclusions of these experiments can be presented here. The
best results are as expected provided by ZC with ZB being only a few percents
away from it. ZA surprisingly still provide decent results but the error is however
one order of magnitude away from the error resulting from ZC .

Log-Domain Diffeomorphic Demons The BCH approximations allow us to
cast the update step s ← s ◦ exp(u) used in the diffeomorphic demons into a
log-domain update v ← ZX(v,u) provided that the current transformation s
can be expressed as an exponential s = exp(v). It might however be unclear
why one would resort to such a BCH approximation. It could indeed be possible
to directly look for an update of the form v ← v + u. The problem with this
kind of approach used for example in [11] lies in its computational complexity.
Since the exponential is not used around zero, the author cannot take advantage
of the fact that ∂ exp(u)/∂u|u=0 = Id. The non-trivial derivative introduces a
coupling between the transformation and the update contrarily to our algorithm.

Finally, in order to be consistent with the log-domain representation but
keep the simplicity of the demons algorithm, we chose to perform a Gaussian
smoothing directly in the log-domain. Our framework can simply be linked to (1)

by using dist (s, c) =
∥

∥log(s−1 ◦ c)
∥

∥ and Reg (s) = ‖∇ log(s)‖
2
.

Algorithm 1 (Log-Domain Demons)
– Choose a starting spatial transformation s = exp(v)
– Iterate until convergence:
• Given the current transformation s = exp(v), compute a correspondence

update field u by minimizing Ecorr

diffeo
(I0, I1, s,u) with respect to u

• For fluid-like regularization let u← Kfluid ⋆ u

• Let v ← ZX(v,u), e.g. v ← v + u + 1
2 [v,u]

• For diffusion-like regularization let v ← Kdiff ⋆ v

Symmetric Extension The inverse of a spatial transformation s parameter-
ized in the log-domain s = exp(v), can be obtained at almost no cost by a back-
ward computation s−1 = exp(−v). A symmetric registration framework can be
obtained from the non-symmetric one by symmetrizing the global energy:

sopt = arg min
s

(

E(I0, I1, s) + E(I1, I0, s
−1)

)

, (7)

where c has been omitted from (1) for clarity. Other approaches appear in [16].
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Our second main contribution in this work is to provide an efficient scheme
for solving this symmetrized system. We formulate it as a constrained opti-
mization using two diffeomorphisms:

[

sopt, s
−1
opt

]

= arg min[s,t] | t=s−1E(I0, I1, s)+
E(I1, I0, t). We propose to use an unconstrained optimization step on the pair
[s, t] and then to project the new transformations onto the space of symmetric
transformations

{

[s, t] | t = s−1
}

. By using a complete log-domain demons itera-
tion starting from s = exp(v) to optimize the first term E(F,M, exp(ς)), we get
ς = Kdiff⋆Z

(

v,Kfluid⋆uforw
)

, where uforw is the demons force. Similarly, the sec-

ond term E(M,F, exp(−τ )) is optimized with τ = −Kdiff⋆Z
(

−v,Kfluid⋆uback
)

,
where uback is the demons force for reversed inputs.

Thanks to the log-domain representation, we deal with a vector space and can
design an easy projection operator that guarantees the symmetry of the results.
We simply average, in the log-domain, the forward and backward iterations:

v ←
1

2
Kdiff ⋆

(

Z
(

v,Kfluid ⋆ u
forw

)

− Z
(

− v,Kfluid ⋆ u
back

))

. (8)

As an example, using ZA provides v ← Kdiff ⋆
(

v + 1
2Kfluid ⋆ (uforw − uback)

)

.

Algorithm 2 (Symmetric Iteration using ZA)
– Compute the demons forces uforw to minimize Ecorr

diffeo
(I0, I1, exp(v),uforw)

– Compute the demons forces uback to minimize Ecorr

diffeo
(I1, I0, exp(−v),uback)

– For fluid-like regularization let u← 1
2Kfluid ⋆ (uforw − uback)

– For diffusion-like regularization let v ← Kdiff ⋆ (v + u) else let v ← v + u
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Fig. 1. Left column: Reference image, in vivo microscopy of normal colonic mucosa,
courtesy of A. Meining, Klinikum rechts der Isar, Munich, and one example random
warp. Other columns: Registration results on 100 random experiments. The log-domain
diffeomorphic performs similarly to the diffeomorphic demons while our symmetric
approach outperforms it. We see the small impact of the BCH expansion that we use.
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4 Experiments

The proposed algorithms were evaluated as follows. A reference image Iref is
deformed through a random diffeomorphism. Some random noise is added to
both the reference and warped image. The pair of images is registered first using
Iref = I0 and then using Iref = I1. We compare the additive and diffeomorphic
demons, the proposed log-domain demons with two different BCH expansions
(using ZA and ZB), and the proposed symmetric log-domain demons again with
two different BCH expansions. To make a fair comparison, each algorithm uses
the same expression of the demons forces. Figure 1 shows the evolution of sev-
eral criterion over the iterations. The choice of the BCH expansion does not
significantly change the performance of our schemes. Hence we advocate the
use of the simplest one (ZA). Our log-domain schemes perform similarly to the
diffeomorphic demons but allow an easy computation of the inverse and are
well-fit for statistical analysis. Finally our symmetric extension outperforms the
other algorithms in terms of distance to the ground truth transformation. The
computational time is only twice the one of the diffeomorphic demons.

Finally Fig. 2 illustrates the adaptation of our algorithms for computational
anatomy. A simple atlas is built from the 20 synthetic anatomies [17]. Of course
more advanced techniques [1–3] should be used, but this proof of concept opens
the way to neat future work. Thanks to our regularization by a simple smoothing,
the integration of deformation statistics could be as simple as performing a non-
stationary smoothing. Local covariance matrices could indeed be used to replace
the norm used in the regularization by a Mahalanobis distance.

5 Conclusion

We proposed en efficient diffeomorphic algorithm that combines the efficiency
of the demons algorithm and the desirable properties of modern large deforma-
tion algorithms such as invertibility with respect to the order of the inputs and
memory efficient representations. Since we consider the spatial transformations
as exponentials of smooth velocity fields, our results can directly be used by the
recent statistical tools of [1, 2]. We focused on a simple similarity criterion but

���

Fig. 2. 19 3D synthetic MRs of distinct anatomies were registered to an arbitrary
reference. We show the principal direction of variability found by statistical analysis.
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our approach can easily be extended to other intensity relationships by borrow-
ing ideas from [7,14,18]. The next step will be to integrate deformation statistics
within the algorithm by locally adapting the regularization.
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