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We present a theoretical study of minimum error probability discrimination, using quantum-optical probe
states, of M optical phase shifts situated symmetrically on the unit circle. We assume ideal lossless conditions
and full freedom for implementing quantum measurements and for probe-state selection, subject only to a
constraint on the average energy, i.e., photon number. In particular, the probe state is allowed to have any number
of signal and ancillary modes and to be pure or mixed. Our results are based on a simple criterion that partitions
the set of pure probe states into equivalence classes with the same error probability performance. Under an energy
constraint, we find the explicit form of the state that minimizes the error probability. This state is an unentangled
but nonclassical single-mode state. The error performance of the optimal state is compared with several standard
states in quantum optics. We also show that discrimination with zero error is possible only beyond a threshold
energy of (M − 1)/2. For the M = 2 case, we show that the optimum performance is readily demonstrable with
current technology. While transmission loss and detector inefficiencies lead to a nonzero erasure probability, the
error rate conditional on no erasure is shown to remain the same as the optimal lossless error rate.
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I. INTRODUCTION

The estimation of an optical phase shift using quantum
states of light is a well-known theme of both theoretical and
experimental studies and is still an active area of research, as
seen from a sample [1] of recent work. A less well-known but
analogous sensing problem is that of discriminating a finite
number M � 2 of phase shifts symmetrically arranged on the
unit circle, which may be thought of as a discrete version of the
phase estimation problem. The problems differ in the criterion
used to measure performance: in the estimation problem, a
typical figure of merit is the mean-square error, while an error
probability criterion is natural for the discrimination problem.

The phase discrimination problem may be viewed in
communication terms in analogy with M-ary phase-shift
keying (PSK) in ordinary and optical communications [2,3].
In M-ary PSK, one of M uniformly spaced phase shifts
is applied to a predetermined waveform for the purpose of
communicating one of M messages (or, equivalently, log2 M

bits of data) from the sender to the receiver. Binary PSK
(BPSK) using coherent states of light, with error probabilities
near the quantum limit in the absence of noise, is already
a rather mature technology [4]. As the demand for high-
speed communication increases, M-ary PSK with M > 2 is
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becoming attractive in optical communication, despite the
increased system complexity, because it provides an increase in
the number of bits per transmitted symbol without an increase
in the frequency bandwidth required [3]. In the quantum
version of PSK (see, e.g., the studies in [5–8]) that is the
subject of this paper, an optical mode prepared in a prede-
termined quantum state is the analog of the classical signal
wave form to which the information-bearing phase shifts are
applied.

Another application of our study is to the recently developed
concept of quantum reading of a classical digital memory
[9–14]. The original proposal of Ref. [9] considered the use of
a quantum-optical probe state that reads a standard optically
encoded digital memory such as a CD or DVD with a bit-error
probability better than that achievable with standard laser
sources. In a CD or DVD, information is stored by varying the
properties of the recording surface in a rather involved manner
(see, e.g., Ref. [15]). However, the overall reading process
may be modeled as the discrimination of two beam-splitter
channels with transmittance depending on the data bit; i.e., the
model involves an amplitude (rather than phase) encoding. In
Ref. [10], a general problem of discriminating two beam-
splitter channels was analyzed that models any kind of bit
encoding, either in phase or amplitude or a combination of the
two.

The quantum reading and beam-splitter discrimination
problems of Refs. [9,10] include optical loss naturally and
correspond mathematically to the discrimination of nonunitary
quantum channels. In Ref. [11], a purely phase-encoded
memory, which can be lossless in principle, was proposed.
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This memory encodes a bit 0 (1) as a 0 (π ) radian phase
shift imparted directly to a probe beam upon reflection from
the encoding surface. As such, it corresponds exactly to
the M = 2 case of the problem considered in this paper.
Some variants of quantum reading that correspond to the
discrimination of unitary channels have been proposed and
also experimentally demonstrated [16,17]. Quantum reading
of an amplitude-encoded memory has been studied from an
information-theoretic perspective in Refs. [12,13].

Viewed as a problem of quantum decision theory, the
phase discrimination problem falls under the general rubric
of distinguishing a symmetric set of quantum states that
has been studied extensively [18–23]. The optimal quantum
measurement for a given probe state was obtained in the
pioneering works [18–20]. This optimal measurement, called
variously the square-root measurement (SRM), least-squares
measurement, and pretty good measurement, has many in-
teresting properties and has also been applied to quantum
information theory [21–23].

In this paper, our concern is mainly with the design problem
of choosing the best (i.e., yielding the least error probability)
probe state under a given energy constraint. This problem has
not been addressed in full generality in the literature, although
related studies of quantum communication using M-ary PSK
exist. Thus, for single-mode probe states, the problem of probe-
state optimization under an energy constraint was introduced
and studied in Ref. [5], but under a restricted class of allowed
measurements. The possibility of zero-error communication
was mentioned in Ref. [5] for single-mode states, while in
Ref. [6], it was established that two-mode phase-conjugate
PSK achieves the same end. The SRM was used to give
a detailed performance evaluation of M-ary PSK for the
case of the practically important coherent-state transmitters in
Ref. [7]. Very recently, a receiver that achieves near-optimal
error probability for coherent-state M-PSK was proposed
[8] and demonstrated for 4-PSK. However, a fully general
treatment of the M-ary phase discrimination problem is as
yet lacking, even in the ideal lossless case. In this paper, we
present such an analysis and obtain the best probe state over all
quantum states of any number of signal and ancillary modes
under an average energy constraint.

This paper is organized as follows. In Sec. II, we set up the
mathematical model of the symmetric phase discrimination
problem along with a discussion of the physical assumptions
involved. Section III elaborates its solution as follows. In
Secs. III A–III C, we consider the case of a pure-state probe.
In Sec. III A, we obtain the optimal state under an energy con-
straint on the modes experiencing the phase shift. In Sec. III B,
we briefly discuss the associated quantum measurement that
achieves the minimum error probability. In Sec. III C, we
consider the case of a combined energy constraint on all the
probe-state modes. In Sec. III D, the optimality proof under
both energy constraints is extended to allow for mixed-state
probes. In Sec. III E, we present performance curves for
several standard states in quantum optics alongside those of
the optimal state and the coherent states. In Sec. IV, we present
an easy implementation of M = 2 phase discrimination under
both lossless and lossy conditions. In Sec. V, we conclude by
discussing some possible future directions based on the present
work.
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FIG. 1. Symmetric phase shifts on the unit circle for M = 3.

II. SYMMETRIC PHASE DISCRIMINATION:
PROBLEM SETUP

A. Probe state

Consider, for an integer M � 2, for θM := 2π/M , and
for ZM := {0, . . . ,M − 1}, the set {θm := m θM | m ∈ ZM} of
phase shifts symmetrically disposed on the unit circle as in
Fig. 1. The application of, say, the mth such phase shift to
each of J � 1 quasimonochromatic optical-field modes (with
annihilation operators {â(j )

S }Jj=1) is represented by the unitary
operator,

Ûm =
J⊗

j=1

eimθMN̂
(j )
S ≡

J⊗
j=1

Û (j )
m , m ∈ ZM, (1)

where N̂
(j )
S = â

(j )†
S â

(j )
S is the number operator of the j th mode,

with 1 � j � J . These modes that undergo the phase shift
are called signal modes, indicated by the subscript S (see
Fig. 2). In addition to the J signal modes, we also allow, as
depicted in Fig. 2, any number J ′ � 0 of ancillary modes.
These are called idler modes, indicated by the subscript I ,
and have annihilation operators {â(j ′)

I }J ′
j ′=1. The idler modes

do not acquire the m-dependent phase shift but allow for the
preparation of a quantum state that is entangled across the
signal and idler modes. Such a joint state on the signal and
idler modes will be called a probe state. We are interested in
the problem of the choice of probe state that minimizes the
error probability in determining m when the latter is drawn,
unknown to the receiver, at random from ZM .

â
(j)
S

â
(j′)
I

Û
(j)
m

â
(j)
R

â
(j′)
I

FIG. 2. A pure state |ψ〉IS of J signal modes (represented by the
annihilation operators {â(j )

S }J
j=1) and J ′ idler modes (represented by

the annihilation operators {â(j ′)
I }J ′

j ′=1) is prepared. The signal modes
pass through a phase-shifting element that modulates the phase of the
incident light via one of the unitary transformations Ûm specified by
Eq. (1). The return modes (represented by the annihilation operators
{â(j )

R }J
j=1) and idler modes, the latter remaining unaffected by the

phase shift, are measured using a minimum error probability quantum
measurement.
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An arbitrary pure probe state of J + J ′ modes may be
written in the multimode number basis as

|ψ〉IS =
∑
k,n

ck,n|k〉I |n〉S, (2)

where |k〉I = |k1〉 ⊗ · · · ⊗ |kJ ′ 〉 and |n〉S = |n1〉 ⊗ · · · ⊗ |nJ 〉
are multimode Fock states. For any such probe state, the output
states for the idler and return (R) modes are

|ψm〉IR = ÎI ⊗ Ûm|ψ〉IS, m ∈ ZM, (3)

where ÎI is the identity transformation on the idler modes. The
set of complex numbers {eimθM | m ∈ ZM} is a cyclic group of
order M under multiplication and, consequently, so is the set
of M unitary operators {ÎI ⊗ Ûm | m ∈ ZM}. Assuming equal
a priori probabilities for the M unitaries, the output states of
Eq. (3) satisfy the symmetric set condition of Ref. [20] defined
by

|ψm〉 = V̂ m|ψ〉, m ∈ ZM, (4)

V̂ M = Î (5)

for some unitary operator V̂ and some seed state |ψ〉 [24]. The
correspondence to our problem is obtained by taking the seed
state |ψ〉 in (4) to be the probe state |ψ〉IS and the generating
unitary operator V̂ of Eqs. (4) and (5) to be

V̂ = ÎI ⊗
J⊗

j=1

eiθMN̂
(j )
S = ÎI ⊗ Û1, (6)

with Û1 given by Eq. (1).
The discrimination strategy of Fig. 2 may be called an

entanglement-assisted parallel strategy in analogy with the
terminology of Ref. [25], and it corresponds to Fig. 2(d) of
[25] augmented with idler modes. This is clearly not the most
general strategy. For example, we may consider sequential
strategies (see Fig. 3 of [25]). It is easy to show that the simple
sequential strategy depicted in Fig. 3(a) of [25] cannot help,
as follows. Successive application of two phase shifts of mθM

rad results in a phase shift 2mθM rad, which is also in the set
{mθM | m ∈ ZM} due to the group property of ZM . Thus, at
best, the set of output states after two applications of the phase
shift is a permutation of the set of states after one application
of the phase shift, and in general, the set of output states is
even less distinguishable since distinct phase shifts may result
in the same state after multiple applications even if they do
not after a single application. That said, we have not ruled
out the efficacy of more complicated strategies, such as the
sequential strategy depicted in Fig. 3(b) of [25] or strategies
that adaptively select the input states of later signal modes
conditioned on measurement results from earlier modes (see,
e.g., [26]). Optimization over all such strategies appears to be
an involved task and will not be considered in this paper.

It is worthwhile to mention a few more features of our
problem setup. First, our model of the phase discrimination
problem, as given by Eq. (3), assumes the presence of a phase
reference in that we have the ability to prepare pure probe
states and not just phase-averaged mixed states. Such a phase
reference may be physically implemented, for example, by a
separate strong coherent-state beam. Second, though given a
phase reference, we may still prepare arbitrary mixed-state

probes that are not represented in Eq. (3) but must be
considered in a fully general optimization. Nevertheless, it
will be convenient to first address the pure-state probe case of
Eq. (3) in detail. The mixed-state case will be subsequently
addressed in Sec. III D to extend the optimization to the full
state space.

B. Probe-state design

Accordingly, we are now interested in minimizing the error
probability over a set of allowed pure probe states |ψ〉IS . This
logically entails two successive minimizations. For a chosen
probe state |ψ〉IS , the minimum average error probability
achievable in the sense of Helstrom [19] is given by

P e = 1 − 1

M
max
{Êm}

M−1∑
m=0

tr(|ψm〉IR〈ψm| Êm), (7)

where {Êm}M−1
m=0 is a set of positive-semidefinite operators

constituting a positive-operator-valued measure (POVM) [19]
that represents any quantum measurement process that dis-
criminates the M possibilities. The optimization over all
POVMs in Eq. (7) corresponds to the choice of the optimum
measurement process for a given probe state |ψ〉IS . We are
interested in minimizing (7) further over a set of “allowed”
probe states as detailed below.

Intuitively, it is clear that, if no further restrictions are
imposed, one may be able to achieve arbitrarily small error
probability by choosing a probe state with sufficiently high
energy. For example, we may use a single-mode coherent-state
probe |√NS〉 of average photon number NS , leading to the
output states {|√NSe

imθM 〉}M−1
m=0 . As NS is increased, the output

states become more and more orthogonal, and the error
probability decreases. In the limit NS → ∞, we have P e → 0.
Thus, further constraints are required to make the optimization
problem meaningful. In the communications literature, an
energy constraint is typically imposed in addition to a limit
on the number of modes J , i.e., the bandwidth. In the present
context, an energy constraint is particularly important because
it is practically hard to prepare novel quantum states with a
large average photon number. One can also imagine scenarios,
e.g., that of probing a sensitive biological sample, where a
signal energy constraint must be imposed to avoid damaging
the sample during probing. In view of the above considerations,
we constrain the average total photon number in the signal
modes

〈N̂S〉 ≡
〈

J∑
j=1

N̂
(j )
S

〉
� NS, (8)

with NS being a given number. The case of a constraint on
the average photon number of the signal plus idler modes is
considered in Sec. III C. For brevity, we will simply write
“signal energy” for the average total photon number in the
signal modes given by the left-hand side of Eq. (8).

Using Eq. (2), we calculate the signal energy:

〈N̂S〉 =
∑
k,n

(n1 + · · · + nJ ) |ck,n|2 (9)
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=
∑

n

(
(n1 + · · · + nJ )

∑
k

|ck,n|2
)

(10)

≡
∑

n

(n1 + · · · + nJ ) pn (11)

≡
∞∑

n=0

npn, (12)

where pn is the probability that the total photon number
n1 + · · · + nJ in the signal modes is n. We denote the signal
photon probability distribution by the infinite-dimensional
vector p = (p0,p1, . . .).

In the sequel, another discrete probability distribution
derived from the probe state plays a major role. It depends
on both the probe state (through p) and M , as follows. For ν ∈
ZM , let p ≡ (p0, . . . ,pν, . . . ,pM−1) be defined componentwise
as

pν :=
∑

n : n ≡ ν (mod M)

pn. (13)

In other words, p is the probability distribution induced by p
on the modulo-M congruence classes of the total signal photon
number.

III. SYMMETRIC PHASE DISCRIMINATION:
PROBLEM SOLUTION

A. Pure probe states

It will be revealing to approach the problem set up in Sec. II
in stages. We will comment as we go along on the implications
of our results and their connections to the literature. As in
Sec. II, we continue to assume a pure probe state and address
the use of mixed probe states in Sec. III D.

We first present the basic result that, without invoking
a signal energy constraint or specifying J and J ′, we can
partition the probe-state space into equivalence classes of states
having the same error probability.

Theorem 1. Pure probe states with the same p have the
same performance in the discrimination of M symmetric
phases. This statement encompasses probes with differing J

and/or J ′.
Proof. For an arbitrary probe state |ψ〉IS written in the form

of Eq. (2), the corresponding output states {|ψm〉IR}M−1
m=0 are

given by

|ψm〉IR =
∑
k,n

ck,ne
imθM (n1+···+nJ )|k〉I |n〉R. (14)

Consider the M × M matrix G (the Gram matrix) whose
elements are all the mutual inner products between the
{|ψm〉IR}, i.e.,

Gm m′ := IR〈ψm|ψm′ 〉IR. (15)

The minimum error probability (7) in discriminating the
symmetric set of pure states {|ψm〉IR}M−1

m=0 is a function of
the elements of G alone [27]. We compute the general element

of G to be

Gmm′ = IR〈ψm|ψm′ 〉IR (16)

=
∑
k,n

|ck,n|2 e−iθM (m−m′)(n1+···+nJ ) (17)

=
∑

n

pn e−iθM (m−m′)(n1+···+nJ ) (18)

=
∞∑

n=0

pn e−iθM (m−m′)n (19)

=
M−1∑
ν=0

pν e−iθM (m−m′)ν . (20)

The equality (20) follows because, for any m and m′, the
exponential factor is periodic in n with period M . We have thus
shown that the Gram matrix, and thus the error performance,
is a function of just the M components of p and that this is true
irrespective of the values of J and J ′. �

The result of Theorem 1 is interesting for a number of
reasons. First, it clusters probe states into classes with the same
error performance based on the easily computed characteristic
p. Second, since one can always prepare a signal-only (J ′ =
0) probe with a given p, the ancillary idler modes shown in
Fig. 2 do not improve performance. This is unlike the typical
situation in which ancillary entanglement in the probe helps
in distinguishing M unitary transformations [28]. Third, since
any given p can be realized using a single-mode signal state
(i.e., with J = 1 as in Theorem 2 below), no performance
gain accrues from using multiple signal modes. This can again
be contrasted with the situation of distinguishing two general
finite-dimensional unitaries, for which multiple applications
of the unitaries can result in error-free discrimination [29].
We mention that these latter two implications of Theorem 1
also follow from a general lossless image sensing result of
Ref. [30] (see section on lossless imaging therein). Finally, the
freedom of probe-state choice allowed by Theorem 1 will turn
out (in Sec. IV) to be crucial to a practical implementation of
the M = 2 case.

Our next result implies that, when the signal energy is
constrained as in (8) to a maximum of NS , the most efficient
way to use the energy is to use a probe state with p supported
on just its first M components. It is also shown that, beyond
a threshold signal energy of (M − 1)/2, discrimination with
zero error is possible.

Theorem 2. (a) For NS < (M − 1)/2, a single-mode probe
state of the form |ψ〉S = ∑M−1

ν=0
√
pν |ν〉S with pν � 0 achieves

the minimum error probability.
(b) For NS � (M − 1)/2, the uniform superposition state

|ψ〉S = 1√
M

(|0〉S + · · · + |M − 1〉S) achieves perfect dis-
crimination.

Proof. (a) Presented with any probe state |ψ〉IS with
associated p and p, we can construct the single-mode probe

|ψ〉S =
M−1∑
ν=0

√
pν |ν〉S. (21)

This state has the same p, so by Theorem 1 it has the
same performance as the original one. Moreover, because
the probabilities pn that |ψ〉IS associates with n � M all
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contribute to photon numbers less than M in |ψ〉S , the total
signal energy in (21), as given by Eq. (12), can only be equal
to or lower than that of the original probe state. Thus, (21)
provides the same performance at equal or lesser signal energy
than any state with the same p.

(b) If NS � (M − 1)/2, consider the probe state

|ψ〉S = 1√
M

M−1∑
ν=0

|ν〉S, (22)

which has energy (M − 1)/2 and is therefore allowed by the
energy constraint. From (20), we see that Gmm′ = δm,m′ , so
that the output states are mutually orthogonal and the error
probability is zero. �

The conclusion of Theorem 2(b) that discrimination with
zero error is possible whenever NS � (M − 1)/2 is remark-
able. In a communications framework, it implies that if a
signal energy of at least (M − 1)/2 is available, we can
communicate one of M messages without error using phase
modulation of the state (22). This conclusion was noted
in [5], although this, or any other, single-mode state cannot
achieve error-free communication under the restricted class of
measurements allowed in [5]. In [6], an alternative scheme
using two signal modes suffering conjugate phase shifts of θm

and −θm, respectively, was proposed that achieves the same
end.

Recently, it was shown in [11] that using the probe state

|ψ〉ECS = 1

N (|α〉I |α〉S − |−α〉I |−α〉S) (23)

for reading a binary phase-encoded memory [so that the output
states correspond to Eq. (3) with M = 2] results in zero-error
discrimination. Here, |± α〉S and |± α〉I are coherent states
(with α �= 0 but otherwise arbitrary) and the normalization
factor N =

√
2(1 − e−4|α|2 ). State (23) is an example of an

entangled coherent state (ECS) [31].
The existence of several states allowing zero-error discrim-

ination is in itself not surprising if we apply Theorem 1 to state
(22) because according to that theorem, any state with uniform
p = (1/M, . . . ,1/M) must provide zero-error discrimination
and we can clearly write down an infinite number of states
with uniform p. A more interesting question is whether there
exist states with nonuniform p or with signal energy less
than (M − 1)/2 that also allow zero-error discrimination.
Theorem 3(b) below implies that the answer to both questions
is negative, so that a signal energy of at least (M − 1)/2 is
a necessary condition for zero-error discrimination. In this
connection, it may be verified that the ECS of Eq. (23) has
p = (1/2,1/2) and signal energy |α|2/(2 tanh |α|2) > 1/2 for
|α| > 0 [32].

The next result gives the form of the optimal probe state
for a signal energy constraint NS < (M − 1)/2 and also shows
that the only probe states achieving zero-error discrimination
have uniform p and therefore have signal energy greater than
or equal to (M − 1)/2.

Theorem 3. (a) Among all probe states satisfying 〈N̂S〉 �
NS < (M − 1)/2, the minimum error probability is achieved

by the state

|ψ〉opt =
M−1∑
ν=0

√
pν |ν〉S, (24)

with p given by

pν = 1

(A + νB)2
, ν ∈ ZM, (25)

where A, B are positive constants chosen to satisfy the
constraints

M−1∑
ν=0

pν = 1,

M−1∑
ν=0

ν pν = NS. (26)

(b) Any probe state achieving zero-error discrimination
must have p = (1/M, . . . ,1/M) and signal energy greater than
or equal to (M − 1)/2.

Proof. (a) By Theorem 2(a), it suffices to consider a
single-mode probe state of form (21). As shown in Sec. II,
the output states {|ψm〉IR}M−1

0 form a symmetric set in the
sense of having equal a priori probabilities and satisfying Eqs.
(4) and (5). It was shown in Refs. [18,20] that the square-root
measurement is the minimum error probability measurement
for any symmetric pure-state set. An explicit formula exists for
this minimum error probability [7,18,20]. We use the following
expression from Ref. [7]:

P e = 1 − 1

M2

(
M−1∑
m=0

√
λm

)2

, (27)

where λ = (λ0, . . . ,λM−1) is the vector of eigenvalues of the
Gram matrix G [33]. The ordered vector of eigenvalues λ is
specified by the formula (cf. Eq. (42) of [7])

λm′ =
M−1∑
m=0

IR〈ψ0|ψm〉IR e−im′mθM (28)

=
M−1∑
m=0

G0m e−im′mθM . (29)

Note that the eigenvalues only depend on the first row of the
Gram matrix; indeed, the symmetric set property of {|ψm〉IR}
guarantees that the remaining rows are obtained by cyclically
shifting the first. While the ordering of eigenvalues in λ enables
writing down the compact formula (28) and has a physical
interpretation that will appear, note that the error probability
itself does not depend on the ordering.

We may rewrite (29) as

λ = F [G0] , (30)

where F is the discrete Fourier transform (DFT) on ZM and
G0 ≡ {G0m} is the first row of the Gram matrix. On the other
hand, (20) implies that

G0 = M · F−1 [p] , (31)

where F−1 is the inverse DFT. We therefore have

λ = M p, (32)

which gives a physical interpretation for λ.
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Minimizing P e for states of form (21) with signal energy
〈N̂S〉 = NS is then equivalent to maximizing the concave
function

∑M−1
ν=0

√
pν over the convex set of p’s for which the

probability normalization constraint

M−1∑
ν=0

pν = 1 (33)

and the signal energy constraint

M−1∑
ν=0

ν pν = NS (34)

are satisfied. Following the usual Lagrange multiplier method,
we define

F (p0, . . . ,pM−1,A,B)

=
M−1∑
ν=0

√
pν − A

(
M−1∑
ν=0

pν − 1

)
− B

(
M−1∑
ν=0

ν pν − NS

)
(35)

and solve the equation ∇F = 0. The solution is

pν = 1

(A + νB)2
, ν ∈ ZM, (36)

where A,B are chosen such that
∑M−1

ν=0 pν = 1 and∑M−1
ν=0 ν pν = NS . The point p defined by (36) is an interior

point of the domain of optimization and a local maximum by
the gradient condition. Since the function being maximized is
concave, it is also a global maximum on the domain [34]. Thus,
state (36) achieves the minimum error probability among probe
states with energy exactly NS . Lemma 1 below establishes that
state (36) is also optimal under inequality constraint (8).

(b) From (27), it is evident that P e = 0 if only if∑M−1
ν=0

√
pν = √

M . It is easy to verify that the maximum
value of the quantity

∑M−1
ν=0

√
pν under just the constraint∑M−1

ν=0 pν = 1 is
√

M and is achieved only if pν = 1/M, 0 �
ν � M − 1. Thus, the states providing zero-error discrimina-
tion are exactly those with uniform p. Such a state has signal
energy at least (M − 1)/2. �

The following result may be expected on physical grounds
[although it does not hold for NS > (M − 1)/2], but we need
a proof because this fact is used to complete the proof of
Theorem 2(a).

Lemma 1. The optimum single-mode probe state of form
(21) under the inequality constraint 〈N̂S〉 � NS < (M − 1)/2
is the same as the optimum state under the equality constraint
〈N̂S〉 = NS .

Proof. Consider the maximization of
∑M−1

ν=0
√
pν under

the probability constraint
∑M−1

ν=0 pν = 1. As shown in the
proof of Theorem 3(b), the maximum is achieved at p∗ =
(1/M, . . . ,1/M). Denote the p of an optimal state under
the inequality constraint by p∗. Denote its signal energy by
Ns � NS . Since the set of all p is convex, the line segment L

joining p∗ to p∗ in that set consists of allowed p’s. Since the
signal energy is a linear function of p, L contains states of
signal energy ranging from Ns to (M − 1)/2. Further, since
the function

∑M−1
ν=0

√
pν is a concave function of p whose

maximum is attained at p∗, the function must be nondecreasing
as we move along L from p∗ to p∗ [34]. In particular, we can

find a state on L with signal energy NS and equal or better
performance than that obtainable from p∗. Consequently, there
is an optimal state under the inequality constraint with signal
energy exactly NS . One such state must be that given by (36). �

The optimum probe state for binary phase discrimination is
particularly straightforward.

Corollary 1. Binary case. For M = 2, the optimum probe
state for NS < 1/2 is

|ψ〉 =
√

1 − NS |0〉S +
√

NS |1〉S. (37)

Proof. This follows immediately by solving for A and B in
Theorem 3. �

However, note that our proposed implementation of the
binary case for achieving the minimum error probability

P e = 1/2 −
√

NS(1 − NS) (38)

in Sect. IV uses a different probe state (with the same signal
energy and performance) for practical reasons.

In the general (M > 2) case, it appears that closed-form
solutions for A and B appearing in expression (36) for the
optimal state cannot be obtained, so recourse to numerical
evaluation becomes necessary. Simulations of the resulting
performance are presented in Sec. III E.

B. Optimal measurement

Let us briefly discuss the quantum measurement, as
determined by the corresponding POVM, that optimally
distinguishes the output states {|ψm〉IR}M−1

m=0 . Following
Refs. [7,18,20], the optimum POVM, the SRM, is a rank-
1 measurement with elements 	̂m = |χm〉IR〈χm|,m ∈ ZM

(|χm〉IR may have norm less than 1) with

|χm〉IR =
(

M−1∑
n=0

|ψn〉IR〈ψn|
)−1/2

|ψm〉IR, (39)

where the operator in parentheses (and its inverse) is defined
on just the span of {|ψm〉IR}M−1

m=0 . For a single-mode probe of
the form |ψ〉S = ∑M−1

n=0
√
pn |n〉S of Theorem 2, we have

|χm〉R = 1√
M

∑
n :pn �=0

eimnθM |n〉R. (40)

Note that the optimum measurement is the same for any two
single-mode probe states |ψ〉S,|ψ ′〉S with p,p′ having the same
support. The optimum state of (24) has no zero coefficients,
so that the optimum measurement elements are

|χm〉R = 1√
M

M−1∑
n=0

eimnθM |n〉R. (41)

Since these vectors form an orthonormal set, the measurement
is a projective (von Neumann) measurement. Indeed, these
measurement vectors coincide with the eigenstates of the
unitary Pegg-Barnett phase operator [35] on the truncated
Hilbert space HM−1 = span {|0〉R, . . . ,|M − 1〉R}.
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C. Combined energy constraint

We have so far assumed that a constraint is placed on the
energy of just the signal modes. In some situations, it may make
sense to constrain, as a measure of all the resources involved
in state preparation, the average total energy in the signal and
idler modes combined without restricting either individually.
In other words, we impose the constraint

〈N̂〉 := 〈N̂S + N̂I 〉

:=
〈

J∑
j=1

N̂
(j )
S

〉
+

〈
J ′∑

j ′=1

N̂
(j ′)
I

〉
� N (42)

for a given number N , where {N̂ (j )
S } and {N̂ (j ′)

I } are the modal
signal and idler photon number operators, respectively, and ask
for a state satisfying this constraint that minimizes the error
probability. This new problem has the same solution that we
found before.

Theorem 4. Among pure-state probes, the minimum error
probability achievable under a combined energy constraint N

is identical to the minimum error probability achievable under
a signal energy constraint N .

Proof. The combined energy constraint of N is clearly more
restrictive than a signal energy constraint of N . We showed in
Sec. III A that the optimal pure-state probe for a signal energy
constraint of N is a signal-only state of energy N . Since this
state also has combined energy N , it remains the optimal state
under the combined energy constraint. �

D. Mixed probe states

In our work so far, we have assumed that the probe state
|ψ〉IS was pure. Of course, we may also use a mixed probe
state ρ̂IS resulting in the mixed output states

ρ̂m = (ÎI ⊗ Ûm)ρ̂IS(ÎI ⊗ Û †
m) (43)

for Ûm given by Eq. (1). We now show that allowing for mixed
probes does not lead to improved performance. We actually
prove a stronger result.

Theorem 5. Let ρ̂IS be a mixed state with ensemble de-
composition ρ̂IS = ∑

j πj |ψj 〉IS〈ψj | and with signal energy

tr(ρ̂ISN̂S) � N or with combined energy tr(ρ̂ISN̂ ) � N . A
transmitter preparing the ensemble {|ψj 〉IS} with probabilities
{πj } and a receiver making optimal measurements conditioned
on knowledge of j cannot beat the performance of the optimal
pure-state probe under either energy constraint.

Proof. Let P e[·] denote the minimum error probability
attainable on using the argument as the probe state. We have
the chain of inequalities

P e[ρ̂IS] �
∑

j

πjP e[|ψj 〉IS] (44)

=
∑

j

πjP e[|ψ∗
j 〉S] (45)

� P e[|ψ〉S] (46)

� P e[|ψopt〉S]. (47)

In (44), the right-hand side represents the optimum perfor-
mance under the conditions of the theorem statement, and
the inequality holds because the performance given by the

0 5 10 15 20 25 30
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P
e
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M=16
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M=32
M=32 (CS)
M=64
M=64 (CS)

FIG. 3. The error probability P e of the optimum probe given by
Eq. (24) (solid lines) and the coherent-state probe (dashed lines) as
a function of NS for M = 8,16,32, and 64. Curves for larger M are
lighter.

left-hand side is obtained when knowledge of j is ignored
by the receiver [36]. |ψ∗

j 〉S is the state of form (21) with the
same p as |ψj 〉IS , denoted pj , and (45) holds by Theorem 1.
In (46), |ψ〉S is the state of form (21) with p = ∑

j πjpj , and

the inequality is true because P e of (27) is a sum of convex
functions of p [37] and hence is convex itself. None of the state
transformations above has increased the signal (or combined)
energy from that of ρ̂IS , so that |ψ〉S is a pure state with energy
bounded by N . It cannot beat the optimum pure state |ψopt〉S
with energy N . �

With Theorem 5 in hand, we may conclude that the state
of Theorem 3 is in fact the pure or mixed state of energy at
most NS that has the lowest error probability. This result has
the following implication. Recall that a classical state of the
signal and idler modes is a density operator ρIS expressible as
a mixture of coherent states in the form

ρIS =
∫

P (α,β)|α〉I |β〉SI 〈α|S〈β| d2α d2β, (48)

where |α〉I (|β〉S) is a multimode idler (signal) coherent state
and P (α,β) � 0 is a probability density [38]. Such states are
readily prepared from laser outputs using beam splitters and
classical random numbers, and standard measurements made
on them are quantitatively describable using semiclassical
photodetection theory [39]. The optimal state (24) is a
nonclassical state (coherent states are the only pure classical
states), and being optimal, it performs better than the coherent
state of energy NS (see Fig. 3). However, from Theorem 3
alone, we cannot conclude that it performs better than an
arbitrary classical state of form (48). With the addition of
Theorem 4, we can draw the conclusion that nonclassical state
(24) outperforms all classical states. Note that our argument
does not imply that the coherent state of energy NS is the
optimal classical state with energy NS .
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E. Numerical results

In this section, we numerically compare the performance
of the optimal state of Theorem 3 with that of some standard
states in quantum optics. We first consider some signal-only
states and then a couple of two-mode entangled states. With
the exception of optimum state (24), the performance curves
are obtained by computing the first row G0 of the Gram
matrix, for which analytical formulas are given below for each
family of states. We then compute the eigenvalue vector λ

(or equivalently p) using a fast Fourier transform routine [cf.
Eq. (30)] and finally compute the error probability P e via
Eq. (27).

1. Optimal state

For each value of the probe signal energy NS , the p of the
optimal state is first obtained by numerically solving for A and
B appearing in (36). We then compute the error probability via
(27) and plot it against NS in Fig. 3 for a few values of M . We
find that as NS → (M − 1)/2, A → √

M and B → 0, so that
the numerically computed optimal state of (36) approaches the
uniform superposition state of Theorem 2(b). The approach to
zero error in the same limit is clearly visible in Fig. 3. For
comparison, the coherent state performance (see Sec. III E2)
is also plotted.

2. Squeezed state and coherent state

The single-mode squeezed states [40] are a well-known
class of states. Let âS = μ∗b̂ − νb̂†, where |μ|2 − |ν|2 = 1
and b̂ is in a coherent state |α〉 satisfying b̂|α〉 = α|α〉,
α > 0. Then, the signal mode âS is in the squeezed state
(called the two-photon coherent state (TCS) in [40]) |α; μ,ν〉.
In the following, we assume μ,ν are real and μ > 0. If
ν < 0, this transformation corresponds to squeezing in the
imaginary (phase) quadrature while stretching the real quadra-
ture. The average energy of this state may be calculated to
be

〈â†
SâS〉 = (μ − ν)2 α2 + ν2. (49)

The action of the mth phase θm takes âS to â
(m)
R = âSe

iθm in
the Heisenberg picture, so that

â
(m)
R = μeiθm b̂ − νeiθm b̂†. (50)

Thus, the Schrödinger-picture state at the end of these
transformations is |α; μe−iθm ,νeiθm〉R .

We may now use Eq. (3.25) of Ref. [40] to write down the
Gram matrix elements G0m:

G0m = (μ2 − ν2e2iθm )−1/2

× exp

[
α2

(
eiθm − μν(e2iθm − 1)

μ2 − ν2e2iθm
− 1

)]
. (51)

The coherent state |α〉S is identical to the TCS |α; 1,0〉R ,
and its Gram matrix elements can be obtained from
Eq. (51).

3. Two-mode squeezed vacuum state

The two-mode squeezed vacuum (TMSV) state with signal
energy NS is the two-mode state [38]:

|ψTMSV(NS)〉IS =
√

1

NS + 1

∞∑
n=0

√
Nn

S

(NS + 1)n
|n〉I |n〉S.

(52)
We may also consider using J copies of a TMSV state as a
probe. In order to keep the same signal energy NS , we must
use J copies of |ψTMSV(NS/J )〉IS . We may directly compute
the first row of the Gram matrix of the output states as

G0m =
[

1

1 + NS

J
(1 − eimθM )

]J

, m ∈ ZM. (53)

4. Pair-coherent state

The pair-coherent states (PCS) are a family of two-mode
states parametrized by ζ ∈ C and a non-negative integer q

[41]. We will consider the case q = 0 corresponding to equal
energy in the signal and idler modes. Such a PCS has the form

|ψPCS(ζ )〉IS = 1√
I0(2|ζ |)

∞∑
n=0

ζ n

n!
|n〉I |n〉S, (54)

where I0(·) is the modified Bessel function of first kind and
order zero. The signal energy NS is related to ζ via

NS = |ζ |I1(2|ζ |)
I0(2|ζ |) , (55)

where I1(·) is the modified Bessel function of first kind and
order 1. Since the phase of ζ does not affect the performance,
we will assume ζ to be real and positive. The Gram matrix
elements may be computed to be

G0m = I0(2ζeimθM/2)

I0(2ζ )
, m ∈ ZM. (56)

5. Performance curves

Numerical results for M = 2 and M = 8 are shown in
Figs. 4 and 5, respectively. For the special case of binary
discrimination, the minimum error probability is

Pe = 1
2 (1 −

√
1 − |σ |2), (57)

where σ = IR〈ψ0|ψ1〉IR . For each of the probe states consid-
ered above, we have

σCS = e−2NS , (58)

σSS = e−2NS (NS+1), (59)

σTMSV = 1

(1 + 2NS/J )J
, (60)

σPCS = J0(2ζ )

I0(2ζ )
. (61)

For the squeezed-state (SS) probe, an optimal squeezing has
been assumed (see below). For multiple copies of a two-mode
squeezed vacuum, note that σTMSV is decreasing in J and
σTMSV → σCS as J → ∞. For certain values of NS , the PCS
performs best among all but the optimal state.
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FIG. 4. (Color online) Minimum error probability as a function
of signal energy NS for the states of Sec. III E for the binary case
M = 2. The squeezed state has squeeze parameters μ,ν optimized
for each NS , and the two-mode squeezed vacuum has J = 1.

For M = 8, on the other hand, the PCS performs the worst
and is consistently beaten by the coherent state. The squeezed
state with an optimized amount of squeezing performs the
best among the suboptimal states and is closely matched by
the two-mode squeezed vacuum, both of which consistently
beat the coherent state.

For the squeezed-state probe, we can further discuss the
optimal squeeze parameters μ,ν for a given energy NS . For
symmetric phase discrimination, we might assume that phase
squeezing, μ > 0,ν < 0, is optimal. The following is what we
find.

(i) M = 2. The optimal ν = NS/
√

1 + 2NS is positive. The
phase-space representation in terms of noise ellipses is shown
in Fig. 6(a) for this case. Note that for a given NS , the mean
〈âR〉 is independent of the sign of ν.

(ii) M = 3. Numerically, we find the optimal ν is positive
(Fig. 7).
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FIG. 5. (Color online) Minimum error probability as a function
of signal energy NS for the states of Sec. III E for M = 8. The
squeezed state has f = ν2/NS optimized for each NS , and the two-
mode squeezed vacuum uses J = 15 signal modes.

m = 0m = 1

(a) ν > 0

m = 0m = 1

(b) ν < 0

FIG. 6. Phase-space representation of an M = 2 squeezed-state
probe: (a) amplitude squeezed and (b) phase squeezed.

(iii) M = 4. Numerically, no squeezing ν = 0 (coherent
state) appears to be optimal (Fig. 8).

(iv) M � 5. Numerically, we find the optimal ν is negative.
For large M , phase squeezing can be seen to reduce the overlap
between neighboring states [Fig. 9(b)].

IV. IMPLEMENTATION OF CONDITIONALLY OPTIMAL
BINARY PHASE-SHIFT KEYING

In this section, we show that the performance of the
optimal state for the M = 2 case, the state of Corollary 1,
can be readily obtained in the laboratory with current tech-
nology. Furthermore, the inclusion of transmission losses and
subunity detection efficiencies leads to occasional inconclu-
sive outcomes (or erasures) but leaves unchanged the error
performance conditioned on no erasure. These results are
applicable both to long-distance communication based on
binary phase-shift keying and to (short-distance) phase sensing
or reading of a phase-encoded memory of the type described
in Ref. [11].

The optimal probe state of Eq. (36), and thus also the M = 2
optimal state of Eq. (37) (we are assuming NS � 1/2 for the
latter state), is hard to prepare in a deterministic fashion.
However, several techniques exist [42–44] to prepare such
Fock-state superpositions in a conditional manner, of which
some have been demonstrated experimentally [44]. State (37)
can be thought of as a qubit state in a “single-rail” encoding
[45]. The optimal measurement on the output states following
the phase shift is, via Eq. (41), a projective measurement
onto the basis {(|0〉S ± |1〉S)/

√
2}. Such a measurement would

require implementing a unitary taking the {(|0〉S ± |1〉S)/
√

2}
basis to the {|0〉S,|1〉S} basis, followed by photodetection.
However, it is well known (see Ref. [45] and references
therein) that it is impossible to effect the required unitary

(a) ν > 0 (b) ν < 0

FIG. 7. Phase-space representation of an M = 3 squeezed-state
probe: (a) amplitude squeezed and (b) phase squeezed.
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(a) ν > 0 (b) ν < 0

FIG. 8. Phase-space representation of an M = 4 squeezed-state
probe: (a) amplitude squeezed and (b) phase squeezed.

transformation deterministically with linear optics, leading
to further inefficiencies in an implementation involving state
(37).

By an appeal to Theorem 1, both the state preparation and
measurement issues can be circumvented. To do so, we use
instead of (37) the probe state

|ψ〉IS =
√

1 − NS |10〉IS +
√

NS |01〉IS, (62)

where the S and I modes may be spatially separated (as in
Fig. 10) or may correspond to orthogonal polarization degrees
of freedom of the same spatiotemporal mode. In effect, we
have switched to a dual-rail qubit encoding [45] in going from
(37) to (62). Note that states (37) and (62) have the same p and
p and so have the same signal energy and error performance.

As shown in Fig. 4, state (62) can be prepared by directing
a single photon to a NS : 1 − NS beam splitter. Further,
Eq. (39) dictates that the optimum POVM measures the basis
{(|01〉IS ± |10〉IS)/

√
2}. This may be accomplished by a 50:50

beam splitter followed by single-photon detection using two
detectors at the output ports of the beam splitter. Hypothesis
m ∈ {0,1} is declared if detector Dm clicks [46].

Let us first consider ideal operation and ignore the small
beam splitters in Fig. 4 representing transmission and detection
losses. It can be verified that the two possible states in the
output modes R0 and R1 of the second beam splitter just before
the detection are given by

|ψ0(1)〉R0R1 = λ+(−)|10〉R0R1 + λ−(+)|01〉R0R1 , (63)

where

λ+(−) =
√

1 − NS ± √
NS√

2
. (64)

(a) ν > 0 (b) ν < 0

FIG. 9. Phase-space representation of an M = 8 squeezed-state
probe: (a) amplitude squeezed and (b) phase squeezed.
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FIG. 10. Setup for realizing the optimal BPSK performance with
signal energy NS . The signal (S) and idler (I ) modes are taken to be
spatially separated modes with the same polarization and transverse
spatial pattern. The NS : 1 − NS beam splitter synthesizes the optimal
probe state from a single-photon state. The shaded box containing the
phase unitary transformation Ûm on the signal mode represents the
sender’s modulator and the transmission medium in a communication
scenario or the phase-encoded memory element in a quantum reading
scenario. The 50:50 beam splitter performs a rotation of the ideal
measurement basis into the single-photon states of the output modes
R0 and R1. The small beam splitters with the indicated transmittances
model the transmission losses suffered by the signal mode (ηS) and
the idler mode (ηI ) and the quantum efficiencies of the detectors D0

and D1. Hypothesis m is declared when detector Dm clicks. If neither
detector clicks, an erasure has occurred.

One of the detectors always clicks, and the error probability
evaluates to

P e = λ2
− = 1

2 − √
NS(1 − NS), (65)

which agrees with Eq. (38).
Let us now consider the performance of the setup of Fig. 4 in

a realistic setting that includes transmission loss and nonunity
quantum efficiency of the detectors as shown. We assume
that the detectors have negligible dark count rates. Trans-
mission loss may be the dominant factor in a long-distance
communication system but may be negligible in the reading
of a memory. For simplicity, we assume ηS = ηI = ηT < 1,
which is a realistic assumption in the communication context,
although it can be relaxed without altering our conclusions
much. We also assume η

(0)
D = η

(1)
D = ηD and let η = ηT ηD .

By following the evolution of the probe state through the
system while preserving unitarity by adding vacuum-state
input modes at each of the small beam splitters, we can write
the state of the entire system just before the detectors as

|ψ0(1)〉 = √
η

(
λ+(−)|10〉R0R1 + λ−(+)|01〉R0R1

)
(66)

× |0000〉I ′S ′D′
0D

′
1
+ |0〉R0 |0〉R1 |φloss〉I ′S ′D′

0D
′
1
, (67)

where S, I , D′
0, and D′

1 denote the leakage modes and
|φloss〉I ′S ′D′

0D
′
1

denotes an (un-normalized) state of those modes
whose squared norm is (1 − η) and is an eigenstate of the total
photon number in the leakage modes with eigenvalue 1. This
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second term corresponds to the case when none of the detectors
click, i.e., an erasure occurs. The probability of erasure Pε is
then independent of m and equals

Pε = 1 − η. (68)

On the other hand, when one of the detectors does click
(which happens with probability η), the error probability of
the ensuing decision is exactly the same as before, that given
by (38). Note the erasure probability is independent of NS and
the error probability conditioned on no erasure is independent
of η. This latter probability is identical to the error probability
obtainable from the optimum state of Corollary 1. In particular,
if NS = 1/2, there is no error whenever there is no erasure.

V. CONCLUDING REMARKS

In this paper, we have set up an M-ary phase discrimination
problem that naturally models phase-based communication,
phase sensing, and quantum reading of a phase-based digital
memory. Allowing for a general entanglement-assisted prob-
ing strategy, we have characterized the equivalence classes
of probe states with the same performance. We have found
the exact form of the optimizing probe state as a function
of the energy NS and characterized the probes that allow
zero-error discrimination. From a theoretical point of view,
we have thus completely solved a constrained bosonic channel
discrimination problem, a class of problems for which exact
solutions are rare [14]. We have studied the error performance
of some standard states in quantum optics. For the M = 2 case
important to reading a memory, we have shown that the optimal

performance can be readily obtained with current technology
conditioned on no erasure due to system losses.

From a more practical point of view, the analysis here is
limited by not having included the effect of system losses in
general. We note that including loss in our problem model
brings it into the general lossy image sensing framework
considered in Ref. [30], so that the result of that paper on the
form of the optimal probe can be used as a starting point for
analysis. Nevertheless, the work of this paper remains essential
to the subsequent analysis of the lossy system performance.

Another serious practical problem is that of synthesizing
the optimal probe states in either the lossy or lossless cases as
well as realizing the optimal POVMs on them. It may be hoped
that the flexibility in state preparation afforded by Theorem 1
can partially alleviate these problems, though it remains to be
seen if optimal or near-optimal performance can be achieved
in practice for some instances of the problems considered here.
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and M. Dušek, Phys. Rev. A 85, 012308 (2012).

[18] V. P. Belavkin, Stochastics 1, 315 (1975).

022306-11

http://dx.doi.org/10.1038/nphys1958
http://dx.doi.org/10.1038/nphys1958
http://dx.doi.org/10.1103/PhysRevA.83.061802
http://dx.doi.org/10.1103/PhysRevA.83.061802
http://dx.doi.org/10.1103/PhysRevA.83.063836
http://dx.doi.org/10.1103/PhysRevA.83.063836
http://dx.doi.org/10.1103/PhysRevLett.107.083601
http://dx.doi.org/10.1103/PhysRevLett.107.083601
http://dx.doi.org/10.1103/PhysRevLett.107.113603
http://dx.doi.org/10.1103/PhysRevLett.107.113603
http://dx.doi.org/10.1103/PhysRevLett.104.103602
http://dx.doi.org/10.1103/PhysRevLett.104.103602
http://arXiv.org/abs/arXiv:1105.6310
http://dx.doi.org/10.1038/nphoton.2010.268
http://dx.doi.org/10.1103/PhysRevLett.108.260405
http://dx.doi.org/10.1103/PhysRevA.85.041802
http://dx.doi.org/10.1103/PhysRevLett.108.230401
http://dx.doi.org/10.1103/PhysRevLett.108.230401
http://dx.doi.org/10.1103/PhysRevLett.108.210404
http://dx.doi.org/10.1103/PhysRevLett.108.210404
http://dx.doi.org/10.1088/1367-2630/14/3/033040
http://dx.doi.org/10.1088/1367-2630/14/3/033040
http://arXiv.org/abs/arXiv:1204.3761
http://arXiv.org/abs/arXiv:1205.2405
http://dx.doi.org/10.1109/JLT.2004.840357
http://dx.doi.org/10.1109/JLT.2004.840357
http://dx.doi.org/10.1088/0954-8998/3/3/002
http://dx.doi.org/10.1088/0031-8949/1993/T48/016
http://dx.doi.org/10.1109/26.752130
http://dx.doi.org/10.1109/26.752130
http://dx.doi.org/10.1103/PhysRevA.84.062324
http://dx.doi.org/10.1103/PhysRevA.84.062324
http://dx.doi.org/10.1103/PhysRevLett.106.090504
http://dx.doi.org/10.1103/PhysRevA.84.032312
http://arXiv.org/abs/arXiv:1108.4163
http://dx.doi.org/10.1088/1367-2630/13/11/113012
http://dx.doi.org/10.1103/RevModPhys.84.621
http://dx.doi.org/10.1103/RevModPhys.84.621
http://dx.doi.org/10.1103/PhysRevA.84.012310
http://dx.doi.org/10.1103/PhysRevA.84.012310
http://dx.doi.org/10.1103/PhysRevA.85.012308
http://dx.doi.org/10.1080/17442507508833114


NAIR, YEN, GUHA, SHAPIRO, AND PIRANDOLA PHYSICAL REVIEW A 86, 022306 (2012)

[19] C. W. Helstrom, Quantum Detection and Estimation Theory
(Academic, New York, 1976).

[20] M. Ban, K. Kurokawa, R. Momose, and O. Hirota, Int. J. Theor.
Phys. 36, 1269 (1997).

[21] A. S. Holevo, Probl. Inf. Transm. (Engl. Transl.) 15, 247 (1979).
[22] E. Hausladen and W. K. Wootters, J. Mod. Opt. 41, 2385

(1994).
[23] E. Hausladen, R. Jozsa, B. Schumacher, M. Westmoreland, and

W. K. Wootters, Phys. Rev. A 54, 1869 (1996).
[24] A symmetric state set is called a homogeneous state set in [18].
[25] V. Giovannetti, S. Lloyd, and L. Maccone, Nat. Photonics 5, 222

(2011).
[26] A. W. Harrow, A. Hassidim, D. W. Leung, and J. Watrous, Phys.

Rev. A 81, 032339 (2010).
[27] For the present problem of discriminating equiprobable symmet-

ric phase shifts, this may be seen from formulas (27) and (28)
for the error probability. For an arbitrary pure-state ensemble
with arbitrary prior probabilities, an argument was sketched in
Ref. [15] of [30].

[28] G. M. D’Ariano, P. Lo Presti, and M. G. A. Paris, Phys. Rev.
Lett. 87, 270404 (2001).

[29] A. Acı́n, Phys. Rev. Lett. 87, 177901 (2001).
[30] R. Nair and B. J. Yen, Phys. Rev. Lett. 107, 193602 (2011).
[31] B. C. Sanders, Phys. Rev. A 45, 6811 (1992); S. J. van Enk and

O. Hirota, ibid. 64, 022313 (2001).
[32] Thus, interestingly, the signal energy of |ψ〉ECS is discontinuous

in |α| at |α| = 0.
[33] While formula (27) was applied in Ref. [7] to a case where the

output states {|ψm〉} are linearly independent, it can be verified
that it is valid in general.

[34] S. Boyd and L. Vandenberghe, Convex Optimization (Cambridge
University Press, Cambridge, 2004).

[35] D. T. Pegg and S. M. Barnett, Europhys. Lett. 6, 483 (1988);
Phys. Rev. A 39, 1665 (1989).

[36] This is a “perfect-measurement” lower bound argument such as
that used in composite hypothesis testing [47].

[37] The geometric mean
√

x1x2 is concave on R+ × R+ [34].
[38] C. C. Gerry and P. L. Knight, Introductory Quantum Optics

(Cambridge University Press, Cambridge, 2005).
[39] J. H. Shapiro, IEEE J. Sel. Top. Quantum Electron. 15, 1547

(2009).
[40] H. P. Yuen, Phys. Rev. A 13, 2226 (1976).
[41] G. S. Agarwal, Phys. Rev. Lett. 57, 827 (1986); J. Opt. Soc. Am.

5, 1940 (1988).
[42] D. T. Pegg, S. M. Phillips, and S. M. Barnett, Phys. Rev. Lett.
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