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Abstract: The most well-known mechanism for fermions to acquire a mass is the Nambu–Goldstone–
Anderson–Higgs mechanism, i.e., after a spontaneous symmetry breaking, a bosonic field that couples
to the fermion mass term condenses, which grants a mass gap for the fermionic excitation. In the last
few years, it was gradually understood that there is a new mechanism of mass generation for fermions
without involving any symmetry breaking within an anomaly-free symmetry group, also applicable
to chiral fermions with anomaly-free chiral symmetries. This new mechanism is generally referred
to as the symmetric mass generation (SMG). It is realized that the SMG has deep connections with
interacting topological insulator/superconductors, symmetry-protected topological states, perturba-
tive local and non-perturbative global anomaly cancellations, and deconfined quantum criticality.
It has strong implications for the lattice regularization of chiral gauge theories. This article defines
the SMG, summarizes the current numerical results, introduces an unifying theoretical framework
(including the parton-Higgs and the s-confinement mechanisms, as well as the symmetry-extension
construction), and presents an overview of various features and applications of SMG.

Keywords: symmetric mass generation

1. Introduction

Global symmetry is a central concept in quantum field theories (QFTs). One of the
most immediate implications of symmetry is that it restricts the terms that can appear
in a field theory action in the path integral formulation, as the partition function Z must
remain invariant under the symmetry transformation—the partition function invariance,
however, can be up to an invertible complex phase factor Z → eiαZ known as a quantum
anomaly [1,2]. The quantum anomaly associated with the global symmetry is also known
as the ’t Hooft anomaly [3], which has profound consequences. The invertible phase eiα

that detects the anomaly also specifies a cobordism class of the partition function of one-
higher-dimensional invertible topological quantum field theory (invertible TQFT) [4] via
the anomaly inflow [5,6].

The anomaly provides a concise and powerful organization principle to classify quan-
tum field theories, and to dictate the influence of the ultraviolet (UV) kinematics on the
infrared (IR) dynamics of a field theory because the anomaly does not change under sym-
metric deformations of the theory, including the renormalization group (RG) flow. The
preservation of the anomaly index from UV to IR is known as anomaly matching. If a
quantum field theory with a global symmetry G has a non-vanishing ’t Hooft anomaly in
G, its IR dynamics cannot be trivially gapped while preserving G. As a consequence, either
the symmetry G is spontaneously broken in IR [7–11], or the anomaly must be matched
by anomalous gapless quantum criticality (e.g., the IR limit of the system corresponds to
massless free theories or interacting conformal field theories [CFT]) or gapped topological
order (e.g., the IR limit of the system is described by a topological quantum field theory
[TQFT]) [12–25].
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Many examples of anomalies involve massless fermions, such as the chiral fermion
Adler–Bell–Jackiw anomaly [26,27]. The anomaly causes an obstruction to open a gap in the
fermion spectrum (i.e., an obstruction to make the fermion correlation length finite) without
breaking the symmetry. The symmetry-breaking mechanism to generate a mass gap is
known as the Nambu–Goldstone–Anderson–Higgs mechanism [28–34]. Here, Nambu–
Goldstone refers to the spontaneous symmetry breaking, while Anderson–Higgs refers
to giving a mass by the elementary or composite boson condensation. However, there
are instances where the anomaly vanishes for a collection of massless fermions, yet the
symmetry is still restrictive enough to forbid any fermion bilinear mass term. In this case, al-
though there is no obstruction toward gapping the fermions symmetrically, the mechanism
to achieve the symmetric gapped state must go beyond the free-fermion (perturbatively free
or weak-coupling) approach, which potentially leads to a non-perturbative strong-coupling
approach in order to generate a finite excitation gap in the fermion many-body spectrum
by non-trivial interaction effects. The “strong coupling” here refers to the coupling in the
continuum field theory being non-perturbative, or the interaction energy being of the same
order as the kinetic energy on the lattice scale (which may also be called the intermediate-
strength interaction on a lattice) [35]. This phenomenon of gapping out massless fermions
by interactions in an anomaly-free system without breaking the anomaly-free symmetry is
now called symmetric mass generation (SMG) [36,37].

The idea of gapping out massless fermions by interaction dates back to Eichten and
Preskill [38] in an attempt to regularize chiral fermions on the lattice. The understanding
of SMG has significantly deepened over the past few years, following the development in
condensed matter theory regarding symmetry-protected topological (SPT) states [39–43].
SPT states are short-range-entangled quantum many-body states, respecting certain global
symmetry G. The bulk of a SPT state is featureless (i.e., gapped, symmetric and non-
degenerated). A non-trivial SPT state is most explicitly characterized by its non-trivial
boundary features, which are endowed by the non-vanishing ’t Hooft anomaly of G (or
mixed G symmetry gauge-gravity anomaly in broader cases) in the boundary effective
theory of the SPT state. The one-to-one correspondence between the bulk of a SPT state
and its boundary anomaly [44–50] provides the basis to classify distinct SPT states by their
distinct boundary anomalies.

The connection between the SPT state and anomaly relates SMG to another topic: the
interaction-reduced classification of fermionic SPT states. Fermionic SPT states [4,51–66] are
SPT states of fermionic systems with (at least) fermion parity symmetryZF

2 (or more generally,
invertible topological phases of fermions [4,63]). In the free-fermion limit [67–71], non-trivial
fermionic SPT states are characterized by the symmetry-protected gapless fermion boundary
modes if the symmetry forbids any fermion bilinear mass on the boundary. However,
the free-fermion analysis does not rule out the possibility of gapping out the boundary
fermions by interaction though the SMG mechanism. Such a situation can indeed happen
when the boundary fermions are actually anomaly free, such that the bulk state should be
classified as a trivial gapped state under symmetric interactions, even though it looks like
a non-trivial SPT state in the non-interacting limit. This leads to the interaction-reduced
classification of fermionic SPT states in the bulk, which is closely related to the SMG for
gapless fermions on the boundary.

The first example of interaction-reduced classification was provided by Fidkowski
and Kitaev [72,73] in (1 + 1)D fermion systems, where an explicit interaction was proposed
to drive the SMG among fermion zero modes on the (0 + 1)D boundary. This motivated a
sequence of works generalizing the discussion to (2 + 1)D [74–77], (3 + 1)D [15–17,78–80],
and higher dimensions [81–83]. Studies along this direction reveal families of interactions
that could potentially drive the SMG in different dimensions, paving ways for numerical
verifications in concrete lattice models. It is also realized that the interaction must be
carefully designed to drive the SMG: some symmetric interactions are helpful toward this
goal, while other symmetric interactions are not [35].
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Currently the most known examples of interaction-reduced classifications all corre-
spond to cancellations of non-perturbative global anomalies. However, there are also cases
of SMG that involve cancellations of perturbative local anomalies. Important examples of
such are the chiral fermions [84–87] in even dimensional spacetime. Regularizing chiral
fermions on a lattice is a long-standing problem in the lattice gauge theory. The Nielsen–
Ninomiya no-go theorem [88–90] states that it is not possible to gap the fermion doubler in
a non-interacting local lattice model without breaking the chiral symmetry. One possibility
to circumvent the no-go theorem is to consider the interaction effects [38], which introduces
fermion interaction to gap out the fermion doubler (the mirror fermion) in local lattice
fermion models, leaving the normal fermion (the light fermion) untouched. However,
the early attempts [87,91–100] were not successful, either because certain anomalies were
not carefully canceled or because the appropriate gapping interaction was not found. With a
deeper understanding of the SMG mechanism, the problem was revisited by Wen [101] for
Spin(10) chiral fermions in (3 + 1)D. The idea was further developed by subsequent works
in the same dimension [102–106] as well as in lower-dimensional analogs [35,107–109]. More
recent numerical works have successfully shown that the SMG indeed provides a feasible
solution to regularize chiral fermions [110–113].

The article is organized as follows. We will start by introducing some selective repre-
sentative models of SMG (one in each spacetime dimension, in (0+ 1)D, (1+ 1)D, (2+ 1)D
and (3+ 1)D respectively) in Section 2. We conclude with Section 2.5 by providing a general
definition of SMG in all dimensions. We then review the numerical efforts in Section 3,
which is mainly focused on two tasks: (i) to establish the existence of SMG phases in
Section 3.1 and (ii) to investigate the nature of SMG transitions in Section 3.2. Based on
these backgrounds, we then summarize the recent theoretical progress in Section 4, which
aims to (i) understand the SMG phase by the fluctuating bilinear mass picture in Section 4.1
and (ii) describe the SMG transition by fermion fractionalization field theory in Section 4.2.
In particular, we unify two currently existing SMG mechanisms (namely the parton-Higgs
mechanism and the s-confinement mechanism) under the same theoretical framework
of fermion fractionalization. We also make a connection to the further understanding of
SMG based on the symmetry extension construction [24,25] in Section 4.4. In Section 5, we
discuss other aspects of SMG, including Green’s function zeros in Section 5.1, the connec-
tion to deconfined quantum criticality in Section 5.2 and the deformation class of QFTs in
Section 5.4, and its application to the standard model regularization in Section 5.3. Finally,
we summarize the review in Section 6.

2. Example Models
2.1. (0 + 1)D SMG: Fidkowski-Kitaev Majorana Fermion Model

The simplest example of SMG happens in (0 + 1)D spacetime among a collection of
Majorana fermion zero modes, as first shown by Fidkowski and Kitaev [72,73]. The model
concerns a system of eight Majorana fermion modes, described by the Majorana fermion
operators χa (a = 1, 2, · · · , 8) satisfying {χa, χb} = 2δab. Consider an anti-unitary (time-
reversal) symmetry ZT

2 : χa → χa, i → −i and the fermion parity symmetry ZF
2 : χa →

−χa. Without involving interactions, the Hamiltonian must take a fermion bilinear form
to preserve the fermion parity symmetry ZF

2 . But any Majorana fermion bilinear term
iχaχb (one needs i to keep the operator Hermitian) will break the time-reversal symmetry
ZT

2 , so the free-fermion Hamiltonian has to vanish, e.g., H = 0, under both symmetry
requirements, and these Majorana modes cannot be gapped on the free-fermion level.
Eight Majorana fermion modes form four qubits, and hence the system has a 24 = 16 fold
degeneracy, and this degeneracy is protected by the ZT

2 ×ZF
2 symmetry.

However, it is possible to create a many-body excitation gap by fermion interaction,
leaving a unique ground state of this (0 + 1)D system. As introduced by Fidkowski and
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Kitaev [72], the following four-fermion interaction suffices to gap out all eight Majorana
fermion modes without breaking the time-reversal symmetry ZT

2

HFK = − ∑
a<b<c<d

Vabcdχaχbχcχd. (1)

The coefficient is specified by Vabcd = 〈4e|χaχbχcχd|4e〉, where |4e〉 = (|0000〉 +
|1111〉)/

√
2 is a many-body reference state written in the Fock state basis |n1n2n3n4〉,

labeled by the fermion occupation numbers ni = (1 + iχ2i−1χ2i)/2 (for i = 1, 2, 3, 4). Here
the fermion number operator ni = c†

i ci can also be expressed in terms of the complex
fermion annihilation operator ci = (χ2i−1 + iχ2i)/2, which are constructed by pairing up
the Majorana operators. The reference state |4e〉 describes the quartet condensation of
the complex fermions ci (where four fermions are created or annihilated together in
the quantum superposition), which is also known as the charge-4e superconducting
state [114–120] in condensed matter physics. It turns out that the state |4e〉 respects
the ZT

2 symmetry, and is the unique ground state of HFK with a finite excitation gap of
14 (energy units).

The fact that the system has eight Majorana zero modes is crucial for the SMG to occur.
In contrast, if there are only four Majorana zero modes, the only Hamiltonian allowed by
symmetry is

H = −gχ1χ2χ3χ4 = −gPF
1 PF

2 , (2)

where each pair of Majorana fermion operators defines a fermion parity operator PF
i =

iχ2i−1χ2i = 2ni − 1 (associated with the ith complex fermion mode). This Hamiltonian
always has a two-fold ground state degeneracy, regardless of the sign of g. When g < 0,
the ground states |PF

1 = PF
2 = ±1〉 are bosonic (as the total fermion parity PF

1 PF
2 = +1 is

even). When g > 0, the ground states |PF
1 = −PF

2 = ±1〉 are fermionic (as PF
1 PF

2 = −1).
In either cases, the two-fold degenerated ground states transform into each other under
ZT

2 , and form a Kramers doublet [121]. The ground state degeneracy implies that the ZT
2

symmetry is spontaneously broken. Hence, even with interactions, four Majorana zero
modes still cannot be symmetrically gapped. However, by doubling to eight Majorana
fermions, it is then possible to couple the two Kramers doublets (originated from the first-
and the last-four Majorana fermions under interaction) together via a Heisenberg-type
spin–spin interaction as [81,122]

H = −PF
1 PF

2 − PF
3 PF

4 + SI · SII, (3)

where the first two terms stabilize two Kramers doublets, and SI/II stands for the effective
spin-operator for each Kramers doublet. This will end up with a unique spin-singlet bosonic
ground state with a finite gap to all excitations, which successfully gaps out all fermions
without breaking the symmetry. Equation (3) can be rewritten as HFK in Equation (1) under
some appropriate basis choice.

From the perspective of quantum anomaly, the (0 + 1)D Majorana fermions with a
ZT

2 × ZF
2 . internal symmetry (or the Pin− spacetime-internal symmetry [54,122], or the

BDI symmetry class [123,124]) has a Z8 class of non-perturbative global anomaly, whose
anomaly index corresponds to the number of Majorana modes. With eight Majorana modes,
the anomaly vanishes, meaning that the system can be trivially gapped without breaking
symmetry. However, the ZT

2 symmetry is restrictive enough to rule out any fermion bilinear
mass, making interaction a necessary ingredient in the fermion mass generation, which
corresponds to the SMG mechanism.

The Fidkowski–Kitaev (FK) interaction HFK in Equation (1) has a (unnecessarily high)
flavor symmetry of Spin(7), which rotates seven fermion bilinear operators Φα := χaΓα

abχb
(for α = 1, · · · , 7) as a vector representation of SO(7), with Γα = (σ123, σ203, σ323, σ211, σ021,
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σ231, σ002), where σµν··· = σµ ⊗ σν ⊗ · · · denotes the direct product of Pauli matrices. It can
be shown that Equation (1) can be equivalently written as

HFK = − 1
4!

7

∑
α=1

(ΦαΦα − 16), (4)

which exhibits the Spin(7) symmetry explicitly. However, it is possible to lower the
symmetry to Spin(6) ∼= SU(4) for example, without affecting the SMG physics [103],

HSU(4) = −
1

192

6

∑
α=1

ΦαΦα

= −(c1c2c3c4 + h.c.)− 1
3 ∑

i<j
(ni − 1

2 )(nj − 1
2 ),

(5)

where ci (for i = 1, 2, 3, 4) are complex fermions in SU(4) fundamental representation
and ni = c†

i ci are their number operators. HSU(4) stabilizes the samesymmetric and non-
degenerated ground state |4e〉 as HFK with a finite gap to all excitations. This example
illustrates that the interaction that drives SMG is not unique since the SMG is a generic
phenomenon in anomaly-free fermion systems.

The decomposition of the four-fermion interaction as a product of two fermion-bilinear
operators ΦαΦα in both Equations (4) and (5) suggests a common physical picture to
understand the SMG as fluctuating bilinear masses. Under the Hubbard–Stratonovich
transformation, the SMG interactions in the above examples take the general form of
Yukawa–Higgs interaction

HYH = −φαχaΓα
abχb +

1
2g

φαφα, (6)

where φα is a bosonic Yukawa field that couples to the fermion bilinear mass, and by
integrating out φα, the desired four fermion interaction is generated. If the Yukawa field
condenses, i.e., 〈φα〉 6= 0, the fermions will be gapped (with a gap size proportional to the
amplitude of 〈φα〉) and the symmetry is also broken spontaneously. However, if it is possible
to fluctuate the orientation of the Yukawa field smoothly in the spacetime (which is only the
time here for the (0 + 1)Dsystem) without bringing its local amplitude to zero, the fermion
could potentially retain the excitation gap while restoring the required symmetry. This
intuitive picture leads to fruitful understandings of SMG in higher dimensions [16,108,125],
which will be further discussed in Section 4.1.

The SMG in (0 + 1)D is intimately related to the interaction-reduced classification
of fermionic SPT states in (1 + 1)D. In the non-interacting limit, the (0 + 1)D Majorana
zero modes can be viewed as the topological edge modes of a (1 + 1)D fermionic SPT state
protected by the same ZT

2 × ZF
2 internal symmetry. A specific lattice model for such SPT

root state is Kitaev’s Majorana fermionic chain [126], which supports a dangling Majorana
zero mode on each open end. So eight Majorana zero modes can be viewed as the boundary
state of eight copies of Majorana chains. Without interaction, the ZT

2 ×ZF
2 symmetric free

fermionic SPT states are Z classified [67–69], where the index corresponds to the number
of Majorana edge modes [127]. The fact that eight Majorana zero modes can be trivially
gapped out by interaction without breaking the symmetry implies that eight copies of
the Majorana chain actually belong to the trivial SPT phase, as their interface with the
vacuum state can be made featureless (i.e., gapped and non-degenerated) by the SMG.
This indicates that the ZT

2 × ZF
2 (or Pin−) symmetric interacting fermionic SPT states are

Z8 classified [51,72,73], which is consistent with the formal result ΩPin−
2 (pt) = Z8 by the

cobordism classification [54,128]. The phenomenon that the fermion SPT classification is
reduced from Z in the non-interacting limit to Z8 under interaction is called the interaction-
reduced classification.
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The Z→ Z8 interaction-reduced classification implies that eight copies of the Majorana
chain can be smoothly tuned (without closing the bulk gap) to the trivial phase under
interaction. The bulk model is defined on a one-dimensional lattice

H = H0 + Hint,

H0 =
i
2 ∑

i

8

∑
a=1

(u χ2i−1,aχ2i,a + v χ2i,aχ2i−1,a),

Hint = −g ∑
i

∑
a<b<c<d

Vabcdχi,aχi,bχi,cχi,d,

(7)

where each site i hosts eight Majorana modes χi,a (a = 1, · · · , 8). In the free-fermion limit
(g = 0), the u < v and u > v phases are separated by a quantum phase transition at
which the single-particle band gap closes in the bulk. Ref. [72] shows that the quantum
critical point can be circumvented by applying the FK interaction on every site with
strength g (where Vabcd in Hint follows the same definition as that in Equation (1)). This
can be argued by inspecting the limiting cases (u = 0, v = 1) or (u = 1, v = 0), where
Majorana fermions are fully dimerized along the lattice over even or odd bonds; see Figure 1.
The two dimerized states can both be smoothly tuned to the same strong coupling state⊗

i |4e〉i as g→ ∞ without closing the many-body gap, which can be explicitly verified by
diagonalizing the local Hamiltonian across a bond. This establishes a smooth deformation
path between the u < v and u > v phases by going through the strong coupling regime as
shown in Figure 1, demonstrating that eight copies of the Majorana chain are indeed in the
trivial phase.

4 e〉

u < v u > vu = v

g

SMGSMGSMGSMGSMGSMGSMGSMGSMGSMGSMGSMGSMGSMGSMGSMGSMGSMGSMGSMGSMGSMGSMGSMGSMGSMGSMGSMGSMGSMGSMGSMGSMGSMGSMGSMGSMGSMGSMGSMGSMGSMGSMGSMGSMGSMGSMGSMGSMG

Figure 1. Phase diagram of the interacting Majorana chain model described by Equation (7). Every dot
represents a site (not a Majorana mode) on the one-dimensional lattice, which hosts eight Majorana
modes (per site) internally. Thick bonds represent inter-site dimerizations of Majorana fermions.
Black dots represent on-site charge-4e condensations.

Moreover, the argument also implies that the gapless Majorana fermions (in the
(1 + 1)D bulk) at the free-fermion critical point (u = v) can be gapped out by turning on
the interaction g (see Figure 1), leading to another example of SMG. As a side note, to pin
the bulk at the u = v critical point, an emergent chiral Z2 symmetry should be imposed,
which leads to a different total symmetry group. This bulk SMG is first analyzed in Ref. [72]
using bosonization and SO(8) triality. Refs. [36,129] provide further understandings from
the fermion fractionalization perspective. The bulk SMG of the (1 + 1)D Majorana chain
(at the critical point) is dynamically equivalent to the SMG for the boundary mode of a
(2 + 1)D fermionic topological superconductor (TSC) made of eight copies of the px ± ipy
superconductor [130–132]. In general, each interaction-reduced classification of the fermion
SPT state implies the existence of SMG mechanisms for the gapless fermions both on the
boundary and at the bulk critical point between the SPT and the trivial state, where the same
local interaction that gaps out the boundary mode can be used to gap out the bulk critical
point as well. Using the connection of SMG phenomena between the boundary and the
bulk, Ref. [81] obtains a series of interaction-reduced classification of fermionic SPT states
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in all spacetime dimensions systematically, thus extending the phenomenon of SMG to
higher dimensions.

2.2. (1 + 1)D SMG: U(1) Symmetric Chiral Fermion Model
2.2.1. 3-4-5-0 Chiral Fermion Model

The 3-4-5-0 U(1) chiral fermion model by Wang-Wen [35,109] provides an instructive
example of SMG in (1 + 1)D, which involves the cancellation of a perturbative anomaly
and is not related to interaction-reduced fermionic SPT classifications. The (1 + 1)D chiral
fermion theory is described by the Lagrangian

L =
4

∑
a=1

ψ†
a i(∂t − va∂x)ψa, (8)

where ψa are complex fermion fields (for a = 1, 2, 3, 4) with different velocities v = (1, 1,
−1,−1). The model can be assigned a U(1) symmetry, under which the fermions transform
as U(1) : ψa → eiθqa ψa with q = (3, 4, 5, 0). The two left-moving Weyl fermions ψ1 and ψ2
are assigned with charges 3 and 4, and the two right-moving Weyl fermions ψ3 and ψ4 are
assigned with charges 5 and 0, hence the name of the 3-4-5-0 model.

The seemingly peculiar charge assignment of the chiral fermions is designed to
cancel the U(1) ’t Hooft anomaly. The (1 + 1)D fermion with U(1) internal symmetry
(or Spinc ≡ (Spin×U(1))/ZF

2 spacetime-internal symmetry [54,122], or the A symmetry
class [123,124]) has a Z perturbative anomaly, whose anomaly index is given by ∑a vaq2

a,
which vanishes for the charge assignment of the 3-4-5-0 model. The (1+ 1)D chiral fermions
can be also viewed as the chiral edge modes of a (2 + 1)D integer quantum Hall state,
also known as the fermionic SPT state in symmetry class A. The integer quantum Hall
states are Z classified by the quantized Hall conductance, and the classification does not
further reduce under interaction. The bulk Hall conductance (in unit of e2/h) matches the
boundary anomaly index.

The fact that the U(1) ’t Hooft anomaly vanishes for the 3-4-5-0 model indicates that it
should be possible to trivially gap out all fermions without breaking the U(1) symmetry.
However, the U(1) symmetry is restrictive enough to prevent the gapping to happen on
the free-fermion level, because any fermion bilinear term that produces a gap must take the
form of ψ†

a ψb or ψaψb (with a ∈ {1, 2} and b ∈ {3, 4}) that mixes the left- and right-moving
fermions. Since the four flavors of fermions all carry distinct U(1) charges that do not add
or subtract to zero, any flavor-mixing fermion bilinear term will necessarily break the U(1)
symmetry, which makes it impossible to symmetrically gap out these chiral fermions on
the free-fermion level.

Nevertheless, the gapping can be achieved with fermion interaction, hence an example
of SMG. The interaction to achieve the SMG would involve at least six-fermion terms,
which can be derived using the null-vector condition [133–139] for quantum Hall edge
states. By bosonization ψa ∼ eiϕa , the (1 + 1)D chiral fermion system can be effectively
described by a Luttinger liquid theory

L =
1

4π
(Kab∂t ϕa∂x ϕb −Vab∂x ϕa∂x ϕb), (9)

where K = diag(1, 1,−1,−1) and V = diag(1, 1, 1, 1) are diagonal matrices. In the bosoniza-
tion language, backscattering fermion interactions can be introduced as

Lint = ∑
α

gα cos(lα,a ϕa), (10)

each interaction labeled by a charge vector lα. It is possible to find two charge vectors
l1 = (1,−2, 1, 2) and l2 = (2, 1,−2, 1) that satisfy the null-vector condition lᵀα K−1lβ = 0
(for α, β = 1, 2). The null-vector condition ensures that the vertex operators Oα = eiłᵀα ϕ
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are both self-boson and mutual-boson, which can be simultaneously condensed at large
coupling gα. Once these vertex operators condense 〈Oα〉 6= 0, all fermion excitations will be
gapped, since none of the fermion operator braid trivially with any of the vertex operator
(as seen from lᵀα K−1 6= 0). Furthermore, the interaction term Lint, as well as the condensate
〈Oα〉, preserves the U(1) symmetry since lᵀα q = 0 for α = 1, 2. Therefore, Lint provides
a symmetric way to gap out all chiral fermions in the 3-4-5-0 model, realizing the SMG.
In terms of the fermion field, the interaction can be translated from Equation (10) to

Lint = g1(ψ1ψ†
2∂xψ†

2ψ3ψ4∂xψ4 + h.c.)

+ g2(ψ1∂xψ1ψ2ψ†
3∂xψ†

3ψ3ψ4 + h.c.),
(11)

where the ∂x operator (that generates infinitesimal translation) is inserted as a point-splitting
regularization to avoid identical fermion operators appearing at the same spatial position.
In fact, the two g1 and g2 interaction terms with l1 = (1,−2, 1, 2) and l2 = (2, 1,−2, 1) leave
two U(1) internal symmetries unbroken for the four Weyl fermions: one is their charge
assignment q = (3, 4, 5, 0), and the other is q = (0, 5, 4, 3) [35,109] .

The multi-fermion interaction in Equation (11) can be mediated by two independent
Yukawa fields φ1, φ2 via

LYH = −(φ2
1ψ1ψ3 + φ†

1ψ†
2ψ4 + h.c.) +

1
g̃1

φ†
1φ1

−(φ2
2ψ2ψ4 + φ†

2ψ1ψ†
3 + h.c.) +

1
g̃2

φ†
2φ2.

(12)

Integrating out the Yukawa fields will generate the interaction in Equation (11) to the
leading order of gα ∼ g̃2

α (plus additional density–density interactions, such as ψ†
1ψ1ψ†

3ψ3
or ψ†

2ψ2ψ†
4ψ4, whose effect is only to renormalize the V matrix in the Luttinger liquid

theory). The Yukawa fields φ1 and φ2 carry the U(1) charges −4 and −2, respectively.
Directly condensing the Yukawa fields would provide Dirac/Majorana masses to all chiral
fermions ψa at the price of breaking the U(1) symmetry. Nevertheless, the SMG mechanism
suggests an alternative scenario that these Yukawa fields are fluctuating in the disordered
(i.e., strong-coupling symmetric) phase, such that the U(1) symmetry remains unbroken
but the chiral fermions could still acquire a spectral gap via the Yukawa interaction in
suitable parameter regimes. A similar idea was numerically explored in Ref. [100] without
success, due to the incorrect design of the fermion interaction (which does not satisfy
the null-vector condition). The correct design of fermion interaction in Equation (11) or
Equation (12) includes only a restricted subset of symmetry-allowed interactions [35], which
are helpful for the SMG. A more recent numerical study in Ref. [113] confirmed that the
correct interaction indeed leads to the SMG phase.

The SMG transition happens when the interaction is beyond a finite critical strength,
because the interaction is perturbatively irrelevant at the free-fermion fixed point, due to
its high-order nature. However, a strong enough interaction could lead to non-perturbative
effects. Increasing the interaction strength generally tunes the Luttinger parameter (by
renormalizing the V matrix) and alters operator scaling dimensions in the Luttinger liquid
theory [113]. When the scaling dimension of the interaction term itself is tuned to be
marginal, the SMG transition is triggered, which drives the system from the gapless phase
to the featureless gapped phase [37,113]. In this case, the SMG transition belongs to the
Berezinskii–Kosterlitz–Thouless (BKT) universality class.

2.2.2. Proof on the Equivalence between the Anomaly-Free and SMG Gapping Conditions

Although the earlier discussions focus on the SMG of the (1 + 1)D 3-4-5-0 U(1) chiral
fermion model, there is no obstacle to generalize to show that any (1 + 1)D anomaly-
free chiral fermion model with multiple U(1) symmetries can allow SMG, following [35].
Ref. [35] proves that the anomaly-free condition of the (1 + 1)D multiple U(1) chiral fermion
theory is equivalent to the SMG gapping condition of the same theory. The proof can be
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achieved due to the exact bosonization–fermionization techniques in (1 + 1)D. Here, we
recall the proof to complete the discussion of (1 + 1)D SMG.

A generic (1 + 1)D anomaly-free multiple-U(1) chiral fermion theory has equal num-
bers of left and right moving Weyl fermions, NL = NR = N ∈ Z+, such that the total Weyl
fermion number is 2N = NL + NR ∈ 2Z+, an even positive integer.

1. The SMG gapping condition requires to add N independent compatible gapping
terms [133–136] to preserve internal chiral U(1) symmetries. To prove the SMG
gapping holds, we bosonize the fermionic theory

L =
NL

∑
a=1

ψ†
a i(∂t − ∂x)ψa +

NR

∑
a=1

ψ†
a i(∂t + ∂x)ψa (13)

to a multiplet chiral boson theory

L =
1

4π
(Kab∂t ϕa∂x ϕb −Vab∂x ϕa∂x ϕb), (14)

where K = K f ≡
( 1 0

0 −1
)
⊕
( 1 0

0 −1
)
⊕ . . . and the appropriate rescaled V = I2N×2N are

diagonal rank-2N matrices. The K f is the unimodular symmetric bilinear canonical
form for the fermionic system (with |det(K)| = 1). The advantage of Equation (14) is
that choosing K = Kb ≡

(
0 1
1 0

)
⊕
(

0 1
1 0

)
⊕ . . . works also for the unimodular symmetric

bilinear canonical form for the bosonic system (with |det(K)| = 1). The SMG gapping
condition requires the following:

• To find a set of N linear-independent of integer-valued 2N-component l vectors
such that

lᵀα K−1lβ = ∑
a,b

lα,a(K−1)ablβ,b = 0, (15)

for α, β ∈ {1, 2, . . . , N} and each lα vector contains 2N components (lα,a with
a = 1, . . . , 2N). Gapping Equation (14) requires to add the sine-Gordon de-
formation Lint = ∑N

α=1 gα cos(lα,a ϕa), which can be fermionized to multi-
fermion interactions.

• The massless Weyl fermion theory has, at most, an internal U(N f ) × U(NR)

symmetry, which contains at most a chiral U(1)2N symmetry. However, for
SMG, one can preserve, at most, N-linear independent chiral U(1)N symmetries,
labeled by a set of charge vectors, qα with α ∈ {1, 2, . . . , N}, such that the
fermions transform as ψa → ψaeiqα,aθ , and bosonized fields ϕa → ϕa + qα,aθ
with a = 1, . . . , 2N and θ ∈ [0, 2π). The symmetric sine-Gordon interactions
demand

lᵀα qβ = ∑
a

lα,aqβ,a = 0 (16)

for any α, β ∈ {1, 2, . . . , N}.
2. Its anomaly-free condition, on the other hand, requires:

• Gravitational anomaly free (two-point one-loop Feynman diagram of grav2

vertices vanish): The left and right chiral central charges cL = cR, which means
NL = NR.

• Gauge anomaly free (two-point one-loop Feynman diagram of U(1)2 vertices
vanish): For each U(1) symmetry, with left-handed and right-handed Weyl
fermion charge vector qL and qR, respectively, the anomaly free requires the
square sum of each component ∑ q2

L − q2
R = 0. In terms of the symmetric bilinear
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form K for both bosonic (Kb) and fermionic (K f ) systems, the anomaly-free
condition demands that

qᵀαKqβ = ∑
a,b

qα,aKabqβ,b = 0, (17)

again for α, β ∈ {1, 2, . . . , N} and a, b ∈ {1, 2, . . . , 2N}.
• The above two anomaly-free conditions are perturbative local anomalies. The

(1 + 1)D nonperturbative global anomalies are classified by cobordism groups
(denoted TP3 or Ω3 with the special orthogonal SO or Spin group and some
internal U(1) symmetries, such as SO×U(1), Spin×U(1) and Spinc) which turn
out to always vanish [140].

3. To explain that the SMG gapping condition holds implies that the anomaly-free
condition also holds, Ref. [35] shows that given the set of lα satisfying (15), one can
find the set of qα simultaneously satisfying (16) and (17). This is true because given
that lα, we can choose qα = K−1lα.

4. To explain that the anomaly-free condition holds implies that the SMG gapping
condition also holds; Ref. [35] shows that given the set of qα satisfying (17), one can
find the set of lα simultaneously satisfying (16) and (15). This is true because given
that qα, we can choose lα = Kqα.

5. The above two remarks prove that the if and only if (sufficient and necessary) condi-
tions to the equivalence of the anomaly-free condition and the SMG gapping condition.
Once the set of qα and lα are found, they form 2N linear-independent integer-valued
vectors spanning completely the 2N-dimensional vector space (known as the Narain
lattice [141]).

6. What remains to be explained is why the SMG gapping condition defines a gapped
boundary without any topological boundary degeneracy [135]. The idea is viewing
the (1 + 1)D theory (14) as the boundary theory of (2 + 1)D invertible TQFT with
a Chern–Simons action Sbulk = Kab

4π

∫
M3 Aa ∧ dAb on a 3-manifoldM3. The Aa is a

multiplet 1-form gauge field. Hereafter, all repeated indices are summed over. A
stable boundary condition requires the variation of Sbulk on the boundary 2-manifold
(∂M)2 vanished [134] under the boundary 1-form gauge field A∂ → A∂ + δA∂ vari-
ation: δbdry(Sbulk) = Kab

4π

∫
(∂M)2 A∂,a ∧ δA∂,b. The differential δ of this variation is a

symplectic form ωSp = Kab
4π

∫
(∂M)2 δA∂,a ∧ δA∂,b on the space of boundary gauge fields.

Consistent stable boundary conditions on (∂M)2 define a Lagrangian submanifold
with respect to the symplectic form ωSp in symplectic geometry.

• One consistent boundary condition sets one component of A∂ vanished, such as(
Kab Ab,t −Vab Ab,x

)
|∂M = 0, which gives a gapless (1 + 1)D CFT (14).

• Another boundary condition sets the gauge degrees of freedom lα,a Aa|∂M = 0
vanish [59]. The boson modes ϕa, originally related by the gauge transformation
Aa → Aa + dλa and ϕa → ϕa − λa, now may condense on the boundary with
nonzero vacuum expectation values 〈exp

(
i(lα,a ϕa)

)
〉|∂M 6= 0, more precisely,

indeed 〈exp
(
i( lα,a
| gcd(lα)| ϕa)

)
〉|∂M 6= 0, where gcd(lα) ≡ gcd(lα,1, lα,2, . . . , lα,2N)

is the greatest common divisor (gcd) of all components of lα. This condensa-
tion of ϕ can be triggered by the earlier sine-Gordon cosine term at a strong g
coupling. The boundary vertex operator and bulk line operator are connected
exp

(
i(lα,a ϕa)|∂M + i

∫
lα,a Aa|M

)
. The gapped bulk and gapped boundary de-

mand that the partition function Z evaluated on the 3-manifold M with the
2-boundary ∂M has a finite value (in fact Z = 1 when the Z corresponds to count-
ing the dimension of the Hilbert space for the invertible TQFT). This means that
arbitrary link configuration of the bulk line operators should give a trivial braid-
ing statistical phase to Z so there are no unwanted quantum fluctuations destabi-
lizing the gapped vacuum—namely, the mutual statistics exp(i2πlᵀα K−1lβ) = 1
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and the self statistics exp(iπlᵀα K−1lα) = 1 are trivial for all α, β ∈ {1, 2, . . . , N}.
Hence, we derive the correspondence between the N-independent compatible
SMG gapping terms and the N null-braiding statistics lα vectors [133–136]. This
completes the proof [35].

2.3. (2 + 1)D SMG: Honeycomb Lattice Model

The honeycomb lattice model is a simple lattice model for SMG in (2+ 1)D. The model
is defined on a honeycomb lattice, with each lattice site i hosting four complex fermion
modes, denoted as cia (for a = 1, 2, 3, 4). The model is described by the Hamiltonian

H = −
4

∑
a=1

∑
〈ij〉

c†
iacja − g ∑

i
(ci1ci2ci3ci4 + h.c.), (18)

where 〈ij〉 stands for the bond between nearest neighboring sites i and j on the honeycomb
lattice; see Figure 2a. The interaction strength g is the only tuning parameter of this model.

(a)

Γ K M K' Γ M
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0
1
2
3
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K'
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Figure 2. (a) Honeycomb lattice. (b) Graphene band structure (inset defines high symmetry points in
the Brillouin zone).

When g = 0, the free-fermion hopping on the honeycomb lattice gives rise to the
graphene band structure [142], as shown in Figure 2b, that produces 4× 2 = 8 gapless
Dirac fermions ψQa at low energy, where 4 stands for the four on-site fermion flavors
(a = 1, 2, 3, 4) and 2 comes of the fermion doubling (Q = K, K′) in the Brillouin zone. They
can be described by a low-energy effective field theory Lagrangian

L = ∑
Q=K,K′

4

∑
a=1

ψ̄Qaγµ∂µψQa, (19)

where Q = K, K′ labels the valley (fermion doubling) freedom, γµ = (σ2, σ1, σ3) and ψQa
are complex Grassmann spinors in (2 + 1)D (with ψ̄Qa = ψ†

Qaγ0). These 8 gapless Dirac
fermions can be equivalently viewed as 16 gapless Majorana fermions, by decomposing
each complex Grassmann field into two real Grassmann fields.

The key physical symmetries that protect these gapless fermions in the non-interacting
limit are the lattice translation symmetry and the anti-unitary sublattice symmetry ZS

2 :
ci → (−)ic†

i , i → −i (where (−)i stands for a sign factor that takes ± on A/B sublattice
of the honeycomb lattice) [67,69,71]. These two symmetries can be combined to create
an emergent anti-unitary symmetry at low-energy ZTF

4 : ψQa → iγ0ψ†
Qa, i → −i, whose

generator T = T3/4
R S consists of a sublattice symmetry ZS

2 generator S followed by a
3/4 fraction of the unit-cell translation TR. Although the 2D lattice translation symmetry
Z2 (generated by TR along two linearly independent Bravais lattice vectors R) cannot
be fractionalized on the lattice, yet for the low-energy effective theory Equation (19), the
translation symmetry acting on the low-energy fermions ψQ becomes an emergent valley
U(1), symmetry TR : ψK/K′ → e±i2π/3ψK/K′ (± signs are associated with K and K′ valleys,
respectively), which can be fractionalized to T3/4

R : ψK/K′ → ±iψK/K′ . Because T 2 = −1
on fermions, T 2 should correspond to the fermion parity operator, which needs a further
square to become an identity, and therefore, T generates a four-fold cyclic group ZTF

4 .
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The anomalous nature of the combined symmetry ZTF
4 is manifested by the fact that ZTF

4 is
only an emergent symmetry at low energy and becomes ill-defined on the lattice level.

The (2 + 1)D Majorana fermion with a ZTF
4 internal symmetry (or the Pin+ spacetime-

internal symmetry [54,122], or the DIII symmetry class [123,124]) has a ΩPin+

4 (pt) = Z16
non-perturbative global anomaly based on the cobordism, whose anomaly index corre-
sponds to the number of gapless Majorana fermions. The honeycomb lattice model precisely
has 16 Majorana fermions at low-energy, which is free of the Z16 non-perturbative global
anomaly. However, the ZTF

4 symmetry is still restrictive enough to rule out all possible
fermion bilinear gapping terms from appearing in Equation (19), which again calls for the
SMG mechanism.

The four-fermion interaction g in Equation (18) is one choice of the interaction that
drives the desired SMG. On every site, this interaction is the same as the SU(4) symmetric
interaction in Equation (5) (up to unimportant density–density interactions, which do not
affect the ground state but only renormalize the gap size). The interaction g explicitly drives
a four-fermion condensation, also known as the charge-4e superconducting order [114–120].
In the large g limit, the many-body ground state of the system is simply the product⊗

i |4e〉i of on-site ground states |4e〉i = (|0000〉i + |1111〉i)/
√

2, which is symmetric, non-
degenerated and gapped, realizing the SMG phase. Therefore, by tuning the strength g,
one expects to drive an SMG transition at some intermediate g ∼ 1 (that is comparable with
the bandwidth of the lattice fermion). Various numerical simulations of this model (and
its variants) [125,143–146] have suggested the existence of such a direct and continuous
SMG transition between the gapless and the gapped phases in (2 + 1)D. A field theory
description of the SMG quantum critical point was proposed in Ref. [36], which will be
further reviewed in Section 4.3.1.

The honeycomb lattice model also has an explicit SU(4) symmetry cia → Uabcib that
rotates fermions among the four on-site flavors. Although the SU(4) symmetry does not
affect the anomaly analysis in any essential way, it could help to remove all the SU(4)-
breaking relevant perturbations (if there were any) at the critical point, which might help
to promote a continuous SMG transition. If the SU(4) symmetry is also included in the
consideration, the total internal symmetry will be SU(4)×ZF

2
ZTF

4 (where SU(4) and ZTF
4

share the fermion parity ZF
2 subgroup).

The decomposition of the on-site SU(4)-symmetric interaction into a product of
fermion bilinear operators Φα

i Φα
i as in Equation (5) indicates that one can again introduce a

Yukawa field φα to mediate the fermion interaction, [36]

LYH = −φα(ψ
ᵀ
Kaiγ0Γ̃α

abψK′b + h.c.) +
1

2g̃
φ∗αφα, (20)

where K, K′ label the two valleys (Dirac points) of the low-energy fermions (see Figure 2b),
and Γ̃α = (σ12, σ20, σ32, iσ21, iσ02, iσ23) are the flavor–space matrices for the inter-valley
flavor-sextet pairing that transform as representation 6 in SU(4). Importantly, the Yukawa
field must transform as ZTF

4 : φα → −φα to keep LYH invariant under ZTF
4 , meaning that

directly condensing the Yukawa field 〈φα〉 6= 0 will necessarily break the protecting symme-
try ZTF

4 (as well as breaking the standing by SU(4) symmetry). The SMG interaction thus
provides a mechanism to allow the Yukawa field to condense locally without establishing a
long-range order so as to maintain the fermion gap without breaking the symmetry.

2.4. (3 + 1)D SMG: Chiral Fermion Model

The lattice regularization of chiral fermions in (3 + 1)D has always been an important
motivation to study SMG in lattice gauge theories. A rich class of SMG transitions was
proposed and analyzed in different 4D chiral fermion models recently [37,106]. Here, we
will review one of the simplest examples from [37] to illustrate the essential features of
these models. The example considers a collection of right-handed massless Weyl fermions
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ψ transforming under an internal SU(N) symmetry in the ⊕ (N + 4) ¯ representation,
described by the Lagrangian

L = ψ†iσ̄µ∂µψ, (21)

where ψ is the collection of complex Grassmann spinor fields. More explicitly, the fermion
field can be split into ψ = ψλ ⊕ ψψ, such that ψλ denotes the single Weyl fermion and
ψψ denotes the (N + 4) multiples of ¯ Weyl fermions. The goal is to find a path of gapping
these fermions without breaking the SU(N) symmetry.

First of all, the symmetric gapping is possible because all fermions together cancel the
SU(N) ’t Hooft anomaly, as can be verified by the following anomaly index calculation

ASU(N)( ) + (N + 4)ASU(N)( ¯ ) = (N + 4) + (N + 4)× (−1) = 0. (22)

Secondly, the SU(N) symmetry is restrictive enough to forbid all possible fermion bi-
linear masses. For chiral fermions, the only available fermion bilinear mass is the Majorana
mass that pairs up fermions, such as (ψᵀiσ2ψ + h.c.). Since the Majorana mass is already
antisymmetric in the spinor subspace, the flavor subspace must be symmetric. However,
the fermion representation of the SU(N) symmetry guarantees that its symmetric product
does not contain a trivial representation 1, as ( ⊕ (N + 4) ¯ ) ×S ( ⊕ (N + 4) ¯ ) →

⊕ (N + 4) ⊕ (N + 4) ¯ ⊕ (N + 4)2 . So any bilinear mass term will transform
non-trivially under SU(N) and cannot be condensed in the presence of the SU(N) symme-
try. Therefore, one must rely on fermion interactions to achieve symmetric gapping, i.e., the
SMG mechanism.

To design the appropriate interaction to realize the SMG transition, one might search
for candidate four-fermion interactions by looking for trivial representations in ( ⊕
(N + 4) ¯ )×4. However, ( ⊕ (N + 4) ¯ )×4 6→ 1 in general (unless for N = 2, 4), meaning
that one might need to look into higher-order fermion interactions, which are even more
irrelevant and less interesting to explore. Nevertheless, the three-fermion combination
( ⊕ (N + 4) ¯ )×3 contains trivial representations of the form (ψᵀ

λiσ2ψψ)ψψ, but this
term is fermionic and cannot appear directly in the Lagrangian (otherwise the fermion
parity symmetry would be broken). An interesting idea from [37,106] is to bring down
(N + 4)(N + 3)/2 additional fermions ψχ from the high-energy spectrum which transforms
trivially under the SU(N) symmetry, such that a four-fermion interaction

Lint = g((ψᵀ
λiσ2ψψ)(ψ

ᵀ
χiσ2ψψ) + h.c.) (23)

can be constructed. In this interaction, the fermion flavors are contracted in the way such
that ψᵀ

λiσ2ψψ and ψᵀ
χiσ2ψψ transform as and ¯ under SU(N), respectively.

It is instructive to note that the chiral fermion model has an additional internal sym-
metry SU(N + 4), under which ψλ, ψψ and ψχ transform as 1, ¯ and , respectively,
as summarized in Table 1. The representations are so assigned such that the fermions are
also free of the SU(N + 4) anomaly, as

NASU(N+4)( ¯ ) + ASU(N+4)( ) = N × (−1) + (N + 4− 4) = 0. (24)

Moreover, there is no mixed anomaly between SU(N) and SU(N + 4). The interaction
Lint in Equation (23) also respects the larger SU(N) × SU(N + 4) symmetry. Ref. [37]
suggests that Lint is a plausible SMG interaction that drives all fermions ψ = ψλ ⊕ ψψ ⊕ ψχ

to the gapped phase without breaking the SU(N)× SU(N + 4) symmetry. The mechanism
will be further reviewed in Section 4.3.2.
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Table 1. Representations of the fermion ψ and Yukawa φ fields in the chiral fermion model under
SU(N)× SU(N + 4).

SU(N) SU(N + 4)

ψ

{ ψλ 1
physical fermionψψ ¯ ¯

ψχ 1

φ ¯ Yukawa boson

The interaction Lint in Equation (23) can be decomposed into the following Yukawa
couplings

LYH = −(φ†
1(ψ

ᵀ
χiσ2ψψ) + φ2(ψ

ᵀ
λiσ2ψψ) + h.c.) +

1
g̃
(φ†

1φ2 + h.c.), (25)

where the Yukawa fields φ1 and φ2 are both in the ( ¯ , )representation of SU(N)× SU(N + 4).
The above Yukawa decomposition again provides an alternative way to understand the SMG
transition by driving the Yukawa field into a strong-coupling symmetric phase.

2.5. SMG in General Dimensions

For SMG to happen in a fermion system with a choice of spacetime-internal symmetry
G (that includes both the spacetime symmetry and internal symmetry) in d-dimensional
spacetime, the following two necessary conditions must be both satisfied:

• The anomaly index ν ∈ TPd+1(G) of the system must vanish (ν = 0), where TPd+1(G)
denotes the classification of invertible topological phases (with low-energy invertible
topological field theories) in (d + 1)-dimensional spacetime [4]. (We may also denote
d + 1 ≡ D as the bulk dimension.)

• The single fermion must be in a representation rG
ψ of the full spacetime-internal sym-

metry G, such that the antisymmetric product (denoted by×A) representation rG
ψ ×A rG

ψ

does not contain the trivial representation 1G in its direct sum decomposition.

If the first condition is violated (ν 6= 0), trivially and symmetrically gapping out the
fermions is impossible with or without interaction, due to the anomaly obstruction. Note
that in condensed matter systems, the global symmetry G also includes lattice symmetries
and may have the Lieb–Schultz–Mattis (LSM) [147–149] type of anomaly. SMG can not
happen if the system is not free from such a LSM anomaly. However, it may be possible
to symmetrically gap out the fermions with a symmetric anomalous topological order
described by its underlying low-energy topological quantum field theory (TQFT); see
Section 4.4. If the second condition is violated, a trivial and symmetric gap can already be
achieved at the free-fermion level by a fermion bilinear condensation (through the trivial
channel given by rG

ψ ×A rG
ψ → 1G), such that fermion interaction is not necessary. When

both conditions are satisfied, an interacting (strong-coupling) mechanism is needed to
generate the fermion mass without breaking the G symmetry, i.e., the SMG mechanism.

These conditions are also sufficient for the existence of an interacting SMG phase
(i.e., the featureless gapped phase). However, they do not necessarily imply a direct
and continuous SMG transition of fermions from the gapless phase to the gapped phase.
A general design of the four-fermion interaction that leads to a single continuous transition
between the gapless fermions and the SMG remains a challenging problem. Much of the
progress relies on numerical simulations, as to be reviewed in Section 3.
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3. Numerical Investigations
3.1. Existence of SMG Phases

Because the SMG is generally a non-perturbative interaction effect (with respect to
the gapless free-fermion fixed point), numerical simulations play an important role in the
study of SMG. Given an anomaly-free gapless fermion system with a proposed gapping
interaction, the numerical study has two major goals:

• Establish the existence of the SMG phase in the strongly interacting limit.
• Investigate the nature of the SMG transition at the critical interaction strength.

The SMG phase refers to the strongly interacting trivial gapped state of fermions
without symmetry breaking. It was also called the paramagnetic strong-coupling
(PMS) phase [144,150], the strongly coupled symmetric gapped (SCSG) phase [102,103],
or the featureless gapped phase [36,151] in the literature. Correspondingly, the gapless
Dirac/Weyl/Majorana fermion phase in the weak interaction regime is sometimes also
called the paramagnetic weak-coupling (PMW) phase [144,150], or the semi-metal (SM)
phase [36,151]. The phase transition separating the SMG phase and the free-fermion phase
is called the SMG transition.

Numerical study of the SMG phases and phase transitions has been performed in vari-
ous spacetime dimensions with different symmetries, as summarized in Table 2. The model
Hamiltonian H = H0 + Hint takes the following general form

H0 =−∑
i,j

∑
a

tijψiaψja

Hint =g ∑
i

∑
a,b,c,d,···

Vabcd···ψiaψibψicψid · · · ,

or Hint =∑
i

∑
a,b,α

φiαψiaΓα
abψib + H[φiα],

(26)

where ψia denotes the fermion of the flavor a on the site i (or in the unit cell i). The free-
fermion Hamiltonian H0 generates gapless fermions at low energy, and the interaction
Hamiltonian Hint applies properly designed interactions to drive the SMG. The interaction
strength will be generally denoted as g in the following discussion. Different models are
mainly distinct in the following aspects:

Table 2. Summary of numerical studies of SMG phases. (Dim.—spacetime dimension, Sym.—internal
symmetry in terms of Lie algebra).

Dim. Sym. Model Method Reference

(1 + 1)D u(1) ψ6 DMRG [113]
su(2) YH disorder

average
[108]

so(4) ψ4 QMC [143]
su(4) ψ4 QMC [152]
so(7) YH HMC [112]

(2 + 1)D so(4) ψ4 HMC [125]
so(5) ψ4 QMC [143]
su(4) ψ4 FBMC [144,145]

ψ4 QMC [146]

(3 + 1)D so(4) YH HMC [150,153]
QCD HMC [154,155]

su(4) ψ4 HMC [156,157]
ψ4 FBMC [158,159]

• The low-energy fermions can be realized in the lattice model H0 either as the gapless
boundary modes of a fermionic SPT state in one higher spacetime dimension [113],
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or as the gapless bulk mode of a semi-metal state in the designated spacetime dimen-
sion (such as the honeycomb lattice fermion in (2 + 1)D [143,146] and the stagger
fermion in general dimensions [150,153]).

• The interaction Hint can (i) either be explicit given by multi-fermion local interaction
terms (denoted as ψ4 for four-fermion interactions or ψ6 for six-fermion interactions in
Table 2) as exemplified in Equations (7), (11) and (23), (ii) or mediated by intermediate
Yukawa–Higgs fields (denoted as YH) or non-Abelian gauge fields (denoted as QCD)
as exemplified in Equations (12), (20) and (25).

• The so(4) (or more precisely Spin(3)×ZF
2

Spin(4)), so(5) (or U(1)×ZF
2

Spin(5)), su(4)
(or SU(4) ∼= Spin(6)) interactions can all be viewed as lower-symmetry descendants
of the so(7) (or Spin(7)) Fidkowski–Kitaev interaction, whose relations are discussed
in Ref. [103].

• In even spacetime dimensions, the interaction can be restricted to part of the fermions
(forming the mirror sector) to study the SMG in chiral fermion systems [112,113].

Many different numerical methods have been used to study these models, which
include the density matrix renormalization group (DMRG) [113], auxiliary-field quantum
Monte Carlo (QMC) [143], hybrid Monte Carlo (HMC) [155,160], and fermion bag Monte
Carlo (FBMC) [161].

The SMG phase was successfully achieved in the studies listed in Table 2, which
demonstrate the generality of the SMG mechanism in different spacetime dimensions with
various symmetry assignments and under different forms of interaction. The SMG phase
has the following defining features that can be checked in numerics:

• Unique ground state with a gap to all excitations (including both fermionic and
bosonic excitations);

• Absence of spontaneous symmetry breaking (no fermion bilinear condensation or any
higher multi-fermion condensations that break the symmetry);

• Formation of the four-fermion (or higher multi-fermion) condensate that preserves
the symmetry.

Directly computing the many-body excitation gap is challenging for most numerical
approaches. One way to probe the excitation gap is to measure the correlation function in
different channels

C(1)
ij = 〈ψiaψja〉 ∼ e−|xi−xj |/ξ1 ,

C(2)
ij = 〈ψiaψibψjaψjb〉 ∼ e−|xi−xj |/ξ2 .

(27)

An exponential decaying correlation function implies a finite excitation gap ∆n ∼
1/ξn inversely proportional to the correlation length ξn. In particular, the single-fermion
correlation C(1) probes the single-particle gap ∆1 for fermionic excitations, and the fermion-
bilinear correlation C(2) probes the gap ∆2 for collective bosonic excitations. Various
studies [113,125,143,156] have used the correlation function approach to demonstrate the
gap opening (mass generation) in the SMG phase, as illustrated in Figure 3a,b. Ref. [143]
observed that the fermion single-particle gap ∆1 is a bit larger than the bosonic fluctuation
gap ∆2 in the SMG phase, which seems to be consistent with the fluctuating bilinear mass
picture (where the bosonic excitations typically have a longer correlation length than the
fermionic excitations), as to be discussed in Section 4.1.
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Figure 3. Typical features of SMG observed in numerics. Continuous gap opening in (a) (1 + 1)D
SMG driven by four-fermion interactions and (b) higher dimensional SMG in general. (c) Vanishing
fermion bilinear expectation 〈ψ̄Γψ〉 with its source field m in the SMG phase. (d) Diverging Yukawa
field susceptibility χ at the SMG transition.

More explicitly, Ref. [108] investigated the fermion single-particle spectrum of (1+ 1)D
chiral gauge theory coupled to a fluctuating Higgs field with finite spacetime correlation.
By choosing the Higgs coupling strength and the Higgs field correlation length appropri-
ately, Ref. [108] was able to show that the fermion excitation gap remains open in the SMG
phase, despite of the absence of Higgs condensation.

Many numerical works have also confirmed that there is no fermion bilinear conden-
sation in the SMG phase, such that the mass generation is not due to the conventional
Anderson–Higgs symmetry-breaking mechanism. To check this statement, one can in-
troduce a small source field m that couples to the fermion bilinear term ψ̄Γψ of interest
(where the vertex matrix Γ can be of any choice of interest that may or may not be the
Yukawa vertex in Equation (26)). By showing that in the large system size limit (L→ ∞),
the induced fermion bilinear expectation value vanishes as the source field m is turned off

lim
m→0

lim
L→∞
〈ψ̄Γψ〉 = 0, (28)

one can rule out the fermion bilinear condensation, as illustrated in Figure 3c. Such a
check should be performed for all fermion bilinear terms that transform as different
representations under the symmetry. This approach was adopted in various stud-
ies [112,146,150,153,156,157]. Another approach is to measure the correlation function
of fermion bilinear operators. If the correlation function decays exponentially, then the
bilinear operator is not long-range ordered (not condensed). This approach was used in
Refs. [113,143].

However, to establish the fact that the SMG phase breaks no symmetry, one also
has to check that there is no symmetry-breaking four-fermion or higher multi-fermion
condensation developed in the gapped phase. It is generally difficult to check all possible
multi-fermion condensations exhaustively in numerics. One possible argument is to show
that the multi-fermion condensation that corresponds to the fermion interaction develops
in the SMG phase, i.e., 〈Hint〉 6= 0 [112,125,150,152,153,156,157], which does not break any
symmetry (as Hint is symmetric by design). Assuming that the SMG phase can be smoothly
deformed to the strong interaction limit (g → ∞) where the Hamiltonian is dominated
by Hint, and given that the ground state of Hint is unique (by design), the possibility of
spontaneous symmetry breaking can be ruled out.

3.2. Nature of SMG Transitions

Much effort of the numerical study has been focused on understanding the nature of
the SMG transition. Two questions can be asked:

• Is the SMG transition a direct transition (i.e., without any intermediate phases set-
ting in)?

• Is the SMG transition continuous (i.e., not first order)?
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If the answers to both questions are yes, the SMG transition would be a quantum
critical point which admits a field-theory description in the continuum limit. Such a case
will be highly interesting from the theoretical perspective because the phases on both sides
cannot be distinguished by a symmetry-breaking order parameter, and hence a direct and
continuous SMG transition is necessarily an exotic quantum phase transition beyond the
Landau–Ginzburg–Wilson paradigm.

The nature of the SMG transition depends on the spacetime dimension and the symme-
try. Table 3 summarizes the numerical results in the literature. SMG transitions in (1 + 1)D
are the most well understood. As four-fermion interactions are marginal perturbations for
(1 + 1)D massless fermions, the RG equation for the interaction strength g with respect to
the RG scale ` = ln Λ takes the general form of dg/d` = αg2 to the leading order of g. If the
coefficient α > 0, g > 0 is marginally relevant, which flows toward infinity from any finite
g. This happens to any SMG transition driven by four-fermion interactions in (1 + 1)D: the
system immediately enters the symmetric gapped phase as long as the interaction is turned
on (with the correct sign), such that the SMG critical point is at gc = 0. The RG equation
predicts that the excitation gap should open as (see Figure 3a)

∆ ∼ exp(− 1
αg ), (29)

which was verified in Refs. [143,152] with different models.

Table 3. Summary of numerical studies of SMG transitions. (Dir.—direct transition or not; Con.—
continuous transition or not).

Dim. Sym. Dir. Con. Remarks Reference

(1 + 1)D u(1) yes yes BKT, gc ∼ 1 [113]
so(4) yes yes gc = 0 [143]
su(4) yes yes gc = 0 [152]

(2 + 1)D so(4) yes yes [125]
so(5) yes yes [143]
su(4) yes yes η = 1.05, ν = 1.30 [144,145]

η = 0.7± 0.1 [146]

(3 + 1)D so(4) yes yes by frustrating the
Yukawa field

[150,153,154]

ν ∼ 1 [155]
su(4) no - small intermedi-

ate SSB phase
[157–159]

However, SMG can also be driven by higher-order fermion interactions. For example,
the SMG in (1 + 1)D U(1)-symmetric chiral fermion 3-4-5-0 model is driven by six-fermion
interactions, which are irrelevant at the massless free-fermion fixed point. As shown in
Ref. [113], the SMG transition in this case happens at a finite interaction strength, and the
transition is shown to be in the BKT universality class.

Numerical studies have also found evidence for direct and continuous SMG transitions
in higher dimensions, as listed in Table 3. A direct transition can be established by ruling out
any intermediate phase between the gapless fermion phase and the SMG phase. The most
probable intermediate phase is the spontaneous symmetry breaking (SSB) phase in which
the fermion bilinear mass (the Yukawa field) condenses. Such an intermediate SSB phase is
often observed in (3 + 1)D systems [157–159]. However, there are also examples showing
that it is possible to shrink the intermediate SSB phase by frustrating the Yukawa field
(i.e., introducing local couplings of the Yukawa field in conflict with its natural ordering
tendency), which could foster a direct SMG transition [150,153,154].

Given a direct SMG transition, one can further check whether the transition is continuous
or first-order (discontinuous). The numerical evidence for a continuous transition include
the following:
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• Continuous gap opening across the SMG transition.
• Universal scaling behavior of physical quantities near the transition.

The excitation gap (or the inverse correlation length) can be extracted from correlation
functions (as previously explained around Equation (27)). Refs. [125,143] have demon-
strated that the gap opens smoothly across the SMG transition, as depicted in Figure 3b,
in support of a continuous transition (i.e., a quantum critical point). As the correlation
length diverges, physical quantities should exhibit universal scaling behaviors near the
quantum critical point. The quantity that is often studied in numerics is the uniform static
susceptibility of the Yukawa field, which is defined as

χ =
1
Ld

∫
ddx〈φα(x)φα(0)〉, (30)

where the integration is over the spacetime, and Ld stands for the spacetime volume
(with d being the spacetime dimension). The following universal behavior is observed in
Refs. [144,145]

χ = L2−η f ((g− gc)L1/ν), (31)

where f is a universal function, and η and ν are critical exponents such that the susceptibility
generally diverges as χ ∼ |g − gc|−ν(2−η) near the SMG critical point, as illustrated in
Figure 3d. The exponent η can also be determined from the power-law fitting of the
correlation function at the critical point,

〈φiαφjα〉 ∼ |xi − xj|−(d−2+η), (32)

where d is the spacetime dimension. This approach is used in Ref. [146]. The scaling analysis
was performed mainly in (2 + 1)D systems, where the simulation can achieve a linear
system size up to L = 60 [145], which enables a rather reliable estimate of critical exponents.
As a comparison, for (3 + 1)D systems, the simulation can only reach L = 20 [155].
Numerical studies [144–146] of the (2 + 1)D su(4) SMG found η ∼ 1.05 and ν ∼ 1.30,
which are close to the (large-N f limit) exponents (η = ν = 1) of the (2 + 1)D Gross–Neveu–
Yukawa universality class [162,163]. Recent study [155] of the (3 + 1)D so(4) SMG also
favors ν ∼ 1, although the result is not conclusive yet. However, the SMG mechanism is
physically distinct from the symmetry-breaking mass generation described by the Gross–
Neveu–Yukawa model. Their similar critical exponents motivate the idea to view the
SMG transition as a hidden Gross–Neveu–Yukawa transition of fermionic partons, as to be
discussed in Section 4.2.

4. Theoretical Understandings
4.1. Fluctuating Bilinear Mass Picture

The fluctuating bilinear mass (Yukawa field) provides an intuitive physical picture for
SMG. It suggests that the SMG can be generally understood in two steps: starting with
gapless Weyl/Majorana fermions, first condense a Yukawa field that couples to fermion
bilinear mass terms to gap out the fermions at the price of breaking the protecting symmetry,
then fluctuate the phase (or direction) of the Yukawa field in the spacetime to restore the
symmetry while maintaining the local amplitude of the Yukawa field finite to keep the
fermion gap open. The picture can be described by the Yukawa–Higgs model with a
symmetry G [108,156]

Z =
∫
D[ψ, φ]e−SY[ψ,φ]−SH[φ],

SY[ψ, φ] =
∫

ddx (ψ̄aiγµ∂µψa + φαψ̄aΓα
abψb),

SH[φ] =
∫

ddx ((∂µφ)2 + VH(φ) + · · · ),

(33)
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where ψa are the Weyl/Majorana fermions (written as real spinor Grassmann fields with
ψ̄a = ψᵀ

a γ0) and φα are the Yukawa bosons (written as real scalar fields). For generality,
we assume that all fields are automatically translated into their minimal real embeddings
to avoid unnecessary complication of complex conjugations in the discussion. Both the
fermion ψ and the boson φ fields are in non-trivial representations of the protecting sym-
metry G, denoted as rG

ψ and rG
φ , respectively. The Yukawa coupling is loosely denoted as

φ ψ̄Γψ for generality, where the vertex tensor Γα
ab is set by the Clebsch–Gordan coefficients

of the fusion channel rG
ψ ×A rG

ψ → rG
φ . Precise forms of the Yukawa coupling can be found

in Equations (6), (12), (20) and (25), which vary from model to model. SY[ψ, φ] describes
the gapless fermion ψ coupled to the Yukawa field φ, and SH[φ] describes the dynamics of
the Yukawa field with VH(φ) being some Higgs potential.

Integrating out the Yukawa field φ leads to a pure fermion model of ψ. Assuming that
SH[φ] =

1
2g φ2 takes the Gaussian form at the ultraviolet (UV) level, the fermion model will be

Z =
∫
D[ψ]e−S[ψ],

S[ψ] =
∫

ddx(ψ̄iγµ∂µψ + g(ψ̄Γαψ)(ψ̄Γαψ)).
(34)

It is assumed that the model is free of G-anomaly, but the symmetry G is still restrictive
enough to forbid all possible bilinear mass terms, paving ways for SMG. The fluctuating Yukawa
field effectively mediates the fermion interaction g that is responsible to drive the SMG.

The appearance of the SMG in the Yukawa–Higgs model Equation (33) requires some
delicate design of SH[φ] to achieve the appropriate infrared (IR) dynamics. Assuming the
Higgs potential VH(φ) pins the Yukawa field φ to a finite amplitude (e.g., |φ| = 1) throughout
the spacetime (as in a non-linear σ-model), while allows its orientation to fluctuate in its
internal flavor space, numerical evidences [108] show that the fluctuating Yukawa field is
possible to gap out the fermions ψ without spontaneously breaking the G symmetry if the
Yukawa field fluctuation has a finite but large correlation length ξ � 1 (s.t. 〈φ(x)φ(0)〉 ∼
e−|x|/ξ). The fluctuation must be smooth enough so as not to create sharp domain walls that
trap gapless domain-wall fermions and close the fermion gap. However, the fluctuation must
also not be too smooth to establish the long-range order of the Yukawa field and break the
symmetry. The SMG should be achieved by balancing these two factors.

An alternative way to argue for the SMG is the topological defect condensation ap-
proach [16,17,102,103,164]. This approach also starts by condensing the Yukawa field with
a finite amplitude, but then disordering the Yukawa field orientation by condensing topo-
logical point defects (e.g., vortices in 2D space or monopoles in 3D space) of the Yukawa
field. Although the point defects could trap fermion zero modes and lead to gapless fermion
excitations in the spectrum, these fermion zero modes can be gapped out by local interac-
tions (such as the FK interaction) uniformly applied throughout the system. A non-trivial
check in this approach is to show that for anomaly-free fermion systems (that admits SMG),
the point defect always traps 8n Majorana zero modes that can be trivialized by interaction.
The advantage of the topological defect condensation approach is that it does not rely on a
delicate tuning of the smoothness of the Yukawa field fluctuation.

Further justification of the fluctuating bilinear mass picture comes from a more explicit
trial wave function construction for the SMG state in (0 + 1)D [36]. Let |Ψ[φ]〉 be the
quantum many-body ground state of fermions ψ on a background configuration of the
Yukawa field φ. The fluctuating bilinear mass picture Equation (33) suggests that the SMG
state (the featureless gapped state in the strong interacting limit) should be described by

|ΨSMG〉 ∝
∫
D[φ]e−SH[φ]|Ψ[φ]〉. (35)

In the (0+ 1)D example, the ground state of the Yukawa Hamiltonian HY = −φαχaΓα
abχb

is explicitly given by |Ψ[φ]〉 = (1 + 1
|φ|φαχaΓα

abχb + c†
1c†

2c†
3c†

4)|0000〉 using notations intro-
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duced in Section 2.1. Assuming SH[φ] restricts the φ vector uniformly on a sphere, the spher-
ical average results in |ΨSMG〉 ∝ (1 + c†

1c†
2c†

3c†
4)|0000〉 which indeed matches the ground

state |4e〉 of the FK interaction. The construction also applies to su(4) symmetric SMGs in
all higher dimensions, where the on-site interaction is the same as the (0 + 1)D case. In the
limit that the Yukawa coupling is strong and the Yukawa field φ fluctuates independently
on each site, the trial wave function |ΨSMG〉 in Equation (35) approaches to product state⊗

i |4e〉i—the exact ground state in the strong coupling (g → ∞) limit. Away from the
strong coupling limit, |ΨSMG〉might still serve as a variational approximation of the SMG
state, but this variational ansatz is less well controlled beyond (0 + 1)D.

Although the fluctuating bilinear mass picture provides a simple understanding for
the SMG phase/state, it breaks down near the SMG transition, where the Yukawa field
amplitude is no longer large and stable. A major theoretical challenge is to develop field
theory descriptions for the continuous SMG transition, which will be the topic of the
following Section 4.2.

4.2. Fermion Fractionalization Field Theory

The fermion fractionalization [36,151] provides an overarching theoretical framework
to understand various continuous SMG transitions in different dimensions. It unifies
different theoretical pictures of SMG in literature. Its key proposal is that the physical
fermion ψ ∼ ηnψ fractionalizes into bosonic η and fermionic ψ partons that deconfine at
and only at the transition, where the bosonic parton ηmay appear n multiple times in the
fractionalization scheme. Note that upright Greek letters will be used to denote parton
fields in the parton theory.

The fermionic parton ψ is generally put in the same gapless phase as the physical
fermion ψ. The physical free fermion phase corresponds to the condensed phase of the
bosonic parton η, and the SMG phase corresponds to the disordered (gapped) phase of
the bosonic parton η. Accompanied with the fractionalization, an additional gauge field
a must be introduced to bind the partons together and to remove the redundant degrees
of freedom introduced by fractionalization. Let K be the emergent gauge group (typically
non-Abelian), then the partons are generally charged under an enlarged symmetry-gauge
group G× K (where G is the symmetry group of the physical fermion), as summarized
by Table 4.

Table 4. Representations of different fields under G× K, also under spacetime symmetry Spin(d).
The representation assignment must be consistent with ψ ∼ ηnψ, φ ∼ ψ̄Γψ, and φ ∼ ψ̄Γψ.

G K Spin Meaning

ψ rG
ψ 1K spinor physical fermion

φ rG
φ 1K scalar Yukawa boson

η rG
η ¯ K scalar bosonic parton

ψ rG
ψ rK

ψ spinor fermionic parton (like ψ)
a 1G ¯ K vector gauge boson

φ rG
φ rK

φ scalar parton-Higgs boson (like φ)

The representations are not assigned independently. The choice of representations
should satisfy the following general rules:

• Representations of the physical fermion (rG
ψ , 1K) and the Yukawa boson (rG

φ , 1K) are
given as the starting point by the SMG model in consideration. Both ψ and φ fields
must be neutral (i.e., as the trivial representation 1K) under the gauge group K
by definition.

• The bosonic parton η is always in the (anti)-fundamental representation ¯ K of K, such
that its condensation can fully Higgs the gauge group K.
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• The parton representation must be assigned in consistent with the fermion fractional-
ization ψ ∼ ηnψ, such that the following fusion channel must exist

(rG
η , ¯ K)×n × (rG

ψ, rK
ψ)→ (rG

ψ , 1K). (36)

• The Yukawa or parton-Higgs field representations must be consistent with their
constituting fermions, such that the following fusion channel must exist

rG
ψ ×A rG

ψ → rG
φ 6= 1G, (37)

(rG
ψ, rK

ψ)×A (rG
ψ, rK

ψ)→ (rG
φ, rK

φ), (38)

where ×A denotes the antisymmetric combination of representations (due to the
fermionic nature of ψ and ψ). rG

φ should not be trivial, otherwise the fermion mass
generation can be achieved simply by condensing φ without breaking the symmetry,
as already explained in Section 2.5.

• The K-gauge field a is always in the trivial representation 1G of G and the adjoint
representation ¯ K of K.

• For the SMG to happen in the system, either one of the following two necessary
conditions should be satisfied:

1. To enable the parton-Higgs mechanism, the following branching channel must
exist upon G× K → G× K′ breaking:

(rG
φ, rK

φ)→ (1G, 1K′); (39)

2. To enable the s-confinement mechanism, the following fusion channel must exist
within the gauge group K:

(rK
ψ)
×3 → 1K. (40)

The reasoning for these conditions will be explained later in Sections 4.2.1 and 4.2.2.

Given the representation (rG
ψ , 1K) of the physical fermion ψ, there is still the freedom

to choose the gauge group K and the representation (rG
ψ, rK

ψ) of the fermionic parton ψ.
Once the choice is made, other representations are (largely) fixed by Equations (36)–(38).
There could be multiple parton theories that describe the same SMG transition as long as
the condition Equation (39) or Equation (40) is satisfied. Within the present framework,
different parton theories are specified by different choices of K and (rG

ψ, rK
ψ).

The parton theory for the SMG transition generally takes the form of [36,151]

Z =
∫
D[η,ψ, a]e−SB[η,a]−SF[ψ,a],

SB[η, a] =
∫

ddx (|Dµη|2 + r|η|2 + u|η|4),

SF[ψ, a] =
∫

ddx ψ̄iγµDµψ,

(41)

whereψ and η are treated as real fields (with ψ̄ = ψᵀγ0) to avoid unnecessary complications
of complex conjugation, and Dµ = ∂µ − iaµ denotes the covariant derivative (assuming the
gauge connection a is automatically represented in the representation of the matter field
that it couples to). The parton theory describes the bosonic η and the fermionic ψ partons
coupled together by the gauge field a, and is expected to provide an effective description
of the low-energy physics around the SMG critical point. The bosonic parton mass r is
treated as the only driving parameter in the parton theory, and is responsible for tuning
the SMG transition. r < 0 corresponds to the gapless phase (the free-fermion fixed point),
r > 0 corresponds to the trivially gapped phase (the strong-coupling fixed point), and r = 0
corresponds to the critical point where the SMG transition happens. The states of different
fields in different cases are summarized in Table 5.
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Table 5. States of different fields across the SMG transition.

Gapless Phase SMG Gapped Phase
(r < 0) (r = 0) (r > 0)

ψ gapless fractionalized gapped
φ gapped (ξ ∼ 1) gapped gapped

η condensed critical gapped
ψ gapless gapless gapped
a Higgs deconfined Higgs/confined

φ gapped critical condensed

When r < 0, the bosonic parton η condenses (i.e., 〈η〉 6= 0). As η carries the anti-
fundamental representation of the gauge group K, the gauge structure is fully Higgs down
by the bosonic parton condensation. At the same time, the fermionic parton ψ becomes
the physical fermion ψ ∼ 〈η〉nψ effectively (as the fields ψ and ψ only differ by a constant
〈η〉n, which simply serves as a quasi-particle weight). The parton theory then reduces to
the physical fermion theory S[ψ] =

∫
ddx ψ̄iγµ∂µψ in the gapless free-fermion phase.

When r > 0, the bosonic parton η is gapped and decouples from the gauge field at low
energy. Below the gap of η field, the parton theory is effectively a quantum chromodynamics
(QCD) theory SF[ψ, a] involving the fermionic parton ψ coupled to the gauge field a. Then,
it relies on an assumption that the QCD dynamics leads to a featureless gapped ground state
(i.e., a trivial ground state), such that both the fermionic partons and the gauge bosons are
gapped without breaking the G symmetry or generating topological orders. Of course, one
necessary condition for the QCD theory to trivialize is that the theory must have vanishing
G× K anomaly. However, even if the QCD theory is anomaly free, it still depends on the
dynamical details to achieve a trivially gapped ground state. The major theoretical effort to
understand SMG lies in designing an appropriate mechanism to trivialize the QCD theory.
Within the fermion fractionalization framework, two mechanisms have been proposed in
the literature: (i) parton-Higgs (weak coupling) [36,37,151] and (ii) s-confinement (strong
coupling) [37,106]. In some cases, the QCD trivialization may be consistently achieved by
both mechanisms.

4.2.1. Parton-Higgs Mechanism

The parton-Higgs mechanism introduces a collection of scalar fields φ (parton-Higgs
fields) that couple to the fermionic parton ψ via Yukawa interactions, such that the QCD
theory SF[ψ, a] is extended to a QCD–Yukawa–Higgs theory

SF[ψ,φ, a] =
∫

ddx (ψ̄iγµDµψ+φαψ̄Γαψ+ (Dµφ)
2 + VH(φ)), (42)

where the parton-Higgs field φ (as fermionic parton bilinear mass) is in the representation
(rG
φ, rK

φ) of G × K. The representation (rG
φ, rK

φ) must be obtained from an antisymmet-
ric product of fermionic parton representations for consistency: (rG

ψ, rK
ψ)×A (rG

ψ, rK
ψ) →

(rG
φ, rK

φ), as stated in Equation (38). The Yukawa vertex tensor Γα is fixed by this fusion chan-
nel. The QCD-Yukawa-Higgs theory in Equation (42) is reminiscent of the Yukawa-Higgs
theory in Equation (33) by promoting the physical fermion ψ and physical Yukawa field
φ to their parton counterparts ψ and φ. However, the key difference lies in the different
G× K representations of ψ, φ comparing to ψ,φ, as listed in Table 4.

Unlike the physical Yukawa field φ, which is solely charged under G in a non-trivial
representation rG

φ , such that the condensation of φ inevitably breaks the G symmetry; the
parton-Higgs field φ is in a joint representation (rG

φ, rK
φ) of G × K, which could admit a

G-symmetric condensation of φ. The sufficient and necessary condition for the existence
of a condensed configuration 〈φ〉 that preserves the G symmetry is that there exists a
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subgroup G× K′ of G× K, such that when G× K is broken to G× K′, the representation of
φ admits a trivial branching channel (as summarized in Equation (39)):

(rG
φ, rK

φ)→ (1G, 1K′). (43)

If the condition is met, a Higgs potential VH(φ) can be constructed to drive the
condensation of φ in the above trivial branching channel. Such a condensation of the
parton-Higgs field φwill (i) gap out all fermionic partons ψ (that couple to it), (ii) Higgs
down the gauge group from H to its subgroup K′ ⊆ K, and (iii) preserving the symmetry
group G. Then the only freedom remaining in the theory is the pure gauge fluctuation
of K′. If K′ remains a non-Abelian group, its gauge coupling can flow strongly into the
confine phase and gap out the remaining gauge bosons. In this way, all freedoms in the
QCD–Yukawa–Higgs theory are symmetrically gapped, and the system ends up in the
SMG phase. The physical fermion ψ ∼ ηψwill also be gapped, as its partons are gapped
(both η and ψ are gapped).

4.2.2. s-Confinement Mechanism

The s-confinement mechanism (“s” for “smooth”) refers to the strong coupling dy-
namics of the QCD theory that confines fermionic partons and gauge bosons all together
without breaking the G symmetry [165,166]. This is possible if the ’t Hooft anomaly of G
is matched up in the theory [3]. One motivation for the s-confinement theory comes from
the observation that the four-fermion SMG interaction ψ4 (for physical fermions ψ) can be
broken up into “3+1” as (ψ3)ψ. If there is some strong-coupling mechanism that binds the
first three fermions into a composite fermion ψcomp ∼ ψ3 at low-energy, the interaction can
then be viewed as a fermion bilinear mass like ψ̄freeψcomp (where ψ̄free ∼ ψ stands for the
last dangling fermion), which provides a free-fermion understanding for the SMG. This
picture is alternative to the “2+2” fluctuation bilinear mass picture, where the interaction
is broken up into (ψ2)(ψ2) with each ψ2 being a composite boson (i.e., the Yukawa boson
φ). However, the Yukawa boson is still interacting, which complicates the analysis of its
low-energy dynamics. In contrast, the composite fermion flows to a free fermion critical
point, which enables a simple argument for gapping. Nevertheless, this still relies on a
strong-coupling mechanism for the composite fermion to form in the first place.

The fermion fractionalization plays an important role in understanding the formation
of composite fermions in the s-confinement picture. After fractionalization, physical
fermions become fermionic partons that couple to an emergent gauge field, then the
emergent gauge force can be employed to confine the fermions into the desired composite.
Not all fermions are fractionalized in the s-confinement theory. The physical fermions
ψ = ψfrac ⊕ ψfree are first divided into two sectors, where ψfrac ∼ ηnψ are part of the
physical fermions that will be fractionalized to bosonic η and fermionicψ partons, and ψfree
are the remaining physical fermions that do not fractionalize. To drive the SMG transition,
the first step is still to gap the bosonic parton η, leaving the low-energy freedom in a QCD
theory with the fermionic parton ψ coupled to an emergent (non-Abelian) gauge field
a. Under gauge confinement, the fermionic partons ψ are bound together in the IR to
form fermion composites, denoted as ψcomp ∼ (ψ)3, just like fundamental quarks forming
baryons. The necessary condition for the confinement to happen is the existence of a
trivializing fusion channel in the gauge sector (as summarized in Equation (40)):

(rK
ψ)
×3 → 1K, (44)

such that the gauge charges of ψ3 can be neutralized to produce the physical composite
fermion ψcomp. Then the fermion bilinear mass ψ̄freeψcomp can be introduced to gap out
all fermions together, realizing the SMG. Moreover, the s-confinement mechanism admits
the supersymmetric extension [37], where the addition of supersymmetry provides extra
control for the strong-coupling confinement dynamics at low energy [167].
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4.3. Examples of Fermion Fractionalization

In the following, we will briefly exemplify the fermion fractionalization theory in two
SMG models introduced in Section 2.

4.3.1. (2 + 1)D Honeycomb Lattice Model

The SMG in the (2+ 1)D honeycomb lattice model can be understood using the parton-
Higgs mechanism within the framework of fermion fractionalization [36]. The internal
symmetry in consideration is

G = SU(4)×ZF
2
ZTF

4 , (45)

where ZTF
4 is the essential protecting symmetry. The physical fermion ψ is in the 41

representation of G. The proposed fermion fractionalization scheme ψ ∼ ηψ introduces an
emergent gauge group

K = SU(4), (46)

and puts the fermionic parton ψ in the (11, 4) representation of G× K. This choice fully
specifies the parton theory. The physical and fractionalized fields in the parton construc-
tion are summarized in Table 6, such that all consistency conditions are met among their
symmetry representations.

Table 6. Representations of different fields under (SU(4)×ZF
2
ZTF

4 )G × SU(4)K , as well as the Eu-
clidean spacetime symmetry Spin(3), which are relevant to the SMG in the (2 + 1)D honeycomb
lattice model.

(SU(4)×ZF
2
ZTF

4 )G SU(4)K Spin

ψ 1 = 41 1 spinor (fermion)
φ 2 = 62 1 scalar (boson)

η 0 = 40 ¯ = 4̄ scalar (boson)
ψ 11 = 4 spinor (fermion)
a 10 ¯ = 15 vector (boson)

φ 12 = 6 scalar (boson)

The SMG can be achieved through the parton-Higgs mechanism by gapping out the
bosonic parton η and condensing the parton-Yukawa field φ ∼ ψ̄Γψ. This breaks G× K to
G× K′, where the new gauge group is

K′ = Sp(2) ⊆ SU(4) = K. (47)

In particular, because the parton-Yukawa field φ charges two under both the ZTF
4

symmetry group and the ZK
4 center of the gauge group K = SU(4), condensingφ necessarily

locks the ZTF
4 and ZK

4 generators together, breaking ZTF
4 ×ZK

4 down to ZTF
4 ×ZK′

2 , which is
consistent with the ZK′

2 center of residual gauge group K′ = Sp(2). As G× K is broken to
G× K′, the representation of φ splits into

(12, 6)→ (10, 1)⊕ (10, 5), (48)

which admits a trivial representation (10, 1) in the decomposition, satisfying the trivializing
condition in Equation (39) for the parton-Higgs mechanism to work.
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4.3.2. (3 + 1)D Chiral Fermion Model

The (3 + 1)D chiral fermion model contains three sectors of physical fermions
ψ = ψλ ⊕ ψψ ⊕ ψχ transformed under the symmetry group

G = SU(N)× SU(N + 4). (49)

The SMG in this model can be understood by fermion fractionalization, where only
part of the fermions ψfrac = ψψ ⊕ ψχ is fractionalized: ψψ ∼ η†ψψ and ψχ ∼ η2ψχ, while
ψfree = ψλ remains untouched. The fractionalization introduces an emergent gauge group

K = SU(N + 4). (50)

Table 7 summarizes the representation of fields satisfying all consistency conditions.
To drive the chiral fermions ψ to the SMG phase, the first step is to gap out the bosonic

parton η. Then the theory contains a free fermion theory of ψλ and a QCD theory of
the fermionic partons ψψ ⊕ψχ coupled to the K gauge field a. The trivialization of the
QCD theory can be achieved by either the parton-Higgs mechanism or the s-confinement
mechanism (they are equivalent).

Table 7. Representations of different fields under (SU(N)× SU(N + 4))G × SU(N + 4)K , as well as
the Euclidean spacetime symmetry Spin(4), which are relevant to the SMG in the (3 + 1)D chiral
fermion model.

(SU(N)× SU(N + 4))G SU(N + 4)K Spin

ψλ ( , 1) 1 spinor (fermion)
ψψ ( ¯ , ¯ ) 1 spinor (fermion)
ψχ (1, ) 1 spinor (fermion)
φ ( ¯ , ) 1 scalar (boson)

η (1, ) ¯ scalar (boson)
ψψ ( ¯ , 1) ¯ spinor (fermion)
ψχ (1, 1) spinor (fermion)
a (1, 1) ¯ vector (boson)

φ ( ¯ , 1) scalar (boson)

In the parton-Higgs mechanism, two parton-Higgs fields φ = φ1 ⊕φ2 are introduced
and coupled to the fermions as

− (φ†
1(ψ

ᵀ
χiσ2ψψ) +φ2(ψ

ᵀ
λiσ2ψψ) + h.c.), (51)

which is closely reminiscent of the Yukawa–Higgs decomposition Equation (25) of the
SMG interaction in the chiral fermion model. Both parton-Higgs fields φ1,2 are in the
representation (( ¯ , 1), ) of G× K. Condensing the parton-Higgs field φ in a “color-flavor”
locked form, the SU(N) (flavor) subgroup in G will be identified with the SU(N) (color)
subgroup in K = SU(N + 4), such that the color-flavor combined SU(N) rotation will form
the diagonal SU(N) group that leaves φ invariant. The color-flavor locking breaks the
G× K group to its subgroup G× K′ with

K′ = SU(4) ⊆ SU(N + 4) = K. (52)



Symmetry 2022, 14, 1475 27 of 51

Some additional U(1) subgroups are ignored here to simplify the discuss, without
hurting the main idea; see [37] for a more rigorous treatment. Under G × K → G × K′,
the representation of φ decomposes as

φ : (( ¯ , 1), )→ ((1, 1), 1)⊕ (( ¯ , 1), 4)⊕ (( ¯ , 1), 1) (53)

which contains the trivial representation ((1, 1), 1) that corresponds to the condensed
configuration 〈φ〉, fulfilling the requirement of Equation (39). Moreover, representations of
fermions branch as

ψλ : (( , 1), 1)→ (( , 1), 1),

ψψ : (( ¯ , 1), ¯ )→ (( , 1), 1)⊕ (( ¯ , 1), 1)⊕ (( ¯ , 1), 4̄),

ψχ : ((1, 1), )→ (( , 1), 1)⊕ (( , 1), 4)⊕ ((1, 1), 6).

(54)

The fermion representation has transmuted, morphing from a chiral representation
of G× K into a vector-like representation of the surviving G× K′. The parton-Higgs field
condensation 〈φ〉 6= 0 will provide mass for almost all fermions via the Yukawa coupling in
Equation (51) (by pairing up conjugate fermion representations), with the only exception of
the ((1, 1), 6) fermions inψχ. However, these fermions are fully neural under the symmetry
group G and only charged under the remaining gauge group K′. The remaining K′ gauge
bosons and the ((1, 1), 6) fermions can be simultaneously removed from the low-energy
spectrum once the K′ gauge fluctuation flow is strong and confines. Hence, no low-energy
freedom is left over, and the system ends up in the SMG phase.

In the s-confinement mechanism, a gauge-neutral combination of fermionic partons
must first exist, as required by Equation (40). As the fermionic partons ψψ ⊕ψχ carry the
gauge charges ¯ ⊕ , respectively (see Table 7), the gauge neural three-fermion combination
can be found in the fusion channel

× ¯ × ¯ → 1 (55)

So the fermionic partons can be confined into a composite fermion through this
confinement channel as

ψcomp ∼ (ψᵀ
χiσ2ψψ)ψψ, (56)

which transforms as (( , 1), 1) under G × K, precisely conjugate to the representation
(( , 1), 1) of the remaining physical fermion ψλ. Therefore, the composite fermion
ψcomp can pair up with the remaining fermion ψλ to produce a G-symmetric mass term
ψᵀ

λiσ2ψcomp, that gaps out all fermions from the low-energy spectrum, leading to the
SMG state.

4.4. Symmetry Extension Construction
4.4.1. Symmetry Breaking vs. Symmetry Extension vs. SMG

From the symmetry perspective, the fermion mass generation generally falls into two
categories: (i) the symmetry breaking mechanism and (ii) the symmetry extension mecha-
nism [24,25] (see Figure 4). At a high level, the SMG is essentially a symmetry extension
mechanism in the absence of the ’t Hooft anomaly (strictly speaking, the SMG mecha-
nism does not enlarge the physical symmetry, but rather extends it to a symmetry-gauge
structure; nevertheless, we will still call it by symmetry extension in a general sense).
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Figure 4. Classification of fermion mass generation mechanisms. Given the spacetime-internal
symmetry G and the representation rG

ψ of the fermion field under G, the system has a trivial mass if the

fusion channel rG
ψ ×A rG

ψ → 1G exists; the system is anomaly free if the anomaly index ν ∈ TPd+1(G)

vanishes (ν = 0).

1. Symmetry/Gauge breaking: Anderson–Higgs mechanism, chiral symmetry breaking,
Dirac mass and Majorana mass are induced by the symmetry breaking—breaking
either global symmetries or gauge structures, by condensing a Yukawa–Higgs field
that couples to a fermion bilinear mass term. More precisely, starting from a symmetry
group G (specifically here an internal symmetry, global or gauged), G is broken down
to an appropriate subgroup G′ ⊆ G to induce quadratic mass term for fermions.
Mathematically, it can be described by an injective homomorphism ι:

G′ ι−→ G. (57)

Here are some explicit examples:

• Bardeen–Cooper–Schrieffer (BCS) type Z2-gauged superconductor with a low
energy Z2 TQFT, we have G′ = Z2 and G = U(1) electromagnetic gauge group.

• The standard model electroweak Higgs mechanism breaks G = GSMq ≡ (SU(3)×
SU(2)×U(1)Y)/Zq with q = 1, 2, 3, 6 and the appropriate greatest common divi-
sor (gcd), down to G′ = (SU(3)×U(1)EM)/Zgcd(q,3).

• (3 + 1)D Dirac mass pairs two Weyl fermions (ψL and ψR) via the Dirac mass
term mD(ψ

†
LψR + ψ†

RψL) which breaks the unitary internal G = U(2) symmetry
of two Weyl fermions down to a vector G′ = U(1) symmetry.

• (1 + 1)D Dirac mass pairs two Weyl fermions (ψL and ψR) via the Dirac mass
term mD(ψ

†
LψR + ψ†

RψL) which breaks the unitary internal G = U(1)L ×U(1)R
symmetry of two Weyl fermions down to a vector U(1) symmetry, so G′ = U(1).

• (3 + 1)D Majorana mass pairs a single Weyl fermion ψL to itself, ψR = iσ2ψ∗L, so
the Majorana mass term mMψ̄ψ = mM(ψ†

L(iσ
2)ψ∗L + ψT

L(−iσ2)ψL), which breaks
the unitary internal G = U(1) symmetry of a Weyl fermion down to a fermion
parity G′ = ZF

2 symmetry.

2. Symmetry/Gauge extension: In contrast, the symmetry extension [25] or gauge en-
hancement [168] provides a fermion mass generation mechanism that preserves the
symmetry. Symmetry extension construction of gapped phases first appears in [24]
based on the gauge bundle descriptions, then Ref. [25] refines the idea to the lattice
models, group-cohomology cocycle or continuum field theory descriptions. It extends
the symmetry group G (that can include the spacetime-internal symmetry, global or
gauged) to a larger group G̃ by enlarging the Hilbert space with additional/redundant
degrees of freedom, in order to trivialize the ’t Hooft anomaly or to lift any other sym-
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metry obstruction toward a gapped phase (such as the symmetry-forbidden bilinear
mass). Mathematically, it can be described by a surjective homomorphism r:

G̃ r−→ G, (58)

which can be understood as part of the group extension in an exact sequence (see
Equation (59)) [25], or can be further generalized as the fibrations of their classifying
spaces and higher classifying spaces [59,169,170]. The symmetry extension can induce
the topological mass in the presence of an anomaly, and the symmetric mass in the
absence of an anomaly [122].

(a) Topological mass generation (TMG)—if the fermion system has a non-trivial
’t Hooft anomaly in G, the anomaly will post an obstruction toward trivial
gapping, which already rules out SMG, leaving the possibility to TMG. A non-
vanishing perturbative local anomaly disallows any symmetric gapped phase
(even with topological order); also it can never be trivialized by a symmetry
extension. So, in order to implement the symmetry extension construction, the
non-vanishing G-anomaly must be a nonperturbative global anomaly in G.
For simplicity, the discussion below focuses on a limited special case of (58).
If the global anomaly in G can become anomaly-free in G̃, by pulling the G
group back to the extended G̃ group via a short exact sequence

1→ K → G̃ r−→ G → 1, (59)

and if the normal subgroup K is a discrete finite group, then the fermion can
acquire a topological mass upon gauging K, which gives rise to a discrete
K gauge TQFT in appropriate spacetime dimensions and under appropriate
criteria detailed in Section 4.4.2. This is also called the group extension of the
original quotient group G extended by a normal subgroup K to the total group
G̃. The topological mass refers to the energy gap of a TQFT matching the ’t
Hooft anomaly of G. Finding the group extension G̃ often requires the essential
use of algebraic topology criteria, such as the Lydon–Hochschild–Serre spectral
sequence method [25]. Refs. [25,59,63,122,171,172] provide several explicit
lattice Hamiltonian or lattice path integral constructions.

(b) Symmetric mass generation (SMG)—In the case of SMG, the fermion system
is already anomaly free, but the physical symmetry G is too restrictive to
allow any symmetric fermion-bilinear mass (i.e., the symmetry obstruction
rG

ψ ×A rG
ψ 9 1G). However, with the symmetry extension described by the

following short exact sequence

1→ K → G̃ = G× K r−→ G → 1, (60)

the fermion-bilinear mass (i.e., the parton-Higgs field φ) can be charged un-
der both G and K, which can possibly be condensed, breaking only K to its
subgroup K′ without breaking G, as long as the condensed fermion-bilinear
mass transform trivially under G × K′ ⊆ G × K (i.e., the fusion channel
(rG
ψ, rK′

ψ )×A (rG
ψ, rK′

ψ )→ (1G, 1K′) exists and the symmetry obstruction is lifted).
Moreover, the extended normal subgroup K (and K′) can be (and will always
be) gauged, such that the actual physical symmetry will not be enlarged by the
symmetry extension. This is simply a rephrasing of the parton-Higgs mecha-
nism in the fermion fractionalization framework discussed in Section 4.2.
Figure 5 concludes how the symmetry-gauge group is extended/broken in
different phases. A few general requirements for the SMG to happen are
summarized as follows:
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• The full gauge group K must be large enough to counteract any non-trivial
action of the symmetry group G on the parton-Higgs field φ, i.e., G must
acts projectively on φ, such that the G symmetry can remain unbroken
under the condensation of φ.

• To achieve SMG in this framework, the deformation path must pass
through the strong coupling regime, where neither the bosonic parton η
nor the parton-Higgs field φ has an expectation value, and the full gauge
group K is unbroken.

• After the parton-Higgs field φ condenses, the remaining unbroken gauge
group K′ would better be either trivial or non-Abelian such that either
there is no residual K′ gauge fluctuation or the residual K′ gauge fluc-
tuation can be confined automatically. Otherwise, if K′ is Abelian, it
becomes possible for the SMG critical point to expand into a critical phase,
described by an Abelian K′-gauge theory.

4.4.2. More on Symmetry Extension Construction

The symmetry extension construction G̃ r−→ G in (58) based on the pullback G-symmetry
to the extended G̃-symmetry can be interpreted in different languages for different commu-
nities [25]:

• For condensed matter, a nontrivial SPT state in the G symmetry cannot be deformed to
a trivial tensor product state via a finite-depth of local unitary transformations without
breaking the G-symmetry. However, the successful symmetry extension means that
we can find an appropriate G̃ such that the SPT state in the extended G̃ symmetric
Hilbert space can be deformed to a trivial tensor product state via a finite-depth of
local unitary transformations still preserving the G̃-symmetry.

• For quantum field theory or high-energy physics, the successful symmetry extension
means that the ’t Hooft anomaly in G-symmetry becomes anomaly-free in G̃-symmetry.

• For mathematics, the successful symmetry extension means that a nontrivial class
of cocycle, cohomology, or cobordism of the G-symmetry becomes a trivial class in
the G̃-symmetry. Suppose the nontrivial class of G-symmetry cocycle, cohomology,
or cobordism in the D dimensions is labeled by ωG

D, then the trivialization means that
its pullback (namely r∗ωG

D) becomes a G̃-symmetry coboundary in the D dimensions
(namely ωG̃

D = δβG̃
D−1) which splits to the G̃ cochain (namely βG̃

D−1) in the D − 1
dimensions [25]. In summary, given the ωG

D of the G-symmetry, the successful
symmetry extension requires to find a solution of both the extended G̃ and βG̃

D−1
to satisfy

r∗ωG
D = ωG̃

D = δβG̃
D−1. (61)

Here, the bulk dimension is D = d + 1, while the theory (on the boundary) with ’t
Hooft anomaly has its dimension D − 1 = d. Below, some examples of the symmetry
extension construction of gapped phases in various dimensions based on the simplest short
exact sequence in (59),

1→ K → G̃ r−→ G → 1

with a finite group K, are considered. In particular, two issues should be addressed:

1. Given a theory with ’t Hooft anomaly in G symmetry (which we shall also call it a dD
anomalous boundary theory of a (d + 1)D bulk SPT), can G̃ be found to trivialize the
anomaly? If so, what is the minimal G̃?

2. If the G̃ is found, there are two implications of the construction based on (59) [25]:

• G̃-symmetric extended gapped phase (as a G̃-symmetric gapped boundary of
the bulk G-SPT). In this case, all K, G̃ and G are not dynamically gauged.
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• G-symmetric gapped dynamical K-gauge theory with a ’t Hooft anomaly in G.
When K is dynamically gauged, in some cases, the G is preserved at IR; in other
cases, the G becomes spontaneous symmetry breaking (SSB) at IR. One should
also be careful to distinguish the two different kinds of dynamics.

Yukawa-Higgs 
field

Bosonic 
parton

gapped, disordered
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Figure 5. Symmetry-gauge groups in different phases of the Yukawa–Higgs field and the bosonic
parton field.

Ref. [25] proves that “given any unitary or anti-unitary finite group G, for d ≥ 1, there
always exists a finite K-extension to a G̃-symmetric extended gapped phase to trivialize any non-
perturbative global anomaly in G (see also the proof given later in [169]).” It is physically
meaningful to consider gauging K for d ≥ 2. Once K is dynamically gauged, Ref. [25] finds
that G-symmetric gapped dynamical K-gauge theory with a ’t Hooft anomaly in G can only be
obtained for d ≥ 3, but also finds that the G-symmetry is spontaneously broken for d = 2.

The above result is established when G is an ordinary 0-symmetry that acts on the
0D point operator. The symmetry extension construction can also be generalized to higher
global symmetries [173] such as the 1-symmetry that acts on the 1D line operator (see
a recent review [174,175]). Here are some examples (Table 8 for a summary) including
ordinary and higher symmetries:
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Table 8. Summary of the symmetry-extension construction based on 1→ K → G̃ r−→ G → 1 in (59).
The first and second column show the spacetime dimension d and the G-anomalous theory (as a
boundary [bdry] of a bulk d + 1D SPT). The third column shows whether the G̃-symmetry-extended
gapped phase exists. The fourth column shows how the boundary G-anomaly or bulk G-SPT
classification is reduced in G̃, denoted as TPd+1G ⇒ TPd+1G̃. The last column shows the dynamics
after gauging K: Even if G̃-symmetry-extended gapped phase exists, the K-gauged dynamics can
induce either a G spontaneous symmetry-breaking (SSB) or a G-symmetric K gauge theory.

Dim
d

Original System G K→ G̃→ G
Reduced Class in G̃
of d + 1D G-iTQFT
or dD G-Anomaly

Gauge K
Dynamics

0+1

bdry of Haldane chain:
a doublet or qubit

SO(3) Z2 → SU(2)→ G Z2 ⇒ 0

No

ZT
2 Z2 → ZT

4 → G

bdry of 4 Kitaev chains:
4 Majorana modes

ZT
2 ×ZF

2

Z2 → ZT
4 ×ZF

2 → G Z8 ⇒ Z4

bdry of 2 Kitaev chains:
2 Majorana modes

Z2 → DF,T
8 → G Z8 ⇒ Z2

bdry of 2 Kitaev chains:
2 Majorana modes

ZTF
4 Z4 →MF,T

16 → G Z2 ⇒ 0

1+1
bdry of (2 + 1)D CZX model:

(1 + 1)D edge modes
Z2

Z2 → Z4 → G
Symm-extension, but SSB.

Z2 ⇒ 0 G SSB

2+1

bdry of (3 + 1)D w1(TM)4 SPT:
(2 + 1)D surface state

ZT
2 Z2 → ZT

4 → G Z2 ⇒ 0 G-symmetric
K-gauge TQFT

bdry of (3 + 1)D kP(B2) higher-
SPT: (2 + 1)D surface state SO×Z2,[1]

even k:
Z2 → Spin×Z2,[1] → G

but SSB k ∈ Z4 ⇒ k ∈ Z2

G SSB

odd k:
No symm-extension.

No

3+1

bdry of (4 + 1)D A5 SPT:
(3 + 1)D bdry state

ZT
2 Z2 → Z4 → G Z2 ⇒ 0

G-symmetric
K-gauge TQFT

bdry of (4 + 1)D w3(TM)Be
2

higher-SPT
SO×Ze

2,[1] Z2 → Spin×Ze
2,[1] → G Z2 ⇒ 0

bdry of (4 + 1)D kAP(Be
2)

higher-SPT
Spin×ZF

2
Z8

×Ze
2,[1]

even k:
Z2 → Spin×Z8 ×Ze

2,[1] → G

k ∈ Z4 ⇒ k ∈ Z2odd k:
No symm-extension.
No-go obstruction.

No

bdry of (4 + 1)D 1
2 w̃1(TM)P(Be

2)

higher-SPT:
(3 + 1)D SU(2)θ=π YM

ZT
2 ×Ze

2,[1]
Z2 → ZT

2 ×Ze
4,[1] → G

Symm-extension, but SSB.
Z2 ⇒ 0 G SSB

bdry of (4 + 1)D
(−N f )η4d(PD(A))-SPT:

(3 + 1)D 15N f -fermion SM

Spin×ZF
2
Z4,X

even N f :

Z2 → Spin×Z4 → G,
Z2 → Spin×Z8 → Spin×Z4

Z16 ⇒ Z2

G-symmetric
K-gauge TQFT

odd N f :

No symm-extension.
No-go obstruction.

No

1. d = 1, a (0 + 1)D anomalous theory and a (1 + 1)D bulk:
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• Two Kitaev’s chains: In Section 2.1, the discussion was limited to gapping
(0 + 1)D eight Majorana modes or (1 + 1)D eight Kitaev’s chains by the SMG,
preserving the ZT

2 ×ZF
2 , which is free from the Z8 global anomaly. Beyond SMG,

even for (0 + 1)D two Majorana modes or (1 + 1)D, two Kitaev’s chains with
2 mod 8 class of Z8 global anomaly, it is still possible to gap the whole system,
leaving a single ground state without breaking G = ZT

2 ×ZF
2 , but instead by extend-

ing the symmetry to a dihedral group of order 8 as G̃ = DF,T
8 ≡ ZT

4 oZF
2 [122].

Namely, when T2 = +1 is extended to a time-reversal symmetry fictional-
ization T2 = −1 and T4 = +1, the G̃ = DF,T

8 symmetric interactions can
lift up the degenerate Majorana zero modes. Crucially, the time-reversal ZT

2
generator T does not commute with the fermion parity ZF

2 generator (−1)F,
but T(−1)FT−1 = −(−1)F. This means that T switches a bosonic sector |B〉
and a fermionic sector |F〉 in the Hilbert space. This is called supersymmetry
extension that trivializes this (0 + 1)D fermionic anomaly and also trivializes the
(1 + 1)D fermionic SPT state [122]. Another related property is that the pre-
served symmetry demands that the anomalous boundary theory of ±2 mod 8
Majorana zero modes must be N = 2 supersymmetric quantum mechanics with
two supercharges [176].
Two Kitaev’s chains can also allow G = ZTF

4 symmetry with T2 = (−1)F [177].
When T2 = (−1)F is extended to a time-reversal symmetry fictionalization
T4 = −1 and T8 = +1, non-Abelian order-16 finite G̃ = MF,T

16 symmetric
interactions can lift up the degenerate Majorana zero modes [176].

• Four Kitaev’s chains and a Haldane chain: for (0 + 1)D four Majorana modes
or (1 + 1)D four Kitaev’s chains, its 4 mod 8 class of Z8 global anomaly is
actually equivalent to a single (1 + 1)D Haldane’s chain [81] (tensor product
with a trivial gapped fermionic product state) with 1 mod 2 class of Z2 global
anomaly. The G = ZT

2 -symmetric Haldane chain can be trivialized in a bosonic
G̃ = ZT

4 [171]. The G = SO(3)-symmetric Haldane chain can be trivialized in a
G̃ = SU(2) [171].

• Related studies on the fractionalized symmetries on the boundary of the layers
of Kitaev chains can also be found in [177–181]. In particular, Refs. [178,180]
studied the pure Z2 class global gravitational anomaly on the boundary of a
single Kitaev chain (which is an invertible fermionic topological order beyond the
SPT, known as the mathematical Arf invariant). The pure gravitational anomaly
cannot be trivialized by any symmetry extension, but may be “trivialized” by
coupling to a gravitational theory [178].
Here, a (0+ 1)D theory has no parity P but only at most time-reversal T, and Ma-
jorana fermion has no charge conjugation C symmetry; so only the T fractional-
ization is found. In higher dimensions, the common theme along the direction of
this phenomenon is the C-P-T fractionalization [182].

2. d = 2, a (1 + 1)D anomalous theory and a (2 + 1)D bulk:

• The (1 + 1)D edge of a (2 + 1)D CZX model as a Z2-SPT state is known to allow
a symmetric gapless or a symmetry-breaking gapped boundary [183]. However,
the G = Z2 can be extended to give a G̃ = Z4-symmetry-extended gapped
boundary. Unfortunately, gauging the normal subgroup K = Z2 results in a
(1 + 1)D discrete K-gauge theory with G = Z2 spontaneous symmetry breaking,
which is consistent with the standard lore that there is no (1+ 1)D non-invertible
intrinsic topological order, at least in the bosonic systems.
Other applications of the symmetry-extension construction on the (1+ 1)D gauge
theories and orbifolds can be found in a recent survey [184].

3. d = 3, a (2 + 1)D anomalous theory and a (3 + 1)D bulk:

• The (2 + 1)D surface of a (3 + 1)D ZT
2 -SPT state (topological superconductor)

allows a symmetric gapless, symmetry-breaking, or symmetric gapped surface
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topological order boundary [12,185,186]. The G = ZT
2 can be extended to give

a G̃ = ZT
4 -symmetry-extended gapped boundary [25]. Gauging the normal

subgroup K = Z2 results in a (2 + 1)D discrete K-gauge theory with both electric
and magnetic gauge charges that are Kramers doublet with T2 = −1.

• The (2 + 1)D surface state of (3 + 1)D kP(B2) higher-SPT state with k ∈ Z4: This
higher-SPT state is protected by a 1-form symmetry (denoted as G = SO×Z2,[1])
which couples to a 2-form background field B2. The P(B2) means the Pontryagin
square of B2. The symmetry-extension construction can obtain a gapped phase
for an even k via extending to G̃ = Spin× Z2,[1] (although gauging K = Z2
results in G SSB), but the symmetry-extension trivialization is proven to not exist
for an odd k [170]. Later, Ref. [187] proved a no-go theorem that the symmetry-
preserving TQFT also does not exist for an odd k. This means the (2+ 1)D surface
state must be either symmetric gapless or symmetry-breaking for an odd k.

4. d = 4, a (3 + 1)D anomalous theory and a (4 + 1)D bulk:

• The (3 + 1)D boundary of a (4 + 1)D Z2-SPT state allows a symmetric gapless,
symmetry-breaking, or symmetric gapped surface topological order boundary.
The G = Z2 can be extended to give a G̃ = Z4-symmetry-extended gapped
boundary [25]. Gauging the normal subgroup K = Z2 results in a (3 + 1)D
discrete K-gauge theory with both electric and magnetic gauge charges and that
carries a fractional G charge.

• The (3 + 1)D boundary of a (4 + 1)D w3(TM)Be
2 higher-SPT state is protected

by a 1-form electric symmetry (denoted as G = Ze
2,[1], coupled to a 2-form Be

2
field), while the wj(TM) is the jth Stiefel–Whitney class of the tangent bun-
dle TM of spacetime manifold M. The corresponding anomaly occurs as a
part of the anomaly of (3 + 1)D SU(2) Yang–Mills theory coupled to two Weyl
fermions in the adjoint representation of SU(2) (below called as the adjoint QCD4;
see [170,188–190]). The G = Ze

2,[1] can be extended to give a G̃ = ZF
2 × Ze

2,[1]-
symmetry-extended gapped boundary [170]. Gauging the normal subgroup
K = Z2 results in a (3 + 1)D discrete K-gauge theory such that its electric gauge
charge has fermionic statistics.

• The (3 + 1)D boundary of a (4 + 1)D kAP(Be
2) higher-SPT state: again, this

is part of the anomaly of the adjoint QCD4 [189]. The higher SPT is protected
by a Z8-axial symmetry (coupled to a 1-form A field, with its fourth power of
the symmetry generator equals to (−1)F) and a 1-form electric symmetry Ze

2,[1]
(coupled to a 2-form Be

2 field), which can be denoted as a spacetime-internal
symmetry G = Spin×ZF

2
Z8 × Ze

2,[1]. There is a k ∈ Z4 class. The even k class

can be trivialized by a Z2-extension to G̃ = Spin× Z8 × Ze
2,[1]. The odd k class

cannot be trivialized by any symmetry extension [170]. Later, Ref. [187] proved
a no-go theorem that the symmetry-preserving TQFT also does not exist. The
above results [170,187] turned out to rule out certain UV-IR duality proposal of
the adjoint QCD4 hypothesized in [190].

• The (3 + 1)D boundary of a (4 + 1)D 1
2 w̃1(TM)P(Be

2) higher-SPT state: The
boundary turns out to associate with the anomaly of the (3 + 1)D SU(2) Yang–
Mills gauge theory with a θ = π F ∧ F topological term (denoted as SU(2)θ=π

YM) [191–193], while the w̃1(TM) is the twisted first Stiefel–Whitney class of TM
such that 1

2 w̃1(TM)P(Be
2) is a mod 2 class. The SU(2)θ=π YM kinematically at

UV has time-reversal ZT
2 and 1-form Ze

2,[1] symmetries. The G = ZT
2 ×Ze

2,[1] can

be extended to G̃ = ZT
2 ×Ze

4,[1] to trivialize the anomaly, thus the G̃-symmetric
extended gapped phase can be constructed [192,193]. However, upon gauging
K = Z2,[1], this induces the G spontaneous symmetry breaking (SSB) [193]. Later,
Ref. [187] proved a no-go theorem that the symmetry-preserving TQFT also does
not exist. The above results together demand that the IR fate of SU(2)θ=π YM
must be either symmetric gapless or symmetry-breaking only.
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• The (3 + 1)D boundary of a (4 + 1)D kη4d(PD(A)) SPT state: This is a k ∈ Z16
class of (3 + 1)D anomaly and (4 + 1)D SPT state, protected by a unitary Z4,X
symmetry such that X2 = (−1)F; in terms of a spacetime-internal symme-
try G = Spin ×ZF

2
Z4,X . The η4d(PD(A)) is a 4d Atiyah–Patodi–Singer eta

invariant η4d evaluated on the 4-manifold Poincaré dual (PD) to the (Z4,X/ZF
2 )-

gauge field A. The η4d(PD(A)) is a cobordism invariant of the bordism group

Ω
Spin×ZF

2
Z4,X

5 = Z16, see [63,194,195]. It turns out that k = (−N f ) of such a SPT
state captures a global anomaly of (3 + 1)D 15N f -Weyl-fermion standard model
(SM), where N f is the number of families of quarks and leptons [194,196]. If k is
odd, Ref. [197] proves an obstruction, so the symmetry-gapped TQFT is not possi-
ble to saturate this odd k anomaly. If k is even, Refs. [195,198,199] show that two
layers of symmetry extensions can construct the G̃ = Spin× Z8-symmetry ex-
tended gapped phase: the first layer 1→ Z2 → Spin×Z4 → Spin×ZF

2
Z4,X → 1

and the second layer 1 → Z2 → Spin× Z8 → Spin× Z4 → 1. These construc-
tions may have applications beyond the SM physics [198–200].

5. Features and Applications
5.1. Green’s Function Zeros

Given different mass generation mechanisms discussed above, a key question is how
to diagnose the SMG mechanism: if a mass gap is observed in an interacting fermionic
system, how do we know the mass gap is opened up through the SMG mechanism, rather
than a more conventional symmetry-breaking mechanism, say, by condensing a fermion-
bilinear mass? Over the years it was gradually realized that one of the characteristic features
of the SMG phase is that, the fermion Green’s function G(iω) = −〈ψ(iω)ψ†(iω)〉 in the
Matsubara frequency space should have a zero at ω → 0, i.e., detG(iω → 0) = 0. This
applies to the SMG phase either in the bulk or on the boundary of a fermionic system.

There are various ways to argue the necessary existence of this Green’s function zero
in a system with SMG. For the Green’s function G(iω, k) defined in the bulk, one general
argument for the existence of zero is based on the topological number associated with
the free fermionic SPT state [201,202]. For a fermionic system with translation symmetry,
the topological number can be defined in the Matsubara frequency and momentum space
using the Euclidean spacetime full fermion Green’s function [127,203–208]:

n ∼
∫

dωdd−1k tr[B(G−1∂G) ∧ (G−1∂G) · · · ], (62)

where G is the matrix of the full fermion Green’s function, and B is certain matrix in the
flavor space. For a Chern insulator at even spatial dimension, B is an identity matrix,
and n is equivalent to the Chern number. One can prove mathematically that the number n
must be a quantized integer, and it can only change discontinuously when the integrant of
Equation (62) becomes singular.

The singularity of G−1∂G happens at two types of “transitions”. The first type of transi-
tion is a physical transition where detG−1(iω = 0) = 0 vanishing to zero, i.e., the fermions
become gapless. This corresponds to the quantum critical line between the fermionic SPT
and trivial phases in the weak-coupling regime, as shown in Figure 6. However, note that
in the definition of the topological number n in Equation (62), G−1 and G appear on an
equal footing, and hence n can also change when detG(iω = 0) = 0, i.e., when the Green’s
function has a zero. Hence when the free fermion SPT phase is trivialized by interactions,
although there is no unavoidable phase transition between the SPT and the trivial phase,
the topological number n still has to change discontinuously somewhere in the phase
diagram, as shown in Figure 6. Since there is no real physical transition, the number n has
to change through the zero of the full interacting fermion’s Green’s function. This must
hold throughout the SMG phase (line), regardless of the interaction strength g (as long as
g > gc).
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Figure 6. Schematic phase diagram between a trivial phase and a (fake) fermionic SPT phase that
can be trivialized by interaction. Massless bulk fermions along the critical line in the weak-coupling
limit undergoes the SMG as the interaction g exceeds a critical value gc. Although the two phases
(technically one phase) are smoothly connected through the strong-coupling regime, the topological
number n must still jump across the missing “phase boundary”, along which the Green’s function
must have a zero.

Computing the full fermion’s Green’s function for a given interacting Hamiltonian is
generally a challenging task. To argue that the Green’s function zero is a general feature
of the SMG state independent of microscopic details, one relies on the topological defect
condensation construction for the SMG state, introduced in Section 4.1. Starting with the
SMG of eight Majorana zero modes in (0 + 1)D, the fermion Green’s function can be
explicitly computed [143,209]:

Gab(iω) ∼ iωδab
(iω)2 −m2 , (63)

where m is an effective mass proportional to the strength of the fermion interaction. Ob-
viously, in (0 + 1)D, Gab(iω) approaches zero as iω → 0. Now one can construct a higher
dimensional SMG state by decorating every topological point defect of the Yukawa field
with eight interacting Majorana fermions in its SMG state, and then proliferating the point
defects to put the Yukawa field in a disordered phase, following the strategy of the deco-
rated domain wall construction [210]. The fermion Green’s function can be evaluated in the
spacetime by patching the (0 + 1)D Green’s functions along the world line of the topologi-
cal defect, and then path integrating all possible world line configurations. Following this
approach, Ref. [211] was able to show that the fermion Green’s function takes the general
form of

Gab(k) ∼
kµγµδab

kµkµ −m2 , (64)

which universally exhibits a zero G(kµ = 0) = 0 in zero momentum-energy limit. Before the
non-perturbative prove by Ref. [211], Equation (64) was first obtained in Ref. [209] by a
perturbative calculation, and later argued in Refs. [36,107,164] using the fluctuating bilinear
mass picture.

5.2. Deconfined Quantum Criticality

While the Green’s function zero provides a key diagnosis of the SMG phase, what
about the diagnosis for the SMG transition? The theoretical framework of fermion frac-
tionalization indicates that if the SMG transition is direct and continuous, it should be a
deconfined quantum critical point (DQCP) [36], where the physical fermions ψ fractionalize
into deconfined bosonic η and fermionic ψ partons at and only at the critical point.

The concept of DQCP [212–214] was originally introduced to describe the direct con-
tinuous transition between the antiferromagnetic phase and the valence bond solid phase
in (2 + 1)D quantum spin models. The two phases break distinct symmetries (spin-rotation
and lattice-rotation symmetries, respectively) and cannot be connected by a single quantum
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critical point without fine-tuning in the Landau–Ginzburg–Wilson paradigm. The DQCP
provides an explanation for this exotic quantum critical point by fractionalizing the physical
spin into deconfined spinons (partons) at and only at the critical point. The continuous
SMG transition is also an exotic quantum critical point that requires the DQCP description.
However, unlike the conventional (bosonic) DQCP that fractionalizes bosonic degrees of
freedoms, the continuous SMG transition is a fermionic version of DQCP, as it fractionalizes
fermionic degrees of freedoms.

The SMG critical point can be viewed as the intersection among four phases:

1. The massless fermion phase (〈η〉 6= 0, 〈φ〉 = 0);
2. The SMG phase (〈η〉 = 0, 〈φ〉 6= 0);
3. The spontaneous symmetry breaking (SSB) massive phase (〈η〉 6= 0, 〈φ〉 6= 0);
4. The fermionic parton QCD phase (if stable) (〈η〉 = 0, 〈φ〉 = 0).

The four phases correspond to the four different states of the bosonic parton η and
the parton Higgs φ fields, as summarized in Figure 5. Figure 7a shows a schematic phase
diagram. The DQCP emerges at the origin of the phase diagram, where both η and φ are
critical. It seems that a direct transition between the massless fermion phase to the SMG
phase requires fine tuning through the DQCP. However, if the fermionic parton QCD theory
is dynamically unstable, the QCD phase will shrink to a single transition line between the
massless fermion and the SMG phases, such that a direct continuous SMG transition can
persist without fine tuning.

SMG
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〈ϕ〉 ≠ 0

SSB phase
〈η〉, 〈ϕ〉 ≠ 0
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Figure 7. (a) Schematic phase diagram determined by whether η and φ are condensed or not.
The phase transitions belong to the following universality classes: Gross–Neveu (GN), Wilson–Fisher
(WF), Higgs, or confinement (Conf.). The DQCP emerges at the intersection all phases. (b,c) Flow of
coupling constant g and the scaling dimensions for physical fermions ∆ψ and/or the interaction term
∆int in (b) the (1 + 1)D 3-4-5-0 model, (c) higher dimensional models.

Strictly speaking, the DQCP picture for the SMG transition is only valid and necessary
in (2 + 1)D or higher dimensions. The SMG in lower dimensions (i.e., (0 + 1)D and (1 +
1)D) are exceptional and can be understood without involving fermion fractionalization
or DQCP.

• In the (0 + 1)D Fidkowski–Kitaev model, the four-fermion interaction will immedi-
ately open the gap, which can be understood by solving the quantum mechanical
problem in Equation (1) exactly. There is no notion of phase transition and quantum
criticality in (0 + 1)D, not to mention DQCP.

• In (1+ 1)D, take the 3-4-5-0 model for example, the SMG can be understood within the
Luttinger liquid framework as a BKT transition. The six-fermion SMG interaction in
Equation (11) has a bare scaling dimension ∆int|g=0 = 5 in the free fermion limit, which
is perturbatively irrelevant. However, with a non-perturbative (finite) interaction
strength, under the RG flow, the Luttinger parameters (as exact marginal parameters)
will be modified by the interaction, leading to the decrease in the scaling dimension
of the interaction term. When the scaling dimension drops below 2 (which is the
spacetime dimension), the SMG interaction will become relevant, driving the system
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into the SMG phase [37,113]. So the SMG transition is triggered right at ∆int|g=gc = 2;
see Figure 7b.

• In higher dimensions ((2 + 1)D and above), interactions are always perturbatively
irrelevant at the free fermion fixed point, such that an infinitesimal interaction g will
not immediately drive the SMG transition. Therefore, the transition generally requires
a finite critical interaction strength gc. The critical point (g = gc) is expected to be
an unstable fixed point under RG, which either flows to the free fermion fixed point
(g = 0) or the SMG (gapped phase) fixed point (g = ∞), as illustrated in Figure 7c.

One implication of fermion fractionalization at the DQCP is that the physical fermion
scaling dimension will generally be larger at the SMG transition, compared to the free
fermion fixed point [36]. Massless free fermion (Dirac/Weyl/Majorana) in d-dimensional
spacetime has the scaling dimension ∆ψ|g=0 = (d− 1)/2. At the SMG transition point
(g = gc), the fermion fractionalizes to the critical bosonic parton η and the gapless fermionic
parton ψ. In the large-N limit, the scaling dimensions of partons are ∆η = d/2 − 1
and ∆ψ = (d − 1)/2, such that the leading order estimation of the physical fermion
scaling dimension becomes ∆ψ|g=gc = ∆η + ∆ψ = d − 3/2. For d > 2, the large-N
estimation implies

∆ψ|g=gc > ∆ψ|g=0, (65)

i.e., the fermion scaling dimension will jump to a higher value right at the SMG transition,
as shown in Figure 7c. For d = 2, the above naive dimension counting seems to indicate
∆ψ|g=gc = ∆ψ|g=0 (which is not correct, unless gc = 0). More careful Luttinger liquid
RG analysis [113] shows that the fermion scaling dimension increases continuously with
the interaction until the transition happens, as shown in Figure 7b. Thus, the statement
∆ψ|g=gc > ∆ψ|g=0 still holds for the (1 + 1)D model.

5.3. Symmetric Mass Generation in the Standard Model

One important motivation to study the SMG is to seek the lattice regularization
of chiral gauge theories, in particular the standard model of particle physics. The goal
is to gap the fermion doublers (mirror fermions) without affecting the original chiral
fermions [38,45,101,103,105,110]. Possible routes to gap the standard model with either
15N f or 16N f Weyl fermions via the SMG are reviewed in the following, where N f stands
for the family (or generation) number and can be taken to be N f = 3.

5.3.1. Symmetry Extension of the 15N f - or 16N f -Weyl–Fermion Standard Model

The (3 + 1)D standard model (SM) has a chiral internal symmetry group of the Lie
algebra su(3)× su(2)× u(1)Y, which could correspond to either of the four versions of Lie
groups for q = 1, 2, 3, 6:

GSMq ≡
SU(3)× SU(2)×U(1)Y

Zq
, (66)

which are all compatible with all known particle representation data to date. The following
discussion is applicable to any of the four versions of SM for q = 1, 2, 3, 6. For any specific
version, the SM contains N f = 3 families (generations) of matter fermions. In each family,
there can be either 15 or 16 left-handed Weyl fermions. The corresponding SM phases will
be denoted as 15N f -SM and 16N f -SM, respectively. The first 15 Weyl fermions transform
in the following representations of su(3)× su(2)× u(1)Y

d̄R ⊕ lL ⊕ qL ⊕ ūR ⊕ ēR
= (3, 1)2 ⊕ (1, 2)−3 ⊕ (3, 2)1 ⊕ (3, 1)−4 ⊕ (1, 1)6 (67)

in each family. Here uR and dR are up and down types of right-handed quarks. The qL is
the su(2) doublet of up and down types of left-handed quarks. The eR is the right-handed
electron. The lL is the su(2) doublet of neutrino and electron types of left-handed leptons.
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The 16th Weyl fermion corresponds to the sterile neutrino ν̄R = (1, 1)0, which can be
appended to Equation (67) in any of the families.

For simplicity, all SM fermions are assumed to be massless, without including the
electroweak Higgs and its symmetry breaking. To apply SMG to 15N f -SM or 16N f -SM,
one shall confirm that the two necessary conditions in Section 2.5 are satisfied. For the
second condition in Section 2.5, it is true in the SM. For the first condition, several recent
works checked the cobordism group classification of anomalies in the SM [194,196,198,215].
Given the spacetime-internal symmetry G = Spin× GSMq , the anomaly index ν ∈ TP5(G)
belongs to the cobordism group

TP5(Spin× GSMq) =

{
Z5 ×Z2, q = 1, 3,
Z5, q = 2, 6.

(68)

As checked in Refs. [196,198,215], The perturbative local anomalies (Z classes) and
nonperturbative global anomalies (Zn classes) all vanish (ν = 0) for both the 15N f -SM
and 16N f -SM, such that the SMG is possible in either cases. However, if an additional
continuous baryon minus lepton symmetry U(1)B−L is to be preserved, the spacetime-
internal symmetry is enlarged to G = Spin×ZF

2
U(1)B−L × GSMq = Spinc × GSMq , then the

anomaly index ν ∈ TP5(G) belongs to a different cobordism group

TP5(Spinc × GSMq) = Z11, q = 1, 2, 3, 6, (69)

which only vanishes (ν = 0) for 16N f Weyl fermions [198,215]. Therefore, the SMG
preserving an additional U(1)B−L only works for the 16N f -SM.

Razamat and Tong (Refs. [37,106]) showed that both the 15N f -SM and 16N f -SM can
be embedded into a left-right (LR) model with 27 Weyl fermions (denoted as the 27N f -LR)
preserving the GSMq symmetry. The key idea is to bring additional fermions down from
high-energy that are vector-like under GSMq to mix with the low-energy SM chiral fermions
in each family:

(3, 1)2 (1, 2)−3 (3, 2)1 (3, 1)−4 (1, 1)6

(3, 1)2 (1, 2)−3 (1, 1)0

(3, 1)−2 (1, 2)+3 (1, 1)0

. (70)

The first row of Equation (70) corresponds to the original 15 left-handed Weyl fermions
in Equation (67), and the second and third rows of Equation (70) correspond to 6 left-handed
and 6 right-handed additional Weyl fermions in total in a vector-like theory, which add up
to 27 Weyl fermions per family. In (70), all right-handed fermions are complex conjugated to
be written as their anti-particles, so all fermions are written in the left-handed versions. The
sterile neutrino ν̄R (the 16th Weyl fermion) corresponds to one of the (1, 1)0 representations
in Equation (70).

Hereafter for the left-handed and right-handed notations, we always use the italic
fonts L and R to denote spacetime symmetry (Spin group), while we use the text font L and
R for internal symmetry.

The 27N f -LR model has an enlarged symmetry GLRq,p with q, p ∈ {1, 2, 3, 6}, in total,
16 versions,

GLRq,p ≡
GSMq × SU(2)R ×U(1)R

Zp

=
SU(3)× SU(2)L × SU(2)R ×U(1)L ×U(1)R

Zq ×Zp
,

(71)

where SU(2)×U(1)Y in GSMq is renamed to SU(2)L×U(1)L in GLRq,p . The 27 Weyl fermions
can be organized by the SU(2)R irreducible representations, as indicated by the framed
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boxes in Equation (70), or written as the representation of su(3)× su(2)L × su(2)R × u(1)L
×u(1)R: (

d̄R ⊕ lL ⊕ qL ⊕ ūR ⊕ ēR ⊕ ν̄R
)
⊕ d′L ⊕ l̄′R =(

(3, 1, 2)2,−1 ⊕ (1, 2, 2)−3,3 ⊕ (3, 2, 1)1,−2 ⊕ (3, 1, 1)−4,2

⊕ (1, 1, 1)6,−6 ⊕ (1, 1, 2)0,−3
)
⊕ (3, 1, 1)−2,4 ⊕ (1, 2, 1)3,0.

(72)

This essentially promotes d̄R, lL, ν̄R to SU(2)R doublets and introduces new SU(2)R
singlet fermions d′L, l̄′R.

The 27N f -LR phase can be viewed as an intermediate quantum phase between the
15N f -SM or 16N f -SM and the SMG phases, as shown in Figure 8. The transition from the
27N f -LR phase to the 16N f -SM phase can be driven by condensing a scalar Higgs field
hR = (1, 1, 2)0,−3 that couples to the Weyl fermions by the following Higgs term(

εRhR(d̄Rd′L + l̄′RlL) + (h†
Rν̄R)(h†

Rν̄R)
)
+ h.c., (73)

where εR is an anti-symmetric tensor in the SU(2)R doublet subspace. The εL and ε tensor
for the SU(2)L and Lorentz su(2) subspace are omitted. All Lagrangian terms become a
scalar in a trivial singlet representation of both spacetime and internal symmetries. For
each family, the Higgs condensation 〈hR〉 6= 0 (only its upper SU(2)R doublet component
is nonzero and condenses) lifts 11 Weyl fermions with a mass gap (the lower half of both
SU(2)R doublets of d̄R and lL obtain mass, while the dimension-5 term (h†

Rν̄R)(h†
Rν̄R) gives

Majorana mass to only the upper half of the SU(2)R doublet ν̄R), leaves 16 Weyl fermions at
low energy, and breaks the symmetry from GLRq,p down to GSMq ×U(1)B−L.
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Figure 8. A schematic phase diagram among the SMG, the 27N f -LR, the 15N f -SM or the 16N f -SM
phases. The SMG phase is separated from the 27N f -LR phase by the SMG transition. The 15N f -SM
and 16N f -SM phases are separated by the ultra unification (UU) transition [198–200], and they can be
both obtained from the 27N f -LR model phase by different Higgs transitions.

To further lift the sterile neutrino, an additional scalar Higgs field h′ = (1, 1, 1)0,6
should be introduced (with U(1)B−L charge −1), such that the Higgs term becomes(

εRhR(d̄Rd′L + l̄′RlL) + h′(εRν̄Rν̄R)
)
+ h.c. (74)

In each family, the Higgs condensation 〈hR〉, 〈h′〉 6= 0 leaves 15 Weyl fermions at low
energy (the h′(εRν̄RνR) gives a Dirac mass to both upper and lower components of the
SU(2)R doublet ν̄R), breaks the symmetry from GLRq,p down to GSMq with no U(1)B−L, and
drives the transition from the 27N f -LR phase to the 15N f -SM phase.

Embedding the 15N f -SM into the 27N f -LR amounts to the following symmetry extension

SU(2)R ×U(1)R

Zgcd(p,2)
→ Spin× GLRq,p →

Spin× GSMq

Zgcd(p,3)
, (75)
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and embedding the 16N f -SM into the 27N f -LR amounts to the following symmetry extension

SU(2)′R → Spin× GLRq,p →
Spinc × GSMq

Zgcd(p,3)
, (76)

where SU(2)′R = SU(2)R×U(1)R
Zgcd(p,2)×U(1)B−L

.

5.3.2. Symmetric Mass Generation in a 27N f -Weyl-Fermion Left-Right Model

The SMG in the 27N f -LR model can be achieved by both the parton-Higgs mechanism
in Section 4.2.1 and the s-confinement mechanism in Section 4.2.2.

1. The s-confinement mechanism: according to Razamat and Tong [106], one first su-
persymmetrizes the fermions in Equation (70) to their corresponding N = 1 super-
symmetric chiral multiplets as d̄R ⊕ lL ⊕ qL ⊕ ūR ⊕ ēR ⊕ ν̄R ⊕ d′L ⊕ l̄′R 7→ D⊕ L⊕Q⊕
U⊕ E⊕N⊕D′ ⊕ L′. Then gauge the SU(2)R symmetry by turning on a dynamical
SU(2)R gauge field that couples to the su(2)R doublet: D, L, N. A dangerously irrelevant
superpotentialWUV at UV

WUV = LLE + DDU + LDQ + LNL′ + DND′ + h.c. (77)

becomes a GSMq -symmetric relevant deformation that pairs the 15 mesons (Ẽ, Ũ, Q̃, L̃, D̃)
formed by D, L, N via s-confinement) with the remained 15 superfields (namely
Q, U, E, D′, L′) in a quadratic mannerWIR at IR, consequently gapping out all fields
as SMG:

WIR = ẼE + ŨU + Q̃Q + L̃L′ + D̃D′ + h.c. (78)

Here, the su(3) color and su(2)L flavor indices are suppressed, with the understand-
ing that they should be contracted properly to make the Lagrangian a singlet. AsWIR
flows strong, all fermions are gapped from low-energy, resulting in the SMG phase.
When there are multiple families, independent SU(2)R gauge fields are introduced in
each family, such that the total gauge group is SU(2)R1 × SU(2)R2 × · · · × SU(2)RNf

.

This guarantees that the s-confinement can induce the fully gapped SMG phase in
each family independently.

2. The parton-Higgs mechanism: Tong [37] shows that N f families of 27 Weyl-fermion
model can be fully gapped by preserving not only the SM internal symmetry group
GSMq for q = 1, 2, 3, 6, but also an additional continuous baryon minus lepton symme-
try U(1)B−L.
The parton-Higgs mechanism introduces the scalar Higgs fields φ = (1, 2, 2)−3,3.
Ref. [37] suggests to fully gap (the 27 Weyl fermions per family) to achieve the SMG
by adding (

φ(d̄RqL + ν̄R l̄′R + ēRlL) + φ†2ūRd′L
)
+ h.c. (79)

when the generic condensation 〈φ〉 6= 0 occurs. Both SU(2)L and SU(2)R doublet
components of 〈φ〉 can be nonzeros. Here, in Equation (79), the εL, εR and ε tensors
for the SU(2)L, SU(2)R and Lorentz su(2) subspaces are omitted, not written explicitly.
The internal symmetry breaking pattern of this SMG deformation is

GSMq ×Zgcd(p,3)
K = GSMq ×Zgcd(p,3)

SU(2)R ×U(1)R

Zgcd(p,2)

7→
SU(3)× SU(2)diagonal ×U(1)diagonal

Zq
×U(1)B−L, (80)

which leaves a continuous baryon minus lepton number symmetry preserved.
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5.4. Deformation Class of Quantum Field Theories

Given the importance of the universal properties of symmetry and its associated ’t
Hooft anomaly of QFT, Seiberg [216] and others [105] conjectured the following:

• Within the same spacetime-internal symmetry G and the same anomaly ν ∈ TPd+1(G),
different QFTs in a d-dimensional spacetime can be deformed to each other by tuning
coupling parameters or adding degrees of freedom at short distances that preserve
the same symmetry and that maintain the same overall anomaly. (Namely, the whole
system allows all symmetric deformations via symmetric interactions between the
original QFT (with the anomaly index ν) and any new sectors of symmetric QFTs
whose degrees of freedom are brought down from the high energy (anomaly-free
in G).)

This organization principle, called the deformation class of QFTs [216], enables us to
connect different QFTs with the same data (G, ν ∈ TPd+1(G)) in the same spacetime via
symmetric deformations. The deformation class of QFTs in d-dimensional spacetime is
controlled by the cobordism or deformation class of invertible TQFTs in (d + 1)-dimensional
spacetime [4]. Different QFTs in the same deformation class can be viewed as low-energy
effective theories of different quantum phases of the same many-body quantum system,
where the symmetric deformation corresponds to tuning the parameters that drive the
system among different phases in a phase diagram. As different quantum phases can be
separated by quantum phase transitions [217], the same idea applies to different QFTs.
For example, it is meaningful to discuss quantum phase transitions between the SM and
various grand unified theories (GUTs) [218–221]. The notion of deformation class can
be generalized to the context of quantum gravity [222], even in the absence of global
symmetries in quantum gravity [223]. In Ref. [222], the cobordism class TPD−d(G) is
obtained by compactifying a quantum gravity theory in a total D-dimensional spacetime
down to a d-dimensional QFT, via a D− d-dimensional compact manifold, coupled to
gravity. Quantum gravity demands a physical explanation on the trivialization for all of
the cobordism classes in TPD−d(G).

From this deformation class perspective, the SMG in Section 2.5 can be interpreted
as follows:

• A symmetric deformation from a gapless free fermion theory (the free limit of a CFT)
to a fully gapped trivial theory (i.e., a trivial invertible TQFT with no quantum fields
effectively such that the partition function is always Z = 1 on any closed manifold),
preserving the same symmetry G and the same vanished quantum anomaly ν = 0.

One can further generalize the SMG in Section 2.5 to the following broader definition:

• A symmetric deformation from any gapless theory (including bosonic or fermionic,
free or interacting CFT) to a fully gapped trivial theory (i.e., a trivial invertible TQFT),
preserving the same symmetry G and the same vanished quantum anomaly ν = 0.

Although the field theories on both sides are quite different, they share the same
symmetry group G and quantum anomaly ν (in the case of SMG, the anomaly actually
vanishes ν = 0) and hence belong to the same deformation class of QFTs. However, this
symmetric deformation might entail non-perturbative effects and strong coupling physics,
which is non-trivial. Since stable quantum phases are controlled by attractive RG fixed
points, deforming the system from one phase to another always involves introducing what
appear to be irrelevant (or sometimes marginally irrelevant) interactions or degrees of
freedoms to the low-energy QFT. On the perturbative level, of course, irrelevant deforma-
tions can be safely ignored, which is why they are sometimes overlooked in the study of
field theories. In contrast, on the non-perturbative level, when the deformation is suffi-
ciently strong, the system might be driven to the phase boundary between two competing
QFTs, where the RG flow can render an irrelevant operator dangerously irrelevant. Indeed,
within the fermion fractionalization framework, both the parton-Higgs and s-confinement
approaches rely on the strong coupling physics somewhere along the deformation path.
This is an essential feature of SMG, as advocated in Refs. [36,37,106,151]. Nevertheless,
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the challenge is to keep enough control over the strong coupling regime so that one can be
sure which operators are dangerously irrelevant and that no symmetry breaking happens
along the way.

In a even broader scope beyond the SMG, the concept of the deformation class of QFTs
can be further generalized to include also symmetry-breaking deformations:

• Within a symmetry G at UV high-energy, and the same anomaly ν ∈ TPd+1(G),
different QFTs in a d-dimensional spacetime can be deformed to each other by tuning
coupling parameters or adding degrees of freedom at short distances or from high
energy that preserve the same symmetry and that maintain the same overall anomaly
at some UV energy scale. However, at IR low energy, there could be G-symmetry-
breaking down to its subgroup G′; while there could also be the anomaly matching or
anomaly eliminated by G-symmetry-breaking.

Some examples of the deformation class of the standard model (SM) in d = 4 are
summarized below:

1. Ultra unification transition [198–200,220] and a Z16 deformation class: with G =
Spin×ZF

2
Z4,X × Ginternal and a mod 16 anomaly index ν ∈ TPd+1(G) = Z16 × . . . , we

can consider the SM with the gauge group as Ginternal = GSMq or Ginternal = SU(5) for
the Georgi–Glashow GUT. The Z4,X is a discrete version of the baryon minus lepton
B− L like symmetry. Given the family number N f , the 16N f -Weyl-fermion SM has
the anomaly index ν = 0, while the 15N f -Weyl-fermion SM has the anomaly index
ν = −N f mod 16.

(a) If the same symmetry G is preserved to move from the 16N f to 15N f -
Weyl-fermion SM, then the 15N f -Weyl-fermion SM requires some new
sectors [198–200]: For example, the 4D non-invertible TQFT, 4d CFT, or 5d
TQFT (invertible/noninvertible when Z4,X is treated as a global symmetry/
dynamically gauged).

(b) If the Z4,X in G is broken, then the deformation from the 16N f to 15N f models
requires no new sectors on the 15N f -Weyl-fermion SM side.

(c) Deformation through the SMG phase [37,106]: If Z4,X in G is broken on the
15N f model side, while the Z4,X can be either broken, preserved, or enhanced
to a U(1)X on the 16N f model side, the 16N f to 15N f models can be deformed
to each other through the SMG phase, shown in Figure 8. The SMG phase in
the standard model is discussed in Section 5.3.

2. Deconfined Quantum Criticality (DQC) transition [218–221] and aZ2 deformation class:
With G = Spin×ZF

2
Ginternal and a mod 2 anomaly index ν ∈ TPd+1(G) = Z2, one

can consider the SM within the gauge group Ginternal = Spin(10) (in general, any
Spin(n ≥ 7) works, such as Spin(18)). The ν ∈ Z2 global anomaly in 4d is character-
ized by a mod 2 class 5d invertible TQFT (as a cup product of Stiefel–Whitney classes).

(a) SMG transition: If ν = 0, there can be a SMG phase in the neighborhood to the
SM, Georgi–Glashow su(5), the flipped u(5), the Pati–Salam model, and the
so(10) GUT phases, etc.

(b) DQC transition: If ν = 1, there is a modified so(10) GUT plus an extra Wess–
Zumino–Witten-like term such that the nontrivial Z2 anomaly can be matched
in the G-symmetry preserving phase. The SM, Georgi–Glashow su(5), or the
flipped u(5) phases, etc., can be regarded as the anomaly-matching conse-
quences of the symmetry-breaking phases. There can be a gapless DQC region
(not a critical point but a stable CFT region) between the deformation from
either of the su(5) or u(5) models to the Pati–Salam model. The gapless DQC
region can also be replaced by a gapped 4D noninvertible TQFT to match the
same Z2 anomaly.

In contrast, one can also stay in the same internal or gauge group structure of SM
(e.g., see a recent work [224] and references therein), but in that case, the phase transition
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there is not a deformation of SM to other neighbor phases of different gauge theories, but
only within the same SM gauge theory.

6. Discussion and Outlook

The symmetric mass generation (SMG) has attracted considerable ongoing interest
from both the condensed matter and high energy physics communities in recent years. The
SMG transition is beyond the classic Landau–Ginzburg–Wilson paradigm, which poten-
tially involves the fractionalization of physical fermions at and only at the critical point.
This article reviewed various aspects related to SMG, including interacting topological
insulators (TI), topological superconductors (TSC) [225,226], SPT states [227,228], anoma-
lies, lattice regularization of chiral gauge theories, and the current status of numerical
efforts from both the lattice gauge theory and condensed matter communities. Theoretical
understandings related to SMG are also discussed, such as the s-confinement mechanism,
the connection between SMG and DQCP, etc.

Various numerical works have suggested that the SMG could be a continuous tran-
sition, and the critical exponents were measured in some of the numerical works. These
works pose a challenge to the further analytical understanding of SMG. Unlike the standard
Higgs–Yukawa types of theories, where a large-N or small-ε expansion can be applied,
theoretically we do not yet have a controlled theory where we can perform a reliable
analytical calculation for the critical exponents for SMG, and compare with the numerical
simulation. If the SMG is indeed a continuous transition and corresponds to a certain type
of conformal field theories, then the conformal bootstrap method [229] can also provide
very helpful insights into the nature of the transition. All these require further efforts from
different disciplines of theoretical physics.

The problem of the nonperturbative regularization of chiral fermion and chiral gauge
theories also potentially bring the high-energy lattice, mathematical physics, quantum
information, numerical simulation, and condensed matter communities to work closer
together. What else can stimulate different communities to work together other than
tackling a profound mysterious problem? Looking back at science history, the phenomena
of the anomaly-inflow [5,6] and domain wall fermion [84,86] (as the precursors of the
TI/TSC/SPT states) had an old tradition rooted in the high-energy theory and lattice
community in the mid 1980s and mid 1990s. Closely related phenomena, such as integer and
fractional quantum Hall states, were studied in the condensed matter community already
in the early 1980s. Yet the acceleration came much later until the concrete materialization
discovery of TI/TSC in 2005 (in both theories and experiments [225,226]), which ignites
the serious interest in the classification of the interacting many-body quantum systems of
SPT states in the early 2010s [67–69,227,228]. This generates crossing-disincline interests in
the classification of anomalies, cobordism classes, and the TQFTs in quantum matter, high-
energy string theory, and mathematical physics [4,45–48,54]. Looking back and pondering
this history, some curious minds might ask: Why were the discovery of SMG and the
classification of TI/TSC/SPT states not made in the high-energy lattice community even
earlier, although the lattice gauge theory pioneers, such as Wilson and Kogut already
had earlier achievements on the related lattice topics in the 1970s [230]? Perhaps the
inputs of the condensed matter material experiments are crucial, or perhaps the crossing-
boundary interdisciplinary ideas are much more welcomed in the recent condensed matter
developments. As Preskill summarized: combining more ideas together is better than each
of the isolated ideas [231]. Hopefully, combining the ideas of (1) domain wall fermions [84],
(2) gapping the mirror fermions [38], and (3) the anomaly-free SMG [45,101,103,105,110]
already gives the ample insights to fully solve the lattice definition of chiral fermion, chiral
gauge theory, and chiral standard model problems.
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