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1. Introduction. This paper has its origin in the theory of probability,
but we think it may be of interest to some who are not familiar with prob-
abilistic technique and jargon. Accordingly, we use for the most part the
language of measure theory instead of the language of probability. However,
an informal probabilitistic statement of the problem will, we hope, pave the
way for all readers.

Suppose that, for each value ir of a parameter, {en}^°_i is a sequence of
random variables that are statistically independent and subject to a common
distribution depending on ir. If now ir itself is a random variable, consider
the over-all distribution of the sequence {e„j"_i, i.e., the average with re-
spect to ir of the conditional distribution of the sequence given ir. This over-
all distribution will not in general render the en's independent, as the con-
ditional distributions given w are assumed to do. Nonetheless, it will obvi-
ously, like a distribution with independent en's, be invariant under finite per-
mutations of the variables en among themselves, or symmetric, as we shall
say.

Conversely, it is true under very general circumstances that any sym-
metric distribution on the e„'s can be constructed from a suitable family of
independent distributions, parametrized say by ir, and a suitable distribution
of ir.

Jules Haag seems to have been the first author to discuss symmetric
sequences of random variables (see [13]). This paper deals only with 2-valued
random variables. It hints at, but does not rigorously state or prove, the
representation theorem for this case. Somewhat later, symmetric distribu-
tions were independently introduced by de Finetti: and the representation
theorem for symmetric distributions was proved and exploited by him, es-
pecially in connection with the foundations of probability, first in case the
en's are 2-valued random variables [10; ll]. This case has also been treated
by Hincin, in much the same manner as by de Finetti [18; 19]. De Finetti
also proved the theorem for the case in which the en's are real random vari-
ables [ll]. This case has also been treated by Dynkin [9], apparently with-
out knowledge of de Finetti's work in [ll]. Dynkin's technique also applies
to random variables on all spaces that are, in a certain sense, separable. A few
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additional sidelights on the theory and its r6le in the foundations of the theory
of probability are mentioned in [24, §3.7]. Another reference, interesting for
both its mathematical and historical content, is Chapter III of [12].

The methods of proof thus far presented draw upon devices that appear
difficult to extend to any class of random variables e„ not subject to strong
separability requirements. We know of no urgent need to achieve such an
extension, since even the class of random variables representable as real is
very wide from a practical point of view. Still we believe that a more general
method of proof may enrich the theory and be of some mathematical interest.
The method used in this paper is based on the following idea.

The set of all distributions symmetric on {e„}"_i is obviously convex
under linear combination. The representation theorem asserts that every
symmetric distribution can be represented as an integral, that is, a sort of
generalized linear combination, of independent distributions. Another theo-
rem of the present theory (which appears not to be quite explicit in earlier
work, even in the case of real random variables), based on the strong law of
large numbers, asserts that this representation is unique. Thus the independ-
ent distributions, when the representation theorem is valid, are the extreme
points of the convex set of all symmetric distributions. This all suggests that
the representation theorem may be reducible to an application of known theo-
rems on the representation of points in convex sets as linear combinations,
or the like, of extreme points. The present paper is largely concerned with
the implementation of this idea. An announcement of the results has been
made in [17].

Many measure-theoretic terms and facts are used throughout this paper;
[14] may be consulted for those not explained here. Some knowledge of the
theory of extreme points of convex sets is assumed, as set forth, for example,
in [4].

To avoid needless repetition, let it be understood that "probability",
"algebra", and "isomorphism (homomorphism) between algebras" can mean
either finitely additive probability, Boolean algebra, and Boolean isomor-
phism (homomorphism), or countably additive probability, (r-algebra, and
^-isomorphism (homomorphism), respectively, with one or the other fixed
interpretation throughout. Thus, this paper can be viewed as an abbrevia-
tion for 2 papers, either of which can legitimately use deductions made in an
earlier part of the other. In specific allusions, we shall call these 2 interpreta-
tions the finite and infinite interpretation, respectively, and we shall call
their subject matters the finite and infinite situations. A probability will be
referred to in terms of the algebra of sets on which it is defined, and, occa-
sionally, as a probability of a certain kind on a certain set.

2. The problem. LetX be an algebra of subsets of a set X; let X, with
points a= {on}"_i, b= [bn}n-i, etc., be the Cartesian product of a countably
infinite sequence of replicas of X. For every finite sequence ii, • • • , ip of dis-
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tinct positive integers and every finite sequence of sets £1, • • • , Ep in X, let
C(E^, ■ • ■ , Ep,p)) denote the set of all aC% such that airCEi (r = l, ■ ■ • ,
p). Such sets are here called cylinders (rectangles, in [14, p. 154]). For
ir = r (r = l, • • • , p), we shall write C(E^, • • • , Ep>) as C(EU ■ ■ ■ , Ep);
any cylinder can clearly be expressed in this simpler form. We now define X
as the smallest algebra of subsets of X containing all cylinders.

Let P be the set of all probabilities ir on X, and let P be the set of cor-
responding product measures ir on X (see [14, p. 157, Theorem B]). The cor-
respondence ir—*ir is clearly 1-to-l onto.

The set S of symmetric probabilities on X. is defined as follows. Let T be
an arbitrary 1-to-l mapping of the positive integers onto themselves leaving
all but a finite number of integers fixed. For ACX, let TA be the set of all
{an}Z-iC% such that {aT<i), arm, • • • , aT(n->, ■ ■ ■ } CA (though there would
be good reason to call this T_1A). A probability a on X is in S, and is said to
be symmetric, if and only if cr(TA) =oA for all A CX and for all T. It is obvi-
ous that PCS.

The property of symmetry of a probability cr on X can be defined in a
different way. Let n be an arbitrary positive integer and let £i, • • ■ , En be
any sets in X. It is plain that cr is symmetric if and only if

(2.1) ^(E™, .-., E?) = aC(E[h\ .... £n°'"))

for all sequences i\, • • • , i„ and ji, •••,/„ of positive integers (i's all dis-
tinct and j's all distinct).

With a view toward integrating over the set P, we define a cr-algebra <P*
of subsets of P as follows. For all real numbers X and all ££X, the set

(2.2) Jt; r € P, ir(E) g X}  = N(E;\)
is an element of "P*, and ¥* is the smallest c-algebra of subsets of P contain-
ing all sets of the form (2.2).

It may be the case that a given <rCS can be represented as an average of
it's in P in the sense that there exists a countably additive probability p. on
<P* such that

(2.3) o-A = f (ifA)dp(T)

for all A CX. Such probabilities a are said to be presentable.
The 1-to-l correspondence 7r<->5r between P and P induces an isomor-

phism between the cr-algebra <P* and a cr-algebra, say lP*, of subsets of P.
Similarly, a probability p on eP* has an image p which is a probability on <P*.
Hence (2.3) is equivalent to

(2.4) a A =  f (irA)dp:(if).
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The formula (2.4) indicates that a presentable probability a is, in a certain
sense, a mixture of elements of P.

li the algebra X has the property that every probability a in § is pre-
sentable, we shall say that X is presentable. The object of the present paper
is to find conditions under which X is presentable. In the infinite situation,
we find-that a fairly extensive class of cr-algebras is presentable, but the ques-
tion of the existence of unpresentable X is, unfortunately, left unsolved. In
the finite situation, we prove that every Boolean algebra is presentable.

3. Orientation. To clarify the study of presentability, numerous asser-
tions are made in this section proofs of which are explicitly either deferred to
later sections or omitted as trivial.

For adS to be presentable, it is necessary, in view of (2.3), that ttA be
P*-measurable as a function of ir for every .4£X; this condition is always
satisfied (Theorem 4.1).

For every countably additive probability measure p on "P*, (2.3) does
define an element of S (Theorem 4.3). The algebra X is presentable, then, if
and only if the subset of S consisting of all measures (2.3) is actually all of S.

If adS is presentable, there is a unique measure p on <P* for which (2.2)
holds, and it is given by an explicit algorithm (Theorems 9.4 and 9.2).

In view of the trivial fact that presentability of X is invariant under iso-
morphisms of X, it would seem a natural possibility to develop all of the
present theory for an abstract Boolean algebra X rather than for an algebra
of sets. By Stone's representation theorem for Boolean algebras [26], every
abstract Boolean algebra is isomorphic to an algebra of sets, and thus, in the
finite situation, nothing is gained by considering abstract algebras per se. In
the infinite situation, the matter is more complicated, because there exist
familiar abstract <r-algebras that are <r-isomorphic to no algebra of sets [21],
and for other reasons. We have done some work on the subject, but it is rather
foreign to the spirit of the present paper, so we hope to publish it separately.
Briefly, there is a strong tendency for an abstract er-algebra that can be called
presentable to imitate a cr-algebra of sets. The remark following the proof of
Theorem 11.7 hints at this phenomenon.

The alert reader will have noted that we require the measure p that
figures in (2.3) to be countably additive. By admitting finitely additive rather
than only countably additive p's in (2.3), we. would get a class of symmetric
measures that might be called pseudo-presentable—in the infinite situation,
not typically one for every p.. This concept has no interest in the finite situa-
tion, since every symmetric probability a is presentable (Theorem 8.1) and
satisfies (2.3) for only one measure p, which is already countably additive.
If there exists a countably additive symmetric probability a that is unpre-
sentable, it would still be of interest to know that (2.3) is satisfied for this a
with a finitely additive p. Note that such a- p would still have to be defined
not merely on the Boolean algebra generated by (2.2) but on the entire
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cr-algebra <P*, as is easily seen from Theorem 4.2 and the fact that irA must
be measurable as a function of ir.

The problem under study can be generalized by admitting uncountably
infinite Cartesian products of the basic set X and also by admitting finite
Cartesian products of X. The former generalization is of no interest at all
(as Dynkin has pointed out [9]), since every symmetric probability on an
arbitrary infinite Cartesian product is obviously determined by its values
for sets restricted only on any one countably infinite set of co-ordinates. On the
other hand, finite products are essentially different from infinite products.
§12 is devoted to a study of these products, and it is shown that symmetric
probabilities on finite products all have a property akin to presentability.

We now make a few remarks about cylinders. Since the intersection of 2
cylinders is plainly a cylinder and since the equality

(3.1)     C(Eh ■■■ , £„)' = C(EU ■■■ , £n_i)' VJ C(£i, • • • , E_lf £„')
holds for all w^l and £i, • • • , £„, we see at once that the family Q of all
cylinders forms a semiring [14, p. 22, exercise 4.6]. This semiring includes X
and may hence be called a semialgebra.

The class of cylinders is not the only semialgebra with which we have to
deal, and some facts about semialgebras will be useful. These facts are sum-
marized in Theorem 3.1 below, the various parts of which are well known or
easy to prove (cf. [14, p. 26, ex. 3, p. 37, ex. 5, and p. 57, ex. 1 ]). The concepts
of probability, homomorphism, and isomorphism are applied to semialgebras
in the obvious senses. It should, however, be emphasized that, for a measure
or homomorphism on a semialgebra, countable additivity is not implied by
good behavior on descending sequences, so that in applications countable
additivity must be verified explicitly (cf. [14, p. 214, ex. 3]).

Theorem 3.1. Let Q be a semialgebra of subsets of a set X, and let X be
the smallest algebra of subsets of X containing Q. Every element of the Boolean
algebra generated by Q can be written (not necessarily uniquely) as the union of a
finite number of pairwise disjoint elements of Q. Let y (f) be a probability (homo-
morphism) on Q. Then y (/) admits a unique extension over X that is also a
probability (homomorphism). If f on Q is an isomorphism, then its extension is
also an isomorphism.

We leave the proof of this theorem to the reader, who may turn to the
exercises in [14] referred to above.

A measure aCS is, by definition, invariant under finite permutations of
the co-ordinates. We shall now show that every <rCS is invariant under all
permutations of the co-ordinates and even under a somewhat wider class of
transformations than that.

Theorem 3.2. Let T be a 1-to-l transformation of any infinite subset of the
positive integers onto all of the positive integers, and define TA as in §2. Every T
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is an isomorphism of X into (not necessarily onto) itself, and <r TA = a A for all T,
all adS, and all A GX.

Proof. For all .4 CX it is obvious that (TA)' = T(A'), and for all '[At}iei
(AidX), it is obvious that Ui TAt=T(\}i Ai). Hence T is a <r-homomor-
phism of the family of all subsets of X into itself. But this homomorphism T
clearly carries nonvoid sets into nonvoid sets and is, therefore, an isomor-
phism. It is also clear that TC is a cylinder if C is a cylinder, and that TXCX.

Now consider the probability a confined to the semialgebra of cylinders.
Here, by (2.1) we have oTC = oC. The set-function aT, defined at A as
a(TA), is an extension of a and aT to the algebra generated by cylinders. By
Theorem 3.1, we have a = aT on this algebra; that is, aA=aTA for all
iiex

It may be well to mention that sets invariant under finite permutations
are not ordinarily invariant under all permutations. For example, sets deter-
mined by limiting conditions obviously belong to the first class but not to
the second. Indeed, sets invariant under all permutations are easily seen to
be of a simple and uninteresting structure.

4. Measurable sets in P. The <r-algebra <P* of subsets of P was defined
in §2 as an iniage of the <r-algebra <P*. A 2nd algebra of subsets of P can be
defined by paraphrasing the definition of <P* in terms of wA, AdX, rather
than in the original terms of irE, EGX. These 2 algebras coincide, as the 2nd
of the following theorems shows.

Theorem 4.1. Let A be any setin X The function f on P defined byf(ir) =ttA
is CP*'-measurable.

Proof. Let M. denote the family of all A GX for which the conclusion of
the present theorem holds. If £GX, then C(E)d'M, since ttC(E)^=-kE, and
the  function wE  is   <P*-measurable.   Since -kC(Ei,  Et, • • • ,  En) =irC(Ei)
■irC(E2).trC(En),   it   follows   that   C(£i,   E2, - - ■ ,   En)dM.   Since
5f(iU5) =TrA+TrB — Tr(Ar\B), it follows that M is closed under the forma-
tion of finite pairwise disjoint unions. Therefore jfc contains all finite pair-
wise disjoint unions of cylinders; this family of sets is a Boolean algebra
(Theorem 3.1) that generates X. In the finite situation, this implies that
9ft = X, as was to be proved. To complete the proof in the infinite situation,
let  {.4i}t°-i be any monotone infinite sequence of sets in 9it. Then

lim ,4* G J&,

since 7r(linu_00 Ak)=hmk,n Tr(Ak), and limits of measurable functions are
measurable, when measurability is defined with respect to a <r-algebra
of sets. It now follows that ffrf = X, since M is closed under the formation of
monotone limits and contains a Boolean algebra that generates X.
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Theorem 4.2. Let lP** be the smallest cr-algebra of subsets of P containing all
sets of the form

(4.1) {3=| £ CP, irA g X},

for A CX and real X. Then $**=<£>*.

Proof. Theorem 4.1 implies immediately that <p**c<p*. Since wC(E) =irE
for all ECX, the reverse inclusion also holds.

The following assertion is an easy consequence of Theorem 4.1 (and, in
the infinite situation, Lebesgue's theorem on monotone convergence).

Theorem 4.3. Let p. be any countably additive probability defined on CP*.
Then the set-function a defined on X by the equality (2.3) is a symmetric proba-
bility.

5. The extreme points of S. In the present section, we characterize the
extreme points of the convex set S as being exactly the elements of P. The
purpose of this characterization is to prepare for theorems showing that many
algebras X (in the finite situation, all X) are presentable. It will be obvious
that every theorem of the present section is itself a consequence of presenta-
bility of X, and is therefore of temporary interest only, at least for presentable
X. The proofs may appear somewhat contrived, but their motivation will, we
hope, be clear to anyone used to working with probability, especially if he
keeps in mind the model of a presentable algebra X.

The class S of symmetric probabilities on X is obviously a convex set in
the linear space of all finite measures on X in the familiar sense that the set-
function <r defined by the relation

(5.1) <r = aa' + (1 - a)<r"

is an element of S provided that cr', a" are elements of S and OfSa^l. If
0<a<l, then any 3 measures <r, cs', and <j" satisfying (5.1) are obviously all
identical or else all distinct. As usual, we say that aCS is an extreme point
of S if a cannot be represented in the form (5.1) with 0<a<l and a'^a".

Theorem 5.1. Let n be a positive integer, let £i, £2, ■ ■ ■ , En be elements of
X, and let a be an element of S. Then

(5.2) aC(Ei, E2, ■ • • , £„, £1, £2, • • • , £n) = [<rC(Ei, E2, • • • , En)]2.

Proof. Let the cylinders appearing on the left and right sides of (5.2) be
denoted by A and B, respectively, and let Xr (r = l, 2, 3, • • • ) be the char-
acteristic function of the cylinder

(5.3) {a\ a C X, ai+ir-i)n C £.-, * = 1, 2, • • • , «}.

Then, for every positive integer m, it is easy to see that
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(5.4) f j  Y Xr(o)l da(a) = maB,

since a is symmetric. Furthermore, a similar direct calculation shows that

J. [ Z Xr(a)] da(a)
mm**

= YY\.lxr(a)x,(a)]da(a)
(5 . 5) r=l   «-l J X

- m \_X\(d)da(a) + m(m — 1)  |   \xi(a)x?.(a)]da(a)
J x J x

= maB + m(m — l)aA.

Applying the Cauchy-Schwarz inequality, (ffg)2^(ff2)(fg2), with/= 2^™-i Xr
and g identically 1, and noting that a is a probability (i.e., applying the
probabilistic fact that no variance is negative), we have

(5-6) {J.[ExrW]^)}    = f^Yxr(a)Jda(a).
Combining (5.4), (5.5), and (5.6), we find

1 1
(5.7) aA ^ (aB)2-(aB - aA) ^ (aB)2-

m m

Since (5.7) holds for all positive integers m, the present theorem is proved.

Theorem 5.2. Let a be an element of S such that equality obtains in (5.2) for
all positive integers n and all sets Ei, Et, • • • ,£«GX. Then a is an extreme point
ofS-

Proof. If adS and a is not an extreme point, there exist a', a"dS and
a, 0<a<l, such that a'^a" and a — aa' + (l —a)a". Since all measures on X
are determined by their values on cylinders (Theorem 3.1), there exists a
cylinder B = C(£i, E2, ■ • ■ , En) such that a'B j^a"B. Let

A = C(Ei, Et, ■ ■ ■ , E„, Ei, Et, ■ ■ ■ , -En).
Then we have

a A = aa'A + (1 - a) a" A
(5.8) K

= a(a'B)2 + (1 - a)(a"B)2,

in view of Theorem 5.1. Applying the Cauchy-Schwarz inequality again, we
have

(5.9) [aa'B + (1 - a)a"B]2 < a(a'B)2 + (1 - a)(a"B)2,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



478 EDWIN HEWITT AND L. J. SAVAGE [November

since the conditions for equality obviously fail here. Combining (5.8) and
(5.9), we obtain
(5.10) a A >  [ac'B + (1 - a)o-"B]2 = (<rB)2,

so that strict inequality holds in (5.2). This proves the present theorem.
To prove the next theorem, and to carry out some later computations, the

following notation is useful. For a probability ir on an algebra T of subsets of
a set Y, let ££T be such that ir£7^0. Then the set function ir| £ defined on
FCY by the relation

(5.11) r\ E(F) = v(E h F)/irE
is a probability on T. It is usually called the conditional probability given £.

Theorem 5.3. P is the set of extreme points of S.

Proof. Let 5r be any element of P. Then we obviously have equality in
(5.2) for the probability ir, and it follows from Theorem 5.2 that t is an ex-
treme point of S-

To prove the reverse inclusion, suppose that a is an element of S that is
not in P. Since a is symmetric, it cannot then be a product measure at all.
Accordingly, there must exist sets £, Fi, F2, ■ • • , FnCX such that the non-
equality

(5.12) aC(E, Fi, F2,---, Fn) * aC(E)aC(Fi, F2, ■ ■ ■ , Fn)

holds. Now, for all ACX, let UA be the set

(5.13) [a\ aCX, {a2, o3, ■ ■ ■} CA}.

Crudely speaking, UA is the set obtained from A by pushing A one co-
ordinate to the right. Theorem 3.2 implies that the transformation A—>-UA
is an isomorphism of X into (not, in general, onto) X, and that aUA =<rA for
all A CX.

The condition (5.12) can be rephrased in terms of U as follows. There are
a set B = C(FU F2, ■ ■ ■ , Fn) CX and a set ECX such that

(5.14) a [C(E) r\ UB ] ^ aC(E) ■ cB.

In view of (5.14), it is impossible that aC(E) or aC(E') vanish. Therefore we
can define set-functions <r' and <r" for .4(EX as follows:

(5.15) a'A = <r\C(E)(UA),       a" A = cr \ C(E')(UA).
It is easy to see that <r' and cr" are distinct elements of S, in view of (5.14), and
that
(5.16) cr =  [<rC(E)]a' + [1 - crC(£)]cr".

Therefore, if aCS and cr nonCP, then a is not an extreme point of S. This
completes the present proof.
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6. Averages of extreme points. In the present section, we show that all
elements of certain convex sets can be represented as averages (that is, count-
ably additive probability integrals) over the extreme points of the convex
sets under discussion. The first theorem of the present section has also been
proved by Tomita [27], and a generalization of it by Bourbaki [5, p. 87,
Proposition 7]. The proof given here seems simpler than Bourbaki's, and is
more accessible than Tomita's.

Let L be a normed linear space over the real numbers, with elements /,
/',••-. Let L*, with elements g, g', • • ■ be the conjugate space of L, i.e.,
the space of all linear functionals on L that are continuous in the topology
defined by the norm of L. It is well known and obvious that L* is a Banach
space.

Suppose next that IF is a measure space under the countably additive
probability p and that g is a function with domain W and range contained in
L*. We shall say that g is pt-integrable if the real-valued functions defined on
W by the products (/, g) are p-integrable for aWfdL and if

(6.1) f (f, g(w))dp(w),
J w

considered as a linear functional on L, is bounded on the set ||/|| =T. The linear
functional defined by (6.1) is in this case an element of L*; we denote it by
the symbol

(6.2) f g(w)dfx(w).
J fr-

it is defined, of course, by the condition

(6.3) [f, j g(w)d„(w)\ = j (/, g(w))d„(w).

We shall not dilate on the properties of the integral Swg(w)dw; they can be
easily developed following Pettis [23]. We shall apply this integral here only
in the very special case where IF is a bounded subset M of L* itself, with
measurable sets in W defined by the weak Baire sets SW of M, and with the
(obviously integrable) function g defined as the identity mapping of W into
L*. In this context, the required properties of fwg(w)dp(w) are simple to
verify.

Suppose, then, that M is a bounded subset of L*. Let I(M) be defined as

(6.4) <g' | g' G L*, g' =  I   gdp(g), ii a countably additive probability on M> .

For every NdL*, let K(N) be the smallest weakly closed convex subset of
L* containing N.
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Theorem 6.1. Let M be a bounded and weakly closed subset of L*. Then
I(M)=K(M).

Proof. It is obvious that I(M) is convex. It is also clear, by using 1-point
probabilities on "M (that is, measures equal to 1 for every measurable set con-
taining a given point) that I(M)~Z)M. To show that I(M) is weakly closed,
consider the space E(Af) of all weakly continuous real-valued functions on
M. The set of all probabilities p on fM constitutes, as is well known, a compact
subset of the conjugate space Q£*(M) in its weak topology. The mapping
p-^fMgdp(g) is a continuous mapping of this subset of (H*(M) onto I(M),
where I(M) is given its relative topology as a subset of L* in its weak topol-
ogy; for neighborhoods in the weak topology of L* are based on the special
continuous functions on L* of the form (/, g) iorfCL, and the inverse images
of such neighborhoods are easily seen to be neighborhoods in the space of
p's regarded as a subset of ($.*(M). Continuous images of compact spaces
being compact, it follows that I(M) is compact in the weak topology of L*.
Since a compact subspace of a Hausdorff space is closed, I(M) is weakly
closed.

The foregoing discussion shows that I(M)Z)K(M). In order to show that
I(M) CK(M), consider an element go of L* that is not in K(M). Since K(M)
is regularly convex (see for example [20]), there exists/GL such that

(6.5) (/, go) >    max   (/, g).
lGK(.M)

However, if goCI(M), we have by definition that

(/. go) =   f  (/, g)dy.(g)
J M

(6.6) = max (/, g)
oGM

g   max   (/, g).

It follows from this contradiction that g0 nonCI(M). This completes the
proof.

Theorem 6.2. Let N be a weakly compact, convex subset of L*, let P be the
set of extreme points of N, and let P~ be the weak closure of P. Then N = I(P~).

Proof. According to the Krein-Mil'man theorem [20], we have N = K(P).
Since K(P)CK(P~)CK(N) =N, we also have N = K(P~). Finally, Theorem
6.1 implies that K(P-)=I(P~).

Theorem 6.3. Let N and P be as in Theorem 6.2, and suppose further that
P is weakly closed. Then N = I(P).

Proof. This is a trivial corollary of Theorem 6.2.
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The condition P = P~ is automatically satisfied in no L* of dimension
>2. See for example [4, p. 87, ex. 8]. In finite dimensional spaces, however,
it is the case that I(P) =N even if P fails to be closed. For, if dim N = n,
where n is a non-negative integer, then every point in AT is a convex com-
bination of at most n + 1 extreme points of N. (See for example [3, p. 9]).

Theorem 6.4. Let N be a bounded and weakly closed subset of L*. Then the
Baire sets of N in its weak topology are the a-algebra J generated by sets of the
form

(6.7) [g\geN,(f,g)£\\
for arbitrary fdL and real X.

Proof. Since (/, g) is a weakly continuous function of g, it follows that J
is contained in the family of Baire sets. To prove the reverse inclusion, note
that every function (f, g) on N is J-measurable. Therefore polynomials in
such functions are J-measurable, and by the Stone-Weierstrass theorem
[25, p. 466, Theorem 82], all continuous functions on N are J-measurable.
Hence J contains the family of Baire sets.

7. Sufficient conditions for presentability in the infinite situation. The
present section refers only to the infinite situation.

Theorem 7.1. Let X be a compact Hausdorff space, and letX be the a-algebra
of all Baire sets in X. Then X is the family <B of all Baire sets under the Cartesian
product topology of X.

Proof. Given a continuous real-valued function / on X and a positive
integer k, the function g on X defined by

(7.1) g(a) = f(ak)    for all    adX

is evidently continuous on X. Therefore, if £ is a compact Gj in X and k is
any positive integer, the cylinder C(Em) is an element of £5, since C(EW)
= {a\g(a)=0} for some function g of the form (7.1). If E is any set in X,
it follows from this that C(EW) is in <B. Hence all cylinders are in <B, and
therefore, since <B is a <r-algebra, we have Xd'B- To prove the reverse inclu-
sion, note first that polynomials in functions of the form (7.1) are uniformly
dense in the space of all continuous real-valued functions on X. Since all
functions (7.1) are obviously X-measurable, it follows that all continuous
functions on X are X-measurable, and thus that <BCX

Now, retaining the hypotheses of Theorem 7.1, we consider the Banach
space S(X) of all continuous real-valued functions on It, with the usual
algebraic operations and with the norm

(7.2) H/ll = max | f(a) \ .

According to the representation theorem of F. Riesz (see for example [14,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



482 EDWIN HEWITT AND L. J. SAVAGE [November

p. 247, Theorem D]), the conjugate space S*(X) admits a concrete representa-
tion as the space of all countably additive, real, finite-valued Baire measures
on <B, that is, such measures defined on X (Theorem 7.1). For every such
measure <p, the corresponding linear functional is defined for all fC^(X) by
the relation

(7.3) (/,<*>) =  f f(a)d<t>(a).

It is an elementary exercise, which we omit, to prove that the norm ||</>|| of c6
considered as an element of Qi*(X) is equal to

(7.4) sup <p(A) -   inf  <p(A).
aGx xGx

The following facts are also easily verified. Sums and scalar multiples of
measures on X correspond to sums and scalar multiples of the corresponding
elements of S*(X). We therefore, by an abuse of language, refer to measures
on X as actually being linear functionals on S(X).

The set S of symmetric probabilities on X is convex, weakly closed, and
bounded, considered as a subset of &*(X). The extreme points of S are, as
Theorem 5.3 shows, the elements of P. Furthermore, the set P is weakly
closed in <S.*(X). We leave the verification of these assertions to the reader.

We now apply Theorem 6.3 with 7, = 6(X), 7,* = <S*(X), N = S, and P = P.
This theorem implies that there exists a countably additive probability p on
the cr-algebra of weak Baire sets of P with the property that

(7.5) (f,a) = j(f,lr)dp.(T)

for all/££(X). Combining (7.3) and (7.5), we can write

(7.6) j'j(a)da(a) = J. f fj(o)dr(a)] dp.(*).

Relation (7.6) implies that

(7.7) a A = f_(TA)dp(7c)

for all A CX. To see this, we argue as follows. For every BCX that is a closed
Gs, it is well known and obvious that there exists a descending sequence
{/n}T-i of functions in <S,(X) such that lim„.00/„(a) =xb(o) for all aCX, where
Xb denotes as usual the characteristic function of the set B. Applying Le-
besgue's convergence theorem, we then have

o-B =   I   XB(a)do-(a) =   |    lim /„(a)da(a) = lim   I   fn(a)da(a).
Jjt */Xn-»w n-*«   J x
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By (7.6), the last expression is equal to

(7.8) lim   f I" f /n(a)<ftf(o)l dp(Z).
n->«   JPuJx J

Applying Lebesgue's convergence theorem twice to (7.8), we find that (7.8)
is equal to

I.     lim   \.fn(a)dv(a) Up(3r) =   1        [xB(a)dv(a) \dp.(v)
(7.9) P P      X= J     (t£)**(t).
Note that if a or p failed to be countably additive, the application of Le-
besgue's convergence theorem would be unjustified. Now, the measure <r is
completely determined by its behavior on closed Gs's [14, p. 229, Theorem H ].
It follows that (7.7) is valid for all AdX.

The foregoing argument establishes incidentally that <P * is a sub-ff-algebra
of the weak Baire sets in P. (It is also true that every weak Baire set in P is
in <p*; we omit the proof of this fact, which is not used in this paper.) Hence
(7.7) holds if the probability p is restricted to the c-algebra <P*, as only sets
in <p * are needed to integrate the functions irA. We have therefore proved the
following fundamental theorem.

Theorem 7.2. Let X be a compact Hausdorff space, and let X be the a-algebra
of Baire sets in X. Then X is presentable.

We leave to the reader the proof of the following simple theorem.

Theorem 7.3. Let T be a presentable a-algebra of subsets of a set Y. Let X
be any nonvoid set in T, and let X be defined as the family of all subsets of X that
are in T. Then X is a presentable a-algebra of subsets of X.

The Baire sets of a topological space are the elements of the <r-ring gener-
ated by compact Gj's. The elements of the <r-algebra generated by compact
Gj's—that is, Baire sets and their complements—will be called here wide
Baire sets. If X is a tr-compact and locally compact Hausdorff space, it is
easily seen that every wide Baire set is a Baire set.

Theorem 7.4. Let Y be a locally compact Hausdorff space, and let X be a
wide Baire subset of Y. Let X consist of all wide Baire sets of Y that are con-
tained in X. Then X is presentable.

Proof. In view of Theorem 7.3, it will be enough to prove the present
theorem in the case X = Y.

Let aX denote the 1-point compactification of X (see for example [l,
p. 93, Satz XIV]), and let q be the point adjoined to X in order to obtain
aX. We distinguish 2 cases.
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Case I. X is cr-compact. In this case, it follows immediately from the
definition of aX that q is a Gs in aX and is accordingly a Baire set. Therefore
{q}'=X is also a Baire set. The present theorem follows in this case from
Theorems 7.2 and 7.3.

Case II. X is not (r-compact. In this case, q is plainly not a G$, and hence,
as is known [14, p. 221, Theorem D], {q} is not a Baire set. Therefore X is
not a Baire set in aX. However, the Baire sets in X are intimately connected
with the Baire sets in aX, as we now show. Let F be a closed Gs in aX and
let fe&(aX) have the property that F={y\yCaX, f(y)=o}. The set
A = {x\xCX, f(x)^f(q)} is obviously the union of a sequence of compact
Gs's, and hence A is a Baire set of X. If/(g) 5^0, then F is contained in the
Baire set A and hence £ is a Baire set of X. If qCF, then £' is contained in
A, and £' is a Baire set of X. It follows that if B is a Baire set in aX, then
B(~\X is a wide Baire set of X. Conversely, if D is a Baire set in X, then D is
a Baire set in aX, and if D' is a Baire set in X, then 7J>W {q} is a Baire set in
aX. Thus the mapping B—*Bf~\X is a 1-to-l mapping of the Baire sets in aX
onto the wide Baire sets in X, that obviously preserves all countable Boolean
operations. The presentability of X now follows from the known presentabil-
ity of the cr-algebra of Baire sets in aX (Theorem 7.2). This completes the
present proof.

As an illustration of the preceding theorem, we observe that the family
of Borel subsets of an arbitrary Borel set on the real line is a presentable
cr-algebra. Since de Finetti [ll, pp. 37-44] has proved the presentability of
the <r-algebra of Borel sets on the real line, and since Theorem 7.3 is easy,
this illustration has but little novelty. However, it is an important and far-
reaching example since, so far as we know, every cr-algebra of sets known to
have importance in applied science is cr-isomorphic to the cr-algebra of Borel
subsets of some Borel set on the real line.

Of course, there exist compact Hausdorff spaces that do not have this
property. A noncountable. Cartesian product of 2-point spaces is one typical,
and well known, example. Indeed, the Baire cr-algebra of this space is easily
seen to be nonseparable with respect to the usual product measure, whereas
the Borel c-algebra of a Borel set is separable with respect to any measure
[14, Theorem B, p. 168].

An easier but less interesting example is obviously provided by any com-
pact Hausdorff space with more than exp (K0) Baire sets, say the Cartesian
product of more than exp (K0) 2-point discrete spaces or the 1-point com-
pactification of a discrete set of more than exp (K0) elements. Indeed, the
cr-algebra of Baire sets of such a space is not even isomorphic to any cr-algebra
contained in the class of Borel sets of the real line.

For still another example, consider the space Ta+i consisting of all ordinal
numbers a ^fl, £2 denoting as usual the smallest uncountable ordinal, with the
ordinary order topology. It is easy to show that ACTa+i is a Baire set if
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and only if A is countable and excludes ft or A' has these properties (see [16,
p. 171, Remark l]). For this cr-algebra, we have the following result.

Theorem 7.5. The a-algebra of Baire sets in Tq+i is not isomorphic to the
a-algebra of Baire (Borel) subsets of a Baire (Borel) subset of any locally com-
pact and a-compact Hausdorff space Y satisfying Hausdorff's first axiom of
countability.

Proof. Assume that there exists a a-isomorphism r carrying the (r-algebra
{A} of Baire sets in Ta+i onto a a-algebra { tA } that consists of all Baire
subsets of the Baire set tTo+i=BCZY. For each a<fi in Ta-^i, r[a} must be
a single point in B. It is easy to see that B consists of at least Ki points and
that every set tA is countable or has countable complement in B. By im-
bedding Y in its 1-point compactification (which also satisfies the first count-
ability axiom, since Y is <r-compact), we may suppose that Y is actually
compact. This being so, the set B admits at least 1 complete limit point p
[2, p. 8, Theoreme I]. Thus U(p)C\B is uncountable for every open neighbor-
hood U(p) of p. Assume that U'(p)C\B is countable for every such neighbor-
hood. Then if { Un(p) }„°=i is a countable family of neighborhoods of p for
which rin-i Un(p)=[p), it follows that (\}^iU'n(p))C\B= {p}'(~\B is
countable, and this is an obvious contradiction. It follows that B has at
least 2 complete limit points, po and pi. Since there is a continuous real-
valued function f on Y such that /(po) = 0 and /(pi) = 1, the Baire subsets of
B must include uncountable sets with uncountable complements. Thus the
cr-algebra {^l} is not cr-isomorphic to the (r-algebra of Baire subsets of B.
The same proof shows that {A} is not c-isomorphic to a cr-algebra of Borel
sets in Y.

The foregoing theorem shows, in particular, that [A } cannot be realized
as the cr-algebra of Borel subsets of a Borel set on the real line.

Theorem 7.4 is, so far as we can tell, very general. It applies to all those
<r-algebras of sets that Bourbaki in his recent monograph on integration [5]
has singled out for detailed study. We cannot even show that there exists an
X to which the hypotheses of Theorem 7.4 do not apply. The apparent do-
main of applicability of Theorem 7.4 is somewhat enlarged by the following
theorem.

Theorem 7.6. Let X be a completely regular space that is the union of a
countable family of compact Gs's, and let X be all of the Baire sets of X. Then X
is a-isomorphic to the a-algebra of all wide Baire sets of a certain locally compact
Hausdorff space.

Proof. We sketch the proof. Let A^C-X^C ■ ■ • C-^C ■ • ■ be compact
Gj's with union X. It is easy to see that each Xn= {x\xdX, fn(x) =0} for
some/„G<S(X). Let 15 be the smallest family of subsets of X containing all
sets open in the original topology of X and all sets Xn+xr\X'n (set X0 = 0), and
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closed under the formation of arbitrary unions and finite intersections. It is
easy to see that 15 is the family of open subsets of X under a locally compact
Hausdorff topology in which the wide Baire sets are just the wide Baire sets
of the original topology on X.

As an illustration of the foregoing theorem, we note that the adjoint L*
of a Banach space L is evidently weakly completely regular, and it has the
property that the sets {g|g£7,*, ||g||^X} (0<X<a>) are weakly compact
d's if and only if L is separable.

8. Presentability in the finite situation. This section refers exclusively to
the finite situation, except where the contrary is explicitly stated.

Theorem 8.1. Every Boolean algebra X of subsets of a set X is presentable.

Proof. This theorem can be proved by paraphrasing the proof of Theorem
7.2, and making use of the fact that the class of finitely additive real-valued
measures on X of finite total variation is a representation of the conjugate
space of the normed linear space of all bounded X-measurable functions on X.
It is, however, also interesting to prove the present theorem by a direct appeal
to Theorem 7.2, as follows.

According to a representation theorem of M. H. Stone, X is Boolean iso-
morphic to the algebra of compact open subsets in a certain totally discon-
nected compact Hausdorff space [25, p. 378, Theorem l]. We may therefore
suppose without loss of generality that X is a compact totally disconnected
Hausdorff space and that X is the algebra of all compact open subsets of X.
X is then a totally disconnected compact Hausdorff space, as can be easily
seen, and the algebra X, which consists of all finite unions of cylinders
C(£i, £2, • • • , En) with EiCX (i = l,2, ■ • • , n), is exactly the algebra of all
compact open subsets of X.

We now write (X)+ for the cr-algebra of subsets of X generated by X. Since
every continuous real-valued function on X is arbitrarily uniformly approxi-
mate by linear combinations of characteristic functions of sets in X, it fol-
lows that (X)+ is the cr-algebra of Baire sets of X.

Now let T denote the cr-algebra of subsets of X generated by the algebra
X, and let T denote the cr-algebra of subsets of X generated by cylinders
C(Ei, £2, • • • , En) with £,£T (i = l, 2, • ■ ■ , n). It is easy to see that
f=(X)+

Now let <r be any finitely additive symmetric probability on X It is obvi-
ous that cr is countably additive, since if Ai'2>A2Z)Ai'Z) • • ■ D-4„D • • • is
any descending sequence of sets in X with void intersection, some A„ is al-
ready void, since the .4n's are all compact subsets of X. (See also [28, §4]).
A known extension theorem (stated, for example, in [14, p. 54, Theorem A])
then implies that cr admits a unique extension a+ over the cr-algebra (X)+. By
Theorem 7.2, we know that there exists a probability p+ on the cr-algebra
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<p+*(p+ = all product probabilities on T=(X)+) such that

(8.1) a+A =  f   (w+A)dfi+(T+),J p+
for all .4G(X)+. In particular, upon contracting a+ and ir+ to the algebra X,
we can re-write (8.1) as

(8.2) aB =   f    (TrB)dp.+(Tr),

for all BdX.
Every finitely additive product probability ir on X is countably additive

and thus, like the more general a's considered above, admits a unique exten-
sion ir+ over (X)+. The sets P and P+ can thus be identified, and the proba-
bility p+ referred to in (8.1) and (8.2) can be identified with a probability p
on the cr-algebra of subsets of P generated by all sets of the form

(8.3) [ir\Td P, tA = X} (OgXgl)

for A G(X)+. This probability p can obviously be contracted to the cr-algebra
generated by all sets of the form

(8.4) [ir\irdP, *B = \} (OgXgl)
for BdX. Formula (8.2) can thus be re-written as

(8.5) aB =   f (irB)dp.(ir)

for all BdX Therefore X is presentable.
9. Uniqueness of p. for presentable cr. For technical simplicity, this sec-

tion and §10 are confined to the infinite situation. A minor complication in
the finite situation is that we here compute a symmetric probability cr for
certain sets that need not be included in X in the finite situation. However,
it is easy to show that cr has a unique natural extension to these sets and that
the theorems of the present section and §10 can be paralleled in the finite
situation. This can be done either by elementary techniques used by de
Finetti [ll, pp. 31-32] or by using Stone's representation theorem as in
the proof of Theorem 8.1. It is interesting to compare this section with §3
of [7].

Let cr be a presentable symmetric probability on X Then, by definition,
cr admits at least one representation in the form

(9.1) a A =   f (irA)dp.(w),
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for all A CX., where ju is a countably additive probability on the <r-algebra fP*.
We shall give an algorithm for computing p. in terms of (9.1).

With N(E, X) defined as in (2.2), we introduce the further abbreviation
n n

(9.2) N(EU ■■ ■ , En; «i, ••-,«„; fti, • ■ • , ft,) = f| N(Et, «() P\ f| N(Ei,8i)'.
i—l i-1

Next, for all a= {a„}^°_i£X, ££X, and n = l, 2, 3, ■ ■ ■ , we define

1   "
<p(a;E,n) = -E»W-

n ,-=i

Theorem 9.1. Let ECX and let a- be a not necessarily presentable symmetric
probability on X. Then

(9.3) lim0(a;£, n)
n—.»

exists for all aCX, except perhaps for a set of a-measure 0.

Proof. LetXo be the algebra {0, £, E',X}. Theorem 7.2 implies thatX0
is presentable. Let A be the subset of X for which (9.3) exists. It is clear that
ACXo. We next observe that for all 7r0£Po, we have iroA =1. This follows
from the most elementary strong law of large numbers. (See for example [14,
p. 205, ex. 7].) On the cr-algebra Xo, the symmetric probability cr is presenta-
ble, and thus by the analogue of (9.1) that applies to <r on this cr-algebra, we
infer that cr^4 = 1, as was to be proved.

It has been pointed out to us that the preceding theorem is an immediate
consequence of a more general but deeper law of large numbers, which holds
for all strictly stationary stochastic processes with discrete parameter [8,
p. 465, Theorem 2.1].

We next define a certain X-measurable function <p~(a; £), by the relations

f lim   <b(a; E, n) where this limit exists,
(9.4) 4>(a;E) = I »-.-

[0 elsewhere.

Furthermore, let

(9.5) M(E; a) = {a\ a C X, <p(a; E) ^ a} (Oga^l).

Also let
n n

(9.6) M(£i, •■-,£„; ai, ••-, «„;^i, ••• , ft,) = fl M(Ei;ai) H n M(Et\ ft)'
t=i <~i

for all EiCX and real numbers a{ and Bi (i = l, • • ■ , n).

Theorem 9.2. Suppose that a and p. are connected by the relation (9.1). Then
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pN(Ex, • ■ ■ , £„; 01, • • • , an; Pi, • ■ • , Pn)
(9.7) = aM(Ex, • • • , E„; cti,   ■ ■ ■ , an; Pi, ■ ■ • , Pn)

for all EidX and real numbers ai and pf (i = l, • ■ ■ , n).

Proof. The strong law of large numbers, in the form used in proving
Theorem 9.1, asserts that

(9.8) <t>(a;E) = vE

almost everywhere on X with respect to ir. It follows that

(9.9) ItM = xtM,
where M and 7Y are obvious abbreviations for the sets written in (9.7). There-
fore we have

crM =   |   (5rAf)cfp(ir)

(9.10) r
=   LxnWM*)
= pN,

as was to be proved.
Now, let ?i* denote the family of subsets of <P* of the form (9.2).

Theorem 9.3. Ji* is a semialgebra that generates the a-algebra <P*.

Proof. It is obvious from (9.2) that 7^* is closed under the formation of
finite intersections. The set P itself can be written as N(E; 1; —1) for arbi-
tary EdX. Finally,

N(EX, ■ • • , En; ail • • • , an; ph ■ ■ ■ , pn)'

=   N(El,  •  •  •  , En-i; «1,   •  •  •  , an-u Pi,   •   •   •  , Pn-l)'

VJN(En;pn;-l)VJN(En;l;an).

An obvious induction and the fact that no generality is lost in assuming
|8„ = an now suffice to show that 7<(* is a semialgebra.

It is obvious that J<i* generates the cr-algebra fP*.

Theorem 9.4. Let a be a symmetric probability on X and let p, and p.' both
stand in the relation (9.1) to a. Then p. =p' for all sets in ^P*.

Proof. Theorem 9.2 shows that p,N=p'N for all NdH*. Theorems 3.1
and 9.3 imply that pA=p.'A for all Ad'P*.

10. An algorithmic study of presentability. When cr is presentable, the
corresponding probability p is determined by the algorithm summarized in
(9.7). This suggests that we study the presentability of a given erGS by trying
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to see whether or not defining p. as in (9.7) leads to a probability on <P* for
which (9.1) is satisfied. This program, which is much more constructive than
that utilized in the proof of Theorem 7.2, might be expected to be very power-
ful; However, we have had only limited success with it, which culminates in
new formulations of the condition of presentability (Theorem 10.5). We note
also that the line of reasoning of this section is essentially that adopted by
Dynkin [9], who with it is able to prove the presentability of the cr-algebra
of Borel sets on the real line and of other cr-algebras that are in a certain sense
separable.

This section is, for simplicity, restricted to the infinite situation, as was
explained in the first paragraph of §9.

We shall call a triple of arguments {£i, • • ■ ,En;ai, • • -,an;8i, • • ".^n}
(£,£X, a(, Bi real numbers, 1 ̂ i^n) a tile, and we shall call the sets £, its
constituents.

Theorem 10.1. Let { Tu}, {T*} be finite sequences of tiles; let X0 be a finite
subalgebra of X containing all the constituents of these tiles; let

(10.1) B = {a\ a C X, lim <p(a, £; n) exists for all E £ X0};
n-»»

and let

(10.2) N = U  N(TU)A U  N(T*V),       M= U M(TU)A U M(T*V),
W V U V

where "A" denotes symmetric difference. The following conditions are logically
equivalent:

(a) MnB=0;
(h) aM = 0for allcrCS;
(c) %M = 0for allreP;
(d) N = 0.

Proof. Theorem 9.1 implies thater£ = l, since X0 is finite. Hence aM
= a(M(~\B), so that (a) implies (b).

It is trivial that (b) implies (c).
The fact that (c) implies (d) follows directly from (9.8); if irCN, then

if¥=l,
To show that (d) implies (a), let a be a point of X in MC\B. The algebra

X0 is generated by the elements Fi, •••,£* of a finite partition of X. Let
eiCFi (i = l, • • • , k) and let ir be the set-function defined for all ££X by
the relation

(10.3) *E= zZ *(«; Fi)xE(ei).
i=l

It is easy to show that ir is an element of N. This completes the proof.
Now let a be an arbitrary element of S, and let X„ be the Boolean <r-algebra
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obtained by reducing X modulo sets of cr-measure 0. For A GX, let [A ], be
the element of X, containing A. The following two theorems are simple con-
sequences of Theorems 9.3, 10.1, and 3.1. We leave the proofs to the reader.

Theorem 10.2. There is a unique Boolean homomorphism of <B*(?{*), the
Boolean algebra generated by K(*, into X, that carries N(T) onto [M(T)], for
every tile T.

Theorem 10.3. For every adS, there is a unique finitely additive probability
p on <B*(?{*) such that pN(T) =aM(T) for every tile T.

Theorem 10.4. If a, a'dS and aM(T)=a'M(T) for every tile T, then
a = a'.

Proof. First, if both a and cr' are presentable, the present theorem follows
at once from (9.1) and Theorem 9.4. For general cr and cr', consider an arbi-
trary cylinder C(Ei, • • • , En)dX. (i.e., Eu • ■ ■ , £„GX). Let X0 be a finite
(and hence presentable) subalgebra of X that contains Ei, ■ • ■ , En, and let
Xo be the corresponding subalgebra of X. Considering the contractions of a
and a' to the algebra Xo, we see that aA=a'A for all AdXo. Therefore,
aC(Ei, • • • , En) =a'C(Ei, • • • , E„). It follows from Theorem 3.1 that
aA=a'A for all AdX.

Theorem 10.5. For every adS, the following 4 conditions are logically equiv-
alent :

(a) cr is presentable;
(b) if AdX and a A 5^0, there exists irdP such that tA^O;
(c) the homomorphism described in Theorem 10.2 carries sequences descend-

ing to 0 into sequences with the same property;
(d) the function p described in Theorem 10.3 is countably additive.

Proof. It is clear from (9.1) that (a) implies (b).
To show that (b) implies (c), let { TVi},"!.! be a sequence in <B*(7\J*) descend-

ing to 0. The image of {7Y,},"i in X, is clearly descending; suppose that it
does not descend to 0. Represent TV,- in the form of a disjoint union of ele-
ments of >i*:

(10.4) Ni = U N(T,;i).
j-i

The image of TV,- in X* is then [M{]„ where

(10.5) Mi = U M(Ti,i).
i-l

By hypothesis, [Mi], does not descend to 0. Hence, for all i, crAf.j^O, and, if
(b) holds, there exists a probability 7r0GP such that iroMi^O. It follows im-
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mediately from this and from (9.9) that 7To£W,- for all i. This contradiction
proves that (b) implies (c).

Suppose next that (c) holds, and that {TVjjili is a sequence in <B*(7\[*)
that descends to 0. Now, in the notation introduced in (10.4) and (10.5),
we have pNi = aMi, and it follows that lim^a, pNi = 0 since cr is countably
additive. Hence p, is countably additive, by a well-known criterion, and this
is just condition (d).

Finally, suppose that (d) holds. Then the probability p. admits a (unique)
countably additive extension over the cr-algebra CP*. We shall show that (9.1)
holds for this p. and our probability cr, and this will establish (a). Consider the
set-function cr' defined for all A £X by the relation

(10.6) a'A =   f(vA)dpL(9).

It is obvious that a' is a presentable element of S. For every tile T, we find,
with the aid of (9.9), that

<r'M(T) =   f (vM(T))dpt(W)
(10.7)

= nN(T)
= <rM(T).

Theorem 10.4 implies that cr =<r'; hence cr is presentable. This is condition (a),
and thus the present proof is complete.

11. A generalization. The study of presentability carried out above is the
study of a set S of probabilities invariant under a certain group G oi trans-
formations of the underlying space, with special reference to the extreme
points of S. In the present section, we consider a somewhat different situation
from that treated above, in which X, X, and the relevant group of trans-
formations are all changed. Though we have not carried this different in-
vestigation to the point of generalizing the theorems of §7, it provides a con-
venient avenue for studying finite Cartesian products (§12). In the present
section, we assign new meanings to familiar notation and terminology, in
order to emphasize analogies. For simplicity's sake, we confine our attention
to the infinite situation.

Throughout the present section, let X denote a set and X a cr-algebra of
subsets of X. Let G be a class of cr-isomorphisms of X into itself, S the set of
all probabilities on X that are invariant under all transformations of G, and
P the set of extreme points of S. (We regard S as a convex set in the set of
all measures on X, in the usual way.)

A probability <rCS is said to be presentable if there exists a probability
p. on the cr-algebra of subsets <P* of P generated by sets of the form {ir\ irCP,
irA gX} for X real and ACX such that
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(11.1) aA =   f (ifA)dp(Tf)

for all A GX If all crGS are presentable, then (X, G) is said to be presentable.
We do not know whether or not every (X, G) is presentable. The following
paragraphs culminate in the characterization of P in case G is a finite group.
The conclusions reached are mostly very simple and can hardly be new.

Theorem 11.1. Let X be a set and X an algebra of subsets of X. If M is a
convex set of probabilities on X, if TCX is closed under the formation of comple-
ments, and if, for every irdM and EGT for which ir£>0, the probability ir\E
is in M, then tE = 0 or 1 for every extreme point ir of M and every EdT-

Theorem 11.2. Let X, X, G, S and P be as defined above. Then, if ivdP,
AdX, and A is invariant under all transformations in G, then tA =0 or 1.

The proofs of these two theorems are very simple, and are omitted.
The following theorem, which is in the nature of a digression, is of some

interest in the theory of probability. It says somewhat more than the 0-or-l
law as applied to products of identical distributions, even in the simplest
cases [14, p. 201, exercise 3].

Theorem 11.3. A product measure on an infinite product of measure spaces
can assume only the values 0 and 1 for sets that are invariant under all finite
permutations of the co-ordinates.

Proof. This result follows immediately from Theorems 5.3 and 11.2.
The preceding theorem was commented on by several who saw a pre-

publication copy of this paper. Blackwell, and Chung and Derman wrote us
independently that they had become interested in the following question in
connection with forthcoming publications. Is it true that the partial sums of
a sequence of identically distributed independent random variables visit an
arbitrary Borel set infinitely often with probability either 0 or 1? As they
point out, the affirmative answer, which they had already demonstrated in
certain cases, is an immediate consequence of Theorem 11.3. Halmos and
Doob have shown us direct proofs of Theorem 11.3, both of which make it
plain that that theorem is close to and scarcely deeper than the ordinary
0-or-l law. These proofs are, with their authors' permission, presented below.

Following Halmos, suppose the sequence of random variables to be in-
dexed by • • • , — 1, 0, 1, • • • . An invariant set is easily shown to be almost
invariant under the shift transformation; it must therefore have probability
0 or 1, because this transformation is ergodic. Alternatively, as Doob has
pointed out, an invariant set is easily shown to be independent of itself,
and hence to have probability 0 or 1.

It is interesting to quote verbatim a proof by Doob in a rather different
spirit.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



494 EDWIN HEWITT AND L. J. SAVAGE [November

"You might be interested in my approach to Theorem 11.3. I'll state it
in the language of random variables: Let *i, x2, ■ ■ ■ be a sequence of mutu-
ally ind. r.v. with a common distribution, and let x be any r.v. dependent
on them and invariant in the sense described. Then x is a constant (prob. 1).
To prove this it is no restriction to assume that x is bounded and has expecta-
tion 0. Now consider the conditional expectation £{x|xi}, that is, the pro-
jection of Xi on the linear manifold of Baire functions of xi which are in Li.
By hypothesis this can be written in the form <p(xi), where £{s;|x„} =<p(xn)
also. Now consider the sequence <f>(xi), <p(x2), ■ • • . These r.v. are independ-
ent, with 0 expectations, and are therefore orthogonal. By Bessel's inequality
the sum of the squares of their L% norms is at most the square of the norm of
x. Since all the norms are equal, they vanish, so £{x|xi} =0, and in exactly
the same way £{x|xi, • • ■ , xn} =0 lor a\\ n. When n—>» this conditional
expectation becomes x, so x = 0, as was to be proved. This proof is of course
just a slightly different twist to Levy's proof of the usual 0-1 law, which is
simpler because, by hypothesis, the last cond. exp. above is a constant, so
that x must also be a constant."

Theorem 11.4. Let G be a finite group. Then an element cCS is in P if
and only if a A = 0 or 1 for every A £X that is invariant under all transformations
ofG.

Proof. The necessity of the condition stated was pointed out in Theorem
11.2.

To prove the sufficiency, we proceed as follows. Let aCS he a nonextreme
point; then there exists a real number a£]0, 1 [, probabilities a', a"CS, and
BCX such that a'B^a"B and o-=ao-'+(l-a)cr". Let <B denote the algebra
of subsets of X generated by the images of B under all of the transformations
of G. Since G is finite, it follows that <B is finite and is hence generated by the
elements {£<}?li of a finite partition of X. Since B itself is partitioned by
the sets Bi (i = l, • • • , m), there exists an index i0 such that cr'£,l)^cr"5,0.
Every image of 7J,0 under a transformation of G is an element of {TJjjJli.
Let the union of these images be denoted by C. Then clearly a'C^^'C, and
C is invariant under all transformations of G. It follows that aC is neither 0
nor 1, and the theorem is proved.

The hypothesis in Theorem 11.4 that G be a finite group can be replaced
by others. For example, if G is the integers or the semigroup of positive
integers under addition, known ergodic theorems can be invoked [22]. How-
ever, Theorem 11.4 is not true for all groups G. For example, if X consists of
the Baire sets of X, where X is the Cartesian product of an uncountable
number of discrete spaces each containing exactly 2 points, and G is the group
of all permutations of co-ordinates, Theorem 11.4 is false. Indeed it is easily
verified that S has more than 1 element, but that they all take only the
values 0 and 1 on all invariant Baire sets, namely the null set and X.
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Theorem 11.5. Let G be a finite group, of order n, and let d be a not necessar-
ily symmetric probability on X. Then there exists a unique element ae of S such
that a%A =6A for all AdX that are invariant under all transformations of G.
This probability ae is determined by the relation

(11.2) aeB = — YKgB)
n t£cj

for all BdX.
Proof. It is clear that (11.2) determines an element of S with the required

property. Its uniqueness is easily proved by the technique of Theorem 11.4.
If 8 is unit mass concentrated at a point of X (a 1-point probability), it is

intuitively plausible that the corresponding measure er« lies in P; the following
theorem shows this and more. It is expressed in terms of 0-1 probabilities,
that is, probabilities that assume only the values 0 and 1. These are, as is
well known, more general than point probabilities. See for example  [28].

Theorem 11.6. Let G be a finite group, of order n. Then the elements of P
all have the form ae for 0-1 probabilities 6. If 6 is a 0-1 probability, then ae lies
in P. For 0-1 probabilities 8 and 8', we have ae=ae' if and only if there exists
godG such that 8'B =8(g0B) for all BdX. (In this case, 8 and 8' are said to be
congruent under G.)

Proof. Let irdP, and let p be the infimum of positive values assumed by
ir. It follows at once from Theorem 11.4 that «p—1 and that there exists
AdX such that ItA =p. Then the conditional probability lr\A=d is a 0-1
measure, and ae = ir. For, if we assume the contrary, it is easy to apply the
technique used in proving Theorem 11.4 to show that there exists a CdX
invariant under all transformations of G such that

(11.3) 5rC ̂  aeC = — Y *(A C\ gC) = — Z(A Pi C).
pn gE.a p

Since (11.3) is a contradiction for 7rC = 0 and also for irC=l, and since C is
invariant, Theorem 11.4 implies that cr« must be tt.

The second statement of the present theorem is obvious in view of Theo-
rem 11.4.

To prove the last statement, suppose that 8 and 8' are 0-1 measures for
which ae=ae>, and assume that there is no gdG for which 8'B =8(gB) for all
BdX Then, for every g dG, there exists a set B0dX. such that 8(BQ) =0 and
8'(Bg) = l. Let C=r\geaBg. Then 8'C= land 8(gC)=0, for all gdG. Now we
have

(11.4) naeC =Y HgC) = 0, ne'C = Y O'(gC) > 0,
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and this is a contradiction. The proof is complete.

Theorem 11.7. If G is a finite group, then (X, G) is presentable, and for
every <rCS, there is exactly 1 measure p. satisfying relation (11.1). This p. is
determined by the condition that

(11.5) p{~\t?A = 1} = vA

for all A CX that are invariant under all transformations of G.

Proof. Theorem 11.2 shows that (11.1) implies (11.5) for all G, whether
finite or infinite. The technique used in proving Theorem 11.4 can be applied
to show at once that (11.6) can hold for at most 1 probability p.

If G consists of the identity transformation alone, then, as Theorem 11.4
shows, P consists exactly of the 0-1 probabilities on X, and the integral repre-
sentation (11.1) exists if and only if (11.5) obtains. Thus (11.1) holds if and
only if the set-function p. defined in (11.5) has a countably additive extension
to the Boolean algebra consisting of the sets {7r| if^4 = 1} for .4£X Using
point probabilities, it is easy to see that if {-4n}£-i is a sequence of sets in X
for which the sets {?|7r^4„ = l} are pairwise disjoint, then the sets An are
pairwise disjoint. This proves that p. as defined in (11.5) is countably additive.
Therefore (X, G) is presentable if G consists of the identity alone.

To prove the general case, let v be a probability on the set R of 0-1 meas-
ures 6 such that

(11.6) o-A =  f Odv(0)

tor all A CX and a given cr£S. The special case considered above shows that
such a probability v exists. Now let p, he the set-function on <P* such that, for
all 0£<P*,

(11.7) M0 = v{e\o-eC Q}.

It is easy to show that this p. is a countably additive probability on <P* for
which (11.1) is satisfied, and thus the present proof is complete.

It is instructive to note that this section could easily have been formulated
in terms of an abstract cr-algebra rather than in terms of the algebra of sets X.
Virtually the whole section would have remained unchanged, with the crucial
exception of Theorem 11.7. The proof of that theorem makes essential use of
point probabilities, and it is in fact false for abstract cr-algebras. To see this
it is enough to recall or demonstrate that there are no 0-1 measures on such a
cr-algebra as the Borel sets modulo sets of Lebesgue measure 0 on the real
line.

12. The presentability of finite Cartesian products. In the present sec-
tion, we study the exact sense in which finite Cartesian products are pre-
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sentable. Since the finite situation is relatively uninteresting here, we limit
ourselves to the infinite situation.

Let X be a set, X an algebra of subsets of X, and n an integer > 1. By
Xn we shall mean the Cartesian product of n replicas of X, and by Xn the
smallest algebra containing all sets C(Ei, • • • , En)=EiX ■ ■ • XEn for
Ex, ■ • ■ , EndX. For EdX, we write C(E) for EXXtX • • • XXn. Let G
denote the group of all permutations of co-ordinates on X„. Let Sn be the
convex set of all probabilities on Xn invariant under all the transformations of
G, and let Pn be the set of extreme points of Sn-

Theorem 11.7 implies that (X«, G) is presentable in the sense that a repre-
sentation of the form (11.1) exists for every crGSn. This representation is
unique, and furthermore, the elements of P„ are simply the elements of the
form ae for 0-1 probabilities 8 on X».

Our first task is to characterize the elements of P„ in terms of X rather
than of Xn. To do this, we define P„ as the class of probabilities ir on X that
assume only values of the form r/n for integral r.

Theorem 12.1. There is a 1-to-l correspondence ir—>ir carrying P„ onto Pn
such that

(12.1) tE = tC(E)

for all EdX- This correspondence is uniquely determined by condition (12.1).
Under this correspondence, the a-algebra generated by sets of the form {if 1tA = a}
in Pnis carried a-isomorphically onto the a-algebra generated by sets of the form
{ir\irE^e} in P„. There are algorithms for computing ir from ir which are given
in detail in the proof.

Proof. The set-function defined for all EdX as irC(E) is obviously a proba-
bility on X. We shall show that this probability assumes only the values
0, 1/n, 2/n, • • • , 1. Let Ar be the set of points of Xn for which exactly r
coordinates lie in E. It is clear that Ar is measurable and invariant under G.
Since w is invariant, Theorem 11.4 implies that TrAr = 0 or 1. The sets^4o,
Ai, ■ ■ • , An form a partition of Xn, and therefore there is a unique r
(0=r^w) such that 5f.4r = l. The set Ar is partitioned in a natural way into
Cn,r subsets, each characterized by the set of r co-ordinates that lie in E.
Each of these subsets of Ar can be transformed into all of the others by a
transformation of G, and hence all have equal ir measure, which must be
1/Cn.r- If r =0, then irC(E) =0. If r>0, then the set A,C\C(E) is the union of
Cn-i,r-i of these subsets. Therefore,

(12.2) tC(E) = %(Ar C\ C(E)) = C„_i,r_i/C„.r = r/n.
It follows that (12.1) defines a mapping of P„ into Pn.

To show that the mapping defined by (12.1) carries P„ onto Pn, we take
advantage of the fact that every 7rGPB can be represented in the form
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(12.3) t-!>.-,
n ,=i

where the irt are 0-1 probabilities on X (some in may be identical with some
irj for i^j). We leave to the reader the simple proof that the representation
(12.3) is always possible and that the ir< are unique except for their order.
We now write 9=inXir2X ' ■ ' Xirn, the product measure of iri, ■ ■ ■ , irn, in
that order, on X.n. Since every irt is a 0-1 probability, it follows that 6 is also a
0-1 probability. Defining ere as in Theorem 11.5, we see from Theorem 11.6
that osCPn- An easy calculation shows now that

1   "
(12.4) <r£(E) = — zZ *iE = tE,

n ,-=!

so that our mapping of P„ into P„ is in fact onto.
To show that the mapping described in (12.1) is 1-to-l, it suffices to show

that if is determined for all cylinders by the values of ifC(E) for all ££X.
We need consider only cylinders C(£i, • • • , £„) where, for all i, j = 1, 2, • • • ,
n, Ei and £,- are identical or disjoint (since every cylinder is obviously the
union of a finite number of cylinders each having this property). Now suppose
that Fi, • ■ • , Ft are the distinct sets occurring among the sets £i, ••-,£„
and that £„ appears ru times (u = l, ■ ■ ■ , t). The cylinder C(£i, • • • , £n)
then has exactly w!/fi! • • • rt\ distinct transforms under the group G, and all
of these are obviously disjoint.

Now let Ai,, be the set of all o£X„ exactly 5 co-ordinates of which lie in
the set Fi (i = l, • • ■ , t, s=0, 1, 2, • ■ ■ , n). As in the considerations leading
to (12.2), we see that there exists exactly 1 5,- such that if(Ai,,%)=l (t = l,
• • • , f), and that accordingly

(12.5) 3fC4i..in---ri4»,.,) = 1.
Also

(12.6) fC(Ft) = Si/n (i = 1, • • • , t).

Now, as already noted, C(£i, • • • , £„) is one of n\/n\ • • ■ rt\ elements of a
partition of Ai,r,r\ • • • C\At,rt, all of these sets being congruent under trans-
formations in G. Hence we have

(ri! • • • rtl/nl if r,- = s{ (i = 1, ■ ■ ■ , t),
(12.7) ~C(Ei, ■ ■ ■ , En) =  { l /

(0 otherwise.

Relations (12.6) and (12.7) show that if is determined for all cylinders
C(£i, • ■ ■ , £n) with disjoint or identical £,- by its values on cylinders C(E),
and thus the mapping described in (12.1) is 1-to-l onto. This completes the
proof of the first statement of the present theorem. The proof of the other
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2 statements are now simple and are left to the reader.
From Theorems 12.1 and 11.7, we now draw the following conclusion.

Theorem 12.3. For every adSn, there exists a probability p on the a-algebra
of subsets of P„ generated by sets of the form

(12.8) {tt| tt£ =: «} (£GX ereal)

such that

(12.9) aA =  f   (~A)dp(ir)
JPn

for all AdXn- The probability p, is uniquely determined by (12.9), and can be
computed by the algorithm

p[tr\ irEi ^ «,, i = 1, • • • , t] = a[a\ a d Xn,

at most nti co-ordinates of a are in Ei, i = 1, • ■ • , t\.

Here Ei, • • • , Et are disjoint elements ofX and ei, • • • , e< are real numbers.

Since product probabilities are exactly the extreme points of S (infinite
product), but not of Sn in general, it is interesting to see what form (12.10)
takes on when cr is an w-fold product of a probability ir0 on X. In this case,
writing F = Xr\(()'{_i Ei)', we have

p{ir| 7r£,- = €,-, i = 1, • ■ • , t]

(12.11) v-, n\
Y —-TT (to-BO'i • • ■ (toE«)"(toF)"

O^r.-S.in.SriSn   TX!  ■   ■   ■  r,\u\

where u = n— Yr*- F°r large n< according to well-known properties of the
multinomial distribution [6, p. 318], the right side of (12.11) is nearly 0 if
some ei<ir0£,- and is nearly 1 if all £i>ir0Ei. Thus, as might be expected, p
tends to be concentrated on probabilities ir that closely resemble ir0..

The analogy between (2.3) and (12.9) will be made a little more complete
by showing that the elements of Pn tend, in a sense, to resemble product
measures for large n. Consider a iFGPn corresponding to a irGPn, which is
made up of 0-1 probabilities Xi in the sense of (12.3). To see that ir does tend
to resemble a product measure, we estimate irC(Ei, • • • , Er), as follows.

(n- r)\
(12.12) tC(Ei, ■ ■ ■ , Er) =- 2',

»!
where

(12.13) 2' = 2'ir,vErT,vE2 • ■ • irirEr,

the summation being restricted to terms such that ii, ■ • ■ ,iT are all different.
If 2 denotes the corresponding unrestricted sum, which is, of course,
»rir£i • • • irE„, then we have
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(n-r)\
«-2 -——-2'

»!
i i        I (n-r)\

g tr* | 2 - 2' |  +«"■•-- 2'
n\

(12.14)
/ »!     \       /(n-r)l \      n\

\ (n-r)\)      \     n\ ) (n - r)\

,iU-!L_)
\        nr(n — r)!/

so 5r applied to any set determined by a few co-ordinates only is for large n
almost the same as the iterated product of ir applied to the same set.
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