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Abstract This paper proposes L2- and information-theory-
based (IT) non-rigid registration algorithms that are exactly
symmetric. Such algorithms pair the same points of two im-
ages after the images are swapped. Many commonly-used
L2 and IT non-rigid registration algorithms are only approx-
imately symmetric. The asymmetry is due to the objective
function as well as due to the numerical techniques used
in discretizing and minimizing the objective function. This
paper analyzes and provides techniques to eliminate both
sources of asymmetry.

This paper has five parts. The first part shows that objec-
tive function asymmetry is due to the use of standard differ-
ential volume forms on the domain of the images. The sec-
ond part proposes alternate volume forms that completely
eliminate objective function asymmetry. These forms, called
graph-based volume forms, are naturally defined on the
graph of the registration diffeomorphism f , rather than on
the domain of f . When pulled back to the domain of f

they involve the Jacobian Jf and therefore appear “non-
standard”. In the third part of the paper, graph-based volume
forms are analyzed in terms of four key objective-function
properties: symmetry, positive-definiteness, invariance, and
lack of bias. Graph-based volume forms whose associated
L2 objective functions have the first three properties are
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completely classified. There is an infinite-dimensional space
of such graph-based forms. But within this space, up to
scalar multiple, there is a unique volume form whose asso-
ciated L2 objective function is unbiased. This volume form,
which when pulled back to the domain of f is (1 + det(Jf ))

times the standard volume form on Euclidean space, is ex-
actly the differential-geometrically natural volume form on
the graph of f . The fourth part of the paper shows how the
same volume form also makes the IT objective functions
symmetric, positive semi-definite, invariant, and unbiased.
The fifth part of the paper introduces a method for remov-
ing asymmetry in numerical computations and presents re-
sults of numerical experiments. The new objective functions
and numerical method are tested on a coronal slice of a 3-D
MRI brain image. Numerical experiments show that, even in
the presence of noise, the new volume form and numerical
techniques reduces asymmetry practically down to machine
precision without compromising registration accuracy.

Keywords Non-rigid registration · Symmetric
registration · Inverse consistent registration · Image
registration

1 Introduction

Registration algorithms that produce the inverse warp when
their input images are swapped are symmetric or inverse-
consistent. Symmetric registration is important in many ap-
plications. For example, suppose that a registration algo-
rithm warps one functional MRI image to fit another, after
which their activation maps are compared voxel-wise. If af-
ter swapping the two images the registration algorithm does

mailto:hemant.tagare@yale.edu


62 J Math Imaging Vis (2009) 34: 61–88

not produce the inverse warp, then the result of the voxel-
wise comparison may well depend (spuriously) on which
image is being warped.

Asymmetric registration algorithms can be made sym-
metric by symmetrizing their objective functions. In this
paper, we adopt a differential-geometric point of view and
show how to symmetrize popular L2 and information-
theoretic (IT) registration objective functions while pre-
serving the following properties of the objective func-
tions: (1) positive (semi-) definiteness, (2) invariance un-
der volume-preserving transformations, and (3) lack of bias
(these terms are defined in Sect. 3).

We begin by showing that asymmetry is ultimately due to
the use of standard Euclidean volume forms. To symmetrize
the objective functions, we replace the standard forms with
new forms which are defined on the graph of the warping
function. As it happens, there are infinitely many graph-
based forms that make the L2 objective function symmet-
ric, positive-definite, and invariant under volume preserving
transformations. In the first theorem of this paper, we give a
complete classification of such forms. In the second theorem
we show that, up to multiplication by a positive scalar, there
is a unique graph-based form that additionally makes the
symmetrized L2 objective function unbiased. When pulled
back to the domain of f , this form is simply (1 + detJf )

times the standard Euclidean form. Remarkably, it turns out
that same volume form also symmetrizes IT objective func-
tions.

A pleasing property of this theory is that the symmetrized
objective functions retain the same nature as the original ob-
jective functions. Thus, the symmetrized L2 objective func-
tion remains an L2 objective function, and the symmetrized
IT objective function remains an IT objective function.

Objective functions are not the only source of asymmetry
in registration algorithms. The numerical technique used to
discretize and minimize the objective function can also in-
troduce asymmetry. To overcome numerical asymmetry, in
Sect. 11 we present a symmetric numerical scheme. Numeri-
cal experimentation shows that the theory and the numerical
techniques work well in practice—the graph-based volume
forms reduce asymmetry in L2 and IT objective functions
down to near machine precision.

As mentioned above, we symmetrize the objective func-
tions while preserving three other properties. Why do we in-
sist on these additional properties? The answer is quite sim-
ple. Symmetrizing an objective function changes it, and it
is important to guarantee that the change does not destroy
other useful properties of the objective function. The three
additional properties assure us that the modified objective
function remains minimizable (positive definiteness), that it
does not lose its ability to track certain simple transforma-
tions (invariance under volume preserving transformations),
and the new graph-based volume forms do not prefer one

warp over another when registering constant images (lack
of bias). Without these properties, the symmetrized objec-
tive function would not be completely trustworthy—it might
either give no answer, or give an answer that changes if the
object in the image translates or rotates, or give a biased an-
swer. In our opinion, symmetry should be viewed as a part of
a larger set of desirable properties of the objective function.

1.1 Previous Work

The literature on image registration is vast. Excellent re-
views and surveys are available in books [1–3] and pub-
lished papers [4–6].

Previous work on non-rigid registration can be classified
into two classes. In the first class are methods which directly
estimate the warping function and its inverse. In the second
class are methods which estimate a pair of functions whose
composition yields the warping function. We briefly survey
the methods here, but postpone a more mathematical discus-
sion of them to Sect. 7.1.

1.1.1 Direct Methods

Symmetric registration with direct methods was studied by
Christensen and colleagues [7–9] who called it inverse-
consistent registration or simply consistent registration.
Christensen et al. impart symmetry by taking the asymmet-
ric objective function with a warp in the forward direction
and adding to it the same objective function with a warp in
the backward direction. The forward and backward warps
are constrained to be approximate inverses of one another.
The constraint is enforced in a “soft” manner by adding
penalty terms to the objective function. We will refer to this
approach as the penalized-asymmetry approach.

The penalized-asymmetry approach has some limita-
tions. First, it is only approximately symmetric. Further,
the penalized-asymmetry approach can be viewed as a con-
strained minimization approach with a large number of (the-
oretically infinite) pointwise equality constraints on the for-
ward and backward warps. Because the constraints are im-
posed by introducing penalty terms in the objective function,
the minimum found by the algorithm is a compromise be-
tween minimizing the unpenalized objective function and
satisfying the constraints. Finally, adding the forward and
backward objective functions may not preserve the meaning
of the objective functions. For example, the sum of forward
and backward mutual informations is not another mutual
information.

In a slightly different approach, Ashburner et al. [10]
use symmetric priors, with the final registration being ap-
proximately symmetric. Rogelj and Kovacic [13] propose a
method which uses symmetrically designed forces to deform
both images. This method requires maintaining forward and
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backward transformations, but it does not use their inverses.
This method is also approximately symmetric.

Cachier and Rey [12] propose using the (1+detJf ) term,
but no geometric justification is provided for it, nor is its
uniqueness established.

1.1.2 Composition Methods

As mentioned above, composition methods do not directly
estimate the warping function or its inverse, but instead es-
timate functions whose compositions give the warp and its
inverse. As we discuss in Sect. 7.1, how these methods relate
to direct methods, and whether they have a natural geometry
is not entirely clear. These methods are reported by Joshi at
al. [14, 15, 19], Gee et. al [16], and Beg and Khan [11].

1.1.3 Other Work

Related to the problem of non-rigid registration is the prob-
lem of non-rigid correspondences between image structures.
In [17, 18] a theory of symmetric non-rigid correspondences
was developed by two of the authors of this paper. The idea
of formulating the problem on the graph of a function dates
to these publications.

1.1.4 Relation to Previous Work

Most of the previous work is algorithmic in nature, whereas
the main contribution of our work is theoretical. Our work
provides geometric insight into the origin of asymmetry and
a way to convert asymmetric registration into symmetric
registration. There are several key ideas that emerge from
this analysis which, as far as we know, have not been men-
tioned before. For example, the fundamental role of the vol-
ume differential form in registration has not been alluded
to or clarified. Further, the existence, classification, and
uniqueness of symmetrizing volume forms is new. Finally,
our theory shows how IT registration can be symmetrized in
the same framework as L2 registration. To our knowledge,
this has not been reported before; the algorithms mentioned
above consider L2 registration only.

1.1.5 Miscellaneous Comments

We are often asked about practical applications of symmet-
ric registration. In practice, symmetric registration has been
used in atlas creation [14, 20], synthesizing average shapes
of organs [21, 22], and processing of lung [23, 24] and ear
images [25].

Finally, a comment about the term “symmetric registra-
tion”. In mathematics, there is a standard term for the situa-
tion where the value of a function with two arguments stays
the same when the arguments are swapped. Such a function

is said to be symmetric with respect to its arguments, and
the property is referred to as symmetry. Common examples
of this are the symmetry of the metric (d(x, y) = d(y, x)),
and the symmetry of an equivalence relation ((y ∼ x) if
(x ∼ y)). Because we want the registration objective func-
tion value to stay the same when the input images are
swapped (and the warp is replaced with the inverse warp),
“symmetric registration” seems more appropriate to us than
“inverse-consistent registration”.

1.2 Organization of the Paper

We begin the paper in Sect. 2 with some background in-
formation and notation. Section 3 gives mathematical defin-
itions of positive-definiteness, symmetry, bias, and invari-
ance under volume-preserving transformations. Section 4
investigates the asymmetry of the L2 objective function.

Section 5 introduces the new space in which symmetriz-
ing, non-standard forms arise in a natural way. There are
many symmetrizing forms in this space, and Theorem 1 in
Sect. 6 gives a complete classification of these forms. We
then proceed to find the unique form that gives us the addi-
tional properties that we want. The main result is Theorem 2
of Sect. 7, which identifies this form. The resulting symmet-
ric L2 objective function is also defined in this section.

In Sect. 8 we turn our attention to IT objective functions
and show that they are asymmetric as well, and for exactly
the same reason as L2. In Sect. 9, the IT objective functions
are symmetrized using the volume form identified in Theo-
rem 3 of Sect. 7.

Section 10 discusses regularization. Section 11 addresses
the issues of numerical symmetry and proposes a symmet-
ric numerical scheme. Section 12 contains simulations that
evaluate the asymmetry and show that the new symmetric
objective functions reduce asymmetry practically down to
machine precision. The experiments also show that there is
no loss of accuracy in registration when asymmetric objec-
tive functions are replaced with symmetric ones. In fact, a
slight increase in accuracy is observed.

2 Images, Diffeomorphisms and Objective Functions

We begin with some definitions. In order to simplify the ex-
position, we assume certain degrees of differentiability for
images and diffeomorphisms, but some of our results hold
with weaker differentiability than the C1 images and C2 dif-
feomorphisms that our definitions restrict us to.

2.1 Images and their Ordered Pairs

The domain of an image is �, the closed unit cube of R
n. In

practice, we are interested in n = 2 or n = 3, but our theory



64 J Math Imaging Vis (2009) 34: 61–88

holds for any finite n. An image I : � → R is a continuously
differentiable function from � to the real line. A constant
image on � is a constant function from � to R. Constant
images are important in the study of bias.

Let �1 = �2 = � be two copies of �. An ordered pair
of images (I1, I2) is a pair of images (functions) with the
first defined on �1 and the second on �2. The ordered pair
(I2, I1) is the ordered pair (I1, I2) swapped. In (I2, I1), the
image I2 is defined on �1 and I1 on �2.

2.2 Diffeomorphisms

During registration, images are warped by diffeomorphisms
from � to �. We assume that the diffeomorphisms are C2.
We denote the Jacobian matrix of a diffeomorphism f :
� → � by Jf . A diffeomorphism f : � → � is orientation-
preserving if detJf (x) > 0 for all x ∈ �. The set of orienta-
tion preserving diffeomorphisms forms a group under com-
position. We denote this group by Diff+.

If a diffeomorphism f ∈ Diff+ has detJf (x) = 1 for
all x ∈ �, then it is a volume- and orientation-preserving
diffeomorphism. The set of all volume and orientation-
preserving diffeomorphisms forms a subgroup of Diff+, de-
noted by SDiff+.

Since we are only interested in Diff+ and SDiff+ in the
following, we drop the qualification “orientation-preserv-
ing.” We simply refer to elements of Diff+ as a diffeomor-
phisms and elements of SDiff+ as volume-preserving dif-
feomorphisms.

There is a subtle but important point in the use of Diff+.
As we have defined it, the diffeomorphisms are bijective
on �. Strictly speaking, this excludes translations, rotations,
and scaling from Diff+ because they move part of the image
outside �. This is not as restrictive as it seems. In practice,
the two images are usually translated, rotated, and scaled be-
fore non-rigid registration is applied. After translation etc.,
a window � is chosen on the region of overlap of the two
images, and non-rigid registration is applied as a bijection
on �. We are restricting ourselves to this situation, hence it
is sufficient to define Diff+ as we have done.

If f,g ∈ Diff+, then f ◦ g ∈ Diff+ and we write the de-
terminant of the Jacobian of f ◦ g as detJf ◦ g × detJg

or simply as detJf ◦ g detJg . This may seem a little odd
at first, but is the mathematically correct notation—it means
that the determinant is a product of two functions, the first
of which is detJf ◦ g (the value of detJf ◦ g at a point
x ∈ Domain(g) is the value of detJf evaluated at g(x) ∈
Domain(f )) times detJg .

2.3 Objective Functions

For a pair of images (I1, I2), a registration objective function
J ((I1, I2), f ) measures how well the two images match af-
ter warping by the diffeomorphism f ∈ Diff+. Lower values

of J indicate a better match. Registration algorithms seek an
f that minimizes a given J .

Registration objective functions are usually a weighted
sum of an image-dependent term and a regularization term.
The image-dependent term drives the warp in a direction that
registers the image. The regularization term, which depends
only on the warp (it is independent of the image), biases
the solution towards smoother warps. In this paper, we are
primarily concerned with the image-dependent term in the
objective function, and unless we explicitly mention it, from
now on we will take the term “objective function” to mean
this term only. We do have suggestions for regularization
terms that can be used along with the symmetrized objective
functions. They are presented in Sect. 10.

3 Properties of Objective Functions

We would like registration objective functions to have the
following four properties. The first property assures us that
the objective function is well defined and that its minimum
is meaningful:

1. Positive-definiteness: The objective function
J ((I1, I2), f ) is positive-definite if for all ordered images
(I1, I2) and all f ∈ Diff+

J ((I1, I2), f ) ≥ 0,

with equality if and only if I1 = I2 ◦ f .
The next property assures us that there is no built-in bias

in the registration algorithm. By this we mean that if the
two input images are constant images (they have no features)
then the registration algorithm should not prefer any diffeo-
morphism over another:

2. Lack of Bias: An objective function is unbiased if
J ((I1, I2), f1) = J ((I1, I2), f2) for all pairs (I1, I2) of con-
stant images and all f1, f2 ∈ Diff+.

The third property is symmetry:
3. Symmetry: The objective function J ((I1, I2), f ) is

symmetric if

J ((I1, I2), f ) = J ((I2, I1), f
−1),

for all ordered images (I1, I2) and all f ∈ Diff+.
The final property we want is that the objective function

track changes in the images. That is, if we begin with a pair
of input images and systematically distort them, then we
would like the registration algorithm to track the distortions.
This idea is made precise using the following commutative
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diagram:

R R

↑ I1 ↑ I2

�1
−→
f �2

↑ g1 ↑ g2

�1
−−−−−−−−→
g2

−1 ◦ f ◦ g1 �2

(1)

The top part of the diagram shows images I1 and I2 on �1

and �2. The bottom part of the diagram has images I1 ◦ g1

and I2 ◦ g2 on �1 and �2 respectively. These images are
simply the images from the top part distorted by g1 and g2

respectively. Any diffeomorphism f in the top part of the
diagram has a corresponding diffeomorphism g2

−1 ◦ f ◦ g1

in the bottom part which continues to pair the same set of
points in the two images.

One way of assuring that the objective function does not
lose sensitivity to changes in the images is to require the
values J ((I1, I2), f ) and J ((I1 ◦g1, I2 ◦g2), g2

−1 ◦f ◦g1)

to be equal for all f and for as large a set of g1 and g2 as
possible. The largest possible set of g1 and g2 that we have
been able to accommodate is g1, g2 ∈ SDiff+. This gives us
the definition:

4. Invariance under SDiff+ (invariance under volume-
preserving transformations): An objective function is invari-
ant under SDiff+ if

J ((I1, I2), f ) = J ((I1 ◦ g1, I2 ◦ g2), g2
−1 ◦ f ◦ g1)

for all (I1, I2), all g1, g2 ∈ SDiff+, and all f ∈ Diff+.
Our goal is to modify L2 and IT registration objective

functions so that they satisfy all of the above properties. We
begin by analyzing the L2 objective function.

4 The L2 Objective Function and Its Asymmetry

The L2 objective function is customarily defined as√∫
�1

(I1 − I2 ◦ f )2 ω,

where ω is the standard volume differential form, ω = dx1 ∧
dx2 ∧ · · · ∧ dxn (we use the formalism of differential forms
in our analysis and the reader is reminded of some basic
facts about them in the footnote1).

1A differential form of degree k, or k-form, on a manifold is a field
of totally antisymmetric, contravariant k-tensors. We denote by αx the
value of a differential form α at the point x, and call αx a k-form at
the point x. At each point x of an n-dimensional manifold, the set
of n-forms at x is a one-dimensional vector space. If the manifold is

Squaring the objective function does not change the min-
imizing f , and it is common to use

J ((I1, I2), f ) =
∫

�1

(I1 − I2 ◦ f )2 ω. (2)

instead. We will refer to it as the L2 objective function.
The L2 objective function is asymmetric. To see this,

consider a diffeomorphism f −1 : �1 → �1 shown below
from the lower copy of �1 to the upper copy of �1:

R R

↑ I1 ↑ I2

�1
−→
f �2

↑ f −1

�1
−−−→
f −1 �2

↓ I2 ↓ I1

R R

(3)

Then, starting with the L2 objective function defined on
the upper copy of �1 and pulling it to the lower copy of �1

via f −1 gives

J ((I1, I2), f ) =
∫

�1

(I1 − I2 ◦ f )2 ω

=
∫

�1

(I1 ◦ f −1 − I2)
2

(
f −1∗

ω
)

, (4)

where, f −1∗
ω is the pull back of ω through f −1 evaluated

as f −1∗
ω = detJf −1ω.

Because J ((I2, I1), f
−1) = ∫

�1
(I2 − I1 ◦ f −1)2 ω, we

see from (4) that J ((I1, I2), f ) = J ((I2, I1), f
−1) for all

images if and only if detJf −1 ω = ω, for all u ∈ �1 i.e. if
and only if detJf −1 = 1 for all u ∈ �1. Since this does not
hold for all f ∈ Diff+, the L2 objective function is asym-
metric. This argument shows clearly that it is the detJf −1

term that causes the asymmetry. Thus the asymmetry arises
directly from the use of the standard volume form ω.

oriented, then the notions of “positive” and “negative” elements of this
one-dimensional space are well-defined. A volume form on an oriented
n-dimensional manifold is an n-form that is positive at each point.

If the manifold is an open subset U of Rn, then the standard volume
form on U is ω := dx1 ∧dx2 ∧· · ·∧dxn; we will reserve the symbol ω

exclusively for this form. The (standard) volume of any open subset O

of U is
∫
O

ω. Note that every volume form on U is of the form hω for
some function h : U → R+. All these facts extend to n-dimensional
manifolds with boundary or manifolds with corners, such as �, in Rn.

The pull-back of an n-form α by a differentiable map f is f ∗α =
(detJf )α, where Jf is the Jacobian of f .
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4.1 Symmetrizing the L2 Objective Function

To symmetrize the L2 objective function, we could replace
the standard volume form ω with an alternate form of the
type σ(Jf )ω (the function σ to be determined). Such a
form can symmetrize the L2 objective function provided the
σ(Jf ) term can compensate the detJf −1 term that causes
asymmetry.

Below, we introduce a geometric framework for registra-
tion in which the volume forms σ(Jf )ω arise naturally and
in which

∫
σ(Jf )ω has a consistent geometric interpreta-

tion. In this framework
∫

σ(Jf )ω is interpreted as the vol-
ume of a set contained in the graph of the function f , with
the graph Gf = {(u,f (u)) | u ∈ �1} viewed as a differen-
tiable manifold in the product space �1 × �2. This geomet-
ric point of view is fundamental to our approach to sym-
metrization.

Using the above framework we show that up to a constant
multiple there is a single form, namely

(1 + detJf ) ω, (5)

that gives the properties we ask for. Using this form, the L2

objective function is modified to

J ((I1, I2), f ) =
∫

�1

(I1 − I2 ◦ f )2(1 + detJf ) ω. (6)

The modified L2 objective function is positive-definite,
symmetric, invariant under volume-preserving transforma-
tions and unbiased. Further, as we show in Sect. 9, this form
also makes the IT objective functions positive-definite, sym-
metric, invariant under volume preserving transformations
and unbiased.

As will become clear in the exposition below, the volume
form of (5) has a very natural graph-based interpretation: it
is the sum of pullbacks to Gf of the standard volume forms
on �1 and �2.

5 Product Spaces and Graphs

5.1 Product Spaces and Projections

The product space �1 × �2 is the set of all ordered pairs
{(u, v) | u ∈ �1, v ∈ �2} and has two natural projection
functions π1 : �1 × �2 → �1 and π2 : �1 × �2 → �2 de-
fined by π1((u, v)) = u and π2((u, v)) = v. The projection
functions are continuously differentiable.

5.2 Graphs

The graph of any differentiable function f : �1 → �2

is the set Gf = {(u,f (u)) | u ∈ �1} and is a dim(�1)-
dimensional, differentiable, and orientable submanifold of

Fig. 1 Parallel tangent planes

�1 ×�2. If f ∈ Diff+, then an orientation can be easily cho-
sen on Gf such that the projection functions, restricted to
Gf , become orientation-preserving diffeomorphisms from
Gf to �1 and �2. We denote the projection functions re-
stricted to Gf by p1 = π1 |Gf

and p2 = π2 |Gf
respectively.

The functions p1,p2 are related to f by p2 ◦ p1
−1 = f

and p1 ◦ p2
−1 = f −1. We use these relations below.

5.3 Volume Forms on the Graph

If ω is the standard volume form on �1, then p∗
1ω (the pull-

back of ω to Gf ) is a volume form on Gf . Multiplying p∗
1ω

with any function on Gf gives another volume form on Gf .
All volume forms on Gf can be obtained this way.

Recall that we want to consider volume forms that de-
pend on Jf . Geometrically speaking, these volume forms
depend on the inclination (or the “attitude”) of the tangent
space of Gf at (x, f (x)). In Fig. 1 the graph Gf is illustrated
as a surface over �1. In the figure, the tangent spaces to Gf

at (x1, f (x1)) and at (x2, f (x2)) are parallel, and we want
the volume forms at (x1, f (x1)) and (x2, f (x2)) to be an
“equal” multiple of p∗

1w. To say this more precisely, parti-
tion Gf into equivalence classes where points belong to the
same class if and only if they have parallel tangent spaces.
We want to consider volume forms that have the same value
for all points in one equivalence class. But the value can dif-
fer across equivalence classes.

The inclination of the tangent space at (x, f (x)) is com-
pletely determined by the Jacobian Jf (x). Let R

n×n be the
space of n × n matrices. Denoting (0,∞) by R

+, we have
M+ = det−1(R+) as the set of n × n matrices with positive
determinant. For each x ∈ �1, we may view “Jacobian” as
a map given by (f, x) �→ Jf (x). For each x ∈ �1 the map
f �→ Jf (x) is onto. Suppose that σ : M+ → R is a real-
valued function on M+. Then, σ induces a function on Gf

given by h = σ ◦ Jf , and we can construct the volume form
αx = h(x)p∗

1ωx = σ(Jf (x))p∗
1ωx whose value is the same

for all points (x, f (x)) in the same equivalence class.
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Definition Every positive differentiable function σ : M+ →
R defines a differentiable tangent-dependent volume form at
(x, f (x)) according to

α(x,f (x)) = σ(Jf (x))p∗
1ωx. (7)

5.4 The L2 Objective Function on the Graph of a
Diffeomorphism

Given the pair (I1, I2), define I1  I2 : �1 × �2 → R by
I1  I2 = I1 ◦π1 − I2 ◦π2. If I1  I2 is restricted to Gf then
the integral of the square of I1 ◦ p1 − I2 ◦ p2 on Gf gives a
graph-based L2 objective function.

Definition Let σ : M+ → R be as above. The graph-based
L2 (GL2) objective function determined by σ is

J ((I1, I2), f ) =
∫

Gf

(I1  I2)
2α (8)

where α is a tangent-dependent volume on Gf given by (7).

It is instructive to change the domain of the integral from
Gf to �1.

J ((I1, I2), f )

=
∫

Gf

(I1  I2)
2α

=
∫

Gf

(I1 ◦ p1(w) − I2 ◦ p2(w))2σ(Jf ◦ p1(w))p∗
1ωp1(w)

=
∫

�1

(I1(x) − I2 ◦ p2 ◦ p1
−1(x))2σ(Jf (x))ωx

=
∫

�1

(I1 − I2 ◦ f )2(x)σ (Jf (x))ωx, (9)

where x = p1(w).
This calculation shows that the G L2 is simply the L2 ob-

jective function with the standard volume form ω replaced
by the volume form σ(Jf )ω. As discussed in Sect. 4.1 this
is exactly what we want.

6 The Volume Form

Having defined a class of volume forms and an objective
function based on them, the next task is to identify a vol-
ume form that makes the G L2 objective function positive-
definite, unbiased, symmetric and invariant under SDiff+.
We do this in two steps:

1. First, we translate the requirements of positive-definite-
ness, symmetry and invariance under SDiff+ to require-
ments on the function σ . Using this, we identify all vol-
ume forms that give positive-definiteness, symmetry and
invariance under SDiff+.

2. From these volume forms we pick the forms for which
the objective function has no bias. We shall see that, up
to a scalar multiple, there is a unique such form.

6.1 Positive-Definiteness

Proposition 1 The G L2 objective function determined by σ

is positive-definite if and only if σ(Jf ) > 0 for all Jf ∈ M+.

Proof If σ(Jf (x)) > 0 then (9) shows that G L2 is positive-
definite.

The proof of the converse is by contradiction. Suppose
there is an A ∈ M+ for which σ(A) ≤ 0 and which gives
a positive-definite G L2. Then construct a diffeomorphism
f : �1 → �2 such that Jf (x) = A for all points x of an open
set O ⊂ �1. Let O ′ ⊂ O be open, and take � : �1 → R

to be a continuously differentiable function which is zero
on the complement of O , strictly positive on O ′ and non-
negative on O −O ′ (the existence of such a function follows
from a partition of unity argument). Finally, choose I1 to be
any image on �1 and I2 = (I1 + �) ◦ f −1. Then, writing
x = p1(w)

J ((I1, I2), f )

=
∫

Gf

(I1  I2)
2α

=
∫

�1

(I1(x) − (I1 + �) ◦ f −1 ◦ f (x))2σ(Jf (x))ωx

=
∫

O

�2σ(A)ω.

If σ(A) = 0, then J ((I1, I2), f ) = 0. But I1 �= I2 ◦ f ,
which contradicts the definition of non-negativity.

If σ(A) < 0, then J ((I1, I2), f ) < 0, which also con-
tradicts the definition of non-negativity. This proves the re-
sult. �

6.2 Symmetry and Invariance Under SDiff+

To analyze symmetry and invariance under SDiff+ we need
the following simple result:

Proposition 2 If α and β are two non-zero continuous vol-
ume forms on �1 then,∫

�1

hα =
∫

�1

hβ, (10)

for all continuous (or continuously differentiable) h : �1 →
R if and only if α = β .

Proof The proof is routine and depends on continuity. It is
omitted to conserve space. �

We use this result to analyze symmetry.
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6.2.1 Symmetry

Given f , for i = 1,2 let p̃i = πi |G
f −1 , and let α̃ denote

the GL2 volume form on Gf −1 determined by σ . Then

given I1, I2 we can use the diffeomorphism p̃−1
1 : �1 →

Gf or p̃−1
2 : �2 → Gf to pull back the integral defining

J ((I2, I1), f
−1) to an integral over �1 or �2 respectively,

i.e. to re-express the integral in terms of the variable x ∈ �1

(as in the derivation of (9)) or in terms of y ∈ �2. If we pull
back to �2, then, since p̃−1

2 = p̃−1
1 ◦ f (note that now f is

viewed as a map �2 → �1; it is f −1 that is viewed as a map
�1 → �2) we find

J ((I2, I1), f
−1)

=
∫

�2

f ∗ (
(p̃−1

1 )∗((I2  I1)
2α̃

)

=
∫

�2

f ∗ (
(I2 − I1 ◦ f −1)2σ(Jf −1)ω

)
by (6)

=
∫

�2

(I2 ◦ f − I1)
2(σ (Jf −1 ◦ f )f ∗ω

=
∫

�2

(I1 − I2 ◦ f )2σ(Jf −1 ◦ f ) det(Jf )ω

=
∫

�

(I1 − I2 ◦ f )2σ((Jf )−1) det(Jf )ω (11)

since �2 = � and Jf −1 ◦ f = (Jf )−1. But symmetry re-
quires that J ((I2, I1), f

−1) = J ((I1, I2), f ). Since for any
f , the images I1 and I2 can be chosen such that I2 −I1 ◦f −1

is any continuously differentiable function, applying Propo-
sition 2 to (11) and (9) implies that J is symmetric if and
only if

σ(Jf (x)−1) det(Jf (x)) = σ(Jf (x))

for all f ∈ Diff+ and all x ∈ �1. Since, varying f and x, the
matrix Jf (x) can take all possible values in M+, we have
the result:

Proposition 3 The GL2 objective function determined by σ

is symmetric if and only if

σ(A−1) det(A) = σ(A) (12)

for all A ∈ M+.

6.2.2 Invariance under SDiff+

Referring back to the commutative diagram (1) on p. 65, we
have for the top part:

J ((I1, I2), f ) =
∫

Gf

(I1  I2)
2α

=
∫

�1

(I1 − I2 ◦ f )2σ(Jf )ω.

Pulling this integral to the bottom copy of �1 using g1 ∈
SDiff+ gives

J ((I1, I2), f )

=
∫

�1

(I1 ◦ g1 − I2 ◦ f ◦ g1)
2σ(Jf )detJg1ω

=
∫

�1

(I1 ◦ g1 − I2 ◦ f ◦ g1)
2σ(Jf )ω

=
∫

�1

(I1 ◦ g1 − I2 ◦ g2 ◦ g2
−1 ◦ f ◦ g1)

2σ(Jf )ω,

since detJg1 = 1 , and g2 ◦ g2
−1 = id .

Next,

J ((I1 ◦ g1, I2 ◦ g2), g2
−1 ◦ f ◦ g1)

=
∫

G
g2

−1◦f ◦g1

(I1 ◦ g1  I2 ◦ g2)
2α

=
∫

�1

(I1 ◦ g1 − I2 ◦ g2 ◦ g2
−1 ◦ f ◦ g1)

2σ(Jg2
−1◦f ◦g1

)ω.

Since we want J ((I1, I2), f ) = J ((I1 ◦ g1, I2 ◦ g2),

g2
−1 ◦ f ◦ g1) for all I1, I2, f, g1, g2, it must be that

σ(Jf )ω = σ(Jg2
−1◦f ◦g1

)ω = σ(Jg2
−1Jf Jg1)ω,

or σ(Jf ) = σ(Jg2
−1Jf Jg1).

Since Jf can take any value in M+ and Jg2 and J
g−1

1
can

take any values in SL(n), the above relation implies that

σ(A) = σ(BAC), (13)

must hold for all A ∈ M+ and all B,C ∈ SL(n). Thus σ

must be constant over the set LA = {BAC | B,C ∈ SL(n)}.

Lemma 1 For any A ∈ M+, the set LA = {BAC | B,C ∈
SL(n)} is the level set of the determinant function passing
through A. This implies that invariance under SDiff+ holds
if and only if the function σ : M+ → R

+ can be written as

σ(A) = ζ(detA),

for some function ζ : R
+ → R

+.

Proof Let L̃A = {X | X ∈ M+, detX = detA}. We will
show that L̃A = LA. If D ∈ LA, then D = BAC, and
detD = detA, since detB = detC = 1. Thus, D ∈ L̃A,
showing that LA ⊂ L̃A. Next, let X ∈ L̃A. Then X =
(XA−1)A, and the matrix XA−1 ∈ SL(n) since detX =
detA. This shows that X ∈ LA, thus showing that LA = L̃A

and establishing the first part of the lemma. The second part
is obvious because σ is constant over any LA. �
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Because det : M+ → R
+ is a continuously differen-

tiable surjective function with a non-vanishing derivative,
the function σ is continuously differentiable if and only if
ζ is. Thus we have:

Proposition 4 The G L2 objective function determined by σ

is invariant under SDiff+ if and only if σ : M+ → R can be
expressed as

σ(A) = ζ(detA), (14)

for some continuously differentiable function ζ : R
+ → R

+.

In view of Proposition 4, we will henceforth refer to the
GL2 objective function determined by σ as “the GL2 objec-
tive function determined by ζ .”

6.3 Existence of Positive-Definite, Symmetric, and
Invariant Volume Forms

We now seek to establish the existence of volume forms
that are simultaneously positive-definite, symmetric, and in-
variant under SDiff+. The main result is Theorem 1 below,
which demonstrates the existence of such forms and com-
pletely characterizes them.

Invariance under SDiff+ requires σ to have the form
σ(A) = ζ(detA) for all A ∈ M+. Substituting this form into
the symmetry condition σ(A−1)det(A) = σ(A) and moving
detA to the right hand side gives

ζ(detA−1) = detA−1 ζ(detA),

for all A ∈ M+. Since detA can take any value in R
+, this

condition can be written as

ζ(u) = u ζ

(
1

u

)
, (15)

for all u ∈ R
+.

We can construct all functions ζ satisfying (15) in the
following way. Choose any function ζ+ : [1,∞) → R

+ and
define ζ : R

+ → R
+ as

ζ(u) =
{
ζ+(u) if u ≥ 1
u ζ+( 1

u
) otherwise.

(16)

To see that this recipe is complete, note that if ζ satis-
fies (15), the required ζ+ is equal to ζ on [1,∞). Further,
any ζ obtained from (16) satisfies (15).

In addition to satisfying (15), we would like ζ to be con-
tinuously differentiable. Continuous differentiability of ζ is
possible at u > 1 and u < 1 if and only if ζ+ is continuously
differentiable. At u = 1, continuous differentiability is ob-
tained by equating the right and left limits of the derivative
of ζ .

We have:

d

du
ζ(u) |u=1+ = ζ ′+(1),

d

du
ζ(u) |u=1− = lim

u→1−

{
ζ+

(
1

u

)
− u

1

u2
ζ ′+

(
1

u

)}

= ζ+(1) − ζ ′+(1).

Thus, ζ is continuously differentiable at u = 1 if and only if
ζ ′+(1) = 1

2ζ+(1).

Finally, σ(A) = ζ(detA) > 0 if and only if the function
ζ > 0, which is possible if and only if ζ+ > 0. Thus, we
reach the result:

Theorem 1 The G L2 objective function is positive-definite,
symmetric and invariant under SDiff+ if and only if the func-
tion σ : M+ → R can be written as

σ(A) = ζ(detA), (17)

where, ζ satisfies ζ(u) = uζ(1/u), and is given by

ζ(u) =
{
ζ+(u) if u ≥ 1
u ζ+( 1

u
) otherwise,

(18)

for a positive and continuously differentiable function ζ+ :
[1,∞) → R

+ satisfying

ζ ′+(1) = 1

2
ζ+(1). (19)

Thus there are infinitely many G L2 objective functions
that are positive-definite, symmetric and invariant under
SDiff+. The above theorem classifies all of them—each
such objective function is uniquely determined by the func-
tion ζ+.

Some recipes for constructing positive-definite, symmet-
ric, and invariant G L2 objective functions are the following:

1. Take ζ+(u) = 1 + u. This satisfies the derivative con-
straint of (19). The resulting σ function is

σ(A) =
{

1 + detA if detA ≥ 1
detA (1 + 1

detA) = 1 + detA otherwise.

That is, σ(A) = 1 + detA for all A ∈ M+. This gives the
G L2 objective function

J ((I1, I2), f )

=
∫

Gf

(I1  I2)
2α

=
∫

�1

(I1(x) − I2(f (x)))2 (1 + detJf ) ωx,

which is easily evaluated as being positive-definite, sym-
metric, and invariant under SDiff+.
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2. Generalizing the above example, take

ζ+(u) = n
√

anun + · · · + a1u + a0

to be the n-th root of any nth-order symmetric polyno-
mial (i.e. an−i = ai for i = 0, . . . , �n/2� − 1) with pos-
itive coefficients. Repeating the above calculation gives
σ(A) = n

√
an detAn + · · · + a1 detA + a0 and the G L2

objective function

J ((I1, I2), f )

=
∫

Gf

(I1  I2)
2α =

∫
�1

(I1(x) − I2(f (x)))2

× n

√
an detJn

f + · · · + a1 detJf + a0 ωx,

which is positive-definite, symmetric and invariant under
SDiff+.

7 Lack of Bias and Uniqueness of the Volume Form

Following Theorem 1, will now assume that the G L2 objec-
tive function is given by

J ((I1, I2), f ) =
∫

�1

(I1(x) − I2 ◦ f (x))2ζ(detJf (x))ωx,

where ζ satisfies ζ(u) = uζ(1/u).
When I1, I2 are constant images J ((I1, I2), g) = (I1 −

I2)
2
∫
�1

ζ(detJf (x))ωx , so that the objective function is un-
biased iff

∫
�1

ζ(detJf1(x))ωx = ∫
�1

ζ(detJf2(x))ωx for all

f1, f2 ∈ Diff+.
We analyze this condition by the calculus of variations.

Let f ∈ Diff+, and let 
1 ⊂ �1 be a region that is a proper
subset of �1 with boundary ∂
1 (Fig. 2) which is a hyper-
surface of co-dimension 1 (a curve for the two-dimensional
case and a surface for the three-dimensional case). Let 
2 =
f (
1); then 
2 is a proper subset of �2 with a bound-
ary ∂
2. Let X be a smooth vector field on �2 vanish-
ing on the complement 
′

2 of 
2, and let {�t }t∈R be the
flow of X. Then for all t , the map �t is the identity, and
�t(
2) = 
2,�t (


′
2) = 
′

2. Thus, �t ◦f coincides with f

on the complement 
1.
Further, for all values of t , �t ◦ f ∈ Diff+ (i.e. �t ◦ f is

an orientation-preserving diffeomorphism from �1 to �2).
Applying the lack of bias condition to f and �t ◦ f we get∫
�1

ζ(detJf (x))ωx = ∫
�1

ζ(detJ�t◦f (x))ωx . Taking into
account the fact that �t ◦ f coincides with f on the com-
plement 
2, the condition reduces to

∫

1

ζ(detJf (x))ωx =∫

1

ζ(detJ�t◦f (x))ωx , for all values of t . Since the left hand
side of this equation is independent of t and �0 ◦f = f , the
equation is satisfied only if

d

dt

∫

1

ζ(detJ�t◦f )ω |t=0= 0. (20)

Fig. 2 Analysis of bias

Now,∫

1

ζ(detJ�t◦f )ω =
∫


1

ζ(detJ�t◦f )
(�t ◦ f )∗ω
detJ�t◦f

=
∫


1

ζ̃ (detJ�t◦f ) (�t ◦ f )∗ω

=
∫


1

(ζ̃ ◦ detJ�t◦f ) (�t ◦ f )∗ω,

where ζ̃ (u) = ζ(u)/u. Further, by invariance of the integral
under orientation-preserving diffeomorphisms∫


1

(ζ̃ ◦ detJ�t◦f ) (�t ◦ f )∗ω

=
∫


2

(f −1)∗
[
(ζ̃ ◦ detJ�t◦f ) (�t ◦ f )∗ω

]

=
∫


2

[
ζ̃ ◦ detJ�t◦f ◦ f −1

]
(�t )

∗ω

=
∫


2

ζ̃ ◦ [
(detJ�t ◦ f ).(detJf )

] ◦ f −1 (�t )
∗ω

=
∫


2

ζ̃ ◦ [
detJ�t · rf

]
(�t )

∗ω,

where rf = det(Jf ) ◦ f −1. Hence, (20) can be written as

d

dt

∫

2

ζ̃ ◦ [
detJ�t .rf

]
(�t )

∗ω |t=0= 0. (21)

In Appendix, using Stokes’ theorem we show that

Lemma 2 With notation as above,

d

dt

∫

2

ζ̃ ◦ [
detJ�t .rf

]
(�t )

∗ω |t=0

= −
∫


2

〈ζ ′′(rf )drf ,X〉ω, (22)

where 〈ζ ′′(rf )drf ,X〉 denotes the pointwise evaluation of
the 1-form ζ ′′(rf )drf on the vector field X.

This lemma leads to the following fundamental result.
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Theorem 2 The G L2 objective function determined by ζ is
positive-definite, symmetric, invariant under SD+ and unbi-
ased if and only if

ζ(r) = a(1 + r), (23)

for some a > 0.

Proof Lack of bias requires (21) to hold. According to
Lemma 2, this implies that for all regions 
1 bounded by
a simple closed curve, (ζ ′′ ◦ rf )drf = 0 on 
1. For r ∈ R

+,
there exists a region 
1 containing any point u ∈ �1, and
a diffeomorphism f ∈ Diff+ such that drf (u) �= 0 and
rf (u) = r . Hence ζ ′′(r) = 0 for all r > 0, and therefore
ζ(r) = ar + b for some a, b ∈ R. Using (19) we conclude
that a = b. Finally, positivity of ζ implies a > 0, proving
the result. �

Writing ζ(r) = a(r + 1), we see that the a factor just
scales the G L2 objective function according to

J ((I1, I2), f ) = a

∫
�1

(I1 − I2 ◦ f )2 (detJf + 1)ω,

and setting a = 1 does not affect the minimizer of J . Thus
we are led to the conclusion that, up to a scalar multiple,
there is a unique G L2 objective function that satisfies our
axioms, and it is given by

J ((I1, I2), f ) =
∫

�1

(I1 − I2 ◦ f )2 (detJf + 1)ω. (24)

Thus the tangent-dependent volume form that is used in this
G L2 objective function is

α(x,f (x)) = (1 + detJf (x))p∗
1ωx. (25)

7.1 Relation to Other Registration Objective Functions

We pause briefly to comment on the relation of Theorem 2
to previously published symmetric and approximately sym-
metric registration algorithms.

7.1.1 Direct Methods

The objective function of Christensen and his colleagues
[7–9] contains two diffeomorphisms f and g:

J ((I1, I2), f, g)

=
∫

�1

(I1 − I2 ◦ f )2 ω +
∫

�2

(I1 ◦ g − I2)
2 ω

+ λ

{∫
�1

(g ◦ f − id)2ω +
∫

�2

(f ◦ g − id)2ω

}
, (26)

where λ > 0 is a constant and id is the identity function.
The terms multiplied by λ are penalty terms, and as λ → ∞

the minimizing functions f and g become inverses of each
other. For a finite value of λ, the minimizing functions f and
g need not be inverses of each other and hence this objective
function is only approximately symmetric.

There is a simple relation between the objective function
of (26) and the G L2 objective function of (24). To see this,
we rewrite the G L2 objective function as

J ((I1, I2), f )

=
∫

�1

(I1 − I2 ◦ f )2 (detJf + 1)ω

=
∫

�1

(I1 − I2 ◦ f )2 ω +
∫

�1

(I1 − I2 ◦ f )2 detJf ω.

Changing the domain of the second integral on the right
hand side of the above equation from �1 to �2 by using
f −1 : �2 → �1 gives

J ((I1, I2), f )

=
∫

�1

(I1 − I2 ◦ f )2 ω +
∫

�2

(I1 ◦ f −1 − I2 ◦ f ◦ f −1)2

× detJf ◦ f −1 detJf −1ω

=
∫

�1

(I1 − I2 ◦ f )2 ω +
∫

�2

(I1 ◦ f −1 − I2)
2 ω. (27)

This is identical to the objective function of (26) when f and
g are inverses of each other, showing that the G L2 objective
function is the “exactly symmetric” form of the objective
function of (26).

7.1.2 Composition Methods

Composition methods [11, 14–16, 19] have objective func-
tions which do not directly involve the forward or the back-
ward map. These methods require a third domain in addition
to �1 and �2. Let this domain be �, and let φ1 : � → �1

and φ2 : � → �2 be two diffeomorphisms in Diff+. Ignor-
ing regularization, the objective function of this method is

J ((I1, I2),φ1, φ2) =
∫

�

(I1 ◦ φ1 − I2 ◦ φ2)
2ω. (28)

The objective function is minimized with respect to φ1, φ2

and the warp and its inverse are taken to be f = φ2 ◦φ−1
1 and

f −1 = φ1 ◦ φ−1
2 . The complication in analyzing this objec-

tive function is seen by changing the domain of the integral
in (28) to �1 using φ−1

1 : �1 → �:
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J ((I1, I2),φ1, φ2)

=
∫

�

(I1 ◦ φ1 − I2 ◦ φ2)
2ω

=
∫

�1

(I1 − I2 ◦ φ2 ◦ φ−1
1 )2 detJ

φ−1
1

ω

=
∫

�1

(I1 − I2 ◦ f )2 detJ
φ−1

1
ω. (29)

Note that for any g ∈ Diff+, the functions φ1 ◦ g and φ2 ◦ g

give the same warp as φ1, φ2 (since φ2 ◦g ◦ (φ1 ◦g)−1 = f ).
However (29) shows that J ((I1, I2),φ1 ◦ g,φ2 ◦ g) may
not be necessarily identical to J ((I1, I2),φ1, φ2). Thus the
composition objective function can change value even when
the warping function stays fixed. What this means geomet-
rically is not clear. This comment should not be taken as a
criticism of these methods. It is only meant to point out that
these methods may not have a natural geometric interpreta-
tion.

It is easy to modify the objective function of (28) so that
it has a natural geometric interpretation. The modification is
to multiply the integrand with a (detJφ1 + detJφ2) term.

J ((I1, I2),φ1, φ2)

=
∫

�

(I1 ◦ φ1 − I2 ◦ φ2)
2(detJφ1 + detJφ2)ω. (30)

As before, changing the domain of the integral from � to
�1 using φ−1

1 gives

J ((I1, I2),φ1, φ2)

=
∫

�

(I1 ◦ φ1 − I2 ◦ φ2)
2(detJφ1 + detJφ2)ω

=
∫

�1

(I1 − I2 ◦ φ2 ◦ φ−1
1 )2(detJφ1 + detJφ2) ◦ φ−1

1

× detJ
φ−1

1
ω

=
∫

�1

(I1 − I2 ◦ f )2(1 + detJφ2 ◦ φ−1
1 detJ

φ−1
1

)ω

=
∫

�1

(I1 − I2 ◦ f )2(1 + detJf )ω,

since detJφ2 ◦φ−1
1 detJ

φ−1
1

= detJf , because φ2 ◦φ−1
1 = f .

This is, of course, identical to the G L2 objective function
that we have been discussing so far.

8 The IT Objective Functions

Having symmetrized L2, we turn our attention to IT objec-
tive functions. Many different versions of IT objective func-
tions exist in practice. To treat them uniformly we use the

model of Fig. 3. Central to the model is a joint intensity his-
togram which is calculated from I1, I2 and f . This is shown
in the left half of Fig. 3. The calculated joint histogram be-
longs to the space H defined below. A functional � : H → R

maps the space of joint histograms onto the real line, and
the value of � for the histogram calculated from I1, I2 and
f is taken as the value of the objective function. Below, in
Sect. 8.2, we show that most of the commonly used IT ob-
jective functions conform to this model. Different objective
functions correspond to different choices of �.

IT objective functions that conform to this model are in
general asymmetric and, as we show below, the asymme-
try comes from the calculation of the joint histogram rather
than �. Just as for the L2 objective function, it turns out that
the asymmetry in the joint histogram is due to the use of the
standard volume form. Replacing the standard volume form
with the volume form of Theorem 2 symmetrizes the joint
histogram calculation and hence symmetrizes the IT objec-
tive functions.

So far we have not imposed any restrictions on the im-
ages I1 and I2 other than differentiability. The co-domain—
which we also call the range space—of such images is, of
course, R. In practice, digital images have a range space
which is a bounded interval and defining histograms for a
bounded range space is simple. To exploit this simplicity,
we will assume below that the range space of all images is
[0,L) for some finite fixed L.

8.1 The Model for IT Objective Functions

The model of Fig. 3 is defined mathematically as follows.

Definition For N > 0, let H be the set of N × N matrices
with non-negative entries that sum to one.

Thus, H ∈ H means Hij ≥ 0 and
∑

ij Hij = 1. Also,

H ∈ H implies that HT ∈ H.

Definition An IT functional is any functional � : H → R.
The IT functional is positive semi-definite if �(H) ≥ 0 for
any H ∈ H. The IT functional is symmetric if �(H) =
�(HT ) for any H ∈ H.

For the rest of this paper, we restrict attention to IT func-
tionals that are positive semi-definite and symmetric. There-
fore we will drop these adjectives, except in definitions and
statements of theorems.

Next, we define the process of calculating the joint his-
togram from I1, I2 and f .

Definition The joint intensity space C is [0,L) × [0,L)

where [0,L) is the range space of images.
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Fig. 3 The model for IT
objective functions

If (u, v) ∈ C, then (v,u) ∈ C, i.e. the joint intensity space
is symmetric.

Definition A collection of sets {Bij , i, j = 1, . . . ,N} is a
binning of C if

1. {Bij , i, j = 1, . . . ,N} partitions C, and
2. Every Bij is R

2-measurable with a measure strictly
greater than zero.

The sets Bij are referred to as bins. Further, the binning is
symmetric if (u, v) ∈ Bij implies (v,u) ∈ Bji .

Henceforth, we always assume {Bij } to be a symmetric
binning of C. We do not assume that the bins are square or
have equal measure.

Define μ�1(A) = ∫
A

ω/
∫
�1

ω for any measurable set
A ⊆ �1. Note that μ�1 is a probability measure. Using the
function (I1, I2 ◦ f ) : �1 → C define an N × N matrix
H(I1, I2f ) by

H(I1, I2, f )ij = μ�1((I1, I2 ◦ f )−1(Bij )). (31)

Definition Given images I1, I2 and a diffeomorphism f :
�1 → �2, the registration joint histogram, or simply the
joint histogram, is the N × N matrix H(I1, I2, f ) defined
above.

Note the emphasis in notation for the joint histogram. An
arbitrary element of H is still referred to as H . However,
when the element comes from non-rigid registration, it is
referred to as H(I1, I2, f ).

We now have all of the ingredients for defining an IT ob-
jective function

Definition An IT objective function J is any function of the
form

J ((I1, I2), f ) = �(H(I1, I2, f )), (32)

where � is a positive semi-definite IT functional and
H(I1, I2, f ) is the joint histogram.

8.2 Commonly Used IT Objective Functions

Two classes of IT objective functions are commonly used
and we now show that they conform to the model defined
above. Both classes of objective functions use mutual infor-
mation [26, 28] and normalized mutual information [27] as
IT functionals, and we define these first.

Two marginal vectors of size N × 1 and 1 × N are as-
sociated to H ∈ H. These vectors, denoted H 1 and H 2, are
defined by H 1

i = ∑
j Hij and H 2

j = ∑
i Hij . The Shannon

entropies of H,H 1 and H 2 are defined by

S(H) = −
∑
ij

Hij logHij ,

S(H 1) = −
∑

i

H 1
i logH 1

i , (33)

S(H 2) = −
∑
j

H 2
j logH 2

j .

The mutual information (MI) and the normalized mutual
information (NMI) of H are

MI(H) = −S(H) + S(H 1) + S(H 2), (34)

NMI(H) = S(H 1) + S(H 2)

S(H)
. (35)

Transposing H does not change S(H), but exchanges the
values of S(H 1) and S(H 2). Because S(H 1) and S(H 1)

only appear as a sum in MI and NMI, transposing H

leaves MI and NMI unaltered, i.e. MI(H) = MI(HT ), and
NMI(H) = NMI(HT ).

The first class of IT objective functions we consider are
unsmoothed histogram-based objective functions.
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8.2.1 Unsmoothed Histogram-Based Objective Functions

Unsmoothed histogram-based objective functions use equal-
sized square bins

Bij = [(i − 1)L/N, iL/N) × [(j − 1)L/N, jL/N),

i, j = 1, . . . ,N. (36)

This binning is symmetric, and the bins have a measure
(area) strictly greater than zero. Therefore, they conform to
the definition used in our model.

The IT functional in these methods is either the negative
MI or the negative NMI (These algorithms usually maxi-
mize MI or NMI. We take the negative of these values since
we are minimizing the objective function.) The negative mu-
tual information functional is

�MI(H) = −MI(H), (37)

and, the negative normalized mutual information functional
is

�NMI(H) = −NMI(H). (38)

The functionals �MI and �NMI can be made positive
semi-definite by adding constants and by adding a small
positive constant to the denominator in (35). Further, since
MI(H) = MI(HT ) and NMI(H) = NMI(HT ), the func-
tionals �MI and �NMI are symmetric (adding a positive con-
stant to the functional or to the denominator in (35) does not
change this). Hence the above functionals conform to the
model of Sect. 8.1.

The objective functions JMI and JNMI of these methods
are given by

JMI((I1, I2), f ) = �MI(H(I1, I2, f )) and (39)

JNMI((I1, I2), f ) = �NMI(H(I1, I2, f )). (40)

These too conform to the model of Sect. 8.1.
Variants of the above objective functions using other en-

tropies have also been proposed [30] and it is straightfor-
ward to check that, with minor modifications, they also con-
form to the model of Sect. 8.1.

The second class of IT objective functions we consider
are Parzen kernel-based objective functions.

8.2.2 Parzen Kernel-Based Objective Functions

The objective functions in the second class we consider fol-
low a slightly different philosophy. They are not histogram-
based, but instead calculate an estimate of joint and marginal
probability densities (continuous functions defined on a non-
discretized domain, but about which we have only discrete
data in practice) using a convolution function known as a

Parzen kernel [26, 28, 29]. The joint and marginal densities
are used to calculate differential entropies from which mu-
tual and normalized mutual information are calculated and
used as the objective function.

These objective functions are difficult to analyze exactly,
but it is possible to closely approximate them with the model
proposed in Sect. 8.1. The approximation starts from the
observation that in practice, most images are digitized so
that their gray levels take only integer values (typically
0, . . . ,255). For such images there are only finitely many
joint intensity values (typically 2562). Suppose we choose
bins in C of the type given in (36) such that each bin con-
tains exactly one of the finitely many joint intensity values.
Let the center of the ij th bin be (aij , bij ) ∈ C. Then the
Parzen kernel-based mutual and normalized information IT
functional can be approximated as the following functionals
of the joint histogram:

�pMI(H) = −MI(H ∗ K), and, (41)

�pNMI(H) = −NMI(H ∗ K), (42)

where H ∗ K is the smoothed joint histogram

(H ∗ K)ij =
∑
mn

K((aij , bij ), (amn, bmn))Hmn (43)

and K : C × C → R is the Parzen kernel.
Two properties of the Parzen kernels that are used in prac-

tice are relevant to our analysis—(1) K is non-negative and
(2) K is symmetric, i.e.

K((u, v), (r, s)) ≥ 0, for all (u, v) ∈ C, (s, r) ∈ C,

K((u, v), (r, s)) = K((v,u), (s, r)),

for all (u, v) ∈ C, (s, r) ∈ C.

Using these properties and arguing as in the above section,
it is simple to show that IT functionals in (41) and (42) are
symmetric and can be trivially altered to be positive semi-
definite. The objective functions JpMI and JpNMI of these
methods are given by

JpMI((I1, I2), f ) = �pMI(H(I1, I2, f )) and (44)

JpNMI((I1, I2), f ) = �pNMI(H(I1, I2, f )). (45)

They conform to the model of Sect. 8.1.

8.3 Asymmetry in IT Objective Functions

All objective functions conforming to the model of Sect. 8.1
are asymmetric. As a simple example of this, consider the
MI objective function of (39) for the two images shown
in Fig. 4a with two concentric circles in each image. The
regions inside the inner circle and outside the outer cir-
cle have areas (as calculated by the standard volume form)
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Fig. 4 Asymmetry in IT objective functions

A11,A12,A21,A22 as shown. The gray levels inside the in-
ner circle and outside the outer circle are constant and take
values c11, c12, c21, c22 as shown. In the zone between the
two circles, the gray levels make a smooth transition. Fig-
ure 4a also shows a diffeomorphism f : �1 → �2 which
takes the circles in �1 to the circles in �2. Assume that
the histogram bins in C are small enough that all distinct
joint combinations of the intensities {c11, c12} × {c21, c22}
fall into distinct bins. Then the joint histogram of I1, I2 ◦ f

has two peaks, one at the location (c11, c21) and another at
the location (c12, c22). We are ignoring the contribution to
the histogram from the transition region because the area of
the transition region can be made arbitrarily small. Swap-
ping the two images and using f −1 swaps the circles and
gives Fig. 4b.

The probability measures of the areas inside the inner cir-
cle and outside the outer circle are relevant to our discussion.
They are

p11 = μ�1 (inside region of inner circle) = A11/‖�1‖,
p12 = μ�1 (outside region of outer circle) = A12/‖�1‖

= 1 − p11,

p21 = μ�2 (inside region of inner circle) = A21/‖�2‖,
p22 = μ�2 (outside region of outer circle) = A22/‖�2‖

= 1 − p21,

where ‖�1‖ = ‖�2‖ are the areas of �1 and �2 calculated
according to the standard volume form.

Evaluating the objective function gives

JMI((I1, I2), f ) = {p11 logp11 + p12 logp12}
− {p11 logp11 + p12 logp12}
− {p11 logp11 + p12 logp12}

= −(p11 logp11 + p12 logp12)

= −(p11 logp11 + (1 − p11) log(1 − p11))

After swapping the images, the objective function with
f −1 evaluates to

JMI((I2, I1), f
−1)

= −(p21 logp21 + (1 − p21) log(1 − p21)).

Thus, unless coincidentally p11 happens to be equal to p21

or 1 −p21, the value of JMI((I1, I2), f ) will not be equal to
the value of JMI((I2, I1), f

−1). This shows that the objec-
tive function is asymmetric.

Speaking more generally, the problem is that joint his-
togram in Fig. 4a has a bin count p11 in the bin at (c11, c21)

and a bin count of p12 in the bin at (c12, c22) whereas the
joint histogram in Fig. 4b has a bin count p21 in the bin
at (c21, c11) and a bin count of p22 in the bin at (c22, c12).
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Since the bin counts depend on the standard area of the cir-
cles, they can be made arbitrarily different by simply choos-
ing circles with different areas. This shows that the ultimate
cause of asymmetry is the standard volume form.

The above argument can be made to work (i.e we can al-
ways find a pair of images which demonstrates asymmetry)
for the model of Sect. 8.1 as long as the IT functional is not
a constant functional.

9 Graph-Based IT Objective Functions

The IT objective functions can be symmetrized by mak-
ing the histogram calculation graph-based using the volume
form of (25).

Let Gf be the graph of the diffeomorphism f : �1 → �2.
For any measurable A ⊆ Gf , let

μ̃Gf
(A) =

∫
A

α

/∫
Gf

α

be the of probability measure of A, where α is the volume
form of (25). The object μ̃Gf

is a probability measure on Gf .
It is easy to show that

∫
Gf

α evaluates to
∫

Gf
α = ∫

�1
ω +∫

�2
ω = 2 vol(�1) independent of f , where vol(�1) is the

Euclidean volume of �1. Thus,

μ̃Gf
(A) =

∫
A

α

/∫
Gf

α =
∫
A

α

2vol(�1)
.

Below, we use this formula in calculations.
The function (I1 ◦ p1, I2 ◦ p2) maps Gf to the joint in-

tensity space C which is tessellated by bins Bij , i, j =
1, . . . ,N , motivating the following definition:

Definition For any images I1, I2 and diffeomorphism f :
�1 → �2, the graph-based joint histogram is the N × N

matrix Hg(I1, I2, f ), where Hg(I1, I2, f )ij defined by

Hg(I1, I2, f )ij = μ̃Gf
((I1 ◦ p1, I2 ◦ p2)

−1(Bij )),

for i, j = 1, . . . ,N,

is the fractional area of the set of points of Gf that are
mapped by (I1 ◦ p1, I2 ◦ p2) into the bin Bij .

It is easy to check that all elements of any graph-based
joint histogram are non-negative and sum to one. Hence
graph-based joint histograms are elements of H, and any IT
functional can be used with them.

Definition A graph-based IT (GIT) objective function J is
any function of the form

J ((I1, I2), f ) = �(Hg(I1, I2, f )), (46)

where � is a positive semi-definite and symmetric IT func-
tional.

We now proceed to investigate properties of GIT objec-
tive functions.

9.1 Positive Semi-Definiteness

A modification is required in the definition of positive-
definiteness. For L2 and G L2, if the objective function
equals zero, then I1 and I2 ◦ f are equal almost every-
where. Because the GIT objective functions use joint his-
tograms, this property cannot be guaranteed anymore. In-
stead we require that the GIT objective function be positive
semi-definite.

Definition An objective function J is positive semi-definite
if J ((I1, I2), f ) ≥ 0 for all I1, I2, f .

Proposition 5 Every GIT objective function is positive
semi-definite.

Proof This follows from the positive semi-definiteness of �

(in (46)). �

All other definitions are identical to the previous ones and
will not repeated.

The next two subsections will show that the GIT objec-
tive function is symmetric and invariant under SDiff+. The
proofs of these properties require us to consider the vol-
ume form α on the graphs of two different diffeomorphisms.
Since the volume form depends on the function we need no-
tation to distinguish between the two volume forms. We will
explicitly denote the volume form α on the graph of a diffeo-
morphism f by α(f ). This will distinguish it, for example,
from the volume form on the graph of a diffeomorphism g,
since the latter volume form will be denoted α(g).

9.2 Symmetry

Proposition 6 Every GIT objective function is symmetric.

Proof We will compare J ((I1, I2), f ) and J ((I2, I1), f
−1)

with reference to Fig. 5. The bottom part of the figure shows
the calculation of J ((I1, I2), f ) and the top part shows
the calculation of J ((I2, I1), f

−1). Because the graphs Gf

and Gf −1 are not identical, their projection functions to �1

and �2 are different and are shown as p11,p12 for Gf and
p21,p22 for Gf −1 . The joint intensity spaces for the top and
bottom part of the figure are both C, and the two joint inten-
sity spaces are tesselated by the symmetric binning {Bij }.

Consider the bin Bij in the joint intensity space on the
bottom part of Fig. 5 and the bin Bji in the joint intensity
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Fig. 5 Analysis of symmetry for GIT

space on the top part of Fig. 5. We first want to establish that∫
(I2◦p21,I1◦p22)

−1(Bji )

α(f −1)

=
∫

(I2◦p11,I1◦p12)
−1(Bij )

α(f ), (47)

where the first integral is on Gf −1 and the second integral is
on Gf .

Starting with the first integral in (47), we express it as an
integral on the top copy of �1 and then pull it back on the
bottom copy of �1 via f .∫

(I2◦p21,I1◦p22)
−1(Bji )

α(f −1)

=
∫

O2

(1 + detJf −1) ω,

where O2 = {u ∈ �1 | (I2(u), I1 ◦ f −1(u)) ∈ Bji}

=
∫

Õ2

((1 + detJf −1) ◦ f )detJf ω,

where Õ2 = f −1(O2)

= {u ∈ �1 | (I2 ◦ f (u), I1(u)) ∈ Bji}

=
∫

Õ2

(detJf + 1) ω, (48)

since (detJf −1 ◦ f )detJf = 1.

Fig. 6 Analysis of invariance under SDiff+ for GIT

The second integral in (47) expressed as an integral on
the bottom copy of �1 gives∫

(I2◦p11,I1◦p12)
−1(Bij )

α(f ) =
∫

Õ1

(1 + detJf )ω, (49)

where Õ1 = {u ∈ �1 | (I1(u), I2 ◦ f (u)) ∈ Bij }. However,
because the binning is symmetric, (I2 ◦ f (u), I1(u)) ∈ Bji

if and only if (I1(u), I2 ◦f (u)) ∈ Bij , and we have Õ1 = Õ2.
This and (48) and (49) establish the equality in (47).

Dividing both sides of (47) by 2vol(�1) gives
Hg(I2, I1, f

−1)ji = Hg(I1, I2, f )ij , which shows that the
joint histogram Hg(I2, I1, f

−1) is the transpose of the joint
histogram Hg(I1, I2, f ). Then, the symmetry of the IT func-
tional gives symmetry of the GIT objective function. This
completes the proof. �

9.3 Invariance under SDiff+

Proposition 7 Every GIT objective function is invariant un-
der SDiff+.

Proof The proof is similar in spirit to the proof of symmetry.
We compare J ((I1, I2), f ) and J ((I1 ◦g1, I2 ◦g2), g

−1
2 ◦

f ◦ g−1) with the help of Fig. 6. The bottom part of the fig-
ure shows the diffeomorphism f : �1 → �2, the graph Gf ,
and the map to the joint intensity space. The top part shows
the diffeomorphism g−1

2 ◦ f ◦ g1 : �1 → �2, the graph
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G
g−1

2 ◦f ◦g1
, and the map to the joint intensity space. Because

the two graphs are not identical, their projection functions
to �1 and �2 are different and are shown as p11,p12 for Gf

and p21,p22 for G
g−1

2 ◦f ◦g1
. The joint intensity spaces for the

top and bottom part of the figure are both C.
We first show that∫

(I1◦p11,I2◦p12)
−1(Bij )

α(f )

=
∫

(I1◦g1◦p21,I2◦g2◦p22)
−1(Bij )

α(g−1
2 ◦f ◦g1) (50)

where the first integral is on Gf and the second on G
g−1

2 ◦f ◦g1
.

In contrast to the proof of symmetry, the same bin appears
on both sides of the equation.

Starting with the integral on the left hand of (50) and eval-
uating it on the bottom copy of �1 gives∫

(I1◦p11,I2◦p12)
−1(Bij )

α(f ) =
∫

Õ1

(1 + detJf )ω, (51)

where Õ1 = {u ∈ �1 | (I1(u), I2 ◦ f (u)) ∈ Bij }.
Evaluating the integral on the right hand side of (50) on

the top copy of �1 gives∫
(I1◦g1◦p21,I2◦g2◦p22)

−1(Bij )

α(g−1
2 ◦f ◦g1)

=
∫

O2

(1 + detJ
g−1

2 ◦f ◦g1
)ω, (52)

where O2 = {u ∈ �1 | (I1 ◦g1(u), I2 ◦g2 ◦g−1
2 ◦f ◦g1(u)) ∈

Bij }. The Jacobian of a composition of functions is the prod-
uct of the Jacobians of the functions evaluated at appropri-
ate points. Also, g1, g2 ∈ SDiff+ and detJ

g−1
2

,detJg1 and

detJ
g−1

1
= 1 are identically 1. Thus the integral in (52) re-

duces to
∫
O2

(1 + (detJf ) ◦ g1)ω. Pulling this integral back

to the bottom copy of �1 by g−1
1 we find that it is equal to∫

Õ2

(1 + detJf )ω, (53)

where Õ2 = {u ∈ �1 | g−1
1 (u) ∈ O2} = {u ∈ �1 | (I1(u), I2 ◦

f (u)) ∈ Bij }. Hence Õ1 = Õ2 and the equalities in (51) and
(53) give (50).

Dividing (50) on both sides by 2vol(�1), we get
Hg(I1, I2, f )ij = Hg(I1 ◦g1, I2 ◦g2, g

−1
2 ◦f ◦g−1

1 )ij , show-
ing that the joint histograms Hg(I1, I2, f ) and Hg(I1 ◦
g1, I2 ◦ g2, g

−1
2 ◦ f ◦ g−1

1 ) are equal. By the definition of
the GIT, this in turn shows that J ((I1, I2), f ) = J ((I1 ◦
g1, I2 ◦ g2), g

−1
2 ◦ f ◦ g−1) completing the proof. �

9.4 Lack of Bias

Proposition 8 Every GIT objective function is unbiased.

Proof Suppose I1, I2 are constant images. Then for any f ∈
Diff+, only a single bin (which contains the constant gray
level values of the two images) has a non-zero histogram
value. Thus J ((I1, I2), f ) = �(Hg(I1, I2, f )), which is a
constant independent of f , showing that the GIT is unbi-
ased. �

Putting the results of Propositions 5, 6, 7 and 8 together,
we have

Theorem 3 Every GIT objective function is positive semi-
definite, symmetric, invariant under SDiff+, and unbiased.

10 Regularization

As mentioned in Sect. 2.3, it is common to add a regulariza-
tion term to the objective function to bias the warp towards
desirable solutions. With the regularization term, the net ob-
jective function becomes

Jnet ((I1, I2), f ) = J ((I1, I2), f ) + λJreg(f ),

where J is an objective function of the type we discussed in
the paper so far, Jreg is the regularization term, and λ > 0 is
the regularization constant.

Typically, regularization biases the registration towards
smoother warps, where smoothness is defined using the
square of the L2 norm of the first or higher-order deriva-
tives of the warp. A commonly used regularization term, for
example, is:

Jreg(f ) =
∫

�1

∑
k

(Dkf )2ω, (54)

where k = (k1, . . . , kn) is a multi-index with ki ≥ 2 for all i,
and Dk = ∂n

∂xk1 ...∂xkn
is a partial derivative operator.

In a Bayesian setting, any regularization term is inter-
preted as the log of the prior likelihood of the warp. We
adopt this interpretation and ask what properties we may re-
quire of the term without excessively limiting the choice of
priors for a user. In particular, we ask whether the regulariza-
tion term should be required to satisfy the four properties we
required of the image dependent term. Consider each prop-
erty in turn:

1. Positive-definiteness: A regularization term which is
positive-definite would be zero only when the warp is the
identity function. Such a term would bias the registration
towards the zero function—a highly undesirable effect.
Thus it is appropriate to relax this property and ask that
the regularization term only be positive semi-definite so
that it can be zero on a richer set of warps.
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2. Symmetry: Symmetry of the regularization term should
be required since we want the combined objective func-
tion to be symmetric.

3. Invariance under SDiff+: Invariance under SDiff+ can
limit the choice of a prior significantly. Let f : �1 → �2

be a warp and let g : �2 → �2 be a volume preserving
distortion of the image on �2. Invariance under SDiff+
would require that the value of the regularization term
for f ◦ g be the same as the value for f . But it is pos-
sible to find g ∈ SDiff+ such that f ◦ g is less smooth
than f (smoothness measured by a functional such as
in (54)), and it is no longer clear that invariance under
SDiff+ should be a required property.

4. Lack of bias: The whole point of the regularization term
is to introduce a bias towards smoother warps. The re-
sulting net objective function will vary with f even for
constant images I1, I2. Hence we should not ask that the
regularized objective function be unbiased in the sense
defined in Sect. 3.

Therefore we only require that the regularization term
be positive semi-definite and symmetric. We present some
useful positive semi-definite and symmetric regularization
terms below. This is not an exhaustive list, but it does con-
tain terms that are either commonly used or are symmetrized
versions of terms that are commonly used:

1. Regularization terms which are symmetric versions of
the objective function of (54):

Jreg(f ) =
∫

�1

∑
k

(Dkf )2ω +
∫

�2

∑
k

(Dkf −1)2ω.

It is easy to check that this objective function is positive
semi-definite and symmetric. One drawback of this term
is that it requires the evaluation of the inverse of f .

2. A regularization term which does not require evaluation
of the inverse function is proposed in [31]:

Jreg(f ) =
∫

�1

(detJf − 1) log(detJf ) ω.

It is easy to check that this objective function is positive
semi-definite and symmetric. Positive semi-definiteness
follows from the property that both x − 1 and logx have
the same sign (positive if x > 1 and negative if x < 1).

3. Often the warps f are restricted to be B-splines or
piecewise-linear functions that use control points or node
points. It is possible to regularize such warps by just us-
ing functions of the control/node points. One example is
discussed in Sect. 11.3 in detail.

11 Numerical Symmetry

11.1 Discretization

In practice, the objective function Jnet ((I1, I2), f ) has to
be discretized for numerical calculation. In this section, we
show how a commonly used discretization scheme can in-
troduce asymmetry and how this can be fixed.

11.2 G L2 Objective Functions

A commonly used discretization procedure can be applied
to the G L2 objective function J ((I1, I2), f ) = ∫

ω1
(I1 − I2 ◦

f )2(1 + detJf )ω in two steps:

1. Discretize f : Express f in terms of a finite basis as f =∑
i aiφi , where φi are the basis functions to be defined

later, and ai are the coefficients.
2. Discretize the integral: Replace the integral with a finite

sum taken on a uniform grid in �1. We will call this grid
the integration grid.

The discretized objective function is

J
(

(I1, I2),
∑

i

aiφi

)

=
∑

k

{
I1(xk) −

(
I2 ◦

∑
i

aiφi

)
(xk)

}2

× (1 + detJ∑
aiφi

(xk))�,

where, xk are the uniform integration grid points in �1 and
� is the volume of a single grid element.

This objective function is asymmetric, and there are two
causes of asymmetry:

1. The inverse of f = ∑
i aiφi may not lie in the span of

{φi}, so that minimizing J ((I1, I2),
∑

i aiφi) with re-
spect to ai may not produce the inverse of the function
minimizing J ((I2, I1),

∑
i aiφi) with respect to ai .

2. During discretized integration, the image I1 is sampled
on the uniform integration grid but I2 is not. On the other
hand, while calculating J ((I2, I1),

∑
i aiφi), the image

I2 is sampled on a uniform integration grid (since I2 is
now defined on �1), but I1 is not.

To eliminate the above asymmetries we adopt the follow-
ing strategies:

1. We approximate f by a piecewise linear map defined
on a grid as shown in Fig. 7. The grid is a triangular
grid formed by taking a square grid and connecting the
same diagonal in every square. In each triangle, the func-
tion f is approximated by a linear function that maps
the triangle in �1 to the corresponding triangle in �2

(vertices go to vertices). The function f is changed by
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Fig. 7 Piecewise linear map

moving the nodes of the grid in �1 as well as �2. No-
tationally, if u1, . . . , un are nodes in �1 and v1, . . . , vn

are nodes in �2, then fu1,...,un,v1,...,vn is a piecewise lin-
ear diffeomorphism form �1 to �2. The inverse of f

is the function obtained by swapping the nodes of the
grid in �1 with the nodes of the grid in �2. That is
f −1

u1,...,un,v1,...,vn
= fv1,...,vn,u1,...,un .

2. To remove asymmetry due to the integration grid, we im-
pose two integration grids, one on �1 and the other on
�2 (Fig. 7). Suppose xk are node points of the grid in �1

and yk are corresponding node points of the grid in �2,
then we take

J ((I1, I2), fu1,...,un,v1,...,vn)

= 1/2

[∑
k

{I1(xk) − I2 ◦ f (xk)}2 (1 + detJf (xk))

+
∑

k

{
I1 ◦ f −1(yk) − I2(yk)

}2

× (1 + detJf (f −1(yk)))

]
�.

That is to say that we sample the integrand first on the
uniform grid in �1, then on the uniform grid in �2 and
take their mean. This discretization is symmetric (as can
be easily verified).

11.3 Regularization

We use a simple regularizer which is the energy in the 2nd
finite difference of the node points. For 2-D problems, is
given by

Jreg(fu1,...,un,v1,...,vn)

=
∑

k

‖úk − 2uk + ùk‖2 + ‖ûk − 2uk + ǔk‖2

+ ‖v́k − 2vk + v̀k‖2 + ‖v̂k − 2vk + v̌k‖2,

where, ‖ · · · ‖2 is the square of the Euclidean norm, the su-
perscript symbols ,̂ ,̌ ,́ ` refer to the node above, below, to

the left of, and to the right of the node under the sign, and
the sum is over all non-boundary nodes of the grid. The 3-D
version is similar.

Thus, the actual objective function being minimized is

Jnet ((I1, I2), fu1,...,un,v1,...,vn)

= J ((I1, I2), fu1,...,un,v1,...,vn) + λJreg(fu1,...,un,v1,...,vn),

where λ is a very small positive regularization constant. The
minimization is with respect to the nodes u1, . . . , un, v1,

. . . , vn.

11.4 GIT Objective Functions

The GIT objective function is discretized in the same way.
The function f is approximated as a piecewise linear map
from the triangular grid in �1 to the triangular grid in �2.
Two histograms are created—first by sampling �1 on a uni-
form grid, and then sampling �2 on a uniform grid. Dur-
ing the sampling, the joint intensity (I1(xk), I2 ◦ f (xk)) (or
(I1 ◦ f −1(xk), I2(xk)) for the �2 grid) indicates the bin to
which a histogram value of (1 + detJf (xk))� is added. Af-
ter both histograms are formed, their average is taken as a
symmetric histogram and the objective function calculated
from it.

Internal energy is added as above and the minimum is
sought with respect to u1, . . . , un, v1, . . . , vn.

11.5 Optimization Strategy

We use a simple paired-node gradient descent strategy
where the objective function Jnet ((I1, I2), fu1,...,un,v1,...,vn)

is minimized iteratively. In each iteration the function is
minimized with respect to one node pair uk, vk at a time,
for k = 1, . . . , n. The minimization is carried out via con-
strained gradient descent where the constraint maintains a
positive determinant. For the triangular mesh this constraint
does not allow the triangles to flip orientation. In practice we
find that the constraint is almost always satisfied, and thus
the numerical procedure is equivalent to gradient descent on
node pairs.

To speed up the performance, we use a multi-resolution
strategy. The grid defining the piecewise linear f is initially
chosen to be coarse. After the objective function is mini-
mized with the coarse grid, the grid is made finer and another
iteration of the minimization carried. The process stops at a
pre-determined level of fineness. The multi-resolution grid
sizes used in all experiments are 4 × 4, 5 × 5, 7 × 7, 10 ×
10, 14 × 14.

12 Experiments

We now report a series of experiments about the perfor-
mance of the numerical algorithm. This numerical algorithm
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Fig. 8 Original and warped
images

Table 1 Diffeomorphisms used in simulations

Diffeomorphism Region of Support of non-linearity Definition

First R1 = rect((50,68), (110,118))

f (x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(x + 10 sin(πu) cos(πv) cos(πu),

y + 15 sin(πu) cos(πv) sin(2πv)) if (x, y) ∈ R1.

(x, y) otherwise.

where u = (x − 50)/60, v = (y − 68)/50.

Second R1 = rect((60,80), (120,140))

R2 = rect((20,70), (50,100))

f (x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x + 15φ((x − 90)/r),

y + 15φ((y − 110)/r)) if (x, y) ∈ R1.

(x + 10 sin(πu) cos(πv) cos(πu),

y + 15 sin(πu) cos(πv) sin(2πv)) if (x, y) ∈ R2.

(x, y) otherwise.

where r = √
(x − 90)2 + (y − 110)2, φ(u) = min(u,1 − u),

u = (x − 20)/30, v = (y − 70)/30.

and some of its results (esp. regarding the effect of sym-
metrization on registration accuracy) have not been reported
before.

The first aim of the experiments was to test whether
the new objective functions give symmetric registrations in
practice. A second aim was to investigate whether there is
any change in accuracy of registration when the new objec-
tive functions are used. For simplicity, all experiments were
carried out on 2-D images.

A coronal slice through a 3-D brain MR image was
selected as the undistorted image. The slice wask 180 ×
180 pixels with an in-plane resolution of approximately
1 mm × 1 mm. The undistorted image was taken to be
I2 : �2 → R, and distorted to produce : I1 = I2 ◦ f , where
f : �1 → �2 is the diffeomorphism. Two different diffeo-
morphisms were used to distort the image. Both diffeomor-
phisms were the identity function outside a region of sup-
port. Within the region of support (which was a rectangle
R1 for the first diffeomorphism and a union of rectangles
R1,R2 for the second) the diffeomorphisms were non-linear.
The diffeomorphisms are completely specified in Table 1.

The original image and the two warped images are shown
in Fig. 8. The arrows in Figs. 8b and c show the visual dis-
tortion produced by the diffeomorphisms. For future refer-
ence, we note that the maximum deviation of the first diffeo-
morphism from identity (i.e. max(x,y) ‖f (x, y) − (x, y)‖)
was 13.02 pixels, and of the second diffeomorphism was
7.50 pixels in R1 and 7.51 pixels in R2. We also measured
the condition number of the Jacobian matrix of each dif-
feomorphism as a measure of shear. The condition number
for translation, rotation and scaling is 1, so that deviation
from 1 suggests the degree of shear in the non-linearity.
Evaluated on a half pixel × half pixel grid, the median and
maximum condition numbers for the first diffeomorphism
were 1.87 and 9.05×103. The median and maximum condi-
tion numbers for the second diffeomorphism were 1.71 and
2.23 × 104 and 2.63 and 1.36 × 104 in regions R1 and R2

respectively. This shows that not only were the diffeomor-
phisms different from pure translation, rotation and scaling
in most pixels, but also that the amount of shear varied con-
siderably demonstrating significant non-linearity.
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Table 2 Asymmetry for the
first diffeomorphism measured
in R1

(a) Asymmetry in L2 and G L2

Noise σ Quantity L2 G L2

r.m.s. max. r.m.s. max.

(pixels) (pixels) (pixels) (pixels)

0 f̂2 ◦ f̂1 − id 1.0842 3.1823 1.7970 × 10−11 1.7482 × 10−10

f̂1 ◦ f̂2 − id 1.1985 3.7705 1.2071 × 10−11 1.0550 × 10−10

3 f̂2 ◦ f̂1 − id 0.9645 2.7623 1.4214 × 10−13 1.026 × 10−12

f̂2 ◦ f̂1 − id 1.0665 3.2573 1.303 × 10−13 8.7705 × 10−13

6 f̂2 ◦ f̂1 − id 1.2373 4.0014 8.5038 × 10−14 5.0568 × 10−13

f̂1 ◦ f̂2 − id 1.3972 4.4755 7.1633 × 10−14 4.743 × 10−13

9 f̂2 ◦ f̂1 − id 1.3249 4.1363 3.4919 × 10−11 3.7496 × 10−10

f̂1 ◦ f̂2 − id 1.4465 4.3220 3.321 × 10−11 3.338 × 10−11

(b) Asymmetry in IT and GIT

Noise σ Quantity IT GIT

r.m.s. max. r.m.s. max.

(pixels) (pixels) (pixels) (pixels)

0 f̂2 ◦ f̂1 − id 0.4688 1.9006 1.2906 × 10−12 3.9278 × 10−12

f̂1 ◦ f̂2 − id 0.4496 1.7978 1.3978 × 10−12 5.0588 × 10−12

3 f̂2 ◦ f̂1 − id 0.4901 1.7043 1.4507 × 10−12 5.7096 × 10−12

f̂2 ◦ f̂1 − id 0.4697 1.7451 1.5207 × 10−12 5.4017 × 10−12

6 f̂2 ◦ f̂1 − id 0.3968 1.3650 1.6730 × 10−12 4.6989 × 10−12

f̂1 ◦ f̂2 − id 0.4130 1.6032 1.8203 × 10−12 5.2544 × 10−12

9 f̂2 ◦ f̂1 − id 0.3927 1.7353 1.8158 × 10−12 7.4788 × 10−12

f̂1 ◦ f̂2 − id 0.4220 1.7378 1.7654 × 10−12 6.6807 × 10−12

Zero-mean Gaussian noise was added to the image pair
I1, I2 to produce noisy image pairs. The standard deviation
of the additive noise was set to σ = 0,3,6, and 9 respec-
tively. Thus, there were 8 image pairs (2 diffeomorphisms
× 4 standard deviations).

Each pair of noisy images was registered using the old
non-symmetric L2 and IT objective functions and the new
symmetric G L2 and GIT objective functions. This calculated
diffeomorphism is denoted below by f̂1. The two images
were swapped and registered again. This diffeomorphism is
denoted f̂2.

12.1 Symmetry

Ideally, f̂2 = f̂ −1
1 , so that f̂2 ◦ f̂1 = id , and f̂1 ◦ f̂2 = id . If

f̂2 ◦ f̂1 and f̂1 ◦ f̂2 deviate from the identity map, the extent
of the deviation measures the asymmetry in the registration
algorithm. So we examined f̂2 ◦ f̂1 − id and f̂1 ◦ f̂2 − id . We
quickly found that almost all of the deviation from identity
occurred in the region of support of the non-linearity, and all
evaluations were done in this region.

We measured the r.m.s. value of the deviation from the
identity function as√

1

N

∑
k

‖(f̂2 ◦ f̂1)(xk) − xk‖2 and

√
1

N

∑
k

‖(f̂1 ◦ f̂2)(yk) − yk‖2,

where, ‖ ‖ is the Euclidean norm, xk are all pixels in the
first image that belong to region R1 and/or R2 as defined in
Table 1, and yk are all pixels in the second image such that
f2(yk) belonged to R1 and/or R2, and N is the total num-
ber of pixels summed over. We also measured the maximum
deviation from the identity function as:

max
k

‖(f̂2 ◦ f̂1)(xk) − xk‖ and max
k

‖(f̂1 ◦ f̂2)(yk) − yk‖.

The results are shown in Tables 2 and 3 for the first and
second diffeomorphism. The ‘a’ part of the table shows the
r.m.s. and maximum deviations from identity for L2 and
G L2 objective functions and the ‘b’ part shows the r.m.s.
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Table 3 Asymmetry for the
second diffeomorphism

(a) Asymmetry in L2 and G L2

Noise σ Region Quantity L2 G L2

r.m.s. max. r.m.s. max.

(pixels) (pixels) (pixels) (pixels)

0 R1 f̂2 ◦ f̂1 − id 0.8542 4.4492 3.708 × 10−13 2.142 × 10−12

f̂1 ◦ f̂2 − id 0.9492 3.2595 4.207 × 10−13 2.530 × 10−12

R2 f̂2 ◦ f̂1 − id 0.6321 2.4743 1.387 × 10−13 6.733 × 10−13

f̂1 ◦ f̂2 − id 0.7027 2.6951 1.786 × 10−13 9.505 × 10−13

3 R1 f̂2 ◦ f̂1 − id 1.3887 4.0617 4.692 × 10−13 4.500 × 10−12

f̂1 ◦ f̂2 − id 1.5375 4.3940 5.160 × 10−13 4.692 × 10−13

R2 f̂2 ◦ f̂1 − id 1.0609 4.0617 5.330 × 10−11 4.306 × 10−10

f̂1 ◦ f̂2 − id 1.2519 4.3940 5.308 × 10−11 4.194 × 10−10

6 R1 f̂2 ◦ f̂1 − id 0.9195 4.3272 1.275 × 10−12 1.0612 × 10−11

f̂1 ◦ f̂2 − id 0.9534 2.8894 1.487 × 10−12 1.288 × 10−11

R2 f̂2 ◦ f̂1 − id 0.6674 2.6441 1.410 × 10−12 1.061 × 10−11

f̂1 ◦ f̂2 − id 0.7414 2.8894 1.594 × 10−12 1.288 × 10−11

9 R1 f̂2 ◦ f̂1 − id 1.9854 4.0770 8.209 × 10−14 5.736 × 10−13

f̂1 ◦ f̂2 − id 1.1553 3.5180 8.752 × 10−14 6.751 × 10−13

R2 f̂2 ◦ f̂1 − id 0.7832 2.1569 1.155 × 10−13 8.485 × 10−13

f̂1 ◦ f̂2 − id 0.8547 2.5514 1.163 × 10−13 8.586 × 10−13

(b) Asymmetry in IT and GIT

Noise σ Region Quantity IT GIT

r.m.s. max. r.m.s. max.

(pixels) (pixels) (pixels) (pixels)

0 R1 f̂2 ◦ f̂1 − id 0.3174 1.1210 1.208 × 10−12 4.514 × 10−12

f̂1 ◦ f̂2 − id 0.3075 1.1510 1.221 × 10−12 5.169 × 10−12

R2 f̂2 ◦ f̂1 − id 0.2399 1.1572 1.025 × 10−12 4.762 × 10−12

f̂1 ◦ f̂2 − id 0.2450 1.1510 1.015 × 10−12 4.025 × 10−12

3 R1 f̂2 ◦ f̂1 − id 0.3278 1.1410 2.637 × 10−12 1.167 × 10−11

f̂1 ◦ f̂2 − id 0.3153 1.1070 2.550 × 10−12 1.153 × 10−11

R2 f̂2 ◦ f̂1 − id 0.2438 1.2453 4.105 × 10−12 3.110 × 10−11

f̂1 ◦ f̂2 − id 0.2515 1.1357 4.057 × 10−12 3.006 × 10−11

6 R1 f̂2 ◦ f̂1 − id 0.2953 1.3482 1.595 × 10−12 4.819 × 10−12

f̂1 ◦ f̂2 − id 0.2832 1.0547 1.492 × 10−12 4.389 × 10−12

R2 f̂2 ◦ f̂1 − id 0.2579 1.1152 1.781 × 10−12 6.036 × 10−12

f̂1 ◦ f̂2 − id 0.2571 1.0230 1.827 × 10−12 5.798 × 10−12

9 R1 f̂2 ◦ f̂1 − id 0.4220 1.5074 3.979 × 10−12 2.505 × 10−11

f̂1 ◦ f̂2 − id 0.4344 1.6539 4.251 × 10−12 2.566 × 10−11

R2 f̂2 ◦ f̂1 − id 0.3492 1.1180 1.747 × 10−12 8.988 × 10−12

f̂1 ◦ f̂2 − id 0.3634 1.3462 1.855 × 10−12 1.001 × 10−11
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Table 4 Accuracy for the first
diffeomorphism measured in R1

(a) Accuracy of L2 and G L2

Noise σ Quantity L2 G L2

r.m.s. max. r.m.s. max.

(pixels) (pixels) (pixels) (pixels)

0 f̂1 − f 1.4613 3.7473 1.0680 2.6929

f̂2 − f −1 2.0131 5.1020 0.9490 2.5975

3 f̂1 − f 1.7639 4.3061 1.3512 3.1772

f̂2 − f −1 2.2762 5.3790 1.2460 3.2098

6 f̂1 − f 1.8887 4.4614 1.7260 4.2699

f̂2 − f −1 2.8408 6.5554 1.6724 4.7475

9 f̂1 − f 1.6952 4.2519 1.7177 4.0022

f̂2 − f −1 1.6110 4.1891 2.6415 5.8287

(b) Accuracy of IT and GIT

Noise σ Quantity IT GIT

r.m.s. max. r.m.s. max.

(pixels) (pixels) (pixels) (pixels)

0 f̂1 − f 1.5212 6.9750 1.1954 4.9140

f̂2 − f −1 1.5152 7.0146 1.1280 5.3109

3 f̂1 − f 1.4980 6.7150 1.1931 4.9996

f̂2 − f −1 1.4951 6.8243 1.1112 5.1781

6 f̂1 − f 1.7127 7.8179 1.2710 5.1473

f̂2 − f −1 1.6429 7.4669 1.2134 5.8420

9 f̂1 − f 1.7127 7.8951 1.4516 6.3953

f̂2 − f −1 1.5607 7.3623 1.3772 6.3409

and maximum deviations for IT and GIT objective func-
tions. Since there is only one region of support for the non-
linearity in the first diffeomorphism, the region of support
is not shown explicitly in Table 2. There are two regions
of support for the second diffeomorphism and the measured
values for both are shown separately in Table 3.

Several conclusions can be drawn from these two tables:

1. The forward (f̂2 ◦ f̂1 − id) and backward (f̂1 ◦ f̂2 − id)
asymmetry errors are of the same magnitude, suggesting
that the asymmetry measures are not sensitive to the di-
rection in which they are measured.

2. The r.m.s. and the maximum asymmetry follow similar
trends, but the latter is significantly higher. We focus
on the maximum asymmetry since it is the “worst case”
measurement.

3. For the first diffeomorphism (Table 2), the maximum
asymmetry of L2 is quite significant—it is approximately
4.47 pixels. This amount is comparable to 13.02 pixels
which is the maximum deviation of the first diffeomor-
phism from the identity. The asymmetry in the IT objec-

tive function (Table 2b) is not as significant, being of the
order of 2 pixels.

4. Compared to L2 and IT, the G L2 and GIT objective
functions reduce the maximum asymmetry to the range
10−10−10−14 pixels. Essentially, the asymmetry has
been reduced to machine precision.

5. The same trends are apparent in Table 3. The maximum
asymmetry in Table 3 for L2 is comparable to the maxi-
mum deviation of the diffeomorphism from identity. Re-
call that the maximum deviation from identity in R1 is
7.50 pixels and in R2 is 7.51 pixels.

6. The effectiveness of the symmetrized objective functions
in eliminating asymmetry is quite clear from both tables.

12.2 Accuracy

We also measured the accuracy of registration function. Ide-
ally f̂1, f̂2 should be equal to the true diffeomorphism f

and its inverse f −1 respectively. We measured the r.m.s. and
maximum values of ‖f (xk) − f̂1(xk)‖ for xk in R1 and R2

and the r.m.s. and maximum values of ‖f −1(yk) − f̂2(yk)‖
for f −1(yk) in R1 and R2. The measured values are shown
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Table 5 Accuracy for the
second diffeomorphism

(a) Accuracy of L2 and G L2

Noise σ Region Quantity L2 G L2

r.m.s. max. r.m.s. max.

(pixels) (pixels) (pixels) (pixels)

0 R1 f̂2 ◦ f̂1 − id 1.3909 4.5962 1.1366 4.6232

f̂1 ◦ f̂2 − id 1.2989 4.4115 0.8715 3.3903

R2 f̂2 ◦ f̂1 − id 1.2819 4.5164 1.0273 4.1530

f̂1 ◦ f̂2 − id 1.1682 3.6940 0.9314 3.3887

3 R1 f̂2 ◦ f̂1 − id 2.0615 6.3711 1.2600 4.2367

f̂1 ◦ f̂2 − id 1.4005 4.4261 1.0184 3.3180

R2 f̂2 ◦ f̂1 − id 1.8208 6.3711 1.1585 4.0111

f̂1 ◦ f̂2 − id 1.3141 4.1485 1.0628 3.6667

6 R1 f̂2 ◦ f̂1 − id 1.8017 5.1628 1.5066 4.8696

f̂1 ◦ f̂2 − id 1.6729 4.6270 1.2566 3.9152

R2 f̂2 ◦ f̂1 − id 1.5317 5.0180 1.2390 4.2938

f̂1 ◦ f̂2 − id 1.4813 4.3843 1.1531 3.8387

9 R1 f̂2 ◦ f̂1 − id 1.9802 5.8152 1.6156 5.6171

f̂1 ◦ f̂2 − id 1.7049 5.0381 1.3284 3.9268

R2 f̂2 ◦ f̂1 − id 1.6245 5.3238 1.4930 4.7008

f̂1 ◦ f̂2 − id 1.6038 4.7218 1.3815 4.0747

(b) Accuracy of IT and GIT

Noise σ Region Quantity IT GIT

r.m.s. max. r.m.s. max.

(pixels) (pixels) (pixels) (pixels)

0 R1 f̂1 − f 2.2502 6.0380 1.692 5.535

f̂2 − f −1 2.1191 5.8461 1.468 5.014

R2 f̂1 − f 1.7420 5.7271 1.555 5.464

f̂2 − f −1 1.5942 4.9774 1.394 4.680

3 R1 f̂1 − f 2.2575 6.0380 1.785 5.552

f̂2 − f −1 2.1641 5.8475 1.566 4.966

R2 f̂1 − f 1.7719 5.7313 1.621 5.542

f̂2 − f −1 1.6500 5.0248 1.458 4.750

6 R1 f̂1 − f 2.2817 5.8245 1.824 5.457

f̂2 − f −1 2.2199 6.0453 1.667 4.964

R2 f̂1 − f 1.7954 5.5162 1.560 5.289

f̂2 − f −1 1.6932 5.0805 1.419 4.525

9 R1 f̂1 − f 2.2100 2.1045 1.740 1.632

f̂2 − f −1 2.1045 5.8932 1.632 5.235

R2 f̂1 − f 1.7323 5.4000 1.424 4.842

f̂2 − f −1 1.5817 4.9428 1.292 4.266
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in Tables 4–5. The following observations can be made
about these measurements:

1. The maximum error is significantly higher than the r.m.s.
in the forward and the backward directions. As with
asymmetry, we will concentrate on the maximum error.

2. The maximum error (as well as the r.m.s. error) for the
symmetrized objective functions is generally lower than
the maximum error for the original objective functions.
The only exception is the first row of Table 5a. (however,
the r.m.s. error has decreased in this row). The increase
is quite small, being approximately 0.6%.

The reason for this increase is not clear. One possi-
bility is that the optimization algorithm is trapped in a
shallow local minimum, and this local minimum disap-
pears upon adding noise to the image (this might explain
why no increase is observed for the noisy images).

Thus it appears that replacing the old objective functions
with new ones does not lead to a poorer performance and
might actually improve the accuracy of the registration.

13 Conclusions

In this report we analyzed the asymmetry of popular regis-
tration objective functions. We showed that the L2 and IT
objective functions were asymmetric and that their asym-
metry arose from the use of Euclidean volume forms. We
also showed that there is a unique tangent-dependent volume
form on the graph of the diffeomorphism that is positive-
definite, symmetric, invariant under SDiff+, and makes the
objective function unbiased. This volume form symmetrizes
both objective functions. We introduced the notion of nu-
merical symmetry and showed how the objective functions
can be numerically symmetrized. Experimental results show
that the new objective functions reduce asymmetry to the
range 10−14 to 10−10 pixels.

Appendix: Proof of Lemma 2

Lemma 2 With notation as above,

d

dt

∫

2

ζ̃ ◦ [
detJ�t .rf

]
(�t )

∗ω |t=0

= −
∫


2

〈ζ ′′(rf )drf ,X〉ω. (55)

Proof To differentiate with respect to t , first recall that the
derivative of the determinant function of n × n matrices at
the identity is

D(det)|I (A) = tr(A), (56)

where A, the direction of differentiation, is an arbitrary n×n

matrix. Thus

d

dt

(
ζ̃ ◦ [rf · det(J�t )]

)∣∣∣∣
t=0

= (ζ̃ ′ ◦ rf )rf
d

dt
det(J�t )

∣∣∣∣
t=0

= (ζ̃ ′ ◦ rf )rf D(det)| I

(
d

dt
J�t

∣∣∣∣
t=0

)

= (ζ̃ ′ ◦ rf )rf tr
(
J d

dt
�t |t=0

)
= (ζ̃ ′ ◦ rf )rf tr (JX) ,

where

D(det)| I

(
d

dt
J�t

∣∣∣∣
t=0

)
= tr

(
J d

dt
�t |t=0

)
,

because derivatives used in the Jacobian commute with
derivative with respect to t .

Next, letting LX denote Lie derivative by the vector field
X, recall that

d

dt
�∗

t ω

∣∣∣∣
t=0

= LXω = div(X) ω = tr(JX) ω, (57)

and also that

LXω = d(iXω), (58)

where iXω denotes contraction of the vector field X into the
differential form ω.

Combining (57)–(58), we therefore have

d

dt

[(
ζ̃ ◦ [rf .det(J�t )

])
�∗

t ω

∣∣∣∣
t=0

=
(
(ζ̃ ′ ◦ rf )rf + ζ̃ ◦ rf

)
div(X)ω

=
(
(rζ̃ (r))′|r=rf

)
d(iXω)

= (ζ ′ ◦ rf ) d(iXω). (59)

Since X = 0 on ∂
2, using Stokes’ Theorem we find

d

dt

∫

2

(
ζ̃ ◦ [rf · det(J�t )]

)
�∗

t ω

∣∣∣∣
t=0

=
∫


2

d

dt

[(
ζ̃ ◦ [rf · det(J�t )]

)
�∗

t ω
]
t=0

=
∫


2

(ζ ′ ◦ rf ) d(iXω)

= −
∫


2

d(ζ ′ ◦ rf ) ∧ (iXω)
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= −
∫


2

(ζ ′′ ◦ rf ) drf ∧ (iXω)

= −
∫


2

(ζ ′′ ◦ rf )〈drf ,X〉ω, (60)

since drf ∧ ω = 0 implies

0 = iX(drf ∧ ω) = (iXdrf ) ∧ ω − drf ∧ iXω)

= 〈drf ,X〉ω − drf ∧ (iXω).

Equation (22) now follows from (60). This completes the
proof of the lemma. �
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