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Abstract

We prove the global existence of weak solutions of the Navier-Stokes equations
of compressible, nonbarotropic flow in three space dimensions with initial data and
external forces which are large, discontinuous, and spherically or cylindrically sym-
metric. The analysis allows for the possibility that a vacuum state emerges at the
origin or axis of symmetry, and the equations hold in the sense of distributions in
the set where the density is positive. In addition, the mass and momentum equations
hold weakly in the entire space-time domain, but with a nonstandard interpretation
of the viscosity terms as distributions. Solutions are obtained as limits of solutions
in annular regions between two balls or cylinders, and the analysis allows for the
possibility that energy is absorbed into the origin or axis, and is lost in the limit as
the inner radius goes to zero.

1. Introduction

We prove the global existence of weak solutions of the Navier-Stokes equa-
tions of compressible, nonbarotropic flow in three space dimensions with initial
data and external forces which are large, discontinuous, and spherically or cylin-
drically symmetric. In the latter case the spatial region is an infinite cylinder, and in
the former a ball. In both cases the velocity and temperature gradient vanish at the
boundary. The analysis allows for the possibility that a vacuum state emerges at the
origin or axis of symmetry, and the equations hold in the sense of distributions in
the set where the density is positive. In addition, the mass and momentum equations
hold weakly in the entire space-time domain, but with a nonstandard interpretation
of the viscosity terms as distributions. The energy equation is shown only to hold
weakly on the support of the density. Solutions are obtained as limits of solutions
in annular regions between two balls or cylinders, and the analysis allows for the
possibility that energy is absorbed into the origin or axis, and is lost in the limit as
the inner radius goes to zero.
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The Navier-Stokes equations of compressible, nonbarotropic flow express the
conservation of mass and the balance of momentum and energy as follows:

pr +div(pU) =0 (D
(pU"), + div(pU'U) 4 P(p,0),, = pAU + (A + w)div Uy, + pF' )
(pE); +div (pE + P(p, 0)U) = A (/{9 + %MUIZ) + udiv((VU)U)

+Adiv ((divU)U) + pU - F. 3)

Here x € R3 is the spatial coordinate, t > 0 is time, p, U = (Ul, U2, U3),

0,FE = %|U|2 + 6, and P = Kp#@ are respectively the density, velocity, tempera-

ture, energy density, and pressure of an ideal fluid (with unit specific heat);  and

A are positive viscosity constants, and « is a positive heat-conduction coefficient;

F = (F!, F2, F3) is the external force, and VU denotes the Jacobian of the velocity
vector with respect to the space variables.

We pose the system (1)—(3) in either a ball 2 of radius b centered at the origin

in R, or in an infinite cylinder of radius b parallel to and centered along the x3
axis in R3, also denoted by €. In both cases we impose the boundary conditions

U=0, 6, =00n9%, 4)
and we denote the initial conditions by
(0.U.0)[,_y = (p0. Uo. b0). 5)

For the symmetric cases under consideration here, (1)—(3) take the form

o + (pu)e =0, (6)
2 pv?
(ou)r + (pu)e — — + P(p,0) —vug, = pfi, (7
puv
(pv)s + (puv)e + —— — pver = pf2. ®)
(ow); + (puw)e — pwre = pf3, &)
(p0); + (pub)e — ke + P(p, Nug — Q0 =0, (10)
where

) 6o _d,m

V= , — =+ —,

" 9E or 'y

m = 1 or 2, and Q is the homogeneous quadratic

2u

2um m
Wy, - LRy, an
r r

0 = v(ug)® + pu(ve)* + u(w,)* —
Although not immediately apparent, it is straightforward to check that Q is positive
definite in ug, u/r, v, —mv/r, and w,. In the spherically symmetric case, m =

2,r(x) = |x|,

x x
Ux,t) = u(r, t);, F(x,t) = fi(r, t);,
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and v = w = 0. In the cylindrically symmetric case, m = 1, r(x) = \/xl2 + x%,
and

5 50 A2, ’O
U(x,t):u(r,t)(xl X2 )+ (=x2,x1,0)
r

v(r, I)f +w(r, 1)(0,0, 1),

F being constructed from (fi, f2, f3) in a similar way. Thus F' are the compo-
nents of the vector F in Cartesian coordinates, and (fi, f>, f3) the components
in spherical or cylindrical coordinates, with f, = f3 = 0 in the spherical case.
Similarly, U’ are the components of the vector U in Cartesian coordinates, and
(4, v, w) the components in spherical or cylindrical coordinates, with v = w =0
in the spherical case. Abusing notation slightly, we write p(x, r) = p(r(x), t) and
O(x, 1) =0(r(x),1).

We now give precise statements of our assumptions and results. The external
force F is assumed to satisfy

FeL'([0,T1; L®(Q) N L™ ([0, T1; LY()) (12)

for each T > 0 and for some ¢ > 2, which will be fixed throughout. The initial
data (pg, Up, Op) is assumed to satisfy

Co'<po<Co, Cpl<hpae, (13)
| mSte0. Un. o < o,

b
/ po(r) [Irvo(r|? + [wo(r)|4]r™dr < Co, (14)
0
for a constant C. Here S is the entropy density
S(p.U,0) = KW(p~") +w(®) + 3|0, (15)

where W(s) = s — logs — 1. Observe that there are no smallness or regularity
conditions imposed on F or on (pg, Uy, 6p).

We obtain a global weak solution as the limit as j — oo of approximate
smooth solutions (pj,Uj,Gj) in annular regions Q; = {x | a; < r(x) < b},
where a; is a sequence of positive inner radii tending to zero, with mollified initial
data (p, U}, 63). In describing the limits of these approximate solutions we fix an
increasing C! function x :[0,00) — [0,1] with x =0on[0,1]and x = 1 on
[2, 00), and for R > 0 we define xR (r) = x(r/R).

The following theorem contains the main results of this paper:

Theorem 1.1. Assume that the system parameters A, L, and k are positive, that
P(p,0) = Kpb, where K is a constant, and that the external force ¥ and the
initial data (po, Ug, 0y) satisfy the conditions (12)—(14). Then the initial-boundary
problem (1)—(5) has a global weak solution (p, U, 6) for which the support of p is
bounded on the left by a curve r(t), satisfying the following:
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(a) The function r : [0, 0c0) — [0, 00) is a semicontinuous curve, so that, if F is
the set

F:={(x,t):t 2 0andr(t) <r(x) < b},

then F N {t > 0} N {r < b} is open.
(b) The density p € LS, (F), Uand 6 are locally Holder continuous in FN{t > 0},
and the Navier-Stokes equations (1)-(3) hold in D' (F N {t > 0} N {r < b}).
(c) The density p € C ([0, 00); WI'OO(Q)*) in the spherically symmetric case,

and is in C <[O 00); WLI’OO(Q)*) in the cylindrically symmetric case, where

Jfunctions in WL vanish for |x3| > L, with p(-, 0) = po. Also, p(-,1) =0 in
Q\ F, and if pU is taken to be zero in Q2 \ F, then the weak form of the mass
equation (1) holds for test functions ¥ € C! (Q X [t1, t2]) which are assumed
to vanish for |x3| = L for some L > 0 in the cylindrically symmetric case:

n
/ pY dx
Q 1

(d) For t1 < 1 fixed there are distributions L; € C2(Q x [t1, 12])* in the spheri-
cally symmetric case, and in C%(S_Z X [t1, t2])* in the cylindrically symmetric
case, where functions in C % vanish for |x3| > L, such that the weak form of the
momentum equation (2) holds in the following sense: if € C> (S_Z x [t1, tg])
vanishes on 32, and vanishes for |x3| > L for some L in the cylindrically
symmetric case, then

. 15
/ pU v dx
Q gt

I
Z/Z/ pF dxdt + 34 () . 17)
18] Q

15
- / 2 / (P + pU - V) ddt. (16)
1 Q

5} . .
—/ / (pUl Vi + pUU -V + wai) dxdi
131 Q

The distribution ; is given by

() = lim hm/ / A+ WU - VYl + w/y ayRdxdt,
5]

0j—o0
where
YR, ) = xRUx DY (x, 1)

fori = 1,2,3 in the spherically symmetric case and fori = 1,2 in the cylin-
drically symmetric case, and

YR, 1) = (0, x3, 1) + x RUxDIY (x, 1) — ¥ (0, x3, 1)]

for i = 3 in the cylindrically symmetric case.
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(e) The gradients VU, VO € Llloc (F), and the weak form of the energy equation
(3) holds for test functions € C*( x [t1, t]) for which there is an 1 > 0
such that suppy (-, 1) C {x : r(t) +n < r(x)} for each t € [11, 2] (and such
that ¥ = 0 for |x3| 2 L, for some L > 0 in the cylindrically symmetric case):

o 15
/pEl//dxt —/2/ (pEY, + (pE + P)U - V) dxdt
Q n Ial Q

1%}
:/ /pF~U1//dxdt (18)
t Q

5]
—/ / (Kve + LuVIUP 4 p(divO)U + )\(VU)U) -V dxdt.
t Q

(f) The total energy, minus the mechanical work done by the external force, is
weakly nonincreasing in time. That is, if

£(1) :=/p(x,t){9(x,t)+%|U|2} dx
Q

in the spherically symmetric case, then

T
E(T) =E&(0) +/ / U -Fdxdt — lim lim (' E')(x, T)dx
0 R—0 j—o0 aj<r(x)<R

as a function of T in D' (0, 00), where EJ = %|Uj 1> +67. A similar result holds
in the cylindrically symmetric case, but with all spatial integrations over the
set {x : r(x) < b and x3 = 0}.

We now give a brief description of the analysis and we make a number of com-
ments concerning the interpretation of the above results. As indicated earlier, the
solution (p, U, @) is obtained as the limit as j — oo of solutions (p/, U/, 67) in
the annular region {x : a; < r(x) < b}. These approximate solutions have been
studied extensively by FRID & SHELUKHIN [2], who derive a number of a priori
bounds, including bounds for the mass, energy, and entropy,

/pjdx,/,ojEjdx,/ij(pj,Uj,Gj)dx <C, (19)

where C is independent of a;, as well as a number of pointwise and higher order
regularity bounds which do depend on a;. Among the latter are pointwise bounds
C L<pi < Ca;, established in a rather clever and elegant version of an argument
g1ven carlier by KAZHIKHOV & SHELUKHIN [5]. In the present work we modify this

argument in a nontrivial way to establish pointwise bounds for p/, independent of
aj, but only away from the origin of Lagrangean space. Specifically, we define the

particle position r; (¢) by

ON
h = / o’ (r,yr"dr
a

J
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for given & = 0, and we show that, for 4 > 0 and T > 0, there is a constant
C = C(h, T) such that

Ch, TY ' < pl(x,t) C, T) (20)

fort < T and r(x) = r,{ (t). These pointwise bounds then serve as the starting
point for the derivation of higher-order regularity estimates for U/ and 6/ away
from ¢t = 0. The bounding constants in these estimates are independent of a;, as

in (20), but the estimates hold in regions {x : r(x) = r,{ (¢)} which do depend on

a;. On the other hand, ath = u/(r{, 1), so that uniform estimates for U/ imply

the convergence as a; — 0 (ignoring subsequences) of r;/l (+) to Holder-continuous
curves r,(+), for h > 0. Since rj,(¢) is increasing in &, the limit

r(r) = }}i_r)rbrh(t)

exists, and we can then define the “fluid region” JF as in (a) of Theorem 1.1. As
asserted in the theorem, r is semicontinuous, so that FN{r > 0}N{r < b}isanopen
set. The sequences {U/} and {6/} are then uniformly Hélder continuous on compact
subsets of F N {t > 0}, and so have subsequences converging strongly, locally in
FN{t > ()}. The pointwise bounds (20) yield weak limits p/(-,#) — p(-, ) on
{x: r(t) +n < r(x) £ b} forn > 0, and it can be shown as well that ,oj( t)y—>0
in L! {x:rix) < r(t)}) These limiting arguments, together with the fact that the
approximations (p/, U/, #/) are weak solutions, then enable us to conclude that
(p, U, 0) is a weak solution as described in (b)—(f) of Theorem 1.1.

We do not have sufficient information to infer that r(¢) = 0, nor do we know
whether solutions exist for which r % 0. The analysis simply shows that r(¢) may
be positive, and that, if it is, a vacuum state of radius r(¢) centered at the origin
or axis of symmetry has emerged. In any case, the total mass is conserved in the
spherical case, as is clear from (c) of Theorem 1.1, as is the total mass in any finite
cylinder in the cylindrical case. The total momentum is zero, of course, because of
the symmetry.

We show in (e) only that the energy equation holds on the support of p, rather
than in the entire space-time domain € x (0, 0o). This is partly due to the non-
standard characterization of the viscosity terms as distributions in the weak form
(17) of the momentum equation, making an interpretation of the |VU|? mechanical
work terms in the energy equation (3) problematic. We may regard the restriction
in (e) that the test function be supported in F as reasonable, since there is no fluid
outside F, and the model is not really valid there. On the other hand, this failure
to establish the weak form of the energy equation in the entire space-time domain
suggests that significant difficulty can be anticipated in extending these results to
more general, nonsymmetric flows, in which vacuum states may presumably arise
spontaneously at unpredictable points of space-time. Additionally, the failure of
the analysis to detect whether or not energy is lost ((f) of Theorem 1.1) calls into
question the adequacy of the mass, energy, and entropy bounds (19), which are the
only noncontingent a priori bounds known to hold in the multidimensional case
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with energy-class initial data, to yield a satisfactory understanding of the solution
operator for these equations.

The theorem of the present paper extends the results of HOFF [3] for the baro-
tropic case, in which P = P(p) and the energy equation is omitted, in that more
general initial data and completely general velocity directions may occur, and most
important, that heat-conduction and temperature-dependent equations of state are
allowed. In the simpler barotropic case, the curve r is known to be Holder contin-
uous, and when vacuum states do occur, they occupy open sets in space-time, in
which the velocity satisfies a simple homogeneous elliptic equation. As indicated in
the discussion above, the situation is considerably more complicated in the nonbaro-
tropic case considered here. Other global existence results for the system (1)—(3)
are given in HOFF [4] for two- and three-dimensional flows with nonsymmetric but
small initial data, and by Lions (see LIONS [6], FEIREISL [1], and the references in
these papers) for the corresponding barotropic system with P(p) = Kp? for cer-
tain y, and for large data. As far as we are aware, there are no large-data existence
results, other than those of the present paper, for the full nonbarotropic system
(1)—(3) in a truly multidimensional setting.

The plan of this paper is as follows. First, in Section 2 we derive the pointwise
bounds (20) as consequences of the energy and entropy estimates (19) by modifying
in a nontrivial way the argument given in FRID & SHELUKHIN [2]. Then in Section
3 we apply these pointwise bounds to derive a number of higher-order energy esti-
mates for U and 6 away from ¢ = 0 and away from the origin of Lagrangean space.
These bounds are then applied to establish certain uniform integrability properties
of the approximate solutions (it is here that the L9 conditions in (12) and (14) play
arole). Finally in Section 4 we give the details of the convergence arguments out-
lined above, showing as well that the limiting functions are indeed weak solutions
in the required sense. We note that the final steps of this argument provide a sort of
a posteriori validation that the equations (6)—(10) are indeed the correct forms of
the general system (1)—(3) in the symmetric cases considered here.

2. Entropy and pointwise bounds

In this section we derive a priori pointwise bounds for smooth solutions (p¢, u“,
v4, w?, 6%) of (6)—(10) in the truncated region 0 < a < r(x) < b, together with
the additional boundary conditions u¢ = 6 = 0 at r = a in the spherically sym-
metric case (for which v* = w* = 0),and u® = v* = w! =6¢ =0atr =a
in the cylindrically symmetric case. We assume that the initial data and force are
smooth and satisfy the bounds (12)—(14) with constants which are independent of
a. See the introduction to Section 4 for a brief discussion of the existence of these
solutions. As discussed in Section 1, we shall eventually take a sequence of inner
radii a; — 0. Since a > 0 is fixed for the time being, we suppress the dependence
on j.

In Lemma 1 below we state the standard energy and entropy estimates for these
approximate solutions and in Lemma 2 we derive pointwise bounds for p? and
0.
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Lemma 1. Let (p?, u®, v¢, w?, 6%) be a smooth solution of (6)—(10) defined on
[a, b] x [0, T] with boundary conditions at r = a as described above. Then there
are constants Cy and C(T) such that

b
/ p(r,t)r"dr < Co, (21
a

b
/ (P“EYr. 1) rdr < C(T), (22)

b t b a2
0
/u @' SO Drrdr +/() /a “ <9;2> + QQ“

forallt € [0, T]. Here E¢ = %,o[u‘l2 + 9% + w2 + 6%, S is the entropy density
defined in (15), and Q is as in (11).

rdrdt < C(T) (23)

Proof. These bounds are standard and follow directly from the equations (6)—(10),
the boundary conditions, and the assumptions (12) on the external force.

In order to obtain limiting solutions as a — 0, we will need further higher-
order bounds which are uniform in a. These will be obtained away from the ori-
gin of Lagrangean space in the following sense. Define curves rj () for h = 0
by

i (t)
h = / o (r, ) dr, 24)
a
so that, by (6),
aré
Bth =u’(rf, 1). (25)

Thus rj (¢) is the position at time ¢ of a fixed fluid particle. Furthermore, an easy
estimate based on Jensen’s inequality and the bound in (23) for fab P (1 /pYr™dr
(see (15)) shows that 4 — 0 at a uniform rate as rj (t) — 0. That is, given & > 0
there is a positive constant C = C (k) such that

ri(t) 2 C(h)™!

independently of @ and T'.

In the following lemma we derive pointwise bounds for p¢ and 6¢. The idea
of the proof is essentially that of a similar result of FRID & SHELUKHIN [2], but with
a fairly nontrivial modification required to obtain bounds which are independent
of a.

Lemma 2. Given h > 0 and T > 0, there is a constant C = C(h, T), which is
independent of a, such that, if rjl (t)is as in (24), then

cl'<p'rnnsc (26)
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forr e[ri(t),blandt € [0, T], and

t
/ 109, D) lln,c0dt = C, (27)
0

where || - ||,00 denotes the sup-norm over [r} (), b].
We first establish the following technical result.
Lemma 3. Fix h > 0 and T > 0 and define

— a a
F._vus—P,

r a
glr, 1) == / (p (mu“2 — v“z) — p“fl) (y, ) dy,
r,‘:(l) y

¥ = ,{)"u“2 —F+g,
r t
O, 1) :=/ 06 ($)ug(s)ds —/ (r, 1) dT.
0

()
Then there exists a constant C = C(h, T), which is independent of a, such that
[ ®(r,0)] = C(h,T)  forr elrj(t),b]l, te€l0,T].
Proof. We drop the superscript a and observe that
(pu)r + %, =0 (28)
and
o, = pu, <I>l:—2=—,ou2+F—g.

It follows that

O +ud, =F—g.
Next let r () denote another particle path, defined by

d;(t” = u(r (). 1),

to the right of r;,(¢). Then

t t
O (), 1) = P(r(0),0) +/ F@r(r), r)dr — / g(r(v), v)dr. (29)
0 0

The first term on the right is clearly bounded by C(k, T'), and for the last term we

have
’ o
g(r 7| = / ((mu2 _ ) - pfl) . r)dy‘
rr(t) \Y
< Ch,T) / p(u2+v2+|F|>y"1dy‘§C(h,T) (30)
rp(T)
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for any (r, ) with r € [r,(7), b], by the energy estimate (22) and the assumption
(12) on the force term. The last term in (29) is thus bounded by C (A, T').

The boundedness of the remaining term in (29) requires more work. First ob-
serve that we can add an arbitrary function of ¢ to F without changing (28). We
consider the function

F(r,t) = F(),
where F(¢) is the spatial average of F'(-, t),

b
bnn n/ F(r,t)r"
—an J,

This average is a bounded quantity at each time:

/ (vug — Pyr™ dr

by the boundary COndl_thIl for u and the energy estimate (22). Next we estimate the
time integral of F' — F along a particle path r(¢) to the right of r (¢):

F@t) =

b
n
F )l = — g | prar s e

t rb
— F(1)]dt :/ / [F(r(v),T) — F(r,0)1r"drdt
0 Ja

n 0 ’
t b r(t)
:/ / r'" {/ Fy(y, t)dy} drdrt
0 Ja r
r(t) 5
[ s v

2
m M v
+ Z —pT—pﬂ}(y, r)dy} drdr

b t r(t) (D)
=/ r’”/ / (pu); dy + [pu?]’
a 0 r
O Cmpu?  pv?
+/ y —T—Pfl (v,t)dy p drdr

b t d r(t) 2
=/ rm/ e / (pu)(y,v)dy | — (pu”)(r, 1)
a 0 T r

r(t)
+/ (m‘;” - % —pfl) (y,t)dy} drdr. (1)

We consider each term in turn. For the first term on the right-hand side of (31) we

have
b t d r(t)
[ [ ewoiay drar
0 dt r

b b
§/rm dr+/ P
a a

r (1) r(0)
/ (pu)(y, ) dy / (pouo)(y)dy| dr




Symmetric Nonbarotropic Flows with Large Data and Forces 307

The second term here is bounded by C(k, T') by the assumptions (13)—(14) on the
initial data. The same bound holds for the first term: for r < r(f) we replace r™ by
y™, while for r(t) < r we use the fact that y=™" < C(h, T). This takes care of the
first term on the right-hand side of (31), and the energy estimate (22) shows that the
second term is bounded by C(h, T') as well. For the third term, on the other hand,
the bound (30) does not apply because r now varies over all of [a, b]. Instead we
split the y-integration and interchange the order of r and y integrations to obtain

" m(pu?)(y, v) dydz dr

r(r) pr(r) 2
mrmi(pu )@, 7) dydrdt

o (pu2><y, 19)
r(t) Jr(r)

/ /“” / (p»ﬂ)(y, 2 dyds
2
+// /mr’"Mdrdydr
0 Jr(t)Jy y
t b n__ ,n
<%// (”) (ou®)(y, 7) dy dt
—/ /U( )(pu )y, 1) dy d

t b
§f//(,ouz)(y,r)ym—l—C(h,T)// (ou?)(y, V)" dy dt
n Jo Ja 0 Jr(r)
< Ch, T),

dydrdrt

where we have used the energy estimate (22) and the fact that r(r) = rj(¢). The
fourth term on the right-hand side of (31) is treated in the same way, and the last
term is bounded by the assumptions (12) on the external force. It follows that

t
‘/ F(r(t),7t) — F(t)dz| < C(h, T).
0

Combining this with the fact that |F(t)| £ C(T), we then obtain

t
/ F@r(r),t)dr
0

S Ch,T). (32)

This shows that the the second term on the right-hand side of (29) is bounded by
C(h, T), so that

|@(r, )] = C(h,T), forrZrm), 0=t=T. O
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Proof of Lemma 2. First we establish the upper bound for p. Defining L = log p,
we find from (6) that

. F
L=—-uss——,
Vv

where F is defined as in the statement of Lemma 3. It follows from (32) that
1 t
L(r(t),t) = L(r(0),0) — */ F(r(r),t)dt = C(h, T),
v.Jo

where again r(¢) is a particle path to the right of r,,(¢), and rj (¢) is as in (25). This
proves that p(r, r) is bounded above for r = rj(¢).

Next we prove the bound (27) for 8 and the lower bound for p. Define H(®) =
exp (V1 ®), so that

D [pH(®)] = (—ug + v ' (F — ) [0H(®)] = —v " (P + g) [pH(®)].

Note that, since ® is bounded below, H(®) > 0 is bounded away from zero, and
we can differentiate its reciprocal,

[ 1 } v (P +g)
t = .

pH(®)] — pH(®)

We substitute P = Kp60 and apply (30) and the fact that H (d)! < Ch,T)to
obtain

] SCh,T) <|I9(u Dllh,o00 +

D, { ! ) .
pH (D) pH(D)

Integrating, we get

1

<
SH(D) SCh,T[1+I10)],

(r,1)

where
t
1(t) == / 10, DlncodT.
0
Since @ is bounded above, so is H (P), and we conclude that

o™ ¢, Dllnoo S Ch, TY+ 1] (33)

Now, in general, for any two points x, y with r,(t) < y < x < b we have

1/2 b 2 172 b
( L ypm dr> </ pOr™ dr)
92
h,00 a a

0(x, )2 <oy, n)?

1 1/2

10('7 t)

+ea |
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Defining

b 92
o ro_.m
B([) = ; 9—21’ dr,

squaring the above inequality and applying the energy estimate (22), we thus obtain
0. 1) S CT) |00 1) + BOIO™ ¢ Dl oo -

Multiplying through by y” p(y, t), integrating with respect to y, and using the mass
and energy estimates (21) and (22), we get

10 =16 Dllhoo £ CT) [T+ BOIo™ ¢ Dllioo]
It then follows from (33) that
I't) S Ch, T)[1+BoO(+11)].

Finally, applying Gronwall’s inequality and the fact that

t
/ B(r)dt £ C(T),
0

which follows from the entropy estimate (23), we conclude that 7(z) < C(h, T).
This proves (27) and together with (33) implies that p(r,7) = C(u, 7)~! for
relrm@),b]. 0O

3. Energy estimates and uniform integrability

Throughout this section a > 0 will be fixed, and the approximate solutions
(p%, u®, v, w*, 8%) described at the beginning of Section 2 will be denoted simply
by (o, u, v, w, 9).

We shall make repeated use of a cut-off function which is convected with the
flow and which vanishes near the origin. To construct such a function we first
observe from (32) and (26) that, for & > 0,

SCHh,T), 0=51,p=T.

n
/ u,(rp(t), t)dt
1

Thus for given a and i, we can fix a smooth, increasing function ¢ (r) with ¢ (r) =
O on [0, r,(0)] and ¢po(r) = 1 on [2r;(0), b], and then define ¢ (r, 1) to be the solu-
tion of

¢ +ugy =0 (34)
with data ¢ (r, 0) = ¢o(r). We choose ¢ so that

oh(r) < C(ypiP~D" (35)
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for some p > 2. We shall show that this bound persists for all time. First, for any
B # 0 we have

(@P o) +u(@P o)y = —pPbrus.

Integrating along a particle path r(¢) to the right of r, () (recall the definition (24))
and applying (32), we get

(@9 (r (1), D] < C(h, T)I(@F ) r(O).
Letting 8 = (1 — p)/p and applying (35), we then conclude that
6 (r(0), D] < C(h, T)$(r(1), P~ IP. (36)

We shall take p large so that the exponent on the right here is close to one. Notice
that we have suppressed here the dependence of ¢ on a and A.

Next we introduce three higher-order functionals for a given solution: let o () =
min(1, ¢) and define

b
ATy = sup o) [ g0 (ud+ 2 +w?) oo™ dr
0T rp(t)

T b
+/ / o ()p(r, 1) [uz +0% + wz} P drd, 37
0 Jrp@)

b
B(T):= sup o(t) d(r, )0, 1)2r" dr
0§I§T rh(t)

T b
+ / / o ()¢ (r, )6, (r, 1)2r™ dr dt, (38)
0 rp (1)

b
D(T) := sup o(t)? d(r, 026, (r, )*r" dr
0St<T rp(t)

T b
+ / / o ()¢ (r, )*0(r, )>r™ dr dt, (39)
0 (1)

where we have again suppressed the dependence on a and /4, and where the dot
denotes the convective derivative 9; + ud,.
The next lemma is the first step in deriving bounds for A, 3, and D:

Lemmad. Leth > 0 and T > 0 be given. Then there is a constant C = C(h, T)
such that

T b
/ / (,092 +ul + v} + wf) (r, O)r™ dr di < C(h, T).
0 Jrp()

Proof. For the first integral we have

T b T b
/ / p92(r, Hr'drdt < / 116(t) ll oo, n / p0r'" drdt < C(h,T)
0 Jrop(®) 0 ron(t)
(40)



Symmetric Nonbarotropic Flows with Large Data and Forces 311

by (27) and the energy bound (22). Next, multiplying (7) by ¢u and integrating,
we obtain

b ; t b
/ %pcﬁuzrm dr‘ +v / ¢u§rm drdt
rp(t) 0 0

ru(t)

Lt [gpun?
= / / [ — QuP, + pouf — vqbruug} r™drdt. 41)
0 Jru(®)

r

Taking p > 2 in (36), we can bound the pressure term as follows:

t rb t b
—/ QuPr" drdt = K/ / 00 (¢ru + ¢u§)rm drdt
0 0 Jrp@)

ru(t)

t b
< C(h, T)/ / (¢'/2pub + pdOlug|)r™ dr dt
0 Jry(r)

T b
<cm )| (pu? + pO2)(r, )™ dr dt
0 ry ()

S t b o 1 T b ) "
+2 $ur™ dr di + — 002(r, 1)r drdt}
2 Jo Jro 25 Jo Jmo

t b
<Ch,T,8+Ch,T)S / / puir™ drdt,
0 Jrp(t)
where we have applied (26) and (40). The last term on the right-hand side of (41) is
treated in a similar way, and the force term is easily seen to be bounded by C (h, T').
Applying the same analysis to v and w, summing the results, and choosing § small,
we obtain

b t b
/ 300 + 7+ whHr" dr + / ¢(uf + vf +w)r" drdt < C(h, T),
(1) 0

rp(t)

which proves the result, since ¢ = 1 on [rp;(2),b]. O

3.1. Bound for A

In this and the following two subsections, # > 0 and T > 0 will be fixed, and
unless otherwise stated, all integrations in r will be over [r;,(¢), b] and will be with
respect to dr, and all integrations in ¢ will be over [0, T'].

To derive a bound for A we recall (7):

2
. PV
pu_T"‘Pr:ngr‘i‘pfl-

Multiplying by o ¢ur™ and integrating, where again o (t) = min(1, ¢), we obtain

// [U¢ (pb’tz — ,ozlrvz) + odn'tPr] r’

://[vo(pug,itrm+a¢pf1ﬂrm]. (42)
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Integrating by parts in the first term on the right, we get

/ / o gy ir™ = — / / oug (@ir™),
=~ [ [ous(ori+ o, + "2 )m
—//G¢u5(ﬂ)5rm+0h (//0¢<p—1)/1’|1}t||u5|rm>
//Uqb i +u5(uu,)4 P
+0y < / / o¢<'f—”/”|u||ug|r"’), 43)

where Oj(I) denotes a term which is bounded by C(h, T)|I|. The second
summand in the first integral in (43) requires some work. We have

/oqﬁug (uuy)er™

z//a¢uugu,,rm+//a¢u,u§rm

=//o¢ (u(3), + e ) //"¢“r (4 25) "
// ‘ u? (gpur™) +m(¢u2 mehy ur]

Lo, (//a¢ (1ur P + |u|3)r'")
//od)r Lur™ 4+ mu®rm ! )

04 (//mP (e + |u|3)”m>

e (//o¢<”—”/p(|u|2|ur| " |u||ur|2)r'">

Lo, (//a¢(|ur|3 T |u|3)r”’) .

We thus obtain, from (43),
o [ [ovuzrir
:—v//a¢(%u§)trm+0h (//6¢(|ur|3+|u|3)"m)

10y (//o«p“’—“/"(|u|2|ur| T ullur? + |a||ug|)r'"). (44)
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Next consider the first term on the right-hand side of (44). Integrating first with
respect to ¢ and applying the equation satisfied by ¢, we obtain

—U//ati)(%u%)trm

= —%UO’(T) /(ﬁuérm

+ 3V / / (019 — GugpJuzr™
t=T

L+ O (1+//o¢<f’—”/f’|u||ug|2rm),
=

where we have used Lemma 4 to bound the term containing o;. For the first term
on the right-hand side of (42) we thus have

v//aqbug,urm
= —%VO(T)/cbu?rm’t:T + Oy, <1 +//a¢(|u,|3 + [ul?)rm

+//0¢(p])/p(lulzlugl+|M||M§|2+|M|3+Iﬂlluél)rm>, (45)

since u, = ug + (mu)/r.
Next we estimate the P, term on the left-hand side of (42):

= —%vo(T)/qﬁugrm

o i P
- —//a(ma)r + o™ 4 gi) e
< _//w(uﬁ ) )" + O (//o(wm +liPl)" )
— —/od)urPrmL:T +//(J¢P)turrm +//auu,(¢Pr’"),
+0y, <//0¢(1’1)/”|d|Prm>. (46)

The second and third terms on the right-hand side of (46) are bounded as follows:

/ / (0 Phyutrr" + / / o, (P,
=//01¢Purrm+0(¢t+u¢r)urprm
+m//a¢uu,Pr’"—1 +//a¢(Pt+uP,)urrm
://Ut¢Purrm+m//a¢uu,Prm_l
—K//Gqﬁurpugerm—i-l{//a(ﬁurpérm

_ <1+//a¢(9<u2+u§>+|ur||é|)rm),
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where we have used the equation for ¢, Lemma 4, and the pointwise upper bound
on the density. Substituting back into (46), we thus obtain

//G(bﬂP,rm = —/0¢Mrprm
t=T
+0y, <1+//a¢(9(u2+u3)+Iurllél)r’">
+0y (//a¢>(1’”/1’|u|9r’"). 47

Substituting (45) and (47) into (42) we obtain finally

[ oo

=G(T)/¢Pu,rm

)r + vo(T)/¢u2 m

+//U¢,0f112rm

+0y, (1 + //w“’*““’(wﬁus + fullug * + |ul® + il |ug| + 1@]0)r™

" //U¢(9(u2 +ug) + lur|16] + lugl® + Iul3)’m> '

t=T

Treating the variables v and w in a similar way and applying the pointwise bounds
(26) for the density, we then obtain

//a¢p|l‘f|2r'"+%a(T)/aWUFrmL:T

<C(h,T){l—i—//odmluvi)—v21}1|rm+a(T)/¢P|ur|rm‘ .
=

+//o¢(9(u2+u§)+|u,||é|+|U|3+|VU|3)rm
+//0¢(1’_1)/"(|1}t|0+|U|3+|U||VU|2+U~VU)r’”}, (48)

where

U= @,v,w), |U|l=lil+ 9+ |l
VU = |ug | + [ve]> + lw,|?,
F=(fi, /o ), |FI=1Al+Hl+Ifl

A fairly lengthy analysis is required to bound each of the terms on the right-hand
side here. For example the uvv term is

//o¢p|uvv|r'" < %8//a¢p|b|2r’"+C(8>//a¢p(|u|4+|v|4)r'".



Symmetric Nonbarotropic Flows with Large Data and Forces 315

Choosing § small, we absorb the first term here into the left-hand side of (48). Also,

[ oot < [ (et [ oure)

§amn//mm%wmﬁW§cmTy 49)

We have used here the pointwise bound (26) for p, the energy estimate (22), and
Lemma 4. Applying similar estimates to the other terms in (48), we finally obtain

//o¢|U|2rm +a(T)/¢|VU|2rm‘t7T

< Ch, T){l +D(T)'/? + A(T)'?

+/ﬂmummwAmdpg//}mvm%m}

For the |VU|3 term on the right here we apply the following Sobolev estimate,
which is standard, and whose proof we omit:

Lemma 5. Let J (r, t) be a smooth function defined on {(r,t) |rp(t) Sr < b, t €
[0, T1}. Then

//o¢|J|3rm dr dt

< CMh,T) sup (a(t)/q)]zrmdr)l/z

0<t<T

X U/J?rm drdi + (//ow}rm drdt>1/4//(J2rm dr dr)ﬂ .

Taking J = vg, for example, we have

[ [oorweirm < canaay i+ ([ [apm)"].

by the definition (37) of A and Lemma 4. To bound the last integral here we square
(8), multiply by o¢r™, and perform routine estimates. The result is that

//mpug,rm < C(h,T)//a¢(t}2+ U+ |F1*)rm
<Ckh,T) <1+A(T)+//U¢|U|4rm>

= Ch, TY(1 + A(T)),

where we have used the hypothesis (12) on the external force and the bound in (49).
We thus have

//0¢|U5|3rm < Ch, YA 2 + ATV < Ch, TYA + AT)*.
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Similar estimates apply to ug and w,, so that
T
A(T) £ C(h, T) (1 + AT + B(T) + D(T)'/* + / 10C, D lloo,n Alt) d:).
0
Applying Gronwall’s inequality we finally obtain

A(T) < C(h, T) (1 + B(T) + D(T)]/z). (50)

3.2. Bound for B
From (10), (6), and (34) we get
1 2 2 _
ly [(q&p@ )[ n (¢pu9 )J = 00 (kb — Pus + Q).
Integrating and using Lemma 4 we obtain

, <Ch,T)+ //g(pe(;cerg — Pug + Q)rm.

30(T) / 6"

t=

The terms on the right are treated as above in the estimates leading to (50). The
result is that

B(T) £ C(h, T)(1+D(T)'?),
so that, from (50),

A(T) + B(T) £ C(h, T)(1 +D(T)'?). 51)

3.3. Bound for D

Recall the temperature equation (10):
,Oé = kb — Pug + 0.

Multiplying by o2¢?6r™ and integrating, we obtain

//az(pzpézrm =K//az¢29,§érm +//02¢2é(—Pug +Q)r™,

so that

//02¢29’2r’” + %0(T)2/¢29r2r’”‘ .
t=
< C(h, T,5) / / (06262 +0%¢? (u16? + lugl6? + u26> + 0°)

+0 29, 106,1|r",
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for suitably small 8. We shall estimate the Q2 term in some detail. Recalling the
definition F' = vug — P, we get

§C(h,T)//02¢2(F4+04+vg+wf+|U|4)rm. (52)

For the first term on the right-hand side we note that
2
. pv
Fr = pu — o P

by (7), so that, for p = 2,

3/4 2
1™ F (-, D113, .
. PV
< [ 13020, F? + 20 F (pu - pfl)‘

< Clh, T)/[¢3/2—1/"<u§ +6%) + ¥ (ue| +0)(Jil + v* + [F])]
< C(h. T)/[¢(u§ 0%+ 0 + [ F?) + 032 (ug| +9)|u|]rm
Thus
//02¢2F4rm
< /02||¢>3/4F(-,r>||§o,h(/¢”zp2rm)
<cut) [o?([[owd + 624 0t 41FP) + 9072 ugl + o3|
x(/qs‘/z(ug +92)rm) dt

scanffi+ sw [apad+o+ o ([ [0 + o)

0T
+/az(/¢2(u§ +92)rm)1/2 (/(bdzr”’)l/z
x(/¢(u§+92)rm 1/2 /(u§+92)rm l/zdt}

§C(h,T){l+ iug a/¢(u + 6% + vty )
0<i<T

i fot o) o o)
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§C(h,T){1+ s 0/¢(u5+92+v4)r )
0sStsST

v ([ [ooirrm) ™)}

§c<h,T>{1+(1+A<T>”2) sup o/¢(u +62+ vt |

0<t<T

We have used here the assumption (12) on the force term and the result of Lemma 4.
To bound the v* term we argue as follows: from the energy estimate (22) we have

o [ ot < ol [ 3r7)
<cn, T)o/(¢rv2 +¢vv,) £ C(h, T)(l +o~/¢v§r’")
< C(h, T)AT).

It then follows from the definitions of A and B that
//02¢2F4r'” < Ch, T)(14 AM)'?) (14 AT) + B(I).

Applying similar arguments to the other terms in (52) and recalling (51), we con-
clude that

D) < iy (14 DT+ [ DOIOC D).
Applying Gronwall’s inequality together with (27) we get
D(T) = C(h, T),
and hence, by (51),
A(T), B(T) £ C(h, T).

We have proved:

Lemma 6. Let h > 0 and T > 0 be given. Then there is a constant C = C(h, T)
such that, if A, B, and D are as defined above in (37)—(39), then

A(T),B(T),D(T) £ C(h, T).

Next we derive two auxiliary bounds: in Lemma 7 below we prove an L4 bound
for the approximate velocities, and in Lemma 8 we prove a bound for the time inte-
gral of their sup-norms. These auxiliary results will then be applied in Lemma 9
to prove the uniform integrability of the approximate densities and energies. This
uniform integrability will be crucial later in Section 4 in showing that limits of
these approximate solutions are indeed weak solutions of the original system.
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Lemma 7. There is a constant C = C(T), independent of a, such that, for the
cylindrically symmetric case,

b
/ p(r,t) (Irv(r, D19 + lw(r, 0|9) rdr < C(T)Cy for t <T,

where g > 2 and Cy are as in (14).

Proof. Recall that m = 1 in the cylindrically symmetric case. Denoting sign(v)
by s we have, upon multiplying (8) by rs,

7
p (roly +ulrvly) =rs (Z(ro),) +spfor
r
Multiplying by gr|rv|9~! and adding |rv|9[(rp); + (rpu),] = 0, we then get
(rplrol®): + (pulrol®), = grisirol?™ (Ev),) +qspplrof =2,
r

so that

t
/p|rv|qrdr —}—,uq// [2s|rv|{r1 + (g — l)rszlrv|’172(rv)r} (rv), drdt
0

:q//spf2|rv|q71r2drdt.

Observe that the first summand in the double integral on the left integrates to zero,
while the second summand is positive. For the term on the right, we have from (12)
that

//s,ofz|rv|qflr2 drdt < C//(|f2|q,0r + plrvl9r) drdt

<cC <l+//,o|rv|q drdt).

The result then follows from Gronwall’s inequality and the assumption on vy. A
similar argument applies to w. 0O

The following bounds are consequences of the entropy estimate (23):

Lemma 8. Given R > 0 and T > O, there is a constant C = C(R, T) such that

1) u
- <
/n <H91/2HM+ I log(® v 1)||oo,R) dr < C(R,T)

forty,tr € [0, T). Here O v 1 = max(0, 1).
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Proof. Applying the boundary condition u(b, t) = 0, we get, for r € [R, b],
b
u luer| | [ullfr]
<
‘91/2“’ [)‘ = C/r (91/2 tgn )dr’

2
<C(R)/ (1++” +; /r>rmdr,

so that, by (23),

/ H dr < C(R)/ / 1+ '9”2 9) Pdr < C(R,T).
1

0
Next let § = 6 Vv 1 so that, for r € [R, b],

6,

0r

dr

b
dr < logf(b, t)—i—/
.
2 1/2
rmdr> .

Integrating in time and using the k-dependent bound (27) with & = My /2 for the
first term on the right (M is the total mass), we conclude from (23) that

b
1og§(r, 1) < logé(b, 1) +/
p

6,

5 b
< log(b, 1) +C(R)(/
R

T
/ logfllsogd < C(R,T). O
0

We now apply the above two lemmas to prove certain uniform integrability
estimates. To describe these, we define the strictly increasing, convex function

G :[l,00) = [0,00), G(y):=ylogy. (53)
Then G~! : [0, 00) — [1, 00), and we can define for r > 0, ¢ > 0 the function
(i) =r+r67(5), (54)
r

It is easily checked that for each fixed c¢ the function r +— w(r; ¢) is continuous
and increasing on (0, 00), and that

li ;0) =0.
rli’l(}a)(l" c)
Finally, if E C [0, b], we define |E| := [, r™dr

Lemma 9. Let w be as described above.

(@) Ifa Z 0 and p : [a, b] — R is strictly positive and satisfies

b
/plogprmdr <cC, (55)
a

then for any measurable set E C [a, b],

/,ormdr o(|E|; C).
E
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(b) Let R > 0and T > 0. Then there is a constant C = C(R, T) such that, if E(t)
is a measurable subset of [R, b] for each t € [0, T), and if (p,u, v, w,0) =
(p%, u?, v, w, 6%) is the approximate solution described at the beginning of
Section 2, then

T T
/ / p0r™ dr dt §a)(/ / prmdrdt;C(R,T)),
0 JE@) 0 JE@®

T ) T 1/4
/ / pu-r™drdt < C(R,T)a)(/ / prmdrdt;C(R,T)) )
0 JE@) 0 JE@

(c)Let R, T, E(T), C(R, T), and (p, u, v, w, 0) be as in (b) for the cylindrically
symmetric case. Then

T T (g=2)/q
/ E(t)/,o(r, 1) (v2 + wz) rdrdt < C(R,T) (/ E(t)/,or drdt) ,
0 0

where g > 2 is as in (14).

Proof. To prove (a) we define E; :={r € E : p(r) S 1}and Er :={r € E :

p(r) > 1}. Then
/ pr'dr §/ r'"dr < |E|.
E; E

1
|E2| E;

If |E>| # 0, then
ordr = 1.

Applying Jensen’s inequality to the convex function G, we find from (55) that

1 1 C
G (/ ,or’”dr) < — G(p)r'"dr < —.
|E2| JE, |E2| JE, |E2|

Thus by (54),
C C
/ pr"dr < |Ep|G™! () < |EIG™! ()
Ey |E| |E|

and we conclude that

C
/,ormdrz/ ,Ormdr+/ pr'dr < |E|+|E|G™! () = o(E[; ©).
. £ E, |E]

To prove (b) we let 6 = max{6, 1} and define the mass measure dm := pr™ dr.
Set

Ei(t):={re(E@®) : 0(r,t) £1}, Ex@):={re(E@®) : 0@, t)>1}
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T T
/ / 0 dm §/ / dm. (56)
0 JEi(t) 0 JE®
T
/ / dm > 0,
0 JE 1)

Then
Next, if

then with G as in (53),

T T
/ / 0 dmdt / / G(0)dmdt
0 JE) 0 JE®)
G T = T
/ / dmdt / / dmdt
0 E»(t) 0 Es (1)
T
/ / 001og6r™ drdt
_JO0 JE®
- T
/ / dmdt
0 E> (1)
T ~
/ [ log 0|00, r (/ PO r”’dr) dt
0 Es (1)
T
/ / dmdt
0 JEx )

C(R,T)

<
= T 9
/ / dmdt
0 JEx )

where we have used the energy estimate (22) and the previous lemma. Thus

T T
C(R, T
[ omarars ([ [ anar) 61| <&
0 JEw 0 JEw // dmds
0 JEx )

T C(R, T
<(// dmdt)-G_l T(—)
o Jew [ ana
0 JE@

=

We have used here the fact that s — sG~1(C /8) is increasing. Adding this to (56),
we obtain the first estimate in part (b) of the lemma. For the second estimate in (b)
we argue as follows:
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T
/ / ou’r™ dr dt
0 JE®
T 1/2 3/4 1/4
< / H—?z H (/ ,ou2 rmdr> (/ 00 r’"dr) dt
o 11012 1leo, R\ [ E®)
T, 4 12, T 1/4
< C(T)(/ HﬂH d;) (/ / 00F" drdt) ,
o 1161/21lco,R 0o JE®

T 1/4
< CR, T (/ / pr™drdt; C(R, T))
0 E(t)

by the bound (22) for the energy, the previous lemma, and the first part of the present
argument.
To prove (c) we estimate as follows:

T
/ / o(r, Hv(r, t)2r drdt
0o JE@

T 2/q (g=2)/q

§/ (/ p|v|qrdr> (/ prdr) dt
0 E(t) E(1r)
T 2/q T (a=2)/q
< C(R) </ / plrv|?r drdt) </ / pr drdt)
0 JE@) 0 JE@)
T (g=2)/q
< C(R.T) (/ / or drdt) ,
0 JE@

where we used Lemma 7 in the last step. The argument for w is the same. 0O

4. Proof of Theorem 1.1

In this section we complete the proof of Theorem 1.1 by constructing smooth,
approximate solutions, applying the a priori bounds of Sections 2 and 3, and taking
appropriate limits.

To begin, we let (pg, Up, Og) be initial data satisfying the hypotheses of
Theorem 1.1, and we take (pg, 1o, vo, wo, 6p) = (0o, Uo, 6p) to be the corre-
sponding component functions defined for r € [0, b]. We let Hs be a standard
mollifier (in r) of width 8, and for @ > § we define smooth, approximate initial
data (po®?, Ug"s, 0p®%) as follows:

— Extend pg by its average value outside [a, b], mollify with Hjs, restrict to
[a, b], and then multiply by a constant to normalize the total mass to be My =
fob por™ dr. The resulting density function is denoted pg ’S(r).

— Redefine wy to be its average value and up and vg to be zero on [0, 28], and
redefine all three to be zero on [b — 2§, b], then mollify with Hj to get ug’s,

o 8 wg’s. Note that these velocities are identically zero on a neighborhood of

r = b, and ug’a, vg’a and (wg’s)r are zero on a neighborhood of r = a.
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— Redefine 6 to be its average value on [0, 28] and [b — 26, b], then mollify with
Hj to get 0 9 Note that 0 9 is then constant on neighborhoods of r = a and
r=b.

The resulting data (p; 3 Uy 3 6o %) then satisfies the hypotheses (13)—(14) with
constants which are independent of (a, §). There is then a global-in-time smooth
solution (p®%, U%?,0%%) of the system (1.4)—(1.8) with boundary conditions as
described at the beginning of Section 2. This is a consequence of the results of FRID
& SHELUKHIN [2] in the spherically symmetric case, and would follow from [2] in
the cylindrically symmetric case as well, except that we have imposed the boundary
condition w, = 0 at a = 0 in place of w = 0. We instead obtain a global solution
for this case as in HOFF [3], by solving first an appropriate system of semidiscrete
difference equations, then passing to the limit as the discretization tends to zero.
The details are straightforward but rather tedious and technical. Note, however, that
a is fixed and positive at this stage of the argument, so that the apparent 1/r sin-
gularities in the equations play no role, and the construction of these approximate
solutions is essentially a one-space dimensional problem.

For h, a, § > 0 we define the particle paths rZ"S (t) associated with this approx-
imate solution by

a,s
" ®)
h= / 0% (r, )™ dr, 7
a

just as in (24).

4.1. Convergence of Approximate Solutions

In the following three propositions we show that there is a subsequence (a;, 6 ;)
— (0, 0) for which the approximate solutions and their associated particle paths
converge.

Proposition 1. Let (p®%, U, 0%%) and r,‘:’s(t) be as described above.

(a) There is a subsequence (aj,d;) — (0,0) such that ij 9 (t) converges uni-
formly for (h, t) in compact subsets of (0, Mo] x [0, 00), and the limit ry(t) is
Holder continuous in (h, t) on these compact sets.

(d) If
1) :=1li
r(t) hm (1)
then
li =0.
[%150) 0
(c) If the “fluid region” F is defined by
F={rt) :r@t)<r<b, 05t < 00,

then F N {t > 0} N {r < b} is an open set.
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Proof. We have from the definition (57) of rZ’5

a,s a,é
ory, a8 ory, _n

ar oh s

Uniform Holder continuity of {rZ"S} then follows from the bounds in (26) and
Lemma 6, which show in particular that, for0 < ¢t < T,h > 0, and r = r,‘;"s,
p%% > C(h, T)~" and |u®®(r,t)| £ C(h, T)t~"/*. The assertions in (a) then
follow from the Ascoli-Arzela theorem.

To prove (b), we take limits in (57) to obtain

1, (0)
h= / po(FF™ dr = C 'y (0),
0

and apply the result of (a) that r;(-) is continuous at ¢ = 0. The assertion in (c)
follows directly from the continuity of the curves ry(¢) int forh > 0. O

Proposition 2. Let the hypotheses and notation of Proposition 1 be in force. Then
there is a further subsequence, still denoted by aj, § j, and limiting functions U and
0 such that

U%% > U, 0%% > ¢

uniformly on compact subsets of F N {t > 0}. The functions U and 0 are Holder
continuous on these compact sets.

Proof. We first prove the uniform Holder continuity of the approximate tempera-
tures. Thus for0 < v < ¢ < T and rf:(’)a(t) Srnsrnshb,

r
1093 (rp, 1) — 09 (ry, 1)| £ / 1093 (r, 1)| dr

r

4 2, \'?
<vm=n( [ eteirar)
r

1

< C(ho, T, T)r2 — 11,
by (6); and by (21) and (22),

b b
/ 695 (r, 1y dr < C(ho, T) p@20 ™ dr < C(ho, T).
) iy ©

We thus conclude that

0%(r, 1) £ Clho. T, T) forr 2’ (1),0 <t <1 T,

so that {#%%(r, 1)} is uniformly bounded and Hélder continuous in 7 on compact
subsets of F N {¢r > 0}. To prove Holder continuity in time, welet 0 < t < #; <
tp < T and r,‘f(’)s(t) < fort €[t1, t]. Then for k = /1, — 11,
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1040 (r1, 12) — 09 (r1, 11)]

r1+k
<k ! / 1099 (r, 1) — 69°(r, 11)| dr 4 C(ho, T, TNk
r

1

ri+k I
§k‘1/ / 1693| + |u®20%°% | dr dt + C(ho, T, T)Vk
r 151

P ritk pt 172
<F</ / |9a,a|z+|ua,69ra,6|2) + C(ho, T, T)Vk
k rl 1
h —t
< Cho, T, r)(\/7+~/'?)

< C(ho, T, D)lta — 11| V/4,

again by (6). We conclude that {099 (r, 1)} is uniformly bounded and Holder con-
tinuous, jointly in r, £, on compact subsets of the fluid region 7 N {¢t > 0}. A similar
argument applies to the velocities U%®. O

Proposition 3. Assume that the hypotheses and notation of Proposition 2 are in
force. Then there is a further subsequence (aj,8;) — (0,0) and a function
o (r, t)such that

04ty = p(ot)  in H! ([r(®) +n, b, r™dr),
and
pajv‘sj (1) = p(-, 1) in Lz([g(t) + n, b], rmdr) (58)

forallt € [0, T] and all n > 0. In addition, ifp“f’a-f (r, t) is taken to be zero for
r < aj, then

P (1) =0 in L' ([0, r(0)], rdr) (59)

when r(t) > 0. Also, forh > O and T > 0, there is a constant C = C(h, T) such
that

Ch,T) ' <p<Ch,T)
for0 <t < Tandrp(t) £r < b. Finally, forh > 0andt 2 0,
rp(t)
h= / o(r, 1) r™dr. (60)
r(t)

Proof. Fix a small rectangle

R = [ro, b] X [s1,82] C{(r, ) |r = rp(¢) forr €[0,T]}

for some & > 0. Then C~'(h,T) < p(r,t) £ C(h,T) for all (r,t) € R, so
that for each time ¢ € [sy, s3] the family {p“f"sf (-, 1)}; is bounded in Lz([ro, b]),
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uniformly in j. Thus if {#} is a countable, dense set of times, we may pass to a
further subsequence, still denoted by (a;, 8;), such that

for #; in [s1, s2]. To extend this convergence to all times, we prove strong conver-
gence in H~!. Thus define

-
M/ (r,t) = / %% (s, 1) ds.
ro
The weak convergence implies that, for each #,

-

MI(r, 1) — M@, 1) ::/ o(s, tr) ds

ro
pointwise in [rg, b], and hence in L? ([ro, b]). It follows that if ¢ € HO1 ([ro, b])
then

)
\/ (09 — oy rMdr < CIMI — M 2 |l 1.
ro

- ‘/F(Mj — M)y r"dr
ro

so that
%% = pllg-1 < IM7 — M|| ;2 — 0.

To extend this convergence to all times, we show that the family {p%-%i (-, 1)} is
equicontinuous with respect to ¢ in H~!([rg, b]). Thus for 71, 7, € [0, T] and

v € Hy ([ro. bl),

b
] / (P92, 1) = p® %% (r, T) [ Y™ dr
ro

b [%)
— ‘/ / paj,éjuaj,tsj‘wgrm drdt‘
ro J11
1/2

(%) b /
< 1Well 2 C(h, T)/ (/ p“jﬁj (u“/‘sfsf)zrm dr) dt
T] ro

< Ch DVl lv2 = 7l
Therefore

1% ¢ 12) = p % (Tl g1 £ Clh, Tlra = T,
It follows that p%-%i (-, ) converges strongly in H~! and weakly in L? to p(-, 1)
for all times t € [s1, s2]. Since F is a countable union of such rectangles R, there

is a further subsequence (a;, §;) — (0, 0) such that the same convergences hold
on [r(t) + n, b] for each time ¢ € [0, T] and for all n > 0.
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To prove (59) we fix ¢ and suppose that r(¢) > 0. Setting p“f"sf =0on [0, q/],
we then have, for a; < r; (1),

£(0) I S r(t)
/ pa'iﬁjrm dr = (/ +/a-6. +/ )pa'iﬁjrm dr
0 0 W I

aj.8;

S h+ ol @), ra®]11; Co) + o (Ilra (@), r]1]; Co),

by Lemma 9. Thus given § > 0, we first choose 7 < &/3 so that the last term
is smaller than 6/3 (which is possible since, by definition, r;(t) — r(¢)), then j
sufficiently large that the middle term is less than §/3 (which is possible since, by
definition, ij’aj (t) = rx(1)). This shows that p%-% tends to zeroin L' ([0, r(1)]).

Finally, to prove (60), we fix t € [0, T] and & > 0 and choose [ € (0, 7). Then
taking p%-%i to be zero for r < a j» we have, for each j (suppressing 7),

nj,ﬁj

Th
h= / P P dr

0
r r rh ij'sj
= (/ +/ +/ +/ )p“j"sfrmdr
0 r T h
r
=/ p%% ™ dr + O (w(|r, rll; C(h, T)))
0
Th S aj,d;
+/ P4 r"dr + O(w(|lrp, 1, ' 1I; C(h, T))).
r

We first let j — oo with / fixed. The first term on the right then goes to zero by the
argument above, the last term goes to zero by (1), and the weak L? convergence

(58) shows that
Th n
/ %% Py — / pr"dr.
T I

Letting / — 0 and applying the definition of r, we then conclude that

ru(t)
h=/ prdr. O
r(t)

Remark. We defined the approximate initial data pg'/ ’ so that for each time ¢,
b b5 b
My = / por"tdr = / py T r"dr = / %85 (r, 1) r™dr.
0 0 0

It follows that rz,;oft’) = b for all j and ¢, so that ry,(t) = b. Thus (60) shows in
particular that mass is conserved for the limiting solution:

b b
/ o, ) r'"dr = / po(r) rdr.
r(t) 0
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4.2. Weak forms of the Navier-Stokes equations

We next turn to the task of proving that the limiting functions are indeed weak
solutions of the Navier-Stokes equations in Q2 x [0, 00).

First, the limiting functions p, u, v, w and 6 have been defined in the fluid region
F but not elsewhere. We therefore define p, pu, pv, pw and p6 to be identically
zero in the vacuum region F°. As in Section 1 we let r(x) = |x| in the spheri-
cally symmetric case and r(x) = |x|, where X = (x1, x2, 0), in the cylindrically
symmetric case, so that Q = {x|r(x) < b} in either case. The velocity vector
U: Q x [0, 0o) is then defined by

U _ =
(x, 1) = u(r(x), 1) ( )

in the spherically symmetric case, and by

U(x, 1) = Upa(x, 1) + Utan(x 1) + Uyere(x, 1)
~L

= u(r(x), t)ﬁ—i-v( r(x),t) ror )—i—w(x 1)(0,0,1)

in the cylindrically symmetric case, where ¥+ = (—x», x1, 0). Abusing notation
slightly, we also write p(x, ) and 6(x, ) in place of p(r(x),t) and 6(r(x), t).
Similar notation applies to the approximate solutions, for which we now write p/
in place of p%i 35 | etc.

In the following proposition we show that (p, U, 6) satisfies the weak form (16)
of the mass equation.

Proposition 4. Let (p, U, 0) be the limit described above in Propositions 1-3.

(a) The weak form (16) of the mass equation holds for C' test functions ¢ : Q x
[t1, 2] — R, which in the cylindrically symmetric case are assumed to vanish
for |x3| = L for some L;

®p e C ([0, 0); Wl’OO(Q)*) in the spherically symmetric case, and p €

C ([O, 0); WI{’OO(Q)*) in the cylindrically symmetric case, where
WL(Q) = ¢ € Who(Q) : ¢ =0for|xs| 2 L};
(©) p'?u € L™ ([0, 00); L*(%)).

Proof. We first derive the weak form of the one-dimensional equation (6). Thus let
¢ (r, t) be a smooth function on [0, b] x [#, t2], so that

b . t 5] b . .
/ polordr| = / / (pj¢t +pjuf¢,) rdrdt. 61
0 3| 1 0

We consider the difference between each of the above terms and the corresponding
terms with p/, u’/ replaced by the limits p, u. First, at time ¢t = 1 or #,, we have,
by Lemma 9,
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b b
' / ol rdr — / p¢ r'dr
0 0

b .
<| [ - pormar
T'h

rl{ . Th | rn
wigl ( [* 0 rmar s [ o mar s [ prar
0 i .

h
b B
<| / (o — p)p rdr
rp

+ 18lloe (h + (Ui, rjL; Co) + Iz, 1i): Co) )

Letting first j — oo, then 7 — 0, and using the definitions of the curves r}{ T,
and r, together with (58), we obtain

b t b
/ plortdr| — / pdrdr
0 t 0

The same argument applies to the first term on the right-hand side of (61), and for
the last term in (61) we have

t b %) b
‘/ / ol ul ¢, rmdrdt—/ / pud)rrmdrdt‘
11 0 151 0
%) r,{ o %) rn L
e [/ / Ip’uflr’"drdt+/ / oiul| rdras
1 0 131 r}i

t prp n b
—I—/ / |pu| rmdrdt] + ’/ / (p'u! — pu)g, r"drdt|. (62)
I3 r n rh

For the first term on the right here we have

by
/ / o/ u’ | r"drdt
11 0
norbo 1/2 oo
< (/ /,oju] rmdrdt) (/ / p’rmdrdt>
11 0 n 0

<C(M)Vhta—t1) >0  ash — 0.

The second term on the right in (62) is

ot
/ / o/ u’ | rdrdt
1 ré
Do, 172 I 172
/ / plul” r"drdt / / o) rdrdt
151 r,{ 151 r;{
%) ) 1/2
(1) (/ o (I r1: Co) dr) ,
n

4]
n

A

1/2

A

A
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which goes to 0 as j — oo (with 4 > 0 fixed) since r,{ — rp, uniformly on [t1, #2].
For the third term on the right-hand side of (62) we have

%) n %) I 1/2 t T 1/2
/ / lou| r"drdt < (/ / ou’ rmdrdt> (/ / prmdrdt> ,
1 r 1 r 51 r

which goes to zero as 1 — 0 by Lemma 3.6(a) and by (c) of the present proposition
(which is proved independently below). Finally, the last term in (62) goes to zero
by the uniform convergence of u/ to u and the weak convergence of p/ to p. We
have thus proved that, for functions ¢ which are Clon [0, b] x [t1, 2],

b
/ opr"dr
0

Now let ¥ : Q x [11, 12] — R be C!, and in the spherically symmetric case define

t i) b
" / / (pdy + pugy) rdrd. 63)
1 131 0

¢(r.1) ¢=/S¢(ry,t)d3y,

where the integral is over the unit sphere S = S in R?; in the cylindrically sym-
metric case define

d(r,x3,1) :== / Y (ry, x3,1)dSy,
s
where the integral is over the unit circle S = S Lin R2Z. Equation (63) then holds
for ¢, and it is easy to see that, for t = 7] or f, fob p(r,)o(r, t) r"dr equals
Jo P(x, )Y (x,1)dx in the spherical case and [ p(x, )Y (x, 1) dxidxs in the
cylindrical case, where Q = {(x1,x2) | xl2 + x% < bz}. The first term on the

right-hand side of (63) is treated in a similar way, and the second term on the right
may be rewritten in the spherically symmetric case as follows:

15 b
/ / o, Hu(r, ), (r, 1) r'"drdt
t 0
1 1% b
= / / /p(r, Du(r, )V (ry, 1) - yr'" dSydrdt
131 0 S
n
= / / p(x, Du(x, )% - Vr(x, 1) dxdt
1 Q r

t
= /2/ px, U, 1) - Vi (x, t)dxdt.
1 Q

This establishes the weak form of the mass equation in the spherically symmetric
case,

n
[oneaad’ = [7 [ [ wn+@u v wn) .
Q 1 31 Q

for C! functions (/8 Q x [t1, 2] — R.
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For the cylindrically symmetric case the above computation shows that for each
x3 fixed,

/ oY dx1dX2

/ / (oY) + Urag - Vl/f} dxidxodt.

Thus if v (x1, x2, x3) = 0 for |x3| = L for some L, then

I3 )
/ pvdx|” = / / (091 + Una - V| dxa.
Q n 1 Q

Observe that, for such ,

/ /pUVm Vi dxdt = / /pw (/ wxgdx3> rdrdt =0,

/ / pUsan - Vi dxdt
2w
=/ / oy (/ / [ — rsin(a) ¥ (r cos(a), r sin(a), x3)
1 0 —L JO

+ rcos(a)yry (r cos(a), r sin(a), x3)| dadx3) drdt

tr b L 2 9
= / / pv (/ / —r(r cos(a), rsin(oc),x3)dozdx3> drdt = 0.
n Jo -LJo O

Adding the last three results and recalling that U = Upyg + Uan + Uyert, we then
obtain the weak form of the mass equation in the cylindrically symmetric case,

n
[ ew o] = [7 [ [ow o+ @u-v) o] dxar
Q | 151 Q

for C! functions /38 Qx [, 2] — R having compact support in the x3 direction.
This proves (a).

Proof of (b): First, if ¢ isa C ! function of x, then by the result of (a) for the
spherical case,

15}
’/pfbdx =
Q n t
1 1/2 1/2
§||V¢||oo/ </pdx) </,0|U|2dx) dt
1 Q

S CDIVllt — 11l.

oU - Vo dxdt’
Q

A straightforward argument enables us to extend this to functions ¢ € W1 > (Q),
so that

loC.12) = pC t)llwro@y = C(D)2 — 11l
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for 1,1, € [0, T]. This proves (b) for the spherical case, and the proof for the
cylindrical case is similar.

Proof of (c): By (22), there is a constant C(T') such that, fort < T, n > 0, and
Jj sufficiently large,

b . .
/ ol U/ 2 ¥ drdt < C(T).
r(t)+n

We first let j — oo, then n — 0 to obtain

b
/ olUP> r"drdt = / plUZdx < C(T),
r(1) Q

which proves (c). O

We now turn to the formulation and proof of the weak form of the momentum
equation. Since we cannot determine whether or not a vacuum state {p = 0} occurs
at the origin, that is, whether or not r = 0, we will be able to identify the viscous
terms in the momentum equation only as certain limiting distributions. To begin,
we define, for given times 11 < 1, and test functions ¢,

i) b
v/ / u! pg,r™ drdt,
1 aj

15) b .
V(i $) = V(i b, 11, 1) = / / ol e ™ drd,
11 aj

UG, ¢) =U(. ¢, 1, 1) :

%) b )
W3, §) = WG, ¢ 11.12) = / / w rer™ drd.
I aj

As a first step we treat the simpler case in which ¢ (or ¢, in the case of the w
equation) vanishes in a neighborhood of the inner boundary.

Lemma 10. Let p, 0, u, v, w be the functions defined above in Propositions 1-3.

Let t1 < tr and let ¢ be a Cc? function on [0, b] x [t1, t2] with ¢(b,t) = O for

t e, ]

(a) Assume in addition that ¢(-,t) = 0 on [0, R] for some R > 0 and for all
t € [, 12]. Then the limits of U(j, ¢) and V(j, ¢) as j — oo exist, and the
weak forms of the first two momentum equations (7) and (8) hold in the sense

that
b , nob 2
/ oupr™ dr g / / (pu¢, + pu2¢, + Po: + pY ¢> r'"™ drdt
0 3 1 0 r
15 b
_ / / pfidr™ drdi + lim UG, $) (64)
f 0 j—o0
and
b t i) b
/ pogr™ dr| —/ / (pv¢>z + puvg, — puw) r™drdt
0 1 n Jo r

t b
:/ / pfrdr™ drdt + lim V(j, ¢).
n Jo j—o0



334 DAVID HOFF & HELGE KRISTIAN JENSSEN

(b) Assume in addition that ¢.(-,t) = 0 on [0, R] for some R > 0 and for all
t € [11, t2] (rather than ¢ (-,t) = 0). Then the limit of W(j, ¢) as j — o0
exists, and the weak form of the third momentum equation (9) holds in the sense

that
b
/ pwor™
0

t b
=/ / pf3pr™ drdt + lim W(j, ¢).
1 0 J—>00

t n b
rl — / / (pwe, + puwe,) r™ drdt
n 1 0

Proof. We outline the proof of (a). If j is large enough thata; < R, the weak form
of the momentum equation (7) holds for the approximate solutions:

b .. 15)
/ ol ul pr™ dr
0

1

p’ i’
/ / olul ¢ + plu’ ¢r+P1¢g+ r"™ drdt

_ / / ol figr™ drdi + UG, §) (65)
11 0

(recall that we have extended p/ ,ul, vl wl, 67 to be zero outside [aj, b]). We
proceed by showing that each term in (65) converges to the corresponding term in
(64). The convergence of the terms p/u/ ¢ and p’u’ ¢, is established just as for the

term p/u’ ¢, in the proof of Proposition 4. For the p/u’/ "¢, term we have

) b ) %) b
‘/ / plu! " g r™ drdt—/ / ou’ g r" drdt‘
151 0 1 0
15} r,{(t) . t o,
ool [ [ ot ran s [* [ g ara
o JR n JE|®
2 ) b )
+/ / pqum d}"dt)—'—‘/ / <,0juj _,0M2> ¢rrm drdt ’
i SE® n I

where EJ (1) = [r] (&), ()] N [R, b] (or [ra (1), 7} ()] N [R, b]) and Ej(t) =
[r(@), rn(®)]N[R, b] (or [ry(2), r(t)]N[R, b]). We firstlet j — oo and then iz — 0.
The last term in (66) tends to zero because p/ — p weakly and u/ — u strongly

(66)

in the given region. Next, by Lemma 9 and the definition of the curves rj, I,
the first term on the right-hand side of (66) is bounded by C(R, T)w(h(t2 — t1);
C(R, T))'/*, which goes to zero as h — 0. Applying both parts of Lemma 9, we
can bound the second term by
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o] .0
/ / olu! " r™ drdt
n JEj@®

1/4
153 .
< C(R, Tw / / ~ p/r™drdt; C(R,T)
n JE; @)

t . 1/4
< C(R. T (/ o (IE{0l: Co) di; C(R, T)> :
1

which goes to zero as j — oo because r,{ (t) — rp(t) as j — oo with h fixed.
Finally, for the third term on the right-hand side of (66) we can use the fact that

\/pfuj — /pu in L? ([0, b] x [#1, t2]), so that by Lemma 9 again,

%) n
. -
/ / ou’r™ drdt < lim 1nf/ / olu! “r"™ drdt
n JEp() J=00 Jn JER@)

th ) 1/4
< liminf C(R, T)w (/ / olr"™drdt; C(R, T))
] 1 JER(r)

1 1/4'
SCR, No (/ o (|Ex(1)]; Co)dt; C(R, T)) ,
4]

which tends to zero as 1 — 0. This shows that the p/ u/ 2(]), term in (65) converges
to the corresponding term in (64). The other terms in (65) are handled in a similar
way. 0O
We now extend the above result to the case that the test function is supported in
all of [0, b].
Lemma 11. Fix an increasing C' function x : [0, 00) — [0, 1] with x = 0 on
[0, 11 and x = 1 on [2, o0), and define xX(r) := x(r/R) for R > 0. Let ¢ be a
szunction on [0, b] x [t1, t2].
(a) Assume that $(0,1) = ¢(b,t) = 0 fort € [t1, ], and define p® := xR¢.
Then the limits
li lim U(j, R ST li 3 R
Jim, fim UG %), Jim, Jim V(). 6)

exist, and the weak forms of the first two momentum equations (7) and (8) hold
in the sense that

b ; n b 2
/ pugr™ dr‘ = / / <pu¢z + putp, + P + i ¢> r™ drdt
I I3 0

r

0
15 b

=/ / ofior™ drdr + lim lim U(J, ¢R) (67)

f 0 R—0 j—o00
and
b t %) b
/ pvor™ dr ’ —/ / (pvqb, + puve, — puv¢) r"™ drdt
0 | 1 0 r

i) b
= / / pfrdr™drdt + lim lim V(j, ¢%). (68)
n Jo R—0 j—o0
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(b) Assume now that ¢, (0,t) = ¢(b,t) =0 fort € [t1, t2], and define
¢R(r, 1) := 90, 0) + X" [p(r, 1) — (0, 1)].
Then the limit
. . . R
1%1210;1520 WG, ¢7)

exists, and the weak form of the third momentum equation (9) holds in the sense

that
b
/ pwaeor™
0

15 b
= / / pfapr™ drdt + lim lim W(j, o). (69)
f 0 R—0 j—o0

1 b
- / / (pwdy + puwg,) ™ drds
t 0

Proof. We give the proof of (67). The previous lemma applies to the test function
#R = xR¢, so that

b R t
/ pux“or™ dr
0

1

R
/ / <pux & + pu* (xRe), + P(xRp)e + ¢)r’”drdt

=/ / ofixRor™ drdr + lim U(j, p%). (70)
1 0 J— 00

The first, second, and sixth terms converge to the corresponding terms in (64) as
R — 0 by the Dominated Convergence Theorem. For the third term we have

tr b ty b
/ /0 pu? (R )y = / /0 o (R + xRorm drdi,  (71)
1 1

and the second term on the right here clearly tends to the third term in (64) as
R — 0. Since ¢(0,1) = 0 we can write ¢(r, t) = ri(r, t) for a smooth . Then
since |, R <c /R we can bound the first term on the right-hand side of (71) by

%) 2R
< C/ / ,ouzrm drdt,
n R

which tends to zero as R — 0 by the bound on the limiting energy. The same
argument applies to the the fourth and fifth terms in (70). This proves the result for
the u equation. The proofs of (68) and (69) are essentially the same. O

2R r
pMZCEI/f(r)rm drdt

We can now state the momentum equation for the spherically symmetric case.

Proposition 5. The weak form (17) of the momentum equation holds for the spher-
ically symmetric case, as stated in Theorem 1.1(d).
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Proof. Given ' as described in the theorem, define

b, 1) 1= /S Yy 0w ds,,
for fixedi = 1,2, 3. Then ¢ (0, 1) = ¢ (b, t) = 0 so that by Lemma 11,

b
/ pugr™
0

%) b
=/ / pfior™drdt + lim lim U(j, $%). (72)
n Jo R—0 j—o0

15 b
— / / (puq&t + pu’py + P(f)g) r"drdt
131 0

We convert each of these terms to integrals in Cartesian coordinates involving .
The derivations are very much like those occurring in the proof of Proposition 4,
except for the last term, which we look at in some detail. Recalling the definitions
in Lemma 11, we have

R 1) = /S i yR@ry, t)y; dS,y,

where ¥R (x, 1) := x®(|x|)¥ (x, 1). Then since $% = 0 atr = a;, b,

b b
/ ¢R "d :—/ usqﬁ r™dr
a] aij

J

L) o)

b Jj R
== [ [udof+ Radem, + Lr‘q

r'"™dr

Il Il
| |
N a\
S e & 2. B
| — | /\ l_|
= <
/—\ N~
Ay
‘\i e
N——— +
<
S
~
~ ~.
3 “ﬁx
+
2 s
3 ~
ASS
>
N
~
—_
Q
=

Summing over repeated indexes, we then have

b J
/ uf¢> r dr——/ r(u) (/ wg((ry,t)ykyidSy) r'" dr
aj aj r r S2
b Mj R
—/ — </ wx,(ry,t)dSy) "™ dr
aj r 52 '
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’ uj uj R m
- [” — ] it *&'k}lﬂyk (ry,yr'" dSydr
aj §2 rj, r

J . J
= —/ {(u (|x|,t)) ﬁ—l—ILcSik}l/’)ﬁ(x,l‘)d)c
Q

|x| Pl Ixd

. Xi
_/Q<ul(|x|,t)|x|>)(k YR (x, 1) dx

/ w (x], )= Ay R) dx.
Q x|

Thus

t .
U(j,¢R)=v/2/ W (1x], )L Ay R) dxdt.
141 Q |)C|

The result then follows because

/uf'(|x|,t)ﬁA(wR)dx=/Uf.vwﬁdx
Q Q

|x|
andv=A+4+2u. O

In the following proposition we derive the weak form of the momentum equation
for the cylindrically symmetric case.

Proposition 6. The weak form (17) of the momentum equation holds for the cylin-
drically symmetric case, as stated in Theorem 1.1(d).

Proof. Given  as described in the statement of the theorem, define the test func-
tion

L
@i(r, 1) ;:/ / Y(ry, x3,t)y; dSydxs
—L Js!

fori = 1, 2. Then ¢; (0, x3,t) = ¢; (b, x3,t) = 0, so that part (a) of Lemma 11
applies to give

b t i) b 'U2 X
/ pug;r dr‘t - / / <,0’4¢i,t + Ui, + Pois + P ¢l> rdrdt
0 1 1 0

,
%) b
_ / / pfidir drdt + lim Tim U(j, %) (73)

1 0 R—0 j—o0
and

b t n b .

/ pvir dr ’ —/ / <Pv¢i,t+,0uv¢i,r - puwl) rdrdt
0 1 n Jo r

%) b
- / / phair drdi + lim_Tim V(j, 65, (74)
f 0 R—0 j—o0
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where
h
¢ (r, x3, 1) = / / YRy, x3, )y dSydxs  fori =1, 2.
—h Js!
We subtract (74) with i = 2 from (73) with i = 1 to obtain
%) b )
=[] oo - v + oiors — puves,)
n 0

UZ uv
FPpL + (prd’l + p¢2> | rard

r

b )
/ pugpr —vgo)rdr
0 f

i) b
= [ [ otion = sagwrarar + fim tim [t o) = V. 05)] . 05)
141 0 R—0 j—>o0

We compute the first term on the left as follows:

b L b
/ p(udr — veo)rdr = / /1 / p(uyr — vy2)¥(ry, x3, t)r drdSydxs
0 —LJst Jo

= / pUly dx.
Q

The argument is similar for the other terms in (75) except for the last term on
the right, which is handled as in Proposition 6. This proves (17) for the i = 1
component, and the proof for i = 2 is similar.

For the case i = 3 we define the test function

¢(r,x3,1) := /51 Y(ry, x3,1)dS)y.

Then ¢ (b, x3,1) = ¢,(0, x3,¢) = 0, and part (b) of Lemma 11 applies. Integrating
(69) with respect to x3 over [—L, L] we thus obtain

L b t 1 L b
/ / pwor drdx3 - / / / (pwe; + puwe,) r drdxsdt
—L JO

L
:/2/ / pfs¢rdrdxsdr + llm lim W(] SR, x3, ))dx3. (76)
n —L

—0 j—o00

For the first term on the left-hand side we have (at either t =t ort = 1)

L b L b
/ / pwordrdxs = / / / (pU3)(ry, DY (ry, x3, )r dSydrdxs
-LJo -LJo Js!

= / pUy dx.
Q

tn L b %)
/ / / pw¢,rdrdX3dt=/ /pU31/f,dxdt,
131 —L JO f Q

Similarly,
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and

tn rL b 19}
/ / / pfapr drdxydt = / / oF3y dxdr.
31 —-L JO 31 Q

Next we observe that

4]
/ / pUU - Vy dxdt
1 Q

i) L b
=[] [ [Lewesnw - v,
I8 —L JO St

+(uxy + vxl)w,Q} dSydrdxsdt

%) b L
+/ / / w(ry,t) (/ Yy dx3> rdSydrdt
131 0 st —L
i) L b
= / / / / (ouw)(r, )V (ry, x3,t) - yr dSydrdxsdt
t —-L JO st
%) L b
+ / / / (pvw)(r, 1) ( / oty + V1V dsy> drdxsdi
1 —L JO St
i) L b
= / / / puwad,r drdxsdt.
131 —L JO

‘We have used here the facts that

h dy
Yy, dx3 =0, and (—yzlﬂxl + yll//m) dSy = —da =0.
si s1 do

—h

This takes care of the last term on the left-hand side of (76) and the computation
of the $l3 term is carried out as in Proposition 6. O

Concerning the weak form of the energy equation, it is straightforward to
prove (18) for test functions supported in the fluid region, as asserted in (e) of
Theorem 1.1. The proof consists in applying the strong convergence of the approx-
imate velocities and temperatures and the weak convergence of the approximate
densities, and converting to Cartesian coordinates as in the previous two propo-
sitions. We omit the details, but we note that the assertion in (e) that VU, VO €
Llloc(}" ) is a consequence of (23), (26), and (4).

Proposition 7. The weak form (18) of the energy equation holds as stated in The-
orem 1.1(e).

Finally, we prove a result concerning the balance of total energy.

Proposition 8. The total energy £ of the limiting solution satisfies the balance
relation described in Theorem 1.1(f).
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Proof. We give the proof for the spherically symmetric case, the proof for the cylin-
drically symmetric being nearly identical. Denoting the energy associated with the
approximate solution (p’, U/, 87) by

T
gl =/ /pf(x,t) 31070 469 e, 0| dxar,
0o Ja
we have, from the energy equation (3),
EN @) = E7(0) +/ / o’U’ -Fdxds.
0 ajgr(x)éb

Now let ¢ € D(0, oo) with support in (0, 7). Then for R = a; > 0,

T
E7(0) / & (1) dt
0

T _ ‘ .
:/ [gf(t)—/ / ij]'FdXdS}(ﬁ(l)dt
0 0 Ja;Sr)=b
r R Rvr() RV (1) b o
B / / +/ +/ +/ (0! EN(r, )¢ (1) r*drdt
0 aj R Rvr(t) RVri(t)

T t
—/ / / o/ U/ - Fdxds ¢(t)dt, a7
0 0 ajér(x)gb

where E/ = 60/ + %|Uj|2. We first let j — oo, then & — 0, then finally R — 0.
It is clear that £/(0) — £(0) as j — o0, and

T ot o T gt
/ / / 0’ U’ -Fdxds ¢ (t)dt — / / / oU -Fdxds ¢ (t)dt
0 Jo Jaj<r(x)<b 0o Jo JQ

by the same argument used to prove the convergence of the p/ U/ ¢, term in (61). For
the second-last term on the right-hand side of (77) we apply the strong convergence
of E/ and the weak convergence of p/ in the given region to obtain

T b o T b
/ / ép! E r¥drdt — / / ¢pE r’drdt as j — o0
0 Rvry(t) 0 Rvry (1)

T b
— / / ¢pE rdrdt ash — 0
0 Rvr(t)

T rb
— / / ¢opE rldrdt asR — 0,
0 Jr@)

where we have used the Dominated Convergence Theorem and the integrability of
the total energy in the two last limits. For the second integral on the right-hand side
of (77) we apply Lemma 9:
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T rRVF(®)
/ / ép! E7 rldrdt
0 R

T rRvr()
w // plr?drdt; C(R,T)
o Jr
T Rvr() 1/4
+w // olr*drdt; C(R,T)
o Jr

which tends to zero as j — oo, for fixed R, by (59). For the the third integral in
(77) we apply the first two parts of Lemma 9 to get

T rRVRG)
/ / ép! EJ rldrdt
0 Rvr(t)

T
S l9llocC(R, T) {w (/0 o(|[[RV @), RV ry®]l; Co)dt; C(R, T))

S 9l C(R, T)

T 1/4
+w(/ o(l[RV (1), RV rp®)]l; Co)dt; C(R,T)) ] ;
0

which tends to zero as & — 0, for fixed R, by definition of r(#). We thus conclude
from (77) that

T T R
/ EO)P (1) dt = Jim lim ( / ol EIr? dr) o (1) dt
0 0 a;

—0 j—o00 ;

T b
+/ (/ ,oEr2 dr) ¢(t)dt
0 r(t)

T t
_/ (/ /pU-Fdxds) ¢ (1) dt,
0 0 JQ

as required. O

4.3. Proof of Theorem 1.1

Part (a) of Theorem 1.1 is Proposition 1, the semicontinuity being implicit in the
proof. The existence and regularity of p, U, 6 asserted in (b) of Theorem 1.1 follow
from Propositions 2 and 3. The weak forms of the mass and momentum equations
are proved in Propositions 4, 5, and 6, from which the regularity assertions in (c)
and (d) of Theorem 1.1 follow immediately. Finally, the results in (e) and (f) of the
Theorem 1.1 are proved in Propositions 7 and 8.

Acknowledgements. Research supported in part by the NSF under Grants DMS-9986658
and DMS-0305072 (HOFF) and Grant DMS-0206631 (JENSSEN).



Symmetric Nonbarotropic Flows with Large Data and Forces 343

References

. FEIREISL, E.: The dynamical system approach to the Navier-Stokes equations of com-
pressible fluids. Advances in Math. Fluid Mech. (Paseky, 1999), Springer, Berlin, 2000,
pp- 35-66

. FrRID, H., SHELUKHIN, V.: Vanishing shear viscosity in the equations of compressible
fluids for the flows with the cylinder symmetry. SIAM J. Math. Anal. 31, 1144-1156
(2000)

. HOFF, D.: Spherically symmetric solutions of the Navier-Stokes equations for compress-
ible, isothermal flow with large, discontinuous initial data. Indiana Univ. Math. J. 41,
1225-1302 (1992)

. HOFF, D.: Discontinuous solutions of the Navier-Stokes equations for multidimensional
flows of heat-conducting fluids. Arch. Rational Mech. Anal. 139, 303-354 (1997)

. KAZHIKHOV, A.V., SHELUKHIN V.V.: Unique global solution with respect to time of ini-
tial-boundary value problems for one-dimensional equations of a viscous gas. J. Appl.
Math. Mech. 41, 273-282 (1977); translated from Prikl. Mat. Meh. 41, 282-291 (1977)
(Russian)

. LIONS, P.L.: Mathematical topics in Fluid Mechanics. Vol. 2, Oxford University Press,
Oxford, 1998

Department of Mathematics
Indiana University
Bloomington, IN 47405

and

Department of Mathematics
North Carolina State University
Raleigh, NC 27695

(Accepted February 6, 2004)
Published online June 7, 2004 — © Springer-Verlag (2004)



