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SYMMETRIC NONNEGATIVE REALIZATION OF SPECTRA∗

RICARDO L. SOTO† , OSCAR ROJO† , JULIO MORO‡, AND ALBERTO BOROBIA§

Abstract. A perturbation result, due to R. Rado and presented by H. Perfect in 1955, shows
how to modify r eigenvalues of a matrix of order n, r ≤ n, via a perturbation of rank r, without
changing any of the n − r remaining eigenvalues. This result extended a previous one, due to
Brauer, on perturbations of rank r = 1. Both results have been exploited in connection with the
nonnegative inverse eigenvalue problem. In this paper a symmetric version of Rado’s extension
is given, which allows us to obtain a new, more general, sufficient condition for the existence of
symmetric nonnegative matrices with prescribed spectrum.
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1. Introduction. The real nonnegative inverse eigenvalue problem (hereafter
RNIEP) is the problem of characterizing all possible real spectra of entrywise n × n
nonnegative matrices. For n ≥ 5 the problem remains unsolved. In the general
case, when the possible spectrum Λ is a set of complex numbers, the problem has
only been solved for n = 3 by Loewy and London [11]. The complex cases n = 4
and n = 5 have been solved for matrices of trace zero by Reams [17] and Laffey
and Meehan [10], respectively. Sufficient conditions or realizability criteria for the
existence of a nonnegative matrix with a given real spectrum have been obtained in
[25, 14, 15, 18, 8, 1, 19, 22] (see [3, §2.1] and references therein for a comprehensive
survey). If we additionally require the realizing matrix to be symmetric, we have the
symmetric nonnegative inverse eigenvalue problem (hereafter SNIEP). Both problems,
RNIEP and SNIEP, are equivalent for n ≤ 4 (see [26]), but are different otherwise [7].
Partial results for the SNIEP have been obtained in [4, 24, 16, 21, 23] (see [3, §2.2]
and references therein for more on the SNIEP).

The origin of the present paper is a perturbation result, due to Brauer [2] (The-
orem 2.2 below), which shows how to modify one single eigenvalue of a matrix via
a rank-one perturbation, without changing any of the remaining eigenvalues. This
result was first used by Perfect [14] in connection with the NIEP, and has given rise
lately to a number of realizability criteria [19, 20, 22]. Closer to our approach in this
paper is Rado’s1 extension (Theorem 2.3 below) of Brauer’s result, which was used by
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Perfect in [15] to derive a sufficient condition for the RNIEP. Our goal in this paper
is twofold: to obtain a symmetric version of Rado’s extension and, as a consequence
of it, to obtain a new realizability criterion for the SNIEP.

The paper is organized as follows: In section 2 we introduce some notation,
basic concepts and results which will be needed throughout the paper, including
Rado’s Theorem and its new, symmetric version (Theorem 2.6 below). Based on
this symmetric version, we give in section 3 a new criterion (Theorem 3.1) for the
existence of a symmetric nonnegative matrix with prescribed spectrum, together with
an explicit procedure to construct the realizing matrices. Section 4 is devoted to
comparing this new criterion with some previous criteria for the SNIEP, and section
5 to illustrate the results with two specific examples.

2. Symmetric rank-r perturbations. Let Λ = {λ1, λ2, . . . , λn} be a set of
real numbers. We shall say that Λ is realizable (respectively, symmetrically realizable)
if it exists an entrywise nonnegative (resp., a symmetric entrywise nonnegative) matrix
of order n with spectrum Λ.

Definition 2.1. A set K of conditions is said to be a symmetric realizability
criterion if any set Λ = {λ1, λ2, ....., λn} satisfying the conditions K is symmetrically
realizable.

A real matrix A = (aij)ni,j=1 is said to have constant row sums if all its rows sum
up to a same constant, say α, i.e.

n∑
j=1

aij = α, i = 1, . . . , n.

The set of all real matrices with constant row sums equal to α is denoted by CSα.
It is clear that any matrix in CSα has eigenvector e = (1, 1, ...1)T corresponding to
the eigenvalue α. Denote by ek the vector with one in the k-th position and zeros
elsewhere.

The relevance of matrices with constant row sums in the RNIEP is due to the fact
[6] that if λ1 is the dominant element in Λ, then the problem of finding a nonnegative
matrix with spectrum Λ is equivalent to the problem of finding a nonnegative matrix
in CSλ1 with spectrum Λ.

The following theorem, due to Brauer [2, Thm. 27], is relevant for the study
of the nonnegative inverse eigenvalue problem. In particular, Theorem 2.2 plays an
important role not only to derive sufficient conditions for realizability, but also to
compute a realizing matrix.

Theorem 2.2. (Brauer [2]) Let A be an n × n arbitrary matrix with eigenval-
ues λ1, λ2, ..., λn. Let v = (v1, v2, ..., vn)T be an eigenvector of A associated with the
eigenvalue λk and let q be any n-dimensional vector. Then the matrix A + vqT has
eigenvalues λ1, λ2, ....., λk−1, λk + vT q, λk+1, ......, λn.
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The following result, due to R. Rado and presented by Perfect [15] in 1955, is
an extension of Theorem 2.2. It shows how to change an arbitrary number r of
eigenvalues of an n× n matrix A (with n > r) via a perturbation of rank r, without
changing any of the remaining n− r eigenvalues.

Theorem 2.3. (Rado [15]) Let A be an n × n arbitrary matrix with eigen-
values λ1, λ2, ..., λn and let Ω = diag{λ1, λ2, ..., λr} for some r ≤ n. Let X be
an n × r matrix with rank r such that its columns x1, . . . ,xr satisfy Axi = λixi,
i = 1, 2, ...r,. Let C be an r × n arbitrary matrix. Then the matrix A + XC has
eigenvalues µ1, µ2, ..., µr, λr+1, λr+2, ..., λn, where µ1, µ2, ..., µr are eigenvalues of the
matrix Ω+ CX.

Perfect used this extension to derive a realizability criterion for the RNIEP. Al-
though it turns out to be a quite powerful result, inexplicably, this criterion was
completely ignored for many years in the literature until it was brought up again in
[22]. Perfect’s criterion for the RNIEP is the following:

Theorem 2.4. (Perfect [15]) Let Λ = {λ1, . . . , λn} ⊂ R be such that

−λ1 ≤ λk ≤ 0, k = r + 1, . . . , n

for a certain r < n and let ω1, . . . , ωr be nonnegative real numbers such that there
exists an r× r nonnegative matrix B ∈ CSλ1 with eigenvalues {λ1, . . . , λr} and diag-
onal entries {ω1, . . . , ωr}. If one can partition the set {ω1, . . . , ωr} ∪ {λr+1, . . . , λn}
into r realizable sets Γk = {ωk, λk2, ..., λkpk

}, k = 1, . . . , r, then Λ is also a realizable
set.

Perfect complemented this result with conditions under which ω1, ω2,..., ωr are
the diagonal entries of some r × r nonnegative matrix B ∈ CSλ1 with spectrum
{λ1, λ2, ..., λr}. For the particular case r = 3, these conditions, which are necessary
and sufficient, are

i) 0 ≤ ωk ≤ λ1, k = 1, 2, 3
ii) ω1 + ω2 + ω3 = λ1 + λ2 + λ3

iii) ω1ω2 + ω1ω3 + ω2ω3 ≥ λ1λ2 + λ1λ3 + λ2λ3

iv) maxk ωk ≥ λ2




with

B =


 ω1 0 λ1 − ω1

λ1 − ω2 − p ω2 p
0 λ1 − ω3 ω3


 , (2.1)

(see also [22]) where

p =
1

λ1 − ω3
[ω1ω2 + ω1ω3 + ω2ω3 − λ1λ2 − λ1λ3 − λ2λ3] .
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To show the power of both Theorem 2.3 and Theorem 2.4, consider the following
example; in which, as far as we know, no other realizability criterion is satisfied by
the set Λ (except the extended Perfect criterion given in [22]):

Example 2.5. Let Λ = {6, 3, 3,−5,−5}.We take the partition

{6,−5} ∪ {3,−5} ∪ {3}

with the associated realizable sets

Γ1 = {5,−5}, Γ2 = {5,−5}, Γ3 = {2}.

Then

A =




0 5 0 0 0
5 0 0 0 0
0 0 0 5 0
0 0 5 0 0
0 0 0 0 2


 ; X =




1 0 0
1 0 0
0 1 0
0 1 0
0 0 1




and Axi = λixi, i = 1, 2, 3. Now we need to compute a 3 × 3 matrix B ∈ CSλ1 with
eigenvalues 6, 3, 3 and diagonal entries 5, 5, 2. From (2.1), that matrix is

B =


 5 0 1

1 5 0
0 4 2




and from it we compute the matrix

C =


 0 0 0 0 1

1 0 0 0 0
0 0 4 0 0


 .

Then

A+XC =




0 5 0 0 1
5 0 0 0 1
1 0 0 5 0
1 0 5 0 0
0 0 4 0 2




is nonnegative with spectrum Λ = {6, 3, 3,−5,−5}.

We finish this section by proving its main result, namely a symmetric version of
Rado’s Theorem 2.3.

Theorem 2.6. Let A be an n×n symmetric matrix with eigenvalues λ1, . . . , λn,
and, for some r ≤ n, let {x1,x2, ...,xr} be an orthonormal set of eigenvectors of A
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spanning the invariant subspace associated with λ1, ..., λr. Let X be the n× r matrix
with i-th column xi, let Ω = diag{λ1, . . . , λr}, and let C be any r×r symmetric matrix.
Then the symmetric matrix A + XCXT has eigenvalues µ1, µ2, ..., µr, λr+1, ..., λn,
where µ1, µ2, ..., µr are the eigenvalues of the matrix Ω+ C.

Proof. Since the columns of X are an orthonormal set, we may complete X to an
orthogonal matrixW = [X Y ], i.e., XTX = Ir , Y

TY = In−r, X
TY = 0, Y TX = 0.

Then

W−1AW =
[
XT

Y T

]
A

[
X Y

]
=

[
Ω XTAY
0 Y TAY

]

W−1(XCXT )W =
[
Ir
0

]
C

[
Ir 0

]
=

[
C 0
0 0

]
.

Therefore,

W−1(A+XCXT )W =
[
Ω + C XTAY

0 Y TAY

]

and A+XCXT is a symmetric matrix with eigenvalues µ1, ..., µr, λr+1, ..., λn.

3. A new criterion for symmetric nonnegative realization of spectra.
The following result gives a realizability criterion for the SNIEP, that is, if Λ satisfies
the criterion then Λ is realizable as the spectrum of a symmetric nonnegative matrix.
It is a consequence of Theorem 2.6 in the same way as Theorem 2.4 follows from
Theorem 2.3. In section 4 we show that Soto’s realizability criterion [19, Theorem
17], which is also sufficient for the symmetric case, is contained in the criterion of
Theorem 3.1 below. Example 5.2 in section 5 shows that the inclusion is strict.

Theorem 3.1. Let Λ = {λ1, . . . , λn} be a set of real numbers with λ1 ≥ λ2 ≥
. . . ≥ λn and, for some t ≤ n, let ω1, . . . , ωt be real numbers satisfying 0 ≤ ωk ≤
λ1, k = 1, . . . , t. Suppose there exist

i) a partition Λ = Λ1 ∪ . . . ∪ Λt, with Λk = {λk1, λk2, . . . , λkpk
}, λ11 =

λ1, λk1 ≥ 0; λk1 ≥ . . . ≥ λkpk
, such that for each k = 1, . . . , t the set

Γk = {ωk, λk2, . . . , λkpk
} is realizable by a symmetric nonnegative matrix of

order pk, and
ii) a symmetric nonnegative t × t matrix with eigenvalues λ11, λ21, . . . , λt1 and

diagonal entries ω1, ω2, . . . , ωt.
Then Λ is realizable by a symmetric nonnegative matrix of order n.

Proof. For each k = 1, . . . , t, denote by Ak the symmetric nonnegative pk × pk

matrix realizing Γk. We know from i) that the n×n matrix A = diag{A1, A2, . . . , At}
is symmetric nonnegative with spectrum Γ1∪Γ2∪ . . .∪Γt. Let {x1, . . . ,xr} be an or-
thonormal set of eigenvectors of A associated, respectively, with ω1, . . . , ωr. Then, the
n×r matrix X with i-th column xi satisfies AX = XΩ for Ω = diag{ω1, ω2, . . . , ωt}.
Moreover,X is entrywise nonnegative, since each xi is a Perron vector of Ai. Now, let
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B be the symmetric nonnegative t×t matrix with spectrum {λ1, . . . , λt} and diagonal
entries ω1, ω2, . . . , ωt. If we set C = B − Ω, the matrix C is symmetric nonnegative,
and Ω + C has eigenvalues λ1, . . . , λt. Therefore, by Theorem 2.6, the symmetric
matrix A+XCXT has spectrum Λ. Moreover, it is nonnegative, since all the entries
of A,X and C are nonnegative.

Theorem 3.1 not only ensures the existence of a realizing matrix, but, as will
be shown in the rest of this section, it also allows to construct the realizing matrix.
Of course, the key is knowing under which conditions does there exist a symmetric
nonnegative matrix B of order t with eigenvalues λ1, . . . , λt and diagonal entries
ω1, . . . , ωt.

Necessary and sufficient conditions are known for the existence of a real, not
necessarily nonnegative, symmetric matrix. They are due to Horn [5]: There exists a
real symmetric matrix with eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λt and diagonal entries ω1 ≥
ω2 ≥ . . . ≥ ωt if and only if the vector (λ1, . . . , λt) majorizes the vector (ω1, . . . , ωt),
that is, if and only if

k∑
i=1

λi ≥
k∑

i=1

ωi for k = 1, 2, ..., t− 1
t∑

i=1

λi =
t∑

i=1

ωi.


 (3.1)

From now on, we separate the study in four cases, depending on the number t of
subsets in the partition of Λ.

3.1. The case t = 2. For t = 2 the conditions (3.1) become

λ1 ≥ ω1

λ1 + λ2 = ω1 + ω2

}
,

and they are also sufficient for the existence of a 2× 2 symmetric nonnegative matrix
B with eigenvalues λ1 ≥ λ2 and diagonal entries ω1 ≥ ω2 ≥ 0, namely,

B =
[

ω1

√
(λ1 − ω1) (λ1 − ω2)√

(λ1 − ω1) (λ1 − ω2) ω2

]
.

3.2. The case t = 3. There are also necessary and sufficient conditions, ob-
tained by Fiedler [4], for the existence of a 3× 3 symmetric nonnegative matrix with
prescribed spectrum and diagonal entries:

Lemma 3.2. (Fiedler [4]) The conditions

λ1 ≥ ω1

λ1 + λ2 ≥ ω1 + ω2

λ1 + λ2 + λ3 = ω1 + ω2 + ω3

λ2 ≤ ω1


 (3.2)
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are necessary and sufficient for the existence of a 3×3 symmetric nonnegative matrix
B with eigenvalues λ1 ≥ λ2 ≥ λ3 and diagonal entries ω1 ≥ ω2 ≥ ω3 ≥ 0.

Remark 3.3. The matrix B for t = 3.
Using the proof of Theorem 4.4 in [4], one can write a procedure to construct the

symmetric nonnegative matrix B in Lemma 3.2. The procedure is as follows:
1. Define µ = λ1 + λ2 − ω1.

2. Construct the 2× 2 symmetric nonnegative matrix

T =
[
ω2 τ
τ ω3

]
, τ =

√
(µ− ω2) (µ− ω3)

with eigenvalues µ and λ3. Observe that, using (3.2), we have µ = λ1 + λ2 −
ω1 ≥ ω1 + ω2 − ω1 = ω2.

3. Find a normalized Perron vector u of T

Tu = µu, uT u = 1.

4. Construct the 2× 2 symmetric nonnegative matrix

S =
[
µ s
s ω1

]
, s =

√
(λ1 − µ) (λ1 − ω1)

with eigenvalues λ1 and λ2. It follows from (3.2) that λ1 − µ = ω1 − λ2 ≥ 0.
5. By Lemma 2.2 in [4], the matrix

B̃ =
[

T su
suT ω1

]

is symmetric nonnegative with the prescribed eigenvalues and diagonal en-
tries. Finally, the matrix

B =
[
ω1 suT

su T

]
,

similar to B̃, has the diagonal entries in the order ω1 ≥ ω2 ≥ ω3.

One can easily check that this procedure yields

B =




ω1

√
µ−ω3

2µ−ω2−ω3
s

√
µ−ω2

2µ−ω2−ω3
s√

µ−ω3
2µ−ω2−ω3

s ω2

√
(µ− ω2) (µ− ω3)√

µ−ω2
2µ−ω2−ω3

s
√
(µ− ω2) (µ− ω3) ω3


 . (3.3)
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3.3. The case t = 4. For t ≥ 4 we may use the following result:

Theorem 3.4. (Fiedler [4]) If λ1 ≥ . . . ≥ λt and ω1 ≥ . . . ≥ ωt are such that

i)
s∑

i=1

λi ≥
s∑

i=1

ωi, 1 ≤ s ≤ t− 1

ii)
t∑

i=1

λi =
t∑

i=1

ωi

iii) λk ≤ ωk−1, 2 ≤ k ≤ t− 1




(3.4)

then there exists a t× t symmetric nonnegative matrix B with eigenvalues λ1, . . . , λt

and diagonal entries ω1, . . . , ωt.

As before, a procedure to construct the symmetric nonnegative matrix B of The-
orem 3.4 can be obtained for the case t = 4 following the proofs of Theorem 4.4,
Lemma 4.1 and Theorem 4.8 in [4].

Remark 3.5. Construction of B for t = 4.
Let λ1 ≥ λ2 ≥ λ3 ≥ λ4 and ω1 ≥ ω2 ≥ ω3 ≥ ω4 satisfy the conditions (3.4)

above. Then, the following procedure leads to a symmetric nonnegative matrix B
with eigenvalues λi and diagonal entries ωi.

1. Define µ = λ1 + λ2 − ω1.
2. Using the procedure in Remark 3.3, construct a 3×3 symmetric nonnegative

matrix T with eigenvalues µ, λ3, λ4 and diagonal entries ω2, ω3, ω4. Notice
that these eigenvalues and diagonal entries satisfy the necessary and sufficient
conditions given in Lemma 3.2:

µ = λ1 + λ2 − ω1 ≥ ω1 + ω2 − ω1 = ω2

µ+ λ3 = λ1 + λ2 + λ3 − ω1 ≥ ω1 + ω2 + ω3 − ω1 = ω2 + ω3

µ+ λ3 + λ4 = λ1 + λ2 − ω1 + λ3 + λ4 = ω1 + ω2 − ω1 + ω3 + ω4

= ω2 + ω3 + ω4

λ3 ≤ ω2

3. Find u such that

Tu = µu, uT u = 1.

4. Construct the 2× 2 symmetric nonnegative matrix

S =
[
µ s
s ω1

]
, s =

√
(λ1 − µ) (λ1 − ω1)

with eigenvalues λ1 and λ2. It follows from (3.2) that λ1 − µ = ω1 − λ2 ≥ 0.
5. By Lemma 2.2 in [4],

B̃ =
[

T su
suT ω1

]
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is a symmetric nonnegative matrix with the prescribed eigenvalues and diag-
onal entries. Finally, the matrix

B =
[
ω1 suT

su T

]
,

similar to B̃, has the diagonal entries in the order ω1 ≥ ω2 ≥ ω3 ≥ ω4.

Remark 3.6. We observe that for t ≥ 4 the conditions in Theorem 3.4 are only
sufficient. The matrix

B =




5 2 1
2

1
2

2 5 1
2

1
2

1
2

1
2 5 2

1
2

1
2 2 5


 ,

for instance, has eigenvalues 8, 6, 3, 3 and its second largest eigenvalue is strictly larger
than its largest diagonal entry.

3.4. The case t ≥ 5. Recursively, the above procedure can be easily extended
to t ≥ 5

Remark 3.7. Construction of B for t ≥ 5.
Let λ1 ≥ . . . ≥ λt and ω1 ≥ . . . ≥ ωt satisfying the sufficient conditions of

Theorem 3.4.
1. Define µ = λ1 + λ2 − ω1.
2. Using the above procedure recursively, construct a (t− 1)× (t− 1) symmet-

ric nonnegative matrix T with eigenvalues µ, λ3, . . . , λt and diagonal entries
ω2, ω3, . . . , ωt. Notice that these eigenvalues and diagonal entries satisfy the
conditions of Theorem 3.4:

µ = λ1 + λ2 − ω1 ≥ ω1 + ω2 − ω1 = ω2

µ+
l∑

j=3

λj = λ1 + λ2 − ω1 +
l∑

j=3

λj

=
l∑

j=1

λj − ω1 ≥
l∑

j=2

ωj for 3 ≤ l ≤ t− 1.

µ+
t∑

j=3

λj = λ1 + λ2 − ω1 +
t∑

j=3

λj

=
t∑

j=1

λj − ω1 =
t∑

j=2

ωj

λk ≤ ωk−1 for 3 ≤ k ≤ t− 1
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3. Find u such that

Tu = µu, uT u = 1.

4. Construct the 2× 2 symmetric nonnegative matrix

S =
[
µ s
s ω1

]
, s =

√
(λ1 − µ) (λ1 − ω1)

with eigenvalues λ1 and λ2. It follows from (3.2) that λ1 − µ = ω1 − λ2 ≥ 0.
5. By Lemma 2.2 in [4],

B̃ =
[

T su
suT ω1

]

is a symmetric nonnegative matrix with the prescribed eigenvalues and diag-
onal entries. Finally, the matrix

B =
[
ω1 suT

su T

]
,

similar to B̃, has the diagonal entries in the order ω1 ≥ ω2 ≥ .... ≥ ωt.

4. Comparison with previous criteria. Several realizability criteria which
were first obtained for the RNIEP have later been shown to be realizability criteria
for the SNIEP as well. Kellogg’s criterion [8], for instance, was shown by Fiedler [4]
to imply symmetric realizability. Radwan [16] proved that Borobia’s criterion [1] is
also a criterion for symmetric realizability , and Soto’s criterion for the RNIEP [19]
(Theorem 4.2 below), which contains both Kellogg’s and Borobia’s criteria [20], was
shown in [23] to be also a symmetric realizability criterion. In this section we compare
the new result in this paper (Theorem 3.1) with some previous realizability criteria
for SNIEP. First, we will show that Soto’s criterion is actually contained in the new
symmetric realizability criterion. Example 5.2 in section 5 shows that the inclusion
is strict. Comparisons with results given in [9], [12] and [13] will also be discussed in
this section. We begin by recalling Soto’s criterion, first in a simplified version which
displays the essential ingredients, and then in full generality.

Theorem 4.1. (Soto [19]) Let Λ = {λ1, λ2, . . . , λn} be a set of real numbers,
satisfying λ1 ≥ . . . ≥ λp ≥ 0 > λp+1 ≥ . . . ≥ λn. Let

Sj = λj + λn−j+1, j = 2, 3, . . . ,
[n
2

]
and (4.1)

Sn+1
2

= min{λn+1
2
, 0} for n odd.

If

λ1 ≥ −λn −
∑
Sj<0

Sj , (4.2)
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then Λ is realizable by a nonnegative matrix A ∈ CSλ1 .

It was shown in [21] that condition (4.2) is also sufficient for the existence of a
symmetric nonnegative matrix with prescribed spectrum. In the context of Theorem
4.1 we define

T (Λ) = λ1 + λn +
∑
Sj<0

Sj

and observe that (4.2) is equivalent to T (Λ) ≥ 0. If Λ = {λ1, . . . , λn} satisfies the
sufficient condition (4.2), then

Λ′ = {−λn −
∑
Sj<0

Sj , λ2, . . . , λn}

is a symmetrically realizable set. The number −λn−
∑

Sj<0 Sj is the minimum value
that λ1 may take in order that Λ be symmetrically realizable according to Theorem
4.1. Now, suppose that Λ = {λ1, λ2, . . . , λn} is partitioned as Λ = Λ1 ∪Λ2 ∪ . . .∪Λt.
Then, according to Theorem 4.1, for each subset Λk = {λk1, λk2, . . . , λkpk

}, k =
1, 2, . . . , t, of the partition,

T (Λk) = Tk = λk1 + λkpk
+

∑
Skj<0

Skj . (4.3)

Clearly, Λk is symmetrically realizable if and only if Tk ≥ 0.

The following result is an extension of Theorem 4.1. As mentioned above, it is
also a symmetric realizability criterion [23].

Theorem 4.2. (Soto [19]) Let Λ = {λ1, λ2, . . . , λn} as in Theorem 4.1. Let the
partition Λ = Λ1 ∪ Λ2 ∪ . . . ∪ Λt with

Λk = {λk1, λk2, . . . , λkpk
}, k = 1, . . . , t, λ11 = λ1, λk1 ≥ 0, λk1 ≥ . . . ≥ λkpk

.

Let Tk be defined as in (4.3), and let

L = max{λ1 − T1; max
2≤k≤t

{λk1}}. (4.4)

If

λ1 ≥ L−
∑

Tk<0

Tk, (4.5)

then Λ is realizable by a nonnegative matrix A ∈ CSλ1 . Moreover, Λ is symmetrically
realizable.

Now we show that the (symmetric) realizability criterion of Theorem 4.2 implies
Theorem 3.1. Example 5.2 in section 5 shows that the inclusion is strict. We point
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out that Theorem 4.2 is a constructive criterion in the sense that it allows to compute
an explicit realizing matrix. However, to construct a symmetric nonnegative matrix
we need a different approach.

Theorem 4.3. If the conditions of Theorem 4.2 are satisfied, then the conditions
of Theorem 3.1 are satisfied as well.

Proof. Suppose condition (4.5) of Theorem 4.2 is satisfied. Without loss of
generality, we may assume that λ1 = L − ∑

Tk<0 Tk, since increasing the dominant
element of a set never leads to a loss of realizability. Consider the partition Λ =
Λ1 ∪ . . . ∪ Λt, Λk = {λk1, λk2, . . . , λkpk

}, k = 1, . . . , t, in Theorem 4.2. We define the
sets

Γk = {ωk, λk2, . . . , λkpk
}, k = 1, 2, . . . , t,

where

ω1 = L

ωk = λk1 − Tk if Tk < 0
ωk = λk1 if Tk ≥ 0, k = 2, 3, . . . , t

Then, using the symmetric realizability condition (4.2) given by Theorem 4.1, Γk is
realizable by a pk × pk symmetric nonnegative matrix Ak. We now show, by checking
conditions (3.4), the existence of a symmetric nonnegative matrix B with eigenvalues
λ1, λ21, . . . , λt1 and diagonal entries ω1, ω2, . . . , ωt: since ω1 = L = λ1 +

∑
Tk<0 Tk,

we have
s∑

k=1

λk1 = ω1 −
∑

Tk<0

Tk +
∑

Tk<0, k∈{2,...,s}
(ωk + Tk) +

∑
Tk≥0, k∈{2,...,s}

ωk

=
s∑

k=1

ωk −
∑

Tk<0, k/∈{2,...,s}
Tk

≥
s∑

k=1

ωk, s = 1, . . . , t− 1.

This proves condition i) in (3.4). Next,

t∑
k=1

λk1 = ω1 −
∑

Tk<0

Tk +
∑

Tk<0, k∈{2,...,t}
(ωk + Tk) +

∑
Tk≥0, k∈{2,...,t}

ωk

=
t∑

k=1

ωk

proves ii). Finally, since

if Tk−1 < 0 then λk1 ≤ λ(k−1)1 = ωk−1 + Tk−1 ≤ ωk−1,
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or

if Tk−1 ≥ 0 then λk1 ≤ λ(k−1)1 = ωk−1,

condition iii) in (3.4) also holds. Thus the conditions of Theorem 3.1 are satisfied.

In [13], McDonald and Neumann denote as Rn the set of all points σ = (1, λ2, . . .,
λn), which correspond to spectra realizable by symmetric nonnegative matrices and
as Sn the set of all σ ∈ Rn, which are Soules realizable, that is, there exists an
n × n symmetric nonnegative matrix A and a Soules matrix R such that RTAR =
diag{1, λ2, . . . , λn}. Then they show that Sn = Rn for n = 3 and n = 4. In [9],
Knudsen and McDonald establish that S5 is properly contained in R5. In particular
they show that the point m = (1, −1+

√
5

4 , −1+
√

5
4 , −1−√

5
4 , −1−√

5
4 ) ∈ R5 is not in S5

and that every point on the line segment from l = (1, 0, 0, ,− 1
2 ,− 1

2 ) to m, correspond
to a set {1, λ2, . . . , λ5}, which is realizable by a symmetric nonnegative matrix.

In [3], Egleston et al. study the symmetric realizability of lists of five numbers
{1, λ2, . . . , λ5} and point out that there are two cases where SNIEP is unknown. One
of these cases is shown to be not realizable as the spectrum of a symmetric nonnegative
matrix by using a necessary condition given in ([13], Lemma 4.1). Concerning to the
second unresolved case, it is shown in [22] that every point on the line from l to m is
also realized by a symmetric nonnegative circulant matrix. Conditions

i) 1 > λ2 ≥ λ3 > 0 > λ4 ≥ λ5

ii) 1 + λ2 + λ4 + λ5 < 0 (4.6)

in the second case (see [3]) imply that Theorem 3.1 gives no information about the
realizability of the list Λ = {1, λ2, . . . , λ5} : from Theorem 3.1 with t = 3 we have the
partition

Λ = {1, λ5} ∪ {λ2, λ4} ∪ {λ3} with
Γ1 = {−λ5, λ5}; Γ2 = {−λ4, λ4}; Γ3 = {S}

where S = 1+λ2 +λ3 +λ4 +λ5. From (4.6), ii) and Lemma 3.2 it is easy to see that
there is no a 3×3 symmetric nonnegative matrix with eigenvalues and diagonal entries
1, λ2, λ3 and −λ4,−λ5, S, respectively. The same occurs if we take ω1 = −λ5 + S or
ω1 = −λ5 + S

2 and ω2 = −λ4 + S
2 , with Γ3 = {0}. If we take t = 2 in Theorem 3.1,

that is, if we consider partitions as

Λ = {1, λ5} ∪ {λ2, λ3, λ4} with
Γ1 = {−λ5, λ5}; Γ2 = {−λ4, λ3, λ4},

then from (4.6), ii) we have 1 + λ2 < −λ4 − λ5 and therefore there is no a 2 × 2
symmetric nonnegative matrix with eigenvalues 1, λ2 and diagonal entries −λ4,−λ5.

A recent contribution to the solution of SNIEP for n = 5 is due to Loewy and
McDonald [12]. They describe the possible patterns (+, 0) for which there exists
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an extreme symmetric matrix with prescribed spectrum and show that one of these
patterns yields to realizable points which have not been known previously. In [12] is
presented a graph related with the second unresolved case in [3]. In particular this
graph considers points of the form (1, λ2, λ2, λ3, λ3), which are plotted with λ2 on the
horizontal axis and λ3 on the vertical axis. Then the authors illustrate the boundaries
of the following regions of realizable points:

i) The boundary λ3 = −1−λ2
2 of the Soules set S5, of the points that were shown

to be realizable in [13]. We observe that every point in that boundary is indeed
symmetrically realizable by Theorem 4.1 and consequently by Theorem 3.1.

ii) The boundary of the additional points that were identified as being realizable
in [9] is the line segment from m to a = (1, 1, 1, 1, 1). These points have the form
αm+ (1− α)a, that is:

(1, 1 +
−5 +√

5
4

α, 1 +
−5 +√

5
4

α, 1− 5 +
√
5

4
α, 1− 5 +

√
5

4
α), (4.7)

where 0 ≤ α ≤ 1. Observe that for α ≤ 4
5+

√
5
, all points in (4.7) have only nonnegative

entries. Moreover, positive entries λ2 = λ3 dominate λ4 = λ5 for α ≤ 4
5 and therefore

all these points are trivially realizable by the symmetric nonnegative matrix

A =




1 0 0 0 0
0 λ2+λ5

2
λ2−λ5

2 0 0
0 λ2−λ5

2
λ2+λ5

2 0 0
0 0 0 λ3+λ4

2
λ3−λ4

2

0 0 0 λ3−λ4
2

λ3+λ4
2


 .

So, we consider points in (4.7) for which 4
5 < α ≤ 1. In order to see if Theorem 3.1

works here, we look for a 3 × 3 symmetric nonnegative matrix with eigenvalues and
diagonal entries

λi : 1, 1 +
−5 +√

5
4

α, 1 +
−5 +√

5
4

α

ωi : − (1− 5 +
√
5

4
α) + β,−(1− 5 +

√
5

4
α) + γ, δ,

respectively, where β+γ+δ = 5(1−α), the sum of the entries in αm+(1−α)a. Then
by taking appropriately the numbers β, γ and δ, conditions of Lemma 3.2 are satisfied
and the corresponding set Λ = {1, λ2, λ3, λ4, λ5} is realizable by Theorem 3.1. The
points on the line segment from m to a have the form (1, λ2, λ2, λ3, λ3), so they can
be written as an even-conjugate vector (1, λ2, λ3, λ3, λ2). Then it is natural to analyze
whether they are the spectrum of a symmetric nonnegative circulant matrix. This is
the case for all points on the line from m to a.

iii) The boundary of the new additional points identified in [12] as realizable is
given by a portion of the curve λ2λ3 = − 1

4 . The corresponding set of points is of the
form (1, λ2, λ2,− 1

4λ2
,− 1

4λ2
) where −1+

√
5

4 ≤ λ2 ≤
√

3−1
2 . Let us see if Theorem 3.1 is
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satisfied for this kind of points: For t = 3 we have

λi : 1, λ2, λ2

ωi :
1
4λ2

,
1
4λ2

, S,

where S = 1 + 2λ2 − 1
2λ2

. Observe that in this case S < 1
4λ2

. A straight forward
calculation shows that 1+ λ2 < ω1 + ω2, which contradicts conditions of Lemma 3.2.
For t = 2, λi : 1, λ2 and ωi : 1

4λ2
, 1

4λ2
. Conditions 1 ≥ ω1 and 1+λ2 = ω1+ω2 are only

satisfied for λ2 =
√

3−1
2 , that is, for a point on the intersection with the boundary

λ3 = −1−λ2
2 of the Soules set S5. Hence, Theorem 3.1 gives no information about

realizability of these points.

5. Examples.
Example 5.1. Let Λ = {7, 5, 1,−3,−4,−6}. Consider the partition

Λ1 = {7,−6}, Λ2 = {5,−4}, Λ3 = {1,−3}
and the associated realizable sets

Γ1 = {6,−6}, Γ2 = {4,−4}, Γ3 = {3,−3}.
Here λ1 = 7, λ2 = 5, λ3 = 1 and ω1 = 6, ω2 = 4, ω3 = 3. The conditions in
Lemma 3.2 are satisfied. Then there exists a symmetric nonnegative matrix B with
eigenvalues 7, 5, 1 and diagonal entries 6, 4, 3. We have µ = 7 + 5 − 6 = 6. From
(3.3)

B =




6
√

3
5

√
2
5√

3
5 4

√
6√

2
5

√
6 3


 .

Clearly,

A1 =
(
0 6
6 0

)
, A2 =

(
0 4
4 0

)
, A3 =

(
0 3
3 0

)

are symmetric nonnegative matrices realizing Γ1, Γ2, Γ3, respectively. Let Ω =
diag{6, 4, 3}. Then the matrix C defined in the proof of Theorem 3.1 is

C =




0
√

3
5

√
2
5√

3
5 0

√
6√

2
5

√
6 0


 ,

while the matrices A and X are

A = diag {A1, A2, A3} ,
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X =




√
2

2 0 0√
2

2 0 0
0

√
2

2 0
0

√
2

2 0
0 0

√
2

2

0 0
√

2
2



.

Then, the symmetric nonnegative matrix

A+XCXT =




0 6 1
2

√
3
5

1
2

√
3
5

1
2

√
2
5

1
2

√
2
5

6 0 1
2

√
3
5

1
2

√
3
5

1
2

√
2
5

1
2

√
2
5

1
2

√
3
5

1
2

√
3
5 0 4 1

2

√
6 1

2

√
6

1
2

√
3
5

1
2

√
3
5 4 0 1

2

√
6 1

2

√
6

1
2

√
2
5

1
2

√
2
5

1
2

√
6 1

2

√
6 0 3

1
2

√
2
5

1
2

√
2
5

1
2

√
6 1

2

√
6 3 0




has the prescribed eigenvalues 7, 5, 1,−3,−4,−6.
Example 5.2. Let Λ = {7, 5, 1, 1,−4,−4,−6}.The conditions of Theorem 4.2 are

not satisfied. However, the conditions for the new symmetric realizability criterion,
Theorem 3.1, are satisfied: consider the partition Λ = Λ1 ∪ Λ2, where Λ1 = {7,−6},
Λ2 = {5, 1, 1,−4,−4}, with associated symmetrically realizable sets

Γ1 = {6,−6}, Γ2 = {6, 1, 1,−4,−4}.

It is clear that there exists a 2×2 symmetric nonnegative matrix with diagonal entries
ω1 = 6, ω2 = 6 and eigenvalues λ1 = 7, λ2 = 5, namely,

B =
[
6 1
1 6

]
.

By Theorem 3.1, there exists an 7 × 7 symmetric nonnegative matrix M with the
prescribed spectrum Λ. Now we compute the matrix M . Firstly we obtain the sym-
metric matrices A1, realizing Γ1, and A2, realizing Γ2, (see [22] for the way in which
we obtain A2):

A1 =
[
0 6
6 0

]
, A2 =




0 3+
√

5
2

3−√
5

2
3−√

5
2

3+
√

5
2

3+
√

5
2 0 3+

√
5

2
3−√

5
2

3−√
5

2
3−√

5
2

3+
√

5
2 0 3+

√
5

2
3−√

5
2

3−√
5

2
3−√

5
2

3+
√

5
2 0 3+

√
5

2
3+

√
5

2
3−√

5
2

3−√
5

2
3+

√
5

2 0


 .
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Then

A =
[
A1 0
0 A2

]
, C =

[
0 1
1 0

]

and

X =




√
2

2 0√
2

2 0
0

√
5

5

0
√

5
5

0
√

5
5

0
√

5
5

0
√

5
5




Therefore,

M = A+XCXT =




0 6
√

10
10

√
10

10

√
10

10

√
10

10

√
10

10

6 0
√

10
10

√
10

10

√
10

10

√
10

10

√
10

10√
10

10

√
10

10 0 3+
√

5
2

3−√
5

2
3−√

5
2

3+
√

5
2√

10
10

√
10

10
3+

√
5

2 0 3+
√

5
2

3−√
5

2
3−√

5
2√

10
10

√
10

10
3−√

5
2

3+
√

5
2 0 3+

√
5

2
3−√

5
2√

10
10

√
10

10
3−√

5
2

3−√
5

2
3+

√
5

2 0 3+
√

5
2√

10
10

√
10

10
3+

√
5

2
3−√

5
2

3−√
5

2
3+

√
5

2 0




is a symmetric nonnegative matrix realizing Λ.
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